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Abstract

In the framework of integrated processes, the problem of testing the
presence of unknown boundaries which constrain the sample path to lie
within a closed interval is considered. To discuss this inferential prob-
lem, the concept of nearly-bounded integrated process is introduced, thus
allowing to define formally the concept of boundary conditions within
I(1) processes. When used to detect unknown boundaries, stardard unit
root tests do not maintain the usual power properties and new methods
need developing. Therefore a new class of tests, which are based on the
rescaled range of the process, are introduced. The limiting distribution
of the proposed tests can be expressed in terms of the distribution of
the range of particular Brownian functionals, while the power properties
are obtained through the derivation of the limiting Brownian functional
of a I(1) process with boundary conditions, which is done by referring
to a new invariance principles for nonstationary time series with limited
sample paths. Both theoretical and simulation exercises show that range-
based tests outperform standard unit root tests significantly when used
to detect the presence of boundary conditions.
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1 Introduction

Since the first studies about the order of integration, the presence of unit root in
economic and financial time series has been mainly investigated by comparing
the difference-stationary, unit root process with processes which are station-
ary around a deterministic trend. Tests initially proposed by Dickey (1976),
Dickey and Fuller (1979, 1981), and afterwards generalized by several authors
(see, e.g., Phillips, 1987; Phillips and Perron, 1988; Schmidt and Phillips, 1991;
Kwiatkowski et al., 1992) are generally found to have suitably asymptotic prop-
erties in terms of power. The various test procedures differ in what is assumed
to be the null hypothesis (unit root or trend stationarity), in the testing strat-
egy which is applied (likelihood ratio, Lagrange multiplier or Wald approach)
and, more generally, in the researcher’s belief on available a priori information
(Bayesian or classical procedures)!. However, all these methodologies can lose
their power features as far as under the alternative hypothesis data are not gen-
erated by the common trend stationary process with a zero mean noise term,
but follow a different dependence structure.

In particular, suppose that the time series has a unit root behavior but it is
exogenously constrained to lie inside a specific “band”. When the edges of such
band are sufficiently far away, the process has locally a random walk behavior;
on the other side, near the boundaries the process reverts in order to avoid
crossing such limits. Hence, the presence of two boundaries which limit the
variation of the process can induce mean reversion: in other words, stationarity
is achieved through the effect of two “reflecting” barriers.

Empirically, bounded I(1) dynamics can arise in those cases where one or
more agents “regulate” the trajectory of an economic variate only when its
values exceed (or fall below) a specific target value: for example, in the context
of exchange rate dynamics, if the monetary Authorities intervene on the foreign
market in order to maintain the exchange rate inside a specific “band”, namely
a target zone, and if such interventions take place only close to the boundary of
such a band, then the resulting dynamic can be well described by means of a
bounded I(1) process?.

Bounded dynamics can also be a matter of data definition. In fact, many
economic variables, such as unemployment rate, nominal interest rates, market
quotes, option prices can exhibit a strong persistence but cannot take values on
all the real set, as they are constructed - or defined - in order to vary inside
specific ranges.

In bounded I(1) framework, testing the standard unit root hypothesis means
testing the absence of boundary conditions, i.e. the absence of a mean reversion
component which depend on the effects of two (possibly unobservable) bound-
aries®. Clearly, against this kind of alternatives, standard unit root analysis
cannot be proved to preserve the usual power properties, and different testing

!See, e.g., the survey of Phillips and Xiao (1998) for a complete classification on the
different approaches to unit root testing.

2Note that the target zone can be both observable (e.g. EMS targets) and unobservable
(implicit or undeclared target zones); in the latter case, testing for the existence of boundary
parameters (and therefore estimation) can be an interesting inferenctial problem (see, e.g.,
Cavaliere, 1998; Gardini et al., 1998).

3Therefore, in the context of exchange rate analysis testing for a standard I(1) process
against bounded variation means to test for the absence of Central Banks intervention and/or
stabilyzing speculation.



techniques can be found to have higher power.

