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Abstract

In this paper we estimate industry-level VAR models at the 4-

digit SIC level for a number of US manufacturing sectors, using TFP

series which allow for variable factor utilisation over the cycle. This

allows us to verify the relevance of alternative theoretical modelling

approaches to the business cycle. Our results support standard RBC

models, and models of nominal rigidity based on sticky wages. They

offer little support to dynamic general equilibrium models based on

imperfect competition and sticky prices. Our results extend those

obtained recently by other researchers using aggregate data.

JEL Classification: E32, O47

Keywords: Real Business Cycles, Sticky Price DGE Models, Technology

Shocks, Total Factor Productivity



1 Introduction

The real business cycle (RBC) approach to macroeconomics heralded a new

approach to the analysis of business cycle fluctuations. Unlike previous ap-

proaches, RBC theorists developed a theory of cycles based on intertemporal

optimising behaviour. In the fifteen years since RBC theory was first devel-

oped (Kydland and Prescott, 1982; Long and Plosser, 1983) it has been the

subject of numerous methodological critiques.

One of the main criticisms of RBC models is that, in their simplest form,

they find it difficult to characterise the co-movement of key macroeconomic

aggregates over the cycle (see for instance Millard et al., 1997). A key prob-

lem with the RBC approach is the fact that the main business cycle propaga-

tion mechanism is the consumer’s intertemporal income-leisure decision. This

in turn implies a strong positive contemporaneous correlation over the cycle

between real wages, output and employment. Introducing labour hoarding

into RBC models (see for example Burnside et al., 1993) can help to explain

why employment may be less responsive over the cycle. Other modifications

such as the introduction of a search-theoretic model of the labour market

(see Andolfatto, 1996; den Haan et al., 1997; Walsh, 1998a) can also help

to bring the prediction of RBC models closer to observed correlations in

macroeconomic data.

One of the most innovative areas in business cycle research in the 1990s

has been the integration of RBC-type models with Keynesian-type models

of wage and price rigidity.1 Not surprisingly, given their inclusion of product

1See Cho and Cooley (1995), Benassy (1995), King and Watson (1995), King and
Wolman (1996), Chari et al. (1996), Kimball (1995), and Gaĺı (1999) for examples of
dynamic general equilibrium (DGE) models with sticky prices. Some economists (notably
Goodfriend and King, 1997) have claimed that macroeconomics is heading for a new
consensus, or a new neoclassical synthesis.
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and labour market imperfections, such integrated models are in a better

position to explain the low correlation at the aggregate level between output

and the real wage.

The empirical verification of RBC-type models has been a major source of

controversy. As Prescott (1998) notes, RBC theorists have felt that their use

of calibrated models has much in common with deductive or quantitative in-

ference in the natural sciences (e.g. Newton’s laws of motion). Ultimately the

argument is that deductive inference is a more useful tool when a researcher

wishes to verify the importance of models describing the fundamental un-

derlying forces in the economy. Econometric inference per se is unlikely to

detect the fundamental forces at work.

However, econometric estimation becomes more useful when alternative

hypotheses regarding the essential forces underlying business cycles are con-

sidered. Dynamic General Equilibrium (DGE) models generalise RBC mod-

els by including an important new element (nominal rigidities) and the two

approaches have different and distinct predictions regarding the correlation

of macroeconomic variables. It stands to reason that econometric evidence

may then be useful in discriminating between these two distinct hypothe-

ses. As well as discriminating between different propagation mechanisms,

the econometric verification of business cycle facts is also useful as a way of

quantifying the importance of technology shocks in driving cycles.

This paper makes a contribution to the empirical literature on business

cycles by estimating VAR models containing output, employment, hours,

wages and total factor productivity, using the NBER productivity database.

The aim of the paper is two-fold: the first is to evaluate the relative impor-

tance of pure-RBC type effects and sticky wages and prices in the propagation

of technology shocks in US manufacturing. This is done by examining the
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patterns of impulse responses of output, employment, hours and wages to

technology shocks in the manufacturing sectors of our sample. The second

aim is to re-evaluate the importance of technology shocks in explaining busi-

ness cycle behaviour once we allow for cyclical changes in factor utilisation

in measuring total factor productivity (TFP) growth.2

The rest of the paper in structured as follows. Section 2 motivates the

paper and sets it in the context of the existing empirical literature. Section 3

describes the factor-utilisation adjustments made to our TFP series. Section

4 describes our econometric framework. Section 5 presents our results for

both the aggregate and the disaggregated data and Section 6 concludes.

2 Motivation and Context

2.1 The current literature

There are very few empirical contributions which examine the impact of

technology shocks on industry-level variables. We are not aware of any similar

attempts to estimate industry-level VARs at the 4-digit SIC level to verify

the predictions of alternative business cycle models. This paper is therefore

best seen as an extension of a small number of existing papers in this area

which examine the role and importance of technology shocks in explaining

aggregate business cycles.

For instance, Gaĺı (1999), in addition to proposing a prototype sticky-

price DGE model, estimates aggregate economy-level VARs of labour pro-

ductivity and labour input variables for the G7 economies. Gali finds in

general that a technology shock has a positive impact on output, but a nega-

2The adjustments we make to TFP follow the approach taken by Basu (1996).
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tive impact on labour input. This is seen as supportive of supportive of sticky

prices: a positive technology shock will increase the productive capacity of a

given labour input and hence, absent an increase in aggregate demand due

to sticky prices, firms will choose to reduce their total labour input.

