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1- INTRODUCTION

We consider markets where a finite number of sellers and buyers meet, with the

particularity that each seller only owns one object and each buyer only wants to buy, at

most, one object. These markets are usually referred to as the assignment game, which

was introduced by Shapley and Shubik (1972). Buyers are heterogeneous in their

preferences about the different objects. Associated with each possible partnership there

is a non-negative real number that represents the worth of the partnership. An outcome

of this game specifies a matching between buyers and sellers and the price that each

buyer pays to the owner of the object she is buying.

The solution concept usually considered to analyze these markets is stability. An

outcome is stable if it is individually rational and there is no partnership and a price so

that, at this price, both buyer and seller are better off under this partnership than under

the previous outcome. Shapley and Shubik (1972) show that the set of stable allocations

is non-empty and it is a complete distributive lattice. This set contains a special

allocation giving an optimal payoff to the buyers (which is the worse for the sellers) and

another one giving an optimal payoff to the sellers (the worst for the buyers).

Moreover, the set of stable allocations coincides with the set of competitive equilibria,

the two extreme allocations corresponding to the minimum and to the maximum

equilibrium prices, respectively.

The assignment game allows for the analysis of markets with a finite number of

heterogeneous sellers and buyers. The participants in these markets typically take

decisions strategically. Each seller determines the price for his object looking for the

maximum revenue, taking into account the prices posted by the other sellers. Similarly,

each buyer tries to buy the best available object, given the prices. A natural question is

then whether the non-cooperative (strategic) behavior by sellers and buyers actually

leads to outcomes that are stable, or competitive.

We analyze the following mechanism, which tries to capture the relevant interaction

among sellers and buyers: sellers, simultaneously, fix their prices first; then buyers,

sequentially, decide which object to buy, if any, among the remaining objects. The first
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phase of the game determines the potential prices, while the second phase determines

the actual matching. The mechanism is very simple in terms of strategies: each seller

only proposes a price for his object, each buyer only chooses an object. Also, the

decisions by the buyers directly provide a matching, the decisions by the sellers are the

final prices for the objects sold, and there is no need for a referee.

We look for the subgame perfect equilibria in pure strategies (SPE) of the previous

mechanism. We restrict attention to a certain class of strategies of the buyers, that we

call maximal strategies (the matchings induced by these strategies are called maximal

matchings). To explain the meaning of a maximal strategy, consider a situation with two

buyers, Alph and Bob, and two objects. Suppose that the prices have already been set

and that Alph is indifferent between the two objects. However, if she chooses the first

object then Bob obtains a high utility by buying the second one, while if Alph chooses

the second object then Bob does not want to buy the other. We say that Alph buying

the first object (and Bob the second) is a maximal strategy, while Alph buying the

second object (and Bob not buying) is not. Notice that both strategies are SPE of the

game that starts once the prices have been decided. A matching is maximal if it is Pareto

efficient for the buyers among the matchings that result as SPE of the second phase of

the mechanism.

We also concentrate on the analysis of the SPE in the strong sense (see Demange

and Gale (1985)). To be equilibrium in the strong sense, the strategies of the

participants must be robust to deviations by any optimistic seller. More precisely, we

assume that a seller increases his price whenever there is a maximal matching for the

buyers where his object is actually sold.

We prove that, when buyers use maximal strategies, the set of SPE in the strong

sense of the proposed mechanism coincides with the set of sellers' optimal stable

outcomes. That is, strategic behavior by sellers and buyers in the assignment game leads

to (the maximum) equilibrium prices and to an optimal matching for a mechanism that,

we think, captures the main ingredients of the interaction among sellers and buyers in

many markets.
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The implementation result conveys interesting information about the properties of

the outcome of the mechanism. The first property is that the set of SPE in the strong

sense, when buyers use maximal strategies, does not depend on the order of the buyers,

that is, the order of the line does not matter in equilibrium. The second property is that,

in equilibrium, every buyer is buying an object that is optimal for her given the prices. In

equilibrium, every buyer obtains an object in her demand set and each seller willing to

sell can do so. Moreover, no seller has an incentive to choose a different price.

In this paper, we follow the line of research initiated by Gale and Shapley (1962) in

their seminal paper. They introduce the deferred acceptance algorithm for the marriage

problem. In this mechanism, each man1 proposes to his favorite woman, if she is

acceptable to him. Each woman accepts the most preferred man among the offers she

receives, if he is acceptable to her. Accepted men remain provisionally engaged, while

rejected men can make new proposals to their next choice. The algorithm stops at the

first step in which no man is rejected.

Gale and Shapley (1962) show that when participants declare their true preferences

the matching produced by this simple and nice algorithm is an allocation that all men

prefer to any other stable allocation.2 Even when the participants can act strategically,

the outcome is still nice: truthful revelation of preferences is a dominant strategy for

men (Dubins and Freedman (1981) and Roth (1982)) and the equilibrium of the game

where the men state their true preferences and women can choose any preference is still

an stable allocation (Roth, 1984). Moreover, Gale and Sotomayor (1985) show that the

women's optimal stable allocation is the strong equilibrium of the game, when men play

their dominant strategy.

Besides the analysis of the deferred acceptance algorithm, several authors have

looked for other simple mechanisms that lead to stable allocations for different matching

models. For the marriage problem, Alcalde (1996) presents a mechanism, close to that

                                               
1 The mechanism can also be implemented exchanging the roles of men and women.
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of Gale and Shapley, which implements the correspondence of stable matchings in

undominated equilibria. Alcalde, Pérez-Castrillo, and Romero-Medina (1998), and

Alcalde and Romero-Medina (1999) implement through simple mechanisms the set of

stable matchings in the college-admissions problem and in the job matching market,

respectively. Moreover, they also implement particular subsets of the stable

correspondence.3

For the assignment game, Demange and Gale (1985) analyze the properties of a

mechanism in which agents announce their demand and supply functions, and then a

referee calculates the minimum equilibrium price and allocates the objects accordingly.

However, the mechanism is manipulable for the sellers: they can lead the payoff to the

maximum rather than the minimum equilibrium price by falsifying their supply functions.

In the same framework, Demange, Gale, and Sotomayor (1986) propose two dynamic

auction mechanisms, although they do not analyze the possibility of manipulative

behavior.

Also for the assignment game, Kamecke (1989) analyzes the strategic interaction

between buyers and sellers in a mechanism that shares common features to ours. He

considers the following game: First, sellers announce their payoff claims. Then one

buyer after the other addresses her demand and chooses a seller. Finally, sellers select

again one of their potential customers. For matched couples, the agents get what they

asked for if their two claims are feasible. Also, the payoff function assigns to a seller the

payoff that was offered to him if it exceeds his claim. Additionally, agents pay a positive

cost if they address demands without being successful. This mechanism implements in

SPE the seller-optimal stable payoff.4 The nice feature of Kamecke's result is that it

                                                                                                                                       
2 In the same spirit, Crawford and Knoer (1981) and Kelso and Crawford (1982) introduce a salary-
adjustment process for the job matching market.
3 For general cooperative games in characteristic form, several papers have recently addressed the
question of implementation of the core (Pérez-Castrillo (1994), Perry and Reny (1994), Serrano
(1995)).
4 Kamecke (1989) also analyzes a mechanism similar to the one we have presented but in which
demands by sellers and claims and choice of opponent by buyers are all made simultaneously at the
first period. He shows that this mechanism implements in SPE the set of stable allocations.
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does not need additional considerations concerning sellers' and buyers' strategies.

However, the mechanism that we propose is simpler, closer to the functioning of the

markets, and it does not need some (third) party to allocate the surplus of a partnership,

if any, and to enforce the payment of unsuccessful demands. Note that both mechanisms

share the interesting property that they provide a strong first mover advantage: the fact

that sellers fix their prices first makes it that, at equilibrium, the final prices are the

highest among the competitive prices.