Unfortunately, in the economic and statistical literature, no inferential tech-
niques which is directly developed to test for boundary conditions in I(1) systems
is available. To fill this gap, this paper deals with the analysis of statistical pro-
cedures which can be used to verify empirically the presence and the effect of
such boundaries. More precisely, a new class of unit root tests which has specif-
ically power against I(1) processes with reflecting conditions is developed. The
tests are based on special transformations of the range scale statistic of Hurst
(1951), Mandelbrot (1971, 1972, 1975) and generalized by Lo (1991), which are
here used to synthesize the spatial excursion of the process. The basic mo-
tivation behind these tests is that, against bounded alternatives, the sample
excursion of the process can be more informative about the presence of mean
reversion than other commonly used statistics, like the autocorrelation coeffi-
cient. It will in fact be proved that, even if range statistics are generally highly
volatile, when used to test against the appropriate alternative they can provide
very suitable power properties.

Finally, a special case in the class of bounded I(1) processes is obtained by
approximating the position of the barriers in terms of the sample size. In this
situation, the process can - up to specific conditions - be stationary as far as T' is
fixed, but is nonstationary as T goes to infinite; we call these processes nearly-
bounded I(1). Expressing the boundary parameters in terms of the sample size
permits to develop a specific asymptotic theory for I(1) processes in the presence
of barriers, particularly useful to local power analysis.

The paper is structured as follows. In the next paragraph we briefly re-
consider the standard unit root process and we define formally the concept
of bounded and nearly bounded processes; therefore, range statistics are intro-
duced as synthetic measures of the sample excursion of the time series of interest.
In paragraph 3 these statistics are used in order to develop the test procedures
and in paragraph 4 the behavior of the tests under the null hypothesis is derived.
Paragraph 5 analyzes the power of the test against nearly-bounded alternatives,
and some power comparisons help understand the possible advantage of range-
based unit root tests. Paragraph 6 reports some concluding remarks.

2 Unit roots, nearly-bounded processes and range
statistics

In order to define formally the concept of bounded and nearly bounded variation,
we move from the framework of the “semi-parametric” approaches to unit root
modeling, based on the work of Phillips (1987) and relying on I (1) processes
with a general heteroskedastic, weakly dependent, zero-mean error term (i.e. a
mixing process with suitable regularity conditions, see paragraph 4); in this case
unit root tests simply are mostly based on the ordinary least squares estimation
of regression equations like x; = o+ put + pxy_1 +u; as far as the null hypothesis
is the unit root condition p = 1 (see Phillips and Perron, 1988), or like z; =
a + pt + ug if the null is the stationary hypothesis (see Kwiatkowski et al.;
1991). The non parametric approach has the great advantage that most of
the stochastic processes usually adopted in the econometric analyses satisfy the
time-series conditions which are required for wu;.



We now introduce at a greater level of details what we are going to consider
as the null hypothesis, against which we will test the presence of boundary
conditions on the domain of the process of interest. Then, we generalize this
definition in order to introduce boundary conditions and, finally, range statistics
are introduced as test statistics to detect such boundaries.

2.1 The null hypothesis

The results of this paper are derived in the spirit of the non parametric approach.
Following Phillips (1987), we suppose that z; is generated by the following
stochastic difference equation with a unit root

Ty = Tp_1 + Uy ,tzl,...,T (1)

where xg is bounded almost surely and wu; is a sequence of zero mean random
variables. Note that we do not need any assumption on the initial condition
but requiring xg to be bounded with probability one. Instead of the usual weak
white noise conditions

A2. F (u?) =02 < 00, B (wue—;) =0, j #0.

i.e. that z; is a random walk with uncorrelated increments, following Phillips
(1987), Phillips and Perron (1988) and Lo (1991) we relax assumption A1-A2 in
order to allow for weak dependence and heterogeneity over time. This case can
be obtained e.g. by referring to the following set of conditions B for the error
term in (1) (see Phillips, 1987):

Bl. E(u) = 0;

B2. sup, E (Ju;|P) < C' < oo for some p > 2;
B3. 0< A2 =limy_.., E (T*l (zp — xO)Q) < o0;
o 20/8-1/p) _

B4. {u.} is strong mixing with mixing coefficients a,, satisfying >°,°_| o
oo for some G such that § > 2 and G < p.