Basu et al. (1998) examines the impact of technology shocks on factor in-

puts, factor utilisation, and output. They use the Jorgenson-Fraumeni data

on industry inputs and outputs for non-farm industries (manufacturing and

services) over the period 1950-89. Following Basu and Kimball (1997) they

first of all produce adjusted measures of technology shocks by adjusting TFP

growth to take account of variable factor utilisation. The Basu-Kimball cor-

rections involve estimating Hall-type output growth regressions but adding

terms to capture variations in hours and in capital utilisation. Unlike the

approach followed in Basu (1996) which corrects for factor utilisation using

the fact that raw material inputs has a limited intensity dimension,3 the

Basu-Kimball adjustment seeks to estimate the factor intensity adjustment

parameters. The resulting technology shock series are aggregated up to ob-

tain an economy-wide utilisation-adjusted series for technical change. They

find that output, factor inputs, and factor utilisation fall following a tech-

nology shock. Output subsequently recovers, but as in Gali, the negative

response of factor inputs persists for 2-3 years. The negative response of

input levels (and even of aggregate output on impact) again points against

a standard RBC interpretation. Basu et al. (1998) note that the interpreta-

tion of their results could be supportive of sticky-price DGE model like Gaĺı

3The Basu (1996) approach requires the assumption of a given elasticity of substitution
between value added and raw materials in the production function. This is explained
further below. Burnside et al. (1995) follow a similar approach to Basu, but using data on
electricity usage from manufacturing sectors. This seems a more limited approach because
it is only likely to capture the intensity of capital use.
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(1999), but may also support sectoral shift models,4 or the reverse-causal

effects of ‘cleansing’ from recessions.5

The final contribution on the empirics of technology shocks is Shea (1998).

Rather than using Solow-based residuals as measures of technology sbocks,

Shea (1998) combines the NBER productivity database and industry data on

innovative activity (R&D spending and patent applications) to build VAR

models which include the innovative activity variables, TFP, and measures

factor input use. He finds that technology shocks (interpreted as shocks to

the measures of innovative activity) tend to increase input use in the short

run, but to reduce it in the long run. They also seem to induce a substitution

towards capital and non-production labour, and away from production labour

and materials. However, these fundamental technology shocks do not seem to

have a significant positive impact on measured TFP, which is measured using

the unadjusted Solow residual. Shea’s approach is not strictly comparable

to ours as it focuses on alternative measures of technology shocks and his

empirical analysis is not aimed at the debate between different business cycle

theories. However, the positive response of factor inputs to technology shocks

is supportive of RBC-type models.

By not using aggregate data, or aggregating industry technology shocks,

we extend the Gaĺı (1999) and Basu et al. (1998) papers. As we shall see,

this leads to a very different perspective on the co-movements of key vari-

ables over the business cycle. Using industry-level data, we are able to check

whether individual manufacturing industries respond differently to technol-

ogy shocks, and whether these responses can be rationalised in terms of

4Because it is costly to reallocate resources following technology shocks, both output
and input levels can fall (Ramey and Shapiro, 1997).

5So that we observe a negative response of output to technology shocks because the
impact is the opposite: recessions cause less-productive firms to exit and hence enhance
aggregate productivity (Caballero and Hammour, 1994).
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particular patterns (e.g. pure RBC, DGE with sticky wages and DGE with

sticky-prices). Second, as noted6 in Goodfriend and King (1997) if prices

are not sticky to the same degree across different industries, relative price

effects will ensue which will cause a misallocation of aggregate output across

different final-good industries. To put this another way, the behaviour of the

mark-up over the cycle will be very different across industries. This type

of distortion produces effects that are analogous to those of a productivity

shock. Aggregating technology shocks across industries when prices are not

equally sticky in all industries might therefore involve an important aggrega-

tion bias. Third, unlike all previous authors who have ignored the role of real

wages in the propagation of cycles, we include the real consumer wage in our

VAR models. As noted in the introduction, the behaviour of wages over the

cycle provides a useful check for different explanations of the cyclical effect

of technology shocks.

Our main results are the following. First, we find that our empirical re-

sults are much more supportive of RBC-type models, or DGE models with

sticky wages rather than sticky-price imperfect competition DGE models.

Second, we find that there are markedly distinct responses to technology

shocks in different manufacturing sectors. This suggests that aggregate stud-

ies which seek to verify the validity of RBC or DGE models are likely to be

subject to aggregation bias.

Before turning to a detailed description of our econometric method and

results, we first describe a basic stylised model of a multi-sector economy

with varying degrees of price stickiness between sectors. This will help us to

identify the expected impact of technology shocks in different sectors under

alternative assumptions about wage and price stickiness. Our stylised model

6See also Yun (1996).
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will be a summary of existing DGE-type models with nominal rigidities (see

Gaĺı, 1999; Goodfriend and King, 1997; Rotemberg and Woodford, 1997).