The paper is organized as follows. In Section 2, we present the cooperative model of

the assignment game. In Section 3, we describe the mechanism proposed. In Section 4,

we analyze the set of equilibria in the strong sense when buyers use maximal strategies

and we state the main results. In Section 5 we discuss the use of maximal strategies,

while in Section 6, we present some examples of possible outcomes of the mechanism

when we do not restrict attention to maximal strategies or to equilibria in the strong

sense. In Section 7, we conclude. Finally, an Appendix contains some of the proofs.

2- THE COOPERATIVE MODEL

We consider a buyer-seller market in which each seller owns only one indivisible

object and each buyer wants at most one of those objects. Generic buyers will be

denoted by pi and pk and generic sellers by qj and qh. The object owned by seller qj will

also be denoted by qj. Let P = {p1,..., pm} be the set of buyers and Q = {q0, q1,..., qn-1}

be the set of objects, where q0 is an artificial "null object" that is introduced for technical

convenience. More than one buyer may buy the object q0. This convention allows us to

treat a buyer pi that does not buy any object as if she bought the null object q0.

For each pair (pi, qj)∈PxQ there is a non-negative number αij which can be

interpreted as the maximum price that buyer pi is willing to pay for the object qj. We

will denote by α the mxn matrix (αij)i=1,...,m;j=0,1,...,n-1. The value αi0 is zero to all buyers.

For simplicity, we assume that the reservation price of each seller is zero and that there

are no monetary transfers among agents from the same side. Thus, if buyer pi buys the

object qj at a price vj then the resulting utilities are ui = αij−vj for the buyer and vj for the
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seller. The price of the object q0 is always zero, v0 = 0, hence if buyer pi buys q0 she

obtains a utility ui = αi0−v0 = 0. The buyer-seller market is denoted by M ≡ (P, Q, α).

Definition 1- A feasible matching µ for M is a function from P∪Q−{q0} onto P∪Q

such that:

(a) for any pi∈P, µ(pi)∈Q;

(b) for any qj∈Q−{q0}, either µ(qj)∈P or µ(qj) = qj;

(c) for any (pi, qj)∈PxQ−{q0}, µ(pi) = qj if and only if µ(qj) = pi.

If µ(pi) = q0, the buyer pi will also be called unmatched. If µ(qj) = qj, the seller qj will

be called unmatched (or the object qj will be called unsold). Given a set A⊆P, we

denote µ(A) ≡ {µ(pi); pi∈A}.

Definition 2- A feasible matching µ  is optimal for M if for all feasible matching µ':

α
ij

p i ∈P

q j =µ ( pi )

∑ ≥ α
ij

pi ∈P

q j = µ' ( p i )

∑

We denote by Rn
+ the set of vectors in Rn with non-negative coordinates.

Definition 3- A feasible outcome for M, denoted by (u, v; µ), is a pair of vectors u∈Rm
+

and v∈Rn
+ and a feasible matching µ such that, for all (pi, qj)∈PxQ, ui+vj = αij if µ(pi) =

qj.

Thus a feasible outcome may have unsold objects with price greater than zero. If (u,

v; µ) is a feasible outcome then (u, v) is called a feasible payoff. The matching µ is said

to be compatible with (u, v) or with the prices v and vice-versa. The vector u will be

called the payoff vector of the buyers associated to (v, µ).

Definition 4- Given the prices v∈Rn
+ and a matching µ, compatible with v, we say that

an object qj is µ-expensive under v if it is unsold under µ, at a price vj > 0.
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Definition 5- A feasible outcome (u, v; µ) is stable (or the payoff (u, v) with the

matching µ is stable) if ui+vj ≥ αij for all (pi, qj)∈PxQ and there is no µ-expensive object

under v.

If ui+vj < αij for some pair (pi, qj) we say that (pi, qj) blocks the outcome (u, v; µ) or

the payoff (u, v).

In the matching models treated here, the concept of stability is equivalent to the

concept of the core. Moreover, it is possible to establish a relationship between stable

outcomes and competitive equilibria of these markets.

Given v∈Rn
+, the demand set of a buyer pi at prices v, denoted by Di(v), is the set of

all objects which maximize pi's utility payoffs. That is:

                  Di(v) = {qj∈Q ; αij−vj  ≥ αih−vh for all qh in Q}.

The set Di(v) is always non-empty, since buyer pi has always the option of buying q0.

Also notice that, given v, buyer pi is indifferent about buying any object in Di(v).

Definition 6- The price vector v∈Rn
+ is called competitive if there exists a matching µ

such that µ(pi)∈Di(v), for all pi in P. A matching µ such that µ(pi)∈Di(v) for all pi in P

is said to be competitive for the prices v.

Therefore, at competitive prices v, each buyer can be matched to an object in her

demand set. There may be more than one competitive matching for the same price

vector v.

Definition 7- The pair (v, µ) is a competitive equilibrium if v is competitive, µ is

competitive for v, and if vj = 0 for any unsold object qj.

Thus, at a competitive equilibrium (v, µ), not only does every buyer get an object in

her demand set, but there is no µ-expensive object under v. If (v, µ) is a competitive

equilibrium, v will be called an equilibrium price vector. Clearly, to each competitive
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equilibrium (v, µ) we can associate a stable outcome (u, v; µ) and vice-versa, by setting

ui = αij−vj if µ(pi) = qj, and ui = 0 if µ(pi) = q0.

Among the set of stable outcomes, two particularly interesting outcomes can be

highlighted.

Definition 8- The payoff (u, v ) is called the seller-optimal stable payoff if v  ≥ v and u

≤ u for all stable payoffs (u, v).

If µ is compatible with (u, v ) we say that the outcome (u, v ; µ) is the seller-optimal

stable outcome with the matching µ. Similarly we can define the buyer-optimal stable

payoff.

The following well-known results from Shapley and Shubik (1972) will be stated

here without proof.5

Proposition 1- Every buyer-seller market M has at least one stable outcome.

Consequently, the core and the set of competitive equilibria are non-empty sets.

Proposition 2- If µ is an optimal matching, then it is compatible with any stable payoff.

Thus, if µ is an optimal matching, then it is competitive for any competitive

equilibrium.

Proposition 3- If (u, v; µ) is a stable outcome, then µ is an optimal matching.

Consequently if (v, µ) is a competitive equilibrium then µ is an optimal matching.

Moreover, according to Propositions 2 and 3, the set of stable outcomes is the

Cartesian product of the set of stable payoffs and the set of optimal matchings.

Proposition 4- Every buyer-seller market M has a seller-optimal stable payoff and a

buyer-optimal stable payoff.
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The existence of a seller-optimal stable payoff is equivalent to the statement that

there is a unique vector of equilibrium prices, v , that is optimal for the sellers, in the

sense that v j ≥ vj for all qj in Q and for all equilibrium price vector v. Similar statement

applies to the buyer-optimal stable payoff. The equilibrium price vector v  is called the

maximum equilibrium price vector and a competitive equilibrium (v ; µ) is called a

maximum competitive equilibrium.

3- THE BUYER-SELLER SEQUENTIAL MECHANISM

Our main purpose in this paper is to analyze the outcome of a simple selling and

buying procedure that will be denoted by Hσ. We attempt to propose a mechanism as

simple as possible, at the same time have it produce directly both a matching between

sellers and buyers and prices for the objects sold. It is a two-phase mechanism. In the

first phase, each seller proposes a tentative price for his object. Proposals are made

simultaneously. In the second phase buyers, sequentially, decide which object to buy, if

any. The tentative prices of sold objects become actual prices paid by buyers to sellers,

while sellers of unsold objects keep their objects and receive nothing.

Formally, let σ be a permutation of the set of buyers (i.e., σ represents a line). The

mechanism Hσ works as follows:

(i) First, sellers play simultaneously. A strategy for seller qj consists of choosing a price

vj∈R+ for his object. We consider that the null object q0 is always available at the price

v0 = 0.