These conditions ensure that the error term is a zero-mean (B1), possibly het-
eroskedastic (B2) weakly dependent (B4) process. The mixing condition B4
implies that while there can be dependence between recent events, observations
which are separate by a sufficiently long interval of time are almost independent.
Condition B3 is a convergence condition on the average variance of ;; note that
A2 is the limit of the quantity

T 2
=)
T T—1 T
=7 Zt:l E (u%) +27 Zj=1 Zt=j+1 E (“t“t—j)

which is an alternative expression for the variance of the cumulated error pro-
cess. Furthermore, B3 rules out degenerate cases like the so-called I (—1) pro-
cesses, i.e. processes whose cumulate sum is an I (0) process. Alternative con-
ditions which for our purposes can be assumed without changing substantially



the subsequent analyses, can be found e.g. in Vogelsan (1998), who allows for
a more general autocorrelation structure but only under homoskedasticity re-
strictions, in Phillips and Solo (1992), within the framework of linear processes,
in Chan and Wei (1987), for unit root models with a martingale difference error
term.

Process (1) can be generalized in order to take the presence of deterministic
trends into account. By re-writing the recursive relation (1) as

Ty =Tp—1+ B+ U

process x; is characterized by a linear trend in levels. Note that this generaliza-
tion does not require to modify conditions B.

2.2 Bounded I(1) processes

Opposite to the unit root process defined through equation (1) and conditions
B1-B4, we are interested in mean reverting stochastic processes whose long run
equilibrium around a deterministic component is determined by the presence
of barriers, or boundary conditions, which constrain their sample paths to lie
inside a specified interval.

Specifically, as an alternative to the unit root process z; = z;_1 + u; we
consider a general stochastic process which has locally a unit-root behavior but
which satisfies the constrain

b<a, <b

for all t. We formalize these concepts in the following definition:

Definition 1 (bounded I (1) process) A stochastic process {z;}, 0 <t < T,
is said to be bounded integrated of order one, with boundaries b and b, if the
following set of conditions C holds:

C1. b< x; <b almost surely, all t;

C2. it satisfies the recursive relation

Ty =Tp—1 + Ut (2)

C3. as b— —o0o and b — oo, the process {u;} satisfies conditions B;

C4. the boundaries b and b are deterministic and do not depend on T .

Condition C1 ensures that the process lies inside the real interval [b;ﬂ with
probability one while condition C2 allows - like in the unit root case - x; to be
recursively defined as x; = 241 + ug; implicitly, this means that the error term
uy, for each ¢, must satisfy the boundary condition b—pu—z,—1 < uy < b—p—x;_1,
which warranties bounded variation. Therefore, the conditional distribution of
uy (and, consequently, of x;) is truncated, in the sense that is not defined on all
the real axis, but its domain is constrained and is a function of the previous level
of the process. C3 is a condition on the generating process of u;, which has to
satisfy the zero-mean, weak autocorrelation and heteroskedasticity assumptions
B as the boundaries explode. This allows to nest the unit root process as a
special case which is obtained by simply letting b— —oo and b — co. Finally,



condition C4 states that the boundaries are deterministic and do not depend
on T. The meaning of this requirement, which allows to discriminate between
bounded and nearly bounded variation will become clearer later.

Briefly, this wide class of processes behaves like a unit root when z; is suffi-
ciently far away from the barriers, while displays mean reversion only in order
to remain within the band for each ¢. These definitions can be easily extended
in order to include processes with linear trends. In particular, we can replace
(2) with the stochastic difference equation

Ty =Tp1+ b+ U (3)

if all the other conditions are unchanged, as the boundaries diverge the process
converges to an I (1) process with a linear trend.

The boundaries are assumed to be deterministic, but not necessarily con-
stant. In particular, when the long run equilibrium is represented by a linear
trend, then the assumption of constant boundaries can become unrealistic; in
such cases it is more convenient to generalize the previous boundary conditions
as

Z—)t S Tt Sgt ,t: 17T

where b, = o + pt and by = @ + ut, a<a. The process {z;} is therefore
constrained to lie within two straight parallels lines; we refer to this case with
the term linear boundaries. This kind of boundaries greatly suit differential
equations involving linear trend, see (3).

In order to develop the necessary asymptotic theory, we have to introduce
some definitions which quantify the degree of persistence of the process on the
boundaries. In particular, we give the following definitions:

Definition 2 A boundary b is said to be sticky if Pr(xz; =) > 0 for some t.
A boundary is said to be regular if Pr (z, = b) =0 for all t.