2.2 A Stylised Model of Technology Shocks

2.2.1 Flexible Prices

We begin by setting out a standard Sidrauski-Brock money in the utility

function model. These models have been extensively analysed in the macroe-

conomics literature (see inter alia King et al., 1988; Campbell, 1994; Uhlig,

1995; Walsh, 1998b). They provide a useful way of nesting the consumption-

smoothing effects of pure RBC theories within a monetary DGE model.7

Aggregate output in the economy is given by a constant-return Cobb-

Douglas production function in capital and labour inputs:

Yt = A exp(zt)K
α
t−1L

1−α
t (1)

where A is total factor productivity and zt is a stochastic shock to TFP,

which is assumed to follow an AR(1) process:

zt = ρzt−1 + εt 0 < ρ < 1. (2)

The representative agent maximises the present value of total utility over

an infinite horizon, where the instantaneous utility function u(.) depends on

current consumption, C , real money balances (M/P ) and leisure, H:

U =
∞∑
i=0

βiu(Ct, (M/P )t, Ht). (3)

7For an early attempt to incorporate a monetary sector into RBC models, see King
and Plosser (1984).
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For simplicity, we assume a utility function which is log-separable in con-

sumption and real money balances8:

u(Ct, (M/P )t) = log(Ct) + λlog((M/P )t) + θ
H1−µ

t

1− µ
. (3)′

The resource constraint for the economy is given by:

Yt + (1− δ)Kt−1 + (Mt−1/Pt) = Ct +Kt + (Mt/Pt). (4)

The consumer’s problem can be solved in the usual way to obtain the f.o.c.

for consumption, consumers’ labour supply, and money balances. The model

can be usefully re-written in terms of log-deviations from the steady-state

equilibrium, rather than in levels (see Campbell, 1994; Uhlig, 1995; Walsh,

1998b):

yt = αkt−1 + (1− α)lt + zt (5)

kt = (1− δ)kt−1 +

(
Ȳ

K̄

)
yt −

(
C̄

K̄

)
ct (6)

rt = βα

(
Ȳ

K̄

)
(Et−1yt+1 − kt) (7)

rt + Et(pt+1) = ((1 + π̄)− β)/β)(ct −mt + pt) (8)

8This implies that the model will display the superneutrality property.
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Etct+1 − ct − rt = 0 (9)

(
1 +

µL̄

1− L̄

)
lt = yt − ct (10)

where variables with a bar indicate steady-state values of the levels, π̄ is the

steady-state level of inflation, and lower case are log-deviations of the vari-

ables from steady state. Equations (5) and (6) are the production function

and resource constraint expressed in log-deviations from equilibrium. Equa-

tions (8)-(10) are the first-order conditions of the consumer’s maximisation

problem with respect to money balances, consumption and leisure, whilst

(7) is the intertemporal condition linking the expected marginal product of

capital to the expected real interest rate.9

Under flexible prices, this money-in-the-utility function model behaves

much like a pure RBC model following TFP shocks, but anticipated money

balances also affect the business cycle through their impact on the expected

rate of inflation. However, the essential picture is very similar to pure RBC

models: following a TFP shock, εt, the marginal product of labour increases,

and if the money supply process does not react to this shock, output and

consumption rise as consumers supply more labour (see Cooley and Hansen,

1995).

To show how output varies with technology shocks we can use (2), (5),

(7) and (9) to obtain:

yt = ψ1kt−1 − ψ2ct−1 + ψ3zt−1 + εt ψi > 0 (11)

9In this we have made use of the fact that in steady state R̄ = (1/β).
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where:

ψ1 =


α+

(1− α)(αȲ /R̄K̄)(
1 +

µL̄
1− L̄

)

 /Ω;

ψ2 =
(1− α)(

1 +
µL̄

1 − L̄

)
Ω

; ψ3 = ρ/Ω;

Ω =


1 +

(1− α)(αȲ /R̄K̄)− 1(
1 +

µL̄
1− L̄

)

 .

It is clear10 from (11) that following an unexpected shock to TFP at time

t, output rises immediately, and this triggers off a dynamic adjustment in

output in the following period. In the ensuing periods the rise in consumption

at time t will have a negative impact on output at time t + 1, but this is

partially offset by the persistence in TFP (ρ). The pattern of output cycles

is that typical of RBC-type models.

Employment and the real wage are also procyclical, as in standard RBC-

type models. The marginal product of labour is given by w − p = y − l in

terms of deviations from steady-state, and equation (10) shows that labour

supply will rise less than proportionately with output.

Generalising this model to one with many industries is trivial in the case

of a model with perfect competition in goods and factor markets and with

flexible wages and prices. Providing that labour is perfectly mobile between

industries, the presence of industry-specific TFP shocks will produce output

patterns similar to those described in equation (11) at the industry level.

10We know from the steady-state solution of the model that Ω > 0.
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As noted in Gaĺı (1999), the presence of labour immobility between sectors

might generate declines in aggregate employment following an industry spe-

cific shock but at the industry level, the RBC-type positive co-movement

between technology shocks real wages and total employment should still be

observed.

2.2.2 Nominal wage contracts

The model in section 2.2.1 can be generalised to allow for nominal wage con-

tracts, where workers set wages on the basis of their expectations of labour

demand. The main difference with the flex-price model is that unanticipated

price changes have an impact on output (see Benassy, 1995; Walsh, 1998b).

In a one-sector model, firms will set employment equal to the marginal prod-

uct, and hence an unanticipated increase in prices depresses the real wage

and allows output to increase. In this model, it can be shown that (11)

becomes:

yt = ((1 − α)/α)(pt − Et−1pt) + ξ1kt−1 − ξ2ct−1 − ξ3zt−1 + εt

ξi > 0
(11)′

where the ξ’s are similar to the ψ’s in (11), but contain additional terms due

to the presence of the price surprise term in (11)′.