(ii) Second, buyers play sequentially, following the order given by σ. To describe the

buyers' strategies, denote by Qi the set of all objects which are still available for pi when

she is called to play under the ordering σ (notice that q0∈Qi). A strategy for buyer pi is

a function that selects an element of Qi, for each vector of offers v.

                                                                                                                                       
5 See also Roth and Sotomayor (1990) for an exposition of these results.
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Following the mechanisms, it is not possible for two different buyers to select the

same object, unless the object is q0. Then, the joint strategies for the buyers, one for

each of them, produces a feasible matching µ, where µ(pi) is the object of Qi chosen by

pi. Any non-selected object will be unmatched under µ. The mechanism allocates the

objects according to the matching µ. Also, every buyer pi pays vj to seller qj if µ(pi) = qj;

hence seller qj receives vj if qj is sold and receives nothing if qj is unsold. That is, Hσ(v,

µ) = (v*, µ), where v* is the vector of prices actually paid in the market, which

constitutes the payoff vector of the sellers: v*j = vj if µ(qj)∈P and v*j = 0 if qj is unsold.

Sometimes we will use the notation Hσ
j(v,µ) for seller qj’s payoff, v*j. Moreover, the

payoff of buyer pi is then ui = αij−v*j = αij−vj when µ(pi) = qj. Clearly, ui = 0 if µ(pi) =

q0.

Given some permutation σ, we are going to consider the subgame perfect equilibria

in pure strategies (σ-SPE) of the game induced by the mechanism Hσ. The set of best

responses for the buyers to the sellers' joint strategies, say v, is the set of SPE of the

game that starts once v has been decided. (Notice that the elements of this set are

matchings). For these equilibria, it is always the case that each buyer chooses, once the

prices v have been selected, one among the best objects available for her (this includes

the possibility of her selecting the null object). In other words, each buyer pi chooses an

object in Di(vQi), which is the set of objects in Qi that maximize pi's utility payoff.

That is,

               Di(vQi) ≡ {qj∈Qi ; αij−vj ≥ αih−vh, for all qh in Qi}.

A matching µ obtained in this way is called σ-competitive for the prices v. Formally:

Definition 9 - Given the permutation σ and the feasible price vector v, the matching µ

is σ-competitive for v if every buyer pi chooses µ(pi)∈Di(vQi).

Therefore, µ is σ-competitive for v if each buyer pi chooses one among her best

responses to v and to the actions of the previous buyers. For some price vectors, there

are several σ-competitive matchings. This happens when a buyer must select one out of
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a set of several objects among which she is completely indifferent. Even if her action

does not change her final utility, it strongly influences the utilities of the sellers coming

after her. To illustrate this situation, consider the following example:

Example 1- Consider a set of objects Q = {q0, q1, q2, q3} and a set of buyers P = {p1,

p2, p3}. Let the matrix α be such that α11 = α12 = α21 = α23 = α32 = α33 = 2 and the other

entries are zero. Let σ = (p1, p2, p3). Suppose that the sellers choose the vector of prices

v = (0, 1, 1, 1) and that the buyers choose µ(p1) = q2, µ(p 2) = q3 and µ(p 3) = q0. Each

buyer is selecting a best response given the prices of the objects and the actions of the

previous buyers. However, notice that if either p1 or p2 chooses q1 then buyer p3 can

select either q2 or q3, respectively. If this happens, buyers p1 and p2 have the same utility

payoff as before but p3 is strictly better off.

Sometimes, it is reasonable to assume that if a buyer is completely indifferent among

several actions, but one of them leads to a more efficient outcome for the buyers

coming after her, then she will choose this action. When we restrict attention to such

strategies we say that buyers are selecting σ-maximal matchings. Formally we have:

Definition 10- Given the permutation σ and the price vector v∈Rn
+, we say that µ is σ-

maximal for v if µ is σ-competitive for v and it is Pareto-efficient for the buyers in the

set of σ-competitive matchings for v. That is, let u be the payoff vector of the buyers

associated to (v, µ). Then µ is σ-maximal for v if and only if (a) µ is σ-competitive for

v, and (b) for any matching µ’ which is σ-competitive for v, if ui < u’i for some pi in P,

then uk > u’k for some pk in P, where u’ is the payoff vector of the buyers associated to

(v, µ’).

We must point out that given σ, if v is an equilibrium price and µ is an optimal

matching then µ is σ-maximal for v. However, the converse is not true. In fact,

consider, for example, a market with only one object q1 and only one buyer p1. The

buyer is indifferent between buying the object at the price v = α11 or not buying it. Any

of her options is a σ-maximal matching for v, but only the first one is an optimal

matching.
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Let us now look at the possible strategic actions by the sellers. To analyze whether a

vector of prices is part of an equilibrium, we must check that no seller is interested in

deviating from his proposed price. Sometimes, a deviation by a seller is profitable or not

depending on the expected reaction by the buyers. The following example illustrates

this:

Example 2- Consider a set of objects Q = {q0, q1, q2, q3} and a set of buyers P = {p1,

p2, p3}. Let the matrix α be such that α11 = 1, α12 = α22 = α23 = 2, α33 = 1 and the other

entries are zero. Let σ = (p2, p1, p3). Suppose that the sellers choose the vector of prices

v = (0, 0, 0, 0). If q1 increases his price from v1 = 0 to v'1 = 0.5, this deviation can be

profitable for q1 if p2 buys q2, for then p1 will buy q1. However, the deviation is not

profitable if p2 buys q3. In this case the best response for p1 is to buy q2 and p3 will be

unmatched. Observe that the set of best responses for the buyers has only these two

matchings and both of them are σ-maximal (under the first matching the payoff vector

of the buyers is (0.5, 2, 1) and under the second one is (2, 2, 0)).

What behavior can be predicted for q1 in this game? We will assume that a seller who

analyses the possibility of deviating takes an optimistic view. That is, a seller changes

his strategy whenever he has a chance to be better off. Therefore we are looking for

seller strategies under which no seller has a chance to be better off. This means that we

are interested in equilibria in the strong version. (A similar concept has been defined by

Demange and Gale (1985).) Also, to avoid inconsistencies, we continue to require that

the buyers use σ-maximal strategies. The formal definition of a σ-SPE in the strong

sense is then the following:

Definition 11- Let σ be some permutation, v∈Rn
+ a price vector and µ some σ-maximal

matching for v. We say that (v, µ) is a σ-SPE in the strong sense if for no qj there is a

v', with v'h = vh for qh ≠ qj, and a σ-maximal matching µ' for v', such that Hσ
j(v', µ') >

Hσ
j(v, µ).

Notice that by considering only the equilibria in the strong sense we restrict the set

of SPE.
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4- THE SET OF EQUILIBRIA

In this section we show that, if the buyers always choose σ-maximal matchings, the

set of outcomes of the equilibria in the strong sense coincides with the set of maximum

competitive equilibria for any σ. That is, first, the final prices paid by the buyers at

equilibrium correspond to the maximum equilibrium price vector for the assigned

objects. Second, the assignment of objects to buyers corresponds to an optimal

matching (and every optimal matching is part of some σ-SPE). The previous result

implies, in particular, that the vectors of sellers' payoff and buyers' utility are the same

under any σ-SPE in the strong sense. Moreover, in equilibrium, the ordering determined

by σ is irrelevant.

In this section, we will denote the σ-SPE in the strong sense as σ-SPE, for short.

When (v, µ) is a σ-SPE we will say that v is part of a σ-SPE and that Hσ(v, µ) is the σ-

SPE outcome.

To characterize the set of σ-SPE outcomes of Hσ, we will use Proposition 5 below,

which is an immediate consequence of Hall's theorem (see Gale (1960)). To state it, we

need the following definition:

Definition 12- Let v∈Rn
+, and P'⊆P be such that q0∉Di(v) for all pi∈P'. We say that D

≡ ∪p
i
∈P’Di(v) is an overdemanded set under v if D<P'.6

That is, a set D is overdemanded if the number of buyers demanding only objects in

D is greater than the number of objects in D.