In the former case we allow the process to lie on the boundaries; this case,
even if it is the simplest from a theoretical point of view, it is less interesting for
what concerns statistical inference. A regular boundary, on the other side, is
never reached by the process even if the sample size goes to infinite; this means
that the boundaries are unobservable and, if any, must be estimated from data.

We now have all the elements to extend the definition of bounded integration
to the case of nearly-bounded integrated process:

Definition 3 (nearly bounded I (1) process) A stochastic process {z¢}, 0 <
t <T, is said to be nearly bounded integrated of order one, with boundaries b,
b if the following set of conditions C' holds:

C1. b< x; < b almost surely, all t;
C2’. it satisfies the recursive relation
Ty = Te—1 + U
with the initial condition xy = VT, —o00 < ¢ < 00;

C3. as b— —o00 and b — oo, {u} satisfied the conditions B;



C4’. the constants b, b satisfies the equalities

— Q\/T
= &/T

where ¢ and ¢, ¢ < ¢ < ¢, are deterministic and do not depend on T.

I

Conditions C1 to C3 are the same given in definition 1, and state that the
process has bounded variation and that it can be built up recursively by means
of a noise term which satisfies the weak heterogeneity and memory assumption
of Phillips as the boundaries are infinitely far; condition C2’ is slightly different
from C2, as it assumes that the initial value of the process can be expressed in
terms of the number of observation T. Condition C4’ characterizes the concept
of “nearly bounded” process: the positions of the boundaries are proportional
(in the square root) to the considered sample size T. As T — oo, clearly the
distance between the boundaries b and b (i.e. b —b = (¢ — ¢)T*/?) becomes
unbounded but, as the random walk has variance proportional to T, the effect
of the boundaries can still be highly significant*. Another way of stating the
concept of nearly bounded process is by saying that its theoretical range, instead
of being constant (as in definition 1) is a constant proportion of T/2.

Note that, for a fixed value of T', a nearly bounded process can be stationary®
while, as T" — oo, nonstationarity is obtained. In other words, nearly bounded
variation implies asymptotic nonstationarity.

Finally, it has to be stressed that the process is generated for a given value
of T: drawing the T + 1 observation implies re-generating also the observations
from time 0 to time 7'. This feature has a long tradition in econometrics: for
example, in the context of unit root processes, nearly integrated time series
satisfies recursive equations of the form z; = (1 —cT™) z4—1 + ug, ¢ > 0; in
the environment of structural break analysis, it is often assumed - in order to
develop large sample asymptotics - that the breaks appear at given fractions of
the sample size, i.e. at times an T, aoT), ..., with o €]0,1] for j =1,2,.... In all
cases, the process has to be re-generated as far as one new observation has to
be included in the sample.

Formally, since the band boundary parameters and the first observation
depend on T, the process generated by C1 under conditions C2’-C4 constitutes
a triangular array {x¢ r, t =0,....,7, T =0,1,...}. Anyway, for our purposes we
can simplify this notation by dropping the T" index.

The class of nearly-bounded integrated processes, as defined through the
previous equations, usually displays strong first-order autocorrelation, as they
exhibit mean reversion only near the boundaries. Thus, basing a test of the unit
root hypothesis against this kind of alternative on the first-order autocorrelation
coefficient cannot ensure the usual power properties to hold, and other sample

4To illustrate this point, consider a simple random walk x: = @41 + ur, ur ~
NID(0,02), where the initial condition is zg = ¢T''/2. By considering the last ob-

servation only, we have xp ~ N(CT1/2,TU2), which implies that Pr {Q <zpr< E} =
Pr{c1/2 < N (c1/2,T0?) <212} = Pr{c < N (c,02) <e}. The latter quantity is sim-

ply the probability that a standard normal random variable lies in the interval [Egc, E;C];
such probability can be substantially less that 1 for suitably choices of the parameters, which
automatically implies that the boundaries influence the dynamics of the process.

5To get stationarity, apart from 7' to be fixed, further restrictions on the starting value of
the process and on the dynamic mechanism near the boundaries are necessary.




statistics should be used in order to build a powerful test procedure. In par-
ticular, as the alternative is characterized by the presence of bounded variation
for the process, it is intuitive to build a test procedure on the sample excursion
of the process, i.e. on range statistics.