To find the impact of a technology shock in this model, we have to consider

the two separate impacts which this has on output and employment. On

the one hand a positive unanticipated shock to TFP will increase output

directly, as before. On the other hand, following a positive TFP shock, given

a fixed nominal money supply, prices will fall, as money demand increases

with consumption (see equation 8). Hence, employment will tend to rise

because of the increase in productivity caused by ε, but the unanticipated
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fall in prices will offset this to some extent, as it raises real product wages,

since nominal wages are predetermined in this model. The net outcome

for real product wages and employment depends on the parameters of the

model. It is even conceivable that the positive technological shock will cause

real product wages to rise faster than the marginal product of labour, hence

causing employment to fall.11

If we move away from a single-good world to one with many sectors,

we have to distinguish clearly between the real consumer wage and the real

product wage. If technology shocks are idiosyncratic, we would not expect

to observe a countercyclical movement in the real consumer wage and em-

ployment.12 We would expect there to be a positive co-movement in output

and employment with real consumer wages left unchanged.

2.2.3 Sticky-price models with imperfect competition

A number of authors have recently developed DGE models which incorporate

features of imperfect competition. Imperfect competition is built into the

model either through the assumption that final goods are produced with

a variety of intermediate inputs (see Chari et al., 1996), or by assuming

that there is product differentiation in consumption goods (Gaĺı, 1999). In

addition, we can build in sticky prices, by assuming that firms set prices prior

to observing the realisation of the shocks hitting the economy (monetary or

technology shocks).

Consider the case where final output is produced using a continuum of

11Essentially the effective labour supply curve shifts to the left in the real wage-
employment space as nominal wages are fixed before the outcome of the technology shock
on the price level is known.

12The impact on consumer prices of an idiosyncratic TFP shock is likely to be negligible
unless there is an extremely high correlation between TFP shocks across sectors.
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intermediate products distributed over the unit interval:

Yt =

[∫ 1

0

Y σ
it di

]1/σ

0 < σ < 1. (12)

Production in each intermediate goods sector is given by Cobb-Douglas tech-

nology, as before (equation 1), and there are assumed to be idiosyncratic

technology shocks:

Yit = Aexp(zit)K
α
i,t−1L

1−α
i,t . (13)

¿From the usual cost minimisation conditions, labour demand in each sector

is given by a mark-up equation (in logs):

pi,t = wt − [yi,t − li,t + log(σ(1− α))] (14)

where the final term captures the mark-up over marginal costs. As noted

earlier, with sticky prices, firms are assumed to set prices prior to the reali-

sation of the technology shock zi,t or the nominal money supply. How would

a model with these features behave compared to the models in sub-sections

2.2.1-2.2.2?

With sticky prices, an increase in productivity due to zi,t will imply that

the firm will be able to produce the same output with less inputs than before.

Given sticky prices, aggregate demand in the model will not change following

the technology shock (see equation 8), and hence the firm will not wish to

increase its output.

What happens to real wages? Prices are sticky and nominal wages de-

termined by aggregate labour demand and supply. With effective labour

demand falling when the technology shock hits, the real wage will also fall,
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so that households supply less labour. So, overall, we would expect technol-

ogy shocks in such a model to cause a rise in output and a temporary fall in

employment and real wages.

There are two caveats to this conclusion: first, the introduction of a mon-

etary policy rule which reacts contemporaneously to the technology shock

(see Basu et al., 1998; Gaĺı, 1999) can attenuate some of these effects. Sec-

ond, as noted by Yun (1996) and Goodfriend and King (1997), the above

conclusions only hold when we assume a symmetric equilibrium in which rel-

ative prices do not differ across industries. If some industry prices are sticky

whereas others are not, it will lead to a misallocation of aggregate output

across different goods. We would expect those industries where prices adjust

quickly downwards following a favourable technology shock to experience an

increase in output due to a relative demand effect. Hence output should

rise, whilst employment may fall or rise depending on the net increase in

output. Basically the outcome will then be closer to that described by the

RBC model than that described by the simple sticky price model.

2.2.4 Summary of Theoretical Results

The above discussion can be summarised in Table 1. The RBC models predict

that output (Yi), employment (Li) and the real consumer wage (Wi/P ) are

positively correlated with a technology shock (Zi). The sticky-wage/wage

contract model produces a similar pattern, although due to sticky nomi-

nal wages, real consumer wages may not change very much. The sticky

price/imperfect competition model advanced by Gaĺı (1999) and others pre-

dicts a decline in labour inputs following a positive technology shock, whilst

output will rise, and the real wage will fall. If we also allow for variations in

hours of work (Hi) then most normal specifications of variations of labour
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input on the intensive margin would predict a positive co-movement over the

cycle with employment. A negligible effect on hours would not invalidate the

main predictions of the models.

Table 1: Expected Pattern of Sectoral Variables

Model Zi Yi Li Wi/P Hi

RBC + + + + +/0

Sticky Nominal Wages + + + 0 +/0

Sticky Prices + + - - -/0

Before turning to estimate a VAR model which will allow us to verify

which of these models provides a better account of cyclical variations in US

manufacturing, we first deal with the problem of TFP measurement.

3 TFP and Factor Utilisation Adjustment

It is well known that Solow residuals are markedly procyclical and that this

procyclicality largely reflects variations in the intensity of factor use over the

cycle (see Burnside et al., 1995; Basu, 1996; Basu and Kimball, 1997; Basu

et al., 1998). A number of possible methods have been proposed to correct

standard TFP measures for such unobserved input variations. In this paper,

we adopt Basu’s (1996) proposal, which involves using materials inputs to

correct for the cycle on the assumption that raw material and energy inputs

are less subject to variations in intensity of use.