Proposition 5- (Corollary of Hall's Theorem)- Let v∈Rn
+. A competitive matching for

v exists if and only if there is no overdemanded set under v.

                                               
6 Given a set A, we denote its cardinality by A.
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We start our analysis of the σ-SPE of the mechanism Hσ by stating a result that will

allow us to use Hall's theorem. Proposition 6 shows that, at a σ-SPE, there exists no

overdemanded set.

Proposition 6- Let v be the vector of strategies of the sellers in a σ-SPE. Then, there is

no overdemanded set under v.

In the proof of Proposition 6, we will use Lemma 1, whose proof is relegated to the

Appendix. It establishes the following property. Consider a price vector which is part of

a σ-SPE, and a group of buyers that obtain a strictly positive payoff and that buy

objects in their demand sets. Then, there is some object which is not bought by any of

the buyers in this group but which belongs to some of their demand sets.

Lemma 1- Let v be the vector of strategies of the sellers in a σ-SPE. Let µ be some σ-

maximal matching for v such that µ(pi)∈Di(v) for all pi∈P'⊆P and denote by u the

payoff vector of the buyers associated with (v, µ). Suppose that ui > 0 for all pi∈P'⊆P.

Let Q' ≡ µ(P'). Then, there exists some pi∈P' and qj∉Q' such that qj∈Di(v).

Proof of Proposition 6- Let σ = (p1, p2,..., pm) and denote Pr ≡ {p1,..., pr}. For the

proof of the proposition, it is sufficient to prove that for all 1 ≤ r ≤ m, and all P'⊆Pr

with q0∉Di(v) for every pi∈P', we have that ∪p
i
∈P'Di(v)≥P'. We will prove it by

induction on r. If r = 1 it is obvious.

Suppose that for all P'⊆Pr-1, with q0∉Di(v) for every pi∈P', we have that

P'≤∪p
i
∈P'Di(v). Before proving that the property also holds for r, we show first

that there exists a σ-maximal matching µ' for v such that µ'(pi)∈Di(v) for all i = 1,

2,..., r−1. That is, we want to show that there is a σ-maximal matching µ' for M = (P,

Q, α), whose restriction to M' = (Pr−1, Q, α'), is a competitive matching for v, where α'

is the restriction of α to Pr−1xQ. Then, let

S = {µ; µ is σ-competitive for v in M and µ(pi)∈Di(v) for all i = 1, 2,..., r−1}.
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That is, S is the set of all σ-competitive matchings for v whose restriction to M' is

competitive. By the induction hypothesis there is no overdemanded set of objects in M'

under v. Proposition 5 implies that there exists some competitive matching for v in M'.

Therefore the set S is non empty, since the matching given by Proposition 5 can be

easily extended to a σ-competitive matching for v (we only need to take a best response

for the buyers from pr on, which always exists). Since S is non-empty and finite, there is

at least a matching µ'∈S which is Pareto-efficient for the buyers among all matchings in

S. We claim that µ' is a σ-maximal matching for v. That is, µ' is Pareto-efficient for the

buyers not only among all matchings in S, but also among all σ-competitive matchings.

In fact, if µ' is not σ-maximal then there is a σ-competitive matching µ such that ui ≥ u'i

for all pi∈P, with strict inequality holding for at least one buyer, where u' and u are the

payoff vectors of the buyers associated with (v, µ') and (v,µ), respectively. However, it

is necessarily the case that ui = u'i for all pi∈Pr−1, since all these players are maximizing

their utility payoff under µ'. Hence µ∈S, which contradicts the assumption that µ' is

Pareto-efficient for the buyers.

We now prove that the property holds for r by contradiction. Suppose that there is

some P'⊆Pr with q0∉Di(v) for every pi∈P', and such that P'>∪p
i
∈P'Di(v). Let D ≡

∪p
i
∈P'Di(v). It follows by the induction hypothesis that P'⊄Pr−1, so pr∈P'. Also, applying

the induction hypothesis to P'−{pr}⊆Pr−1, it is the case that P'−1 = P'−{pr} ≤ D

< P'−1. Denoting P* ≡ P'−{pr}, the previous inequalities imply that D=P* and

D = ∪p
i
∈P*Di(v). Moreover, since the matching µ'∈S (that we found previously) is

competitive for v in M' = (Pr−1, Q, α') and P*⊆ Pr−1, then µ’(pi)∈Di(v) for all pi∈P*.

Thus, it is necessarily the case that D = µ'(P*).

Now use Lemma 1 to obtain that there exists some pi∈P* and qj∉D such that qj∈Di(v),

which is a contradiction.   Q.E.D.

Our first theorem asserts that the σ-SPE outcomes are always competitive equilibria.

The insight obtained from Proposition 6 is very useful for both the understanding and

the proof of Theorem 1.
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Theorem 1- Let (v, µ) be a σ-SPE. Then, Hσ(v, µ) is a competitive equilibrium.

Proof- By Proposition 6, there is no overdemanded set of objects at the prices v.

Therefore, Proposition 5 guarantees that there is a matching µ' which is a competitive

matching for v. Now observe that the buyers maximize their utility payoffs under µ' and

µ is σ-maximal. Then v is a competitive price with matching µ.

To prove that Hσ(v, µ) = (v*, µ) is a competitive equilibrium, we have to show that v*

is a competitive price vector with matching µ, where v*j = vj if qj is sold and v*j = 0

otherwise. Denote by u the payoff vector of the buyers associated to (v, µ). Since there

are no µ-expensive objects under v*, proving the theorem only requires us to show that

if qj is unsold and vj > v*j = 0, then ui ≥ αij−v*j for all pi∈P. Suppose, by way of

contradiction, that there exists some unsold object, say qj, such that vj > v*j = 0 and ui <

αij−v*j for some pi∈P. There are some λ > 0 and γ > 0 such that ui+λ = αij−γ. Let v' be

such that v'j = γ, and v'h = vh if qh ≠ qj. Since v is part of a σ-SPE, it follows that qj is

unsold at any σ-maximal matching for v'. However, maxh≠jαih−vh = ui < ui+λ = αij−v'j,

hence buyer pi is not playing her best response at any σ-maximal matching for v', which

is a contradiction. Therefore, Hσ(v, µ) is a competitive equilibrium.       Q.E.D.

Theorem 1 ensures that only competitive equilibria are candidates for a σ-SPE of the

mechanism. Theorem 2 goes a step further: Aside from the cases in which a seller has

an object unsold but sets an expensive price on his object, only the maximum

equilibrium prices can be part of a σ-SPE of the mechanism Hσ.

Theorem 2- Let (v, µ) be a σ-SPE. Then, Hσ(v, µ) = (v , µ), where v  is the maximum

equilibrium price vector.

To prove the theorem, we will use the following lemma, whose proof is developed in

the Appendix.
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Lemma 2- Let (v1, µ1) be a σ-SPE and set Hσ(v1, µ1) ≡ (v*, µ1). Let (u2, v2, µ2) be

some feasible outcome and Q+ = {qj∈Q ;  v2
j > v*j}. If Q+ ≠ ∅, then there exists some

pair (pi, qh)∈PxQ such that u2
i+v2

h < αih.

Proof of Theorem 2- Let Hσ(v, µ) = (v*, µ). We have to show that v* ≥ v' for all

equilibrium prices v'. Let v' be some equilibrium price vector, µ' a competitive matching

for v', and u' the payoff vector of the buyers associated with (v', µ'). Denote

Q+ = {qj∈Q ; µ'(qj)∈P and v'j > v*j}.