2.3 Range statistics

Given T observations of a stochastic process x1,...,zy, the simplest way to
synthesize the amplitude of the variations with respect to its average is to define
a statistic which is based on the “range” of the sample observations. The most
immediate possibility is to refer to the simple range statistic, which is defined
as

r(T) = max {z}— min {z,} (4)

Range statistics as in (4) are highly recurrent in the probability literature:
their applications to the analysis of the distributions of partial sums and to
empirical processes are well-known.

This statistic is particularly useful when data do not exhibit a deterministic
trend component. However, in the presence of a trend, a first possibility is
to eliminate its influence, i.e. to perform a preliminary detrendization of the
time series, and therefore to compute the range statistic on the corresponding
residuals.

When the time series is I (1) with a linear trend, then it is sufficient to define
the detrended series as T, = 2 — 1 — fu(t — 1), where the estimated drift f is
obtained as (T'—1)™" (2 — ). In this way, the efficiently estimated (linear)
trend is forced to pass through x; and xp. The corresponding range statistic is
therefore given by

rr (T) = max {Z;}— min {2}

= —az1—f(t—1)} — mi —a—a(t—1
Joax Az —wy = [t — 1)} = min A -2 - A= 1)}
Furthermore, as x; and p do not depend on ¢, the range statistic can be simpli-
fied and equivalently defined as

7, (T) = nax {e — it} — Jpin {ae — it} (5)

When the time series of interest is not I (1), then the previous procedure does
not necessarily lead to an “efficient” detrendization. A more general solution is
to interpolate the data by means of a first-order polynomial: thus, the detrended
series is obtained as Ty = xy — @ — ut, where @ and i are the ordinary least
square estimators of the intercept and the slope term respectively. Again, the
corresponding range statistic is given by

e, (T) = max {Z;}— min {7} (6)
= —a— [t} — mi —a—qt
t:rrll,?tjfT{wt a—qut} t:q}}_r_l,T{fvt a — Jit}

Note that in equation (6) the intercept estimate & does not depend on ¢ and,
consequently, the range statistic can be equivalently written as

rr, (T) = max_{w, — [t} — min_{z, —jt} (7)

[RRE) [ERE)



which depends on the slope estimate i only. Thus, the range statistics (5) and
(6) differ in the way the trend slope p is estimated: a “ratio” method for the
former, a “regression” method for the latter.

3 Testing the I(1) hypothesis

We now have all the elements which we need to test the null hypothesis of a unit
root process against the alternative of a bounded unit root processes. As nearly-
bounded variation is the main characteristic of the alternative hypothesis, we
base the test strategy on the range statistics previously introduced , which - as
it will be shown later - can lead to a serious improvement of the test power with
respect to standard unit root tests.

Let us consider, as a starting point, the simple range statistic (10):

ru(l) = mpax, Ao} = gin, ()

It is easy to detect which source of variation can influence the distribution of
r, (T). Firstly, in the presence of a non-stationary I (1) behavior of the process
{x}, this statistic grows as the number of observations increases, at the rate
T'/2: this is an immediate consequence of the variance of the process which,
in the I (1) case, is proportional to T. Secondly, it depends on the size of the
conditional increments Az;. Following Hurst (1951) and Mandelbrot (1975),
it is possible to eliminate these nuisance quantities by normalizing (4) in an
appropriate way: we can in fact refer to the following standardization

7 (T) = maxy—y, o {T¢} — ming—y o {z:} (®)
Iz 5T1/2

where 3> = (T —1)"' S, (Ax, — A—mt)2 is the sample variance of the differ-
enced process; (8) is here denoted as standardized range statistic. The T'/?
normalization is necessary as Var (z;) = O (T), while 52 is an estimator of the
asymptotic variance of the differenced process, i.e. of limg_o, T—! Zf,T:1 Var (Azy),
given that this quantity exists. The proposed standardization, on one side,
eliminates the influence of the sample size while, on the other side, cancels the
dependence of the statistic on the magnitude of the process increments.