An alternative method would have been to adopt the Basu and Kimball

(1997) and Basu et al. (1998) solution, which involves modelling utilisation

growth directly as a function of variations in hours, investment and mate-

rials inputs. Although the two methods are very similar in conception, the
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estimating equation in Basu and Kimball to derive the measure of technical

change requires assuming a constant mark-up over the cycle. This would

seem to be problematic, especially as it is known that the mark-up may vary

over time. Also, as noted above, as relative prices vary between manufac-

turing sectors this can induce relative price effects which will impinge on

the industry mark-up. For this reason we prefer to use Basu’s (1996) orig-

inal method which does not involve making specific assumptions about the

mark-up in correcting the TFP measure.

3.1 Alternative Methods of Calculating TFP

To provide a benchmark, our VAR analysis in the next section compares

the behaviour of the standard Solow (1957) and the Basu (1996) utilisation

adjusted measures of TFP growth. To calculate the alternative measures

from 1958-1994 at the 4-digit SIC level we employ the NBER-CES/Census

manufacturing industry productivity database (see Bartelsman, Becker and

Gray, 1994).13 The Solow residual, is calculated based on the following three-

factor production function,

Yt = ΘtF [Kt, Lt,Mt], (15)

where, Y is real gross output; Θ represents an index of Hicks neutral technical

progress; F is a homogenous production function of some degree, γ; andK, L,

M are real capital, labour and real material inputs respectively. Solving the

firm’s cost minimisation problem,14 assuming constant returns to scale and

13See the Data Appendix for further information pertaining to definitions, sources and
methods.

14Note that detailed derivations of the Solow and Basu measures can be found in Malley
et al. (1999).
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perfect competition, the following measure of TFP growth can be obtained

θ̇t = ẏt − αk
t k̇t − αl

tṅt − αm
t ṁt (16)

where, lower case denotes logs, αk
t = 1− αl

t − αm
t , α

n
t = WL/PY, and αm

t =

PmM/PY . Note that W , Pm, and P are defined as the nominal wage, price

of material inputs and price of gross output respectively.15

In contrast to (15), Basu (1996) employs the following production function

Yt = ΘtF [V (KtZt, LtGt), H(Mt)] (17)

where the V and H are constant returns to scale value-added and material

costs functions and Z and G are the levels of labour and capital utilisation.

Note that the function F is assumed to have the same properties as in (15).

Exploiting the fact that material inputs do not have a utilisation dimension,

Basu uses changes in the input of materials relative to measured capital

and labour to derive a measure of TFP growth which controls for cyclical

utilisation in both factors, e.g.

θ̇t = ẏt − γ[ṁt − σ(αl
t + αk

t )(ṗvt − ṗmt)] (18)

where all variables and parameters are defined as above, ṁt is real material

costs growth, σ is the (local) elasticity of substitution between value-added

and materials16 and ṗvt and ṗmt are value-added and materials inflation re-

spectively.

15We follow Diewert (1976) and use a two-year moving average discrete time approxi-
mation for the factor shares in our empirical work.

16Note that σ = 0 and σ = 1 refer to the Leontief and Cobb-Douglas cases respectively.
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3.2 Estimating the Adjusted TFP Series

To calculate the above utilisation adjusted measure of TFP growth, we un-

dertake instrumental variable (IV ) estimation of (18) to identify γ. These

estimations are carried out conditioning on values of σ between 0 and 1.17

IV estimation is required in this context due to the obvious endogeneity of

the regressors. We employ the same set of instruments proposed by Ramey

(1989) and Hall (1990) and augmented by Caballero and Lyons (1992) and

Basu (1996). These include the growth rate of Military Spending; the growth

rate of the World Price of Oil (deflated by both the price of Manufacturing

Durables and Non-Durables); and the Political Party of the President. Note

that the instruments have been chosen as ones which can explain movements

in employment, material costs, capital accumulation and output but are or-

thogonal with the random component of TFP growth.

The box-plots in Figure 1 below report the results of estimating returns

to scale for all 4-digit manufacturing industries for alternative values of σ.18

These results indicate that (i) returns to scale are equal to or less than unity

for most industries and (ii) the estimates are robust to alternative values of

σ.

17This range for σ at the manufacturing level covers the one reported in the literature.
For example, Bruno (1984) reports a consensus range for σ between 0.3 and 0.4 respectively.
More recently Rotemberg and Woodford (1992) estimate σ to be 0.7.

18Note that two industries (i.e. 177 and 250) were omitted due to missing values.
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Figure 1: Distribution of Returns to Scale, γi, i = 1, . . . , 448 for σ = 0, 0.5, 1
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As expected, based on the discussion in Basu (1996) and Basu and Kim-

ball (1997), Table 2 shows that our utilisation-adjusted TFP series at the

aggregate level19 tends to display a much smaller relative variance, and a

much less marked positive co-movement with other cyclical series such as

output and total hours worked.