If Q+ ≠ ∅, then Lemma 2 asserts that there is some pair (pi, qh)∈PxQ such that u'i+v'h <

αih, which is impossible since the price vector v' is competitive. Therefore Q+ = ∅. Since

there are no expensive objects at any equilibrium prices it follows that v* ≥ v'. That is,

v* = v .       Q.E.D.

It easily follows from Theorem 2 that if (v, µ) is a σ-SPE and vj = 0 for all unmatched

seller qj, then v is the maximum equilibrium price vector. Of course, any prices v', with

v'j = vj if qj is matched under µ, and v'j ≥ vj if qj is unmatched under µ, is also part of a σ-

SPE leading to the maximum competitive equilibrium.

From Theorem 2 we know that Hσ must necessarily lead to a maximum competitive

equilibrium. We now show that it is indeed the case that every maximum competitive

equilibrium is a σ-SPE.

Theorem 3- Let (u, v ; µ) be a seller-optimal stable outcome. Then, (v , µ) is a σ-SPE

for any σ.

This theorem is proved with the help of Lemma 3. We include the proof of the lemma in

the Appendix.

Lemma 3- Let (u, v ) be the seller-optimal stable payoff. Let µ be an optimal matching.

Construct a graph whose vertices are P∪Q and with two types of arcs. If µ(pi) = qj

there is an arc from qj to pi; if qj∈Di(v ) and qj ≠ µ(pi) there is an arc from pi to qj. Let
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pk∈P with uk > 0. Then, there exists an oriented path starting at pk and ending at an

unsold object or at a buyer with a zero payoff.

Proof of Theorem 3- Consider any permutation σ. The outcome of the strategies (v ,

µ) is Hσ(v , µ) = (v ; µ). Since µ is competitive for v , it is the case that µ is σ-maximal

for v . Hence, to prove the theorem, it is sufficient to show that v  is indeed an

equilibrium for the sellers. Let qj∈Q−{q0}. We are going to show that qj will be unsold

at any σ-maximal matching for v', where v'j > v j and v'h = v h if qh ≠ qj. However, before

we proceed to prove this property, we show that there is some competitive matching

for v , say µ', which leaves qj unsold. The cases to be considered are the following:

Case 1. qj is unmatched at µ. Then, take µ' = µ.

Case 2. µ(qj) = pi and ui = 0. In this case, take µ' so that µ' agrees with µ on the choices

of the buyers other than pi and associate pi to the null object.

Case 3. µ(qj) = pi and ui > 0. By Lemma 3, there exists an oriented path c starting at pi

and ending at an unsold object qs or at a buyer ps with payoff zero. Since c does not

cycle then qj is not in c. Set c ≡ (p = p1, q1, p2, q2,..., ps, qs) or c ≡ (p = p1, q1, p2, q2,...,

ps, qs, ps+1). Now consider the matching µ' that matches pt to qt, for all t = 1, 2,..., s, that

leaves ps+1 unmatched if ps+1 is on the path, that otherwise agrees with µ with regard to

every object in Q−{qj} and every buyer in P that are not on the path, and that sets µ'(qj)

= qj. Every buyer obtains the same utility under µ' as under µ, since µ'(pt) = qt∈Dt(v),

for all t = 1, 2,..., s, and µ' agrees with µ for the other buyers. Therefore, µ' is a

competitive matching for v .

In all of the three cases, we have found a matching µ' for v  under which qj is not sold

and such that every buyer maximizes her utility payoff under v . Therefore, under µ'

every buyer pk will be maximizing her utility payoff also for the price vector v', and she

obtains a utility of uk. Then, we claim that qj will be unsold at any σ-maximal matching

for v': if qj was sold at the price v'j to some pk, we would have that αkj−v'j < αkj−v j ≤ uk,
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while the utility of the other buyers can not be higher than u, so the matching could not

be σ-maximal.      Q.E.D.

Theorem 2 states that the only outcomes that can be reached through the mechanism

Hσ are maximum competitive equilibria if we use equilibria in the strong sense. Theorem

3 asserts that any maximum equilibrium price vector is part of a σ-SPE. As a

consequence, the mechanism Hσ implements in σ-SPE the set of maximum competitive

equilibria.

Corollary 1- Let σ be a permutation of the buyers. Then, Hσ implements in σ-SPE the

set of maximum competitive equilibria.

Proof- Immediate from theorems 2 and 3.

Since any σ-SPE in the strong sense is a σ-SPE in the weak sense we have:

Corollary 2- Let (u, v ; µ) be a seller-optimal stable outcome. Then, (v , µ) is a σ-SPE

in the weak sense for any σ.

5- DISCUSSION OF THE σσ-MAXIMAL STRATEGIES

In our analysis of the proposed selling procedure, we have assumed that buyers use

σ-maximal strategies. An indifferent buyer picks an object that leads to an efficient

outcome for the buyers coming after her. This requires each buyer to know the

preferences of all the buyers that follow her in the line. There are some environments in

which this may be reasonable. However, there are also other situations in which this

hypothesis is demanding and, in those environments, one may argue that the mechanism

is not very practical.

How can buyers chose a σ-maximal strategy in those cases where the information

about the others' preferences is not complete? Are there reasonable ways through which

the buyers can actually follow σ-maximal strategies if, a priori, they do not know each

other preferences? We claim that such reasonable ways exist.
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It is often the case that when buyers are in a queue, they chat about their respective

choices. The buyers that are not well placed in the line may try to make their

preferences clear so that the buyers ahead in the queue solve indifferences in their favor.

This can be seen as an informal way of transmitting information. If the number of buyers

is large and there is no possibility for mutual knowledge or communication among

buyers, the informal channel may be difficult to implement. In this case, we would need

an external referee that would ask for the buyers' preferences and, once the buyers

reveal them, chooses a σ-maximal matching taking into account the reports by the

buyers and the predetermined order σ.

The two previous mechanisms, the informal and the formal one, are quite similar. For

simplicity, let us consider the formal mechanism in which a referee is called in to

arbitrate. The mechanism is a useful way to transmit information only if buyers do have

incentives to declare their preferences truthfully. A simple and easy test about the

strategic incentives to lie is to check whether truth-telling is a max-min strategy.

Following a max-min strategy, a buyer maximizes the minimum level of utility she can

guarantee for herself independently of the others' preferences. Indeed, in the previous

mechanism, truth-telling is a max-min strategy. The reason is that, by telling the truth,

the i-th buyer obtains, at least, her i-th most preferred object, and this is the most she

can guarantee for herself.7 If a buyer does not have any information about the others’

preferences, following a max-min strategy is "safe". Therefore, truth-telling is a

reasonable strategy.

There is also a less demanding approach to the problem of the transmission of

information among buyers that allows obtaining our implementation result. We are

going to develop this approach in some detail. We propose a mechanism in which a

buyer is not asked to reveal her preferences, as in the previous proposal, but she only

has to reveal her indifferences to the following buyer in the line. Informally, once the

                                               
7 Truth telling is not the only max-min strategy. Every strategy in which the i-th buyer keeps the
same set of the i most preferred objects but changes the order of these objects is also a max-min
strategy.
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first buyer realizes that she is indifferent among a certain set of objects, she says so to

the second buyer. The second buyer can also tell the third buyer about the different

paths (that is, the different matchings for buyers 1 and 2) among which she is

indifferent, respecting the will of the first buyer, and so on. We will refer to this

mechanism as mechanism R. In the rest of the section, we will first formally define the

mechanism R and will show that buyers do not have any incentives to lie when they play

it. Then, we will characterize the set of matchings that can be expected to be formed

following the mechanism R. Finally, we will extend the implementation result to the

framework in which buyers form such matchings.

We describe the mechanism R. It is played once the sellers have posted the vector of

prices v. For notational simplicity, we consider σ = (p1,..., pm).

(1) At t = 1, buyer p1 chooses a non-empty subset S1 of the set of feasible matchings for

M1 ≡ ({p1}, Q, α). For p1, choosing a set S1 is equivalent to choosing a subset of Q.