In order to test for bounded variation, the main characteristic of this statis-
tics is that, if the process x; has a unit root and is not bounded, then the
numerator is asymptotically unbounded, it increases at the rate T'/2 as well
as the denominator, and the statistic has - under general conditions - a well
defined asymptotic distribution. On the other side, if z; is bounded around a
constant term, with barriers sufficiently close to the mean value of the process,
then the numerator should be significantly lower than the range of a standard,
unbounded (1) process; in particular, as T — oo it converges to a finite con-
stant and the test statistic goes to 0. Hence, in order to test for a unit root
against the alternative of a bounded process, it is necessary to consider left-sided
tests based on statistics (8).

Unfortunately, as Lo (1991) points out, normalizing the range statistics by
the sample standard deviation & can be misleading when the first differenced
process is not independent but is possibly autocorrelated. If, e.g., x; — 2y 1 is
the stationary first-order autoregressive process x; — x4—1 = ¢ (¥; — x4—1) + 0ey,



|¢| < 1, & ~ IID(0,1), then 3° % 02/ (1 - ¢?) and the distribution of the
rescaled range statistic depends on the nuisance parameter ¢.

Following Phillips (1987), a more useful solution is to normalize the statistic
with an estimator of the “long-run” variance of the differenced process, \? =
limy o Var (T (z; — 20)). As first possibility is to choose an estimator of the
form

IS «(£)30 )

Jj=—qr qar
1 S —
a (]) - T Z (AZL‘t — Al‘t) (Al‘t,j — Al‘t)
t=|jl+1

where g7 < T and {w (), |z| < 1} is a system of weights satisfying the regularity
condition

K1. For all z such that || <1, |w(z)] <1 withw (0) =1, w (—z) = w (z) and
fil lw ()] dz < co.

For w (x) = 1, all z, the White covariance estimator is obtained while, setting
w () = 1—|z| gives the Newey-West (1987) positive semidefined estimator, with
truncation lag gr — 1. R

Under some general assumptions, the use of Ay allows the range statistic to
have an asymptotic distribution which is free of unknown nuisance parameters
under the null. Unfortunately, while this estimator can be consistent under the
null hypothesis and in the presence of nearly bounded variation®, it does not
converge to a positive constant under the alternative of bounded variation, as
the boundary conditions imply a moving average unit root in the differenced
process, thus violating condition B3 and consistency of the test. To avoid this
problem it is convenient to estimate A\* without imposing the unit root, i.e. by
referring to the residuals of the auxiliary OLS regression

Ty =+ Qry_y + 0y

and therefore by considering the corresponding long-run variance estimator

~2 - . ~ N o~ T ~ . .

Ap = 358 g w (G/ar) 7 (5), 7 () = 7 2t ijj1 Mefly—j» which is proved to be
consistent under the null and strictly positive under the alternative (see Phillips,
1987).” The test statistic is therefore given by

maxy—1, o {T¢} — ming—y o {z}
XTT1/2

7u (T) = (10)

6See paragraph 5 for a proof.
TA different solution is to introduce a stopping rule in the estimator of Ap:

~2 ~2

N _ A if X > ez -7 (0)

b — T T <1
r (er) { cr -7 (0) otherwise “r

. L <2
with ¢p = o (T1/2). This choice does not affect the asymptotic limit of A7 (¢) under the

null hypothesis (as, for condition B3, A > 0) while, under the alternative hypothesis, it allows
the denominator of the range statistics to grow to infinite.

10



In the case of trended time series, the following statistics can be used:

max—1, . 7{T: — pt} —mine—y 7 {x; — [t}

TTa (T) = XTT]-/Q (11)
A1) = maxy=1, .7 {C — [t} —ming—y o {x — [t} 12)
" B XTT1/2

where the long run variance estimator XZT is computed on the residual of the
regression of ¥y = 2y — i (t — 1) on Z4—1 and a constant term for the 7, (T)
statistic, on the residual of the regression of Z, = x; — @ — jit on ZTy;_; and a
constant term for the 7, (T') statistic. The unit root hypothesis is tested by
referring to left-sided tests based on statistics (10)-(12).