Table 2: Descriptive Statistics Aggregate Manufacturing

Solow Basu

σ = 0 σ = 0.5 σ = 1

Correlation between TFP Output 0.95 0.24 0.16 0.17

and Output & Hours Growth Hours 0.84 0.25 0.12 0.08

Variance of TFP to Output 0.52 0.02 0.02 0.03

Variance Output & Hours Growth Hours 0.50 0.02 0.02 0.03

19Note that the same correlation and relative variance pattern emerges at the sub-
aggregate level. To preserve space, these results have not been reported but will be made
available on request.
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4 Econometric Methodology

Having obtained our adjusted series, we next fit a 5 variable VAR in log levels

for each 4-digit sector. The endogenous variables are output (y), employment

(l), hours (h), and the real consumer wage (w). Total factor productivity θ

follows an exogenous AR(1). The VAR is given by

xt =
(
c b δ

)



1

t

θt


 +

p∑
j=1

Apxt−j + ut, (19)

where c is a (4 × 1) vector of constants, b is a (4 × 1) vector with the

slopes for the linear time trend, and δ is the (4 × 1) coefficient vector for

θ. The (4 × 1) vector of distrubances ut follows the usual assumptions:

E [ut] = 0; E [utu
′
t] = Σ; E [utu

′
t′] = 0 ∀ t 6= t′. We determine the order

p using AIC, with the maximum order fixed at 2, and focus on stationary

VARs.20

To analyse the impact of TFP innovations on the variables of interest,

we calculate impulse responses. They are obtained from the infinite MA

representation of the V AR in equation (19), after adjusting the estimated

parameter matrices appropriately to take into account the exogenous AR(1)

process for θ:

xt =
∞∑

j=0

Bjut−j; B0 = I; Bj =

p∑
k=1

AkBj−k; j = 1, 2, . . . (20)

20To ensure that the estimated system is stationary, we computed the roots of the
characteristic polynomial |A−λI| = 0, where A is the companion matrix of the parameter
matrices A1, . . . , Ap, and checked whether the moduli are inside the unit circle (Lütkepohl,
1991, p. 9-13). We found when using the Solow residual, that 403 of the 448 industry VARs
are stationary. In the case of the Basu residual, 422.
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If the error variance-covariance matrix Σ is diagonal, i.e. if the system is iden-

tified, the parameter matrices of the MA representation can be interpreted

as responses to past shocks. Despite the restrictions we impose with respect

to the evolution of TFP, our model is still under-identified. Therefore we em-

ploy Generalised Impulse Responses, which have recently been proposed by

Pesaran and Shin (1998) and Koop et al. (1996). If we interpret the impulse

response function at lag h as the difference between a h-step VAR forecast

assuming a shock on the variable j, δj, and a VAR forecast without a shock,

we obtain generalised impulse (GI) responses:

GI (h, δj,Ωt−1) =E [xt+h|εt,j = δj,Ωt−1]− E [xt+h|Ωt−1] =

=BhE [εt|εt,j = δj] ,
(21)

where Ωt−1 is the information set available at time t. To compute the fore-

casts for the other variables i, i 6= j, we need starting values at time t,

conditional on the fact that there is a shock to series j. If the distribution of

ut is multivariate normal, the conditional expectation of ut,i given that there

is a shock in the jth equation is

E [ut,i|ut,j = δj] =
σij

σjj
δj. (22)

As generalized impulse response we obtain

GI (h, δj,Ωt−1) = Bh




σ1j

...

σjj

...

σnj




δj

σjj

=
BhΣej√
σjj

∣∣∣∣
δj=

√
σjj

, (23)
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where ej is an (n × 1) vector with unity as j th element.

We can broadly compare our empirical results to those obtained by Basu

et al. (1998) and Gali (1999) with the obvious caveat that the scope and

method of our study is very different from theirs. With respect to measure-

ment, we use sectoral data and a different measure of productivity. Unlike

the other studies, our aim is to assess whether different business cycle pat-

terns emerge in different industries and how these square with the patterns

predicted by different business cycle theories. Furthermore our method of

model identification is different. Since we are not interested in the identifi-

cation of structural disturbances to variables other than TFP we maintain

that the GIR method is particularly appropriate. Finally, unlike these other

authors we consider a wider range of variables. For instance Gaĺı (1999)

largely restricts his attention to labour productivity and total employment

(hours worked). Basu et al. (1998) concentrate mainly on total factor inputs,

output, and manhours. However, as we saw previously, one distinguishing

feature of different business cycle series is the difference in their predictions

about the behaviour of the real wage over the cycle. Hence our sectoral

5-variable VAR analysis offers an alternative perspective in discriminating

between different accounts of the business cycle.

5 Results

One way to display our estimated impulse response functions is shown in

Figures 2 and 3. These show, for the Solow TFP residual, and the Basu

TFP residual (using σ=0.5), the range of the impulse response functions for

each of the four other variables. It is apparent that using the Solow residual

persistent significant positive shocks to output are generated for most sectors
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(81% of industries experience a rise in output in period 0, and 43% continue to

experience a significant increase even after 5 years). Employment and hours

are less procyclical, but after 3 years still 37% of all 403 industries continue

to experience an increase in total hours worked, and in 32% employment is

still higher. Real wages show no marked pro or counter-cyclical pattern. In

14% of the 403 industries real wages are significantly higher five years after

the technology shock, whilst in 23% of industries they are significantly lower.