(2) At t = 2, buyer p2 chooses a non-empty subset S2 of the set of feasible matchings for

M2 ≡ ({p1, p2}, Q, α) whose restriction to M1 is an element of S1. For p2, choosing a set

S2 amounts to telling to p1 the object(s) p2 wants p1 to pick up among the “objects” in S1

and then, for each of those objects, choosing one or more objects for herself.

(t) At t, for 2 < t ≤ m, buyer pt chooses a non-empty subset St of the set of feasible

matchings for Mt ≡ ({p1,..., pt}, Q, α) whose restriction to Mt-1 is an element of St-1.

That is, at t, the elements of St are matchings for buyer pt and for the buyers previous to

her. Buyer pt has, however, to respect the will of the previous buyers, expressed in St-1.

After all buyers have played, we have a final set Sm. The matching that will actually

take place will be chosen at random among the matchings in Sm.

Proposition 7- In the mechanism R, the following is a SPE for a vector of prices v:

given a set St-1, buyer pt reports a set St that consists in her most preferred matchings

(given the price vector v) among the matchings whose restriction to Mt-1 is in St-1.
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Proof- When pt chooses St, she knows that she will be buying according to one of the

paths in St, independently on the choices of the buyers coming after her. A buyer does

not have any incentives to lie at all and truth-telling is a best response to every possible

set St-1. Hence, truth-telling is a SPE.  Q.E.D.

The important fact about the proposed strategy (truth-telling) is that a buyer does

not need to know the other buyers' preferences. The set of possible outcomes of a buyer

does depend on the previous buyers' preferences, but her strategy is independent on

them. On the other hand, the preferences of the buyers coming after her do not have any

influence on the choice of a buyer. This is the case because, following the strategy,

buyer pt is indifferent between the objects that the matchings in St assign to her.

We now show that, when the buyers declare their true indifferences, that is, when

they follow the proposed SPE, then they end up forming a σ-maximal matching. In fact,

they always form a particular type of matching; we will call them top matchings. A top

matching is a σ-maximal matching that is one of the most preferred by the buyers when

they can choose according to σ. That is, a top matching is one of the most preferred σ-

maximal matchings for the second buyer; it is one of the most preferred for the third

buyer among the σ-maximal matchings most preferred by the second buyer; and so on.

More formally:

Definition 13- A feasible matching µ for M is a top matching if it is σ-maximal and, for

any other σ-maximal matching µ' such that u'i > ui for some buyer pi, there exists a

buyer pk, with k < i, such that uk > u'k, where u and u' are the payoff vectors of the

buyers associated to (v, µ) and (v, µ') respectively.

Proposition 8- If buyers declare truthfully their indifferences in the mechanism R (that

is, they use the SPE strategies proposed in Proposition 7), then Sm is the set of top

matchings.

Proof- Take µ ∈ Sm. Given that buyers choose their best matchings, µ is σ-competitive

for v. We prove that µ is σ-maximal and that it is a top matching if we show that, for
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any other σ-competitive matching µ' for v such that u'i > ui for some buyer pi, there

exists a buyer pk, with k < i, such that uk > u'k, where u and u' are the payoff vectors of

the buyers associated to (v, µ) and (v, µ') respectively. We make the proof by

contradiction. Suppose that there is a σ-competitive matching µ' for v such that u'i > ui

for some buyer pi and uk = u'k for every k < i. (Note that u1 = u’1, since µ and µ' are both

σ-competitive matchings.) Since µ and µ' provide the same utility to buyers p1,..., pi-1, it

is easy to see that the restriction of µ to Mk is in Sk if and only if the restriction of µ' to

Mk is in Sk, for every k < i. Since µ ∈ Sm, it is the case that the restriction of µ to Mi-1 is

in Si-1. Therefore, the restriction of µ' to Mi-1 is also in Si-1. But then, buyer pi is not

maximizing her utility by choosing a set Si that includes the restriction of µ to Mi: she

would obtain a higher utility by taking S'i = {restriction of µ' to Mi}. Hence Sm is

contained in the set of top matchings.

It remains to show that every top matching is in Sm. Note first that Sm is non-empty by

construction. Take µ in Sm and let µ’ be any other top matching. Then both matching

are also σ-maximal. Let u and u’ be the payoff vectors of the buyers associated to (v, µ)

and (v, µ'), respectively. By Definition 13 we must have that u1 = u’1. Now apply the

definition of a top matching to both matchings to get that ui = u’i for all i = 1,…, m.

Finally, given that every player is indifferent between µ and µ’, then the restriction of µ

to Mk is in Sk if and only if the restriction of µ' to Mk is in Sk. Therefore, µ’ ∈ Sm.

Q.E.D.

Proposition 8 tells us what matchings can be expected if each buyer follows the

equilibrium strategy of declaring truthfully her indifferences to the next buyer in the line.

On the one hand, only σ-maximal matchings are expected. On the other hand, only a

subset of the set of σ-maximal matchings (the top matchings) will be formed. This can

be problematic because, to prove the implementation result in theorems 2 and 3, we

have assumed that buyers can use any σ-maximal strategy. What happens if we assume

that buyers choose top strategies (strategies leading to top matchings) with certainty?

(For example, because they use the proposed communication channel to break
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indifferences in favor of the buyers after them in the line.) Next theorem shows that, in

this framework, the implementation result still holds.

Theorem 4- Let σ be a permutation of the buyers. Then, the set of SPE in the strong

sense of the mechanism Hσ coincides with the set of maximum competitive equilibria

when the buyers use top strategies.

The main message of Theorem 4 (whose proof is relegated to the Appendix) is that it

is possible to relax the hypothesis of perfect information among buyers and still obtain

the implementation result. If buyers do not know each other preferences, they can set

up a simple channel to transmit the relevant information (their indifferences). Theorem 4

shows that when the buyers use such a channel, the final prices are still the maximum

competitive prices and the final matching is optimal.

6- SOME ADDITIONAL EXAMPLES

In order to obtain our results, we have restricted the analysis to what we have called

maximal strategies by the buyers (or top strategies, in Section 5), and to equilibria in the

strong sense by the sellers. We show here, through examples, that without such

restrictions the implementation result (Corollary 1) no longer holds. In this section, the

notation σ-SPE* stands for subgame perfect equilibria in pure strategies in general,

without restricting attention to equilibria in the strong sense and/or allowing any

strategy by the buyers.

The first question is what happens if we still restrict attention to σ-SPE* in the

strong sense, while allowing the buyers to use any σ-competitive strategies. Note that

this change diminishes the set of equilibria since the optimistic seller looking for a

deviation considers as possible a larger set of buyers' strategies. Example 3 shows that

the set of equilibria may be empty for all σ. In the example, we will use the following

result, whose proof is relegated to an Appendix.

Proposition 9- If (v, µ) is a σ-SPE* in the strong sense then Hσ(v, µ) is a competitive

equilibrium. Consequently µ is a σ-maximal matching for v.
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Example 3- (The set of σσ-SPNE* may be empty for all σσ) Consider a set of objects

Q = {q0, q1, q2, q3} and a set of buyers P = {p1, p2, p3}. Let α be such that α11 = α33 = 5,

α12 = α32 = 1, α13 = α21 = α23 = α31 = 4 and α22 = 0. There is only one stable payoff in

this market: u = (1, 0, 1) and v = (0, 4, 0, 4). There are four optimal matchings, denoted

µk, k = 1, 2, 3, 4: µ1(p1) = q1, µ1(p2) = q2, µ1(p3) = q3; µ2(p1) = q1, µ2(p2) = q3, µ2(p3) =

q2; µ3(p1) = q2, µ3(p2) = q1, µ3(p3) = q3; and µ4(p1) = q1, µ4(p2) = q0, µ4(p3) = q3. Then,

by Proposition 7, (v, µk), k = 1, 2, 3, 4 are the only candidates for a σ-SPE* in the

strong sense, for any σ. However, we show now that none of them are σ-SPE*s in the

strong sense for any σ.

Consider first σ = (p1, p2, p3) or σ = (p2, p3, p1). The strategies (v, µi) do not

constitute a σ-SPE* in the strong sense because the deviation v'2 = 0.5 followed by the

σ-competitive matching µ2 for the first ordering and by µ3 for the second one is

profitable to seller q2. Second, if σ = (p3, p1, p2) or σ = (p3, p2, p1), then if seller q1

deviates with v'1 = 4.5, the µ2 is also a best response for the buyers. Thus the deviation

v'1 is profitable to q1. Finally, if σ = (p2, p1, p3) or σ = (p1, p3, p2), then the deviation v'3

= 4.5 is profitable to q3 if the buyers use the σ-competitive strategy µ3. Also in these

cases (v, µi) is not a σ-SPE* in the strong sense. Note that µ2 or µ3 are not σ-maximal

matchings for v' in none of the cases (this is only a confirmation of Theorem 3)

The second question is whether restricting attention to equilibria in the strong sense

is actually a restriction (note that the set of equilibria is a superset of the set of equilibria

in the strong sense). When buyers only use maximal strategies, Example 4 shows that it

is indeed the case that there exist equilibria different from the maximum competitive

equilibria.

Example 4- Consider a set of objects Q = {q0, q1, q2, q3, q4}, a set of buyers P = {p1,

p2, p3, p4}, and σ = (p1, p2, p3, p4). Let α14 = α23 = α31 = α34 = α42 = α43 = 0 and let the

other entries be equal to 2. The maximum price vector is v  = (0, 2, 2, 2, 2) and an

optimal matching is µ: µ(p1) = q1, µ(p2) = q2, µ(p3) = q3, µ(p4) = q4. However, we claim

that v = (0, 1, 1, 1, 1) followed by the σ-maximal matching µ is part of a σ-SPE* (in the
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weak sense) in which the out-of-equilibrium σ-maximal strategies for the buyers are the

following:

(a) If v'1 > v1 and v'i = vi, for i = 2, 3, 4, then µ1(p1) = q3, µ1(p2) = q2, µ1(p3) = q0, µ1(p4) =

q4.

(b) If v'2 > v2 and v'i = vi, for i = 1, 3, 4, then µ2(p1) = q1, µ2(p2) = q4, µ2(p3) = q3, µ2(p4) =

q0.

(c) If v'3 > v3 and v'i = vi, for i = 1, 2, 4, then µ3(p1) = q1, µ3(p2) = q4, µ3(p3) = q2, µ3(p4) =

q0.

(d) If v'4 > v4 and v'i = vi, for i = 1, 2, 3, then µ4(p1) = q3, µ4(p2) = q2, µ4(p3) = q0, µ4(p4) =

q1.

To check that the strategies are σ-maximal, take for example case (a). If µ1 is not σ-

maximal, then it is necessarily the case that µ'(p3)∈{q1, q2, q3}, for any µ' Pareto-

superior for the buyers to µ1. But in this case either p1, or p2, or p4 are strictly worse-off

with µ' than with µ1, so µ' is not Pareto-superior to µ1.

We may also find competitive equilibria that are not a σ-SPE*.

Example 5- Consider Q = {q1}, P = {p1, p2} and σ = (p1, p2). Let α be such that α11

= 8 and α21 = 7. The competitive equilibrium (v = 7, µ), where µ(p1) = q1, is not a σ-

SPE* for any σ. In fact, the deviation v'1 = 7.5 is surely profitable to q1.

Our final question is what happens if we look for σ-SPE* without restricting

attention either to maximal strategies or to equilibria in the strong sense. The following

example shows that the σ-SPE* are not necessarily competitive equilibria.

Example 6- Consider Q = {q0, q1, q2, q3, q4}, P = {p1, p2, p3} and σ = (p1, p2, p3).

Let α be such that α11 = α22 = 5, α13 = α24 = 3, α31 = α32 = 7, and the other entries are

equal to zero. The price vector v = (0,2, 2, 0, 0) with the matching µ(p1) = q1, µ(p2) =
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q2, µ(p3) = q0, is not a competitive equilibrium. However, we claim that they constitute

a σ-SPE* with the following out-of-equilibrium continuation:

(a) If v'1 > v1 and v'i = vi, for i = 2, 3, 4, then µ1(p1) = q3, µ1(p2) = q4, µ1(p3) = q2.

(b) If v'2 > v2 and v'i = vi, for i = 1, 3, 4, then µ2(p1) = q3, µ2(p2) = q4, µ2(p3) = q1.

(e) If v' different from the previous (a)-(b), then take any σ-competitive strategy.

7- CONCLUSION

In our opinion, the analysis developed in this paper shows that a mechanism in which

both buyers and sellers use very simple strategies can work well. The mechanism is

meant to reflect the working of some markets. Each seller posts the price for his object,

price that will become final if the object is sold. Each buyer chooses an object (if any) to

buy, the choices by the buyers directly producing the final matching in the market. We

have shown that, when buyers use maximal strategies, the strategies played by buyers

and sellers at any subgame perfect equilibria in the strong sense lead to the maximum

equilibrium price vector and to an optimal matching. Therefore, the partnerships formed

between buyers and sellers are efficient and the actual prices constitute a competitive

equilibrium in this market (the competitive equilibrium most preferred by the sellers).

Moreover, in equilibrium, the order in which the buyers are in the line is not relevant:

the set of equilibria is independent of the line (the permutation σ) and the utility that

each buyer and seller obtain at any equilibrium is the same.

In the mechanism that we propose, the sellers post prices first and the actual

matching is then chosen by the buyers sequentially. This timing seems the most natural

one. On the one hand, if we interchange the roles so that buyers propose prices and

sellers choose the matching, the buyers' strategies are more complex: since objects are

different from the buyers' perspective, each buyer needs to set a vector of prices, instead

of just one price. This makes the mechanism less attractive and the analysis more

difficult. Note, however, that the result seems very sensitive to the side of the market

that moves first. The ability of fixing the prices causes that the equilibrium prices are the
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highest among the possible competitive prices. On the other hand, one can also think of

a mechanism in which the buyers choose simultaneously their preferred objects once the

sellers have simultaneously proposed prices. This is in the spirit of the mechanisms

analyzed in Alcalde, Pérez-Castrillo, and Romero-Medina (1998) and Alcalde and

Romero-Medina (1999). However, in contrast with the previous papers, the

implementation of the mechanism in the assignment games brings about the problem of

deciding what happens if two different buyers choose the same object. The sequentiality

of our mechanism allows us to avoid the use of tie-breaking rules, as well as the strong

implicit coordination needed for the equilibria of simultaneous mechanisms.
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APPENDIX

Proof of Lemma 1- Suppose, by way of contradiction, that for all pi∈P’ and all qj∉Q’

we have that qj∉Di(v). That is, suppose that Q’ ≡ µ(P’) = ∪p
i
∈P’Di(v). Since ui > 0 for

all pi∈P’, it implies that q0∉Q’ and so

 |P’| = |Q’|. (1)

Let pk be the last buyer in P’ under σ and qh = µ(pk) be the object that pk buys. From

Dk(v)⊆Q’ it follows that uk > αkj−vj for all qj∉Q’. Now use that uk > 0 to get that there

exists some λ > 0 such that  

                 uk−λ > αkj−vj  for all  qj∉Q’, and (2)

uk−λ > 0. (3)

Let v’ be such that v’h = vh+λ, v’j = vj for all qj ≠ qh. Since pk is the last buyer in P’

under σ, it follows that pk will buy qh at the price v’h if the previous buyers keep buying

according to µ. This is immediate from (1) and (2). Indeed, equation (1) implies that qh

is the unique available object belonging to Q’ when pk is called to play; equation (2)

implies that {qh} = Dk(v’|Qk). Hence µ is σ-competitive for v’.