Looking at the Basu-residual case (Figure 3) some interesting features

emerge. First, as we expected, the size of the impact on output is smaller on

average across industries, and we find that less industries experience a persis-

tent cyclical effect (30% of 422 industries after 5 years). This, as expected,

casts some doubt on the significance of technology shock as a propulsive

mechanism for business cycles on aggregate. Second, in apparent contrast

to Basu et al. (1998) and Gaĺı (1999), the response of employment (total

number of workers and total hours) does not seem to be uniformly nega-

tive. In comparison with the Solow TFP measure about the same number

of industries experience a positive response in l and h after 3-5 years. Few

industries seem to follow the negative impact following a technology shock

which sticky-price DGE models would suggest. This puzzle, in our view,

is best explained by either an aggregation bias effect: (both these previous

studies used aggregate data), or because our VAR is larger and includes other

labour market variables.

However, Figures 2 and 3 might not give us an accurate picture of what

is happening because each industry’s position in the cross-sectional distribu-

tions shown in these figures will not remain constant over time. A better

test of which business cycle model fits best for each industry is found by

matching the predicted signs of the cyclical co-movements of the variables
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from the various theoretical models (Table 1) to the impulse responses of the

individual industries.

The result of this mapping is shown in Tables 3 and 4 for the Solow and

Basu TFP measures. In each table we show how many industries seem to

follow the pure RBC pattern, and in how many we find the pattern predicted

by the presence of sticky nominal wages and sticky prices. The Tables show

for each 2-digit category the proportion of 4-digit industries which display

the pattern predicted by the alternative theories at different lags.21

The results in Tables 3 and 4 are very clear. First, the two preferred

explanations for the responses to technology shocks are clearly the pure RBC

model and the sticky wage model. The imperfect competition-sticky price

model comes a very poor third. This is in sharp contrast to the results in Gaĺı

(1999) and Basu et al. (1998). Second, the correction for factor utilisation

effects tends to reduce the degree to which the results match the pure RBC

model. This is as might be anticipated given that the Basu correction reduces

the procyclicality of the TFP measure. But interestingly the RBC model

still fits the results for a reasonable proportion of the industries considered.

Third, the few observations which match the imperfect competition-sticky

price case seem to emerge following the Basu correction. The last two points

illustrate the importance of the factor utilisation correction.

21Note that these proportions are for significant impulse responses only. However, we
take an insignificant response of real wages as consistent with the sticky nominal wage
hypothesis.
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Figure 2: Distribution of Impulse-Responses, Solow Residual
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Figure 3: Impulse-Responses, Basu Residual (σ = 0.5)
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Table 3: Pattern of Sectoral Variables, Solow Residual
RBC Sticky Wages Sticky Prices

SIC Obs Lag 1 Lag 2 Lag 5 Lag 1 Lag 2 Lag 5 Lag 1 Lag 2 Lag 5
Nondurables 20 42 0.05 0.02 0.02 0.14 0.05 0.05 0.02 0 0

21 4 0.25 0 0 0 0 0 0 0 0
22 29 0.10 0.10 0.10 0.10 0 0 0 0 0
23 32 0.13 0.03 0.03 0.16 0.06 0.03 0 0 0
26 16 0.06 0 0 0.06 0.06 0.06 0 0 0
27 12 0.17 0.17 0.17 0.08 0 0 0 0 0
28 25 0 0 0 0.08 0.04 0 0 0 0
29 5 0 0 0 0 0 0 0 0 0
30 4 0 0 0 0 0 0 0 0 0
31 11 0.09 0 0 0.09 0 0 0 0 0

Durables 24 14 0 0 0 0 0 0 0 0 0
25 11 0.09 0.09 0 0.09 0 0 0 0 0
32 22 0 0 0 0.05 0.05 0 0 0 0
33 24 0 0 0 0.08 0 0 0 0 0
34 33 0 0 0 0.06 0 0 0 0 0
35 36 0.03 0.03 0.03 0.03 0 0 0 0 0
36 39 0.03 0.03 0 0.05 0.03 0 0 0 0
37 15 0 0 0 0.07 0.07 0 0 0 0
38 12 0 0 0 0 0 0 0 0 0
39 17 0 0 0 0.06 0 0 0 0 0
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Table 4: Pattern of Sectoral Variables, Basu Residual, σ = 0.5
RBC Sticky Wages Sticky Prices

SIC OBS Lag 1 Lag 2 Lag 5 Lag 1 Lag 2 Lag 5 Lag 1 Lag 2 Lag 5
Nondurables 20 46 0.11 0.09 0.04 0.09 0.07 0.04 0.02 0 0

21 4 0 0 0 0.25 0 0 0 0 0
22 29 0.03 0.03 0 0.03 0.03 0 0 0 0
23 31 0.10 0.03 0 0.13 0 0 0 0 0
26 15 0 0 0 0.13 0 0 0 0 0
27 14 0.14 0.07 0.07 0.07 0.07 0.07 0 0 0
28 28 0 0 0 0.11 0.07 0 0 0 0
29 5 0 0 0 0 0 0 0 0 0
30 5 0 0 0 0 0 0 0 0 0
31 11 0 0 0 0.36 0 0 0 0 0

Durables 24 14 0 0 0 0 0 0 0.07 0.07 0
25 11 0 0 0 0 0 0 0 0 0
32 25 0 0 0 0.04 0 0 0 0 0
33 23 0 0 0 0.04 0 0 0.04 0 0
34 35 0 0 0 0.09 0.06 0 0 0 0
35 42 0.02 0 0 0.17 0.07 0.02 0 0 0
36 38 0.03 0.03 0.03 0.08 0.03 0.03 0 0 0
37 14 0 0 0 0 0 0 0 0 0
38 13 0 0 0 0.08 0.08 0 0 0 0
39 19 0.05 0.05 0 0.11 0 0 0 0 0
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6 Conclusions

In this paper we have estimated some industry-level VAR models to verify

the relevance of alternative theoretical modelling approaches to the business

cycle. Our estimates have been conducted using US manufacturing data at

the 4-digit SIC level, correcting the TFP growth series to take account of

varying factor utilisation over the cycle.