We will show that µ is σ-maximal for v’, which will contradict the initial hypothesis

that v is part of a σ-SPE. Again, we do the proof by contradiction. Suppose that µ is

not σ-maximal for v’. Then, there is some matching µ’ which is σ-competitive for v’

and such that:

u’i ≥ ui for all  pi∈P−{pk}  and u’k ≥ uk−λ, (4)

 with at least one strict inequality, where u’ is the payoff vector for the buyers

associated to (v’, µ’). From (4) and (2) it follows that

                                        u’k > αkj−vj  for all  qj∉Q’. (5)
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However, using the hypothesis that µ(pi)∈Di(v) for all pi∈P’ and (4), it follows that for

all pi∈P’−{pk}, u’i = ui (u’i > ui is not possible because pi is maximizing her payoff

under µ). Consequently µ’(pi)∈Di(v) for all pi∈P’−{pk}, and so µ’(pi)∈Q’ for all

pi∈P’−{pk}. Also if pi ≠ pk then µ’(pi) ≠ qh, for if not αih−vh > αih−vh−λ = u’i = ui ≥

αih−vh, which is a contradiction. Therefore

µ’(pi)∈Q’−{qh}  for all  pi∈P’−{pk}. (6)

 By (3) and (4), we obtain that u’k > 0, so pk is matched under µ’. That µ’(pk)∈Q’

follows from (5). Now use (1) and (6) to get that µ’(pk) = qh.

Since λ can be taken arbitrarily small, it is then easily seen that if µ’ is σ-competitive

for v’ then µ’ is also σ-competitive for v. Moreover, u’i ≥ ui for all pi∈P and u’i > ui for

some pi∈P (pi∈P−P’), which contradicts the σ-maximality of µ for v. Hence, µ is σ-

maximal for v’. Therefore, there is a profitable deviation from v, which is a

contradiction. Then, there exists some pi∈P’ and qj∉Q’ such that qj∈Di(v). Q.E.D.

Proof of Lemma 2- Case 1. µ1(Q+) ≠ µ2(Q+). Since every seller in Q+ is matched by µ2,

choose pi∈µ2(Q+)−µ1(Q+), say pi = µ2(qj). Denote by u1 the payoff vector of the buyers

associated with (v1,µ1). By Theorem 1, (u1, v*; µ1) is stable. It then follows that 0 ≤ u2
i

< u1
i, since otherwise αij = u2

i+v2
j > u1

i+v*j, which would contradict the stability of

(u1,v*,µ1). This implies that pi is necessarily matched under µ1, say pi = µ1(qh), where

qh∉Q+ (i.e., v*h ≥ v2
h). Then, αih = u1

i+v*h > u2
i+v2

h, which proves the lemma.

Case 2. µ2(Q+) = µ1(Q+). Consider any pi∈µ2(Q+) = µ1(Q+) and denote qj = µ1(pi)∈Q+

and qk = µ2(pi)∈Q+. First, u1
i = αij− v*j ≥ αik− v*k since (u1,v*;µ1) is stable by Theorem

1. Second, v*k < v2
k because qk∈Q+. Then u1

i > αik− v2
k = u2

i ≥ 0. Therefore u1
i >u2

i ≥ 0

for all pi∈µ2(Q+). Moreover, stability implies that µ1(pi)∈Di(v
1) for all pi∈P. By Lemma

1, making Q' ≡ Q+ and P' ≡ µ1(Q+), there exists some pi∈µ1(Q+) and qh∉Q+ such that

qh∈Di(v
1). Hence αih = u1

i+v*h > u2
i+v*h ≥ u2

i+v2
h, where the last inequality comes from

qh∉Q+, and the result follows.       Q.E.D.
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Proof of Lemma 3- Suppose that there is no such a path and denote by S and T the sets

of objects and buyers, respectively, that can be reached from pk. Then ui > 0 for all pi∈T

and each object in S is sold to some buyer in T. Furthermore, if q∉S, then there is no

buyer in T who demands qj at prices v . In this case, it is possible to decrease ui for all pi

in T by some λ > 0 and increase v j for all qj∈S∪{µ(pk)} by the same λ > 0 and still

have a stable outcome, which contradicts the maximality of v .     Q.E.D.

Proof of Theorem 4- Lemma 1 still holds if we replace the following sentence in its

statement: “Let µ be some σ-maximal matching for v…” with: “Let µ be some top

matching for v…” For the proof, see that µ is also a top matching for v’, since every

buyer pt is matched under µ to some object in Di(v). For the proof of Proposition 6,

apply the mechanism R and obtain any top matching (instead of simply a σ-maximal

matching) whose restriction to M’ = (Pr-1, Q, α) is a competitive matching for v in M’.

This is possible because Proposition 5 implies that there exists some competitive

matching for v in M’, so every buyer in {p1,…, pr-1} is maximizing her payoff under this

matching. Now, apply Lemma 1 and get the desired result.

Since Proposition 6 holds, Theorem 1 also holds in this framework. Lemma 1 and

Theorem 1 are used in the proof of Lemma 2, which is needed in the proof of Theorem

2. Lemma 3 does not change. For the proof of Theorem 3 observe that µ is a top

matching for v  and keep the rest of the proof unchanged. Therefore, Theorem 3 and

Corollary 1 still hold in this new set-up.   Q.E.D.

Proof of Proposition 9- Remember that (v, µ) is a σ-SPE* in the strong sense if for no

qj there is a v', with v'h = vh for qh ≠ qj, and a σ-competitive matching µ' for v', such that

Hσ
j(v', µ') > Hσ

j(v, µ). Let Hσ(v, µ) = (v*, µ). Suppose by way of contradiction that (v*,

µ) is not a competitive equilibrium. Let u be the payoff vector of the buyers associated

to (v*, µ). Then there is a pair (pi, qj) such that ui+v*j < αij. Either (a) qj is a µ-

expensive object for v (qj is unsold and vj > v*j = 0), or (b) qj was sold at price v*j = vj

with σ(µ(qj)) < σ(pi). In this case, choose qj so that

if ui+v'h < αih then σ(µ(qh)) < σ(µ(qj)). (7)
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Let λ > 0 and γ > 0 be such that (ui+λ)+(v*j+γ) = αij and let v' be such that v'j = v*j+γ

and v'h = vh for all qh ≠ qj. Then αij−v'j =  ui+λ > ui ≥ αih−v*h, so

αij−v'j >αih−v*h for all qh∈Qi  (8)

where Qi is the set of available objects for pi under µ. In case (a) let every buyer pk, with

σ(pk) < σ(pi), choose µ(pk), which is still a best response for pk to v'. Thus the set of

available objects for pi under v' is still Qi. Hence, by (8), qj will be the only object in the

demand set of pi at prices v'. Therefore qj will be sold to pi. In this case seller qj wins by

deviating, which contradicts the fact that (v, µ) is a σ-SPE*.

Consider now case (b). Let every buyer pk with σ(pk) < σ(µ(qj)) play µ(pk), which is still

a best response for pk to v'. Then at the time pi is called to play, if qj is still available, no

matter which were the choice of µ(qj) and the choices of the buyers who came after

µ(qj), qj will be the pi’s most preferred object in her set of available objects. In fact, if

αih−v'h > αij−v'j =ui+λ > ui then ui+v’h< αih, so σ(µ(qh)) < σ(µ(qj)) by (7). By hypothesis

this implies that µ(qh) buys qh at v', so qh is not available to pi when she comes to play.

Now use (2) to get that pi will buy qj at v'j. Therefore, in any case, v'j is a profitable

deviation. Hence (v, µ) is a competitive equilibrium. Moreover, as a consequence of this

result, µ is an optimal matching so it is a σ-maximal matching for v and the proof is

complete.    Q.E.D.