Our results offer a different perspective to those obtained in other stud-

ies which have examined the aggregate impact of technology shocks on the

macroeconomy (Basu et al., 1998; Gaĺı, 1999). We show that there is little

support for a sticky-price imperfect competition approach to the business cy-

cle, despite the popularity of this approach in recent theoretical models. The

main problem seems to lie in the prediction of the imperfect competition-

sticky price model of a negative response of factor input levels (such as em-

ployment) to technology shocks. This prediction does not seem to match

many industry-level VARs. Instead, we find much greater support for the

pure RBC approach or a nominal rigidity approach which focuses instead on

nominal wage stickiness. These seem to be best placed to explain the pos-

itive employment effects and the positive/insignificant real consumer wage

response to technology shocks.

A subsidiary conclusion is that, despite its lower variance over the cy-

cle, the Basu corrected TFP series does not lead to dramatically different

results regarding the co-movement of employment and output over the cycle.

Again, in this our results differ sharply from those of Basu et al. (1998).

The explanation lies either in our use of disaggregated data, or in the richer

specification of our VAR.

29



References

Andolfatto, D. (1996), “Business Cycles and Labor-Market Research.” Amer-
ican Economic Review 86, 112–132.

Basu, S. (1996), “Procyclical Productivity: Increasing Returns or Cyclical
Utilisation?” Quarterly Journal of Economics 111, 719–751.

Basu, S., Fernald, J., and Kimball, M. (1998), “Are Technological Improve-
ments Contractionary?”, boards of Governors of the Federal Reserve Sys-
tem, Discussion Papers, no 625.

Basu, S. and Kimball, M. (1997), “Cyclical Productivity with Unobserved
Input Variation.”, NBER Working Paper no 5915.

Benassy, J. (1995), “Money and Wage Contracts in an Optimising Model of
the Business Cycle.” Journal of Monetary Economics 35, 305–315.

Bruno, M. (1984), “Profits and the Productivity Slowdown.” Quarterly Jour-
nal of Econonomics 99, 1–30.

Burnside, C., Ecihenbaum, M., and Rebelo, S. (1993), “Labour Hoarding
and the Business Cycle.” Journal of Political Economy 101, 245–273.

Burnside, C., Eichenbaum, M., and Rebelo, S. (1995), “Captial Utilization
and Returns to Scale.” NBER Macroeconomics Annual 67–110.

Caballero, R. and Hammour, M. (1994), “The Cleansing Effect of Recession.”
American Economic Review 84, 1075–1084.

Caballero, R. J. and Lyons, R. K. (1992), “External Effects in U.S. Procycli-
cal Productivity.” Journal of Monetary Economics 29, 209–226.

Campbell, J. Y. (1994), “Inspecting the Mechanism: An Analytical Approach
to the Stochastic Growth Model.” Journal of Monetary Economics 33,
463–506.

Chari, V., Kehoe, P., and McGrattan, E. (1996), “Sticky-Price Models of
the Business Cycle: Can the Contract Multiplier Solve the Persistence
Problem?”, NBER Working Paper no 5809.

Cho, J. and Cooley, T. (1995), “The Business Cycle with Nominal Con-
tracts.” Economic Theory 6, 13–33.

Cooley, T. and Hansen, G. (1995), “Money and the Business Cycle.” chap. 7,
Princeton NJ: Princeton University Press.

30



den Haan, W., Ramey, G., and Watson, J. (1997), “Job Destruction and
Propagation of Shocks.”, NBER Working Paper No 6275.

Diewert, W. (1976), “Exact and Superlative Index Numbers.” Journal of
Econometrics 4, 115–146.
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Data Appendix
The following data (1958-1994) are provided by Bartlesman, Becker and

Gray, NBER-CES/Census Manufacturing Industry Productivity22.

Productivity Data:
L total employment (1,000s)
W nominal wage per employee
M real material costs (mill., $1987)
K real capital stock (start of year); (mil., $1987)
Y real value of shipments (mill., $1987)
P price deflator for shipments (1987=1)
Pm price deflator for material inputs (1987=1)

Instruments:
Military Spending (bill chained $1992) from 1959 is taken from the May 1997
SCB. Based on quantity indexes 1992=100, provided by the Department of
Commerce, movements in the quantity index series were spliced to the billions
of chained 1992 dollar series to obtain 1958. The World Price of Oil from
1965 onwards is taken from 1995 International Financial Statistics Yearbook
Average Crude Price, spot (US$/barrel). It is calculated using UK Brent
(light), Dubai (medium) and Alaska North Slope (heavy), equally weighted.
Prior to 1965 it is taken from 1983 International Financial Statistics Year-
book. Average price (US$/barrel) is calculated as a weighted average of
the three oil prices listed: Saudi Arabia; Libya from 1961; and Venezuelan.
Implicit price deflators for manufacturing durables and non-durables were
calculated using the NBER database. Political Party of the President: D=1
for Democrat and D=0 for Republican.

22See www.nber.org/nberprod.html

33