Before analyzing the behavior of these test statistics, it is interesting to
notice that there is a strict connection between (10)-(12) and the rescaled range
statistics of Hurst, Mandelbrot and Lo. Given a stochastic process {u;}, the
rescaled range statistic R/S is defined, up to a normalization factor, as

RS = max {37 (-m}- min {37 u-m} (13

The idea behind this statistic is that the higher the degree of persistence
of the process is, the wider the cumulate deviations from the sample mean
should be. By appropriately standardizing this statistic, Lo (1991) shows that
a test based on (13) has power against long memory processes like fractionally
integrated, nearly-integrated and processes with unit roots.

In order to compare the R/S statistic with the range statistics (10)-(12), it
is sufficient to expand the summation in (13) as

t t t T

IMINCELED LS DU (1

Now, if we interpret the cumulated process Z§-=1 u; as the increment of an
integrated process xy, i.e. x; = xg+ Z§'=1 u;, then (14) can be written as

t -~
mt—mo—f(xT—mo):mt—mo—ut

with i = T~} (ap — x9). By eliminating the terms which do not depend on ¢,
then the R/S statistic (13) becomes

R/S = ,_nax T{It —uty — ,_nin T{xt — ut}

=Yy =Yyl

which is equal to statistic (11) computed on a sample of T+ 1 observation.
Therefore, the R/S statistic corresponds to a special case of our proposed test
statistics.

4 The behavior of the test statistics under the
null hypothesis

Our next goal is to provide the asymptotic distributions of the range statistics
under the null hypothesis of a unit root, i.e. under the assumption of absence

11



of boundary conditions; this problem will be analyzed in the present paragraph.
Through the rest of the paper, with “%” we indicate weak convergence with
respect to the uniform metric on the real set [0,1]; furthermore, with B (s), s €
[0,1] we indicate a standard (zero-mean, unit conditional variance) Brownian
motion defined on [0,1].

Accordingly to the previous paragraph, let us assume that x; is generated
by the following stochastic difference equation with a unit root

Ty = Ty 1+ Ug ,tzl,...,T (15)

where g is bounded almost surely and {u;} is a sequence of zero mean random
variables which satisfies the weak heterogeneity and autocorrelation conditions
B. We therefore assume that the process is I (1) but does not contain any
deterministic trend.

In order to obtain the asymptotic distribution of the range statistics, it is
convenient to assume that the truncation lag of qr of the long-run variance
estimator Ap asymptotically satisfies K1 and the following property:

K2. as T' — o0, g — o0 at a rate such that gr = o (T%), with 0 < o < 1/2

Furthermore, it is necessary the modify the mixing condition B4 with the
stronger assumption on the mixing coefficients:
B4 {u) i . . .. . . oo 2(1/8-1/p)
¢} is strong mixing with mixing coefficients o, satisfying | ain <
oo for some G € (2,4] satisfying 6> 2(1+ «/(1 — )), and 8 < p.

and the condition B2 with the stronger moment condition®:
B2’. sup, E [|u|"] < C < oo for some p > 3;

which requires existence of 2 (1 4+ a/(1 — a))" moments for all u;’s, where o/(1—
o) depends on the long-variance estimator lag truncation rule.

By referring to the range statistic r, (17'), which is build up for the case of the
absence of nonstochastic trends, under the set of conditions B’ = { B1, B2, B3, B4’}
and K = {K1, K2} the following proposition holds:

Proposition 1 Under the assumptions B’ and K, as T — oo the following weak
convergence holds

ru (T) Z sup {B(s)} — inf {B(s)}
s€[0,1] s€[0,1]

Proof. See Appendix A.

This proposition states that, by referring to the property that the unit root
process (15) - appropriately scaled - converges weakly to a standard Brownian
motion, the sample range statistic converges weakly to the range of a standard

8 Again, it should be stressed that other systems of conditions could be used. In particular,
what is needed is (i) a set of conditions which warranties the process to converge weakly to
a standard Wiener process; (ii) a set of conditions which warranties the consistency of the
estimator X; of the long run variance. Thus, the results of the paper remain unchanged by
replacing conditions B’ with any other set of assumptions which maintains unchanged these
two asymptotic results.
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T 0.01 0.025 0.05 0.1 0.5 0.9 095 0975 099

50 0.771 0.832 0.893 0974 1396 2136 2410 2.670 2.995
100 0.770 0.835 0.900 0.985 1.422 2153 2418 2664 2971
250 0.781 0.850 0.917 1.005 1.451 2178 2438 2679 2975
500 0.792 0.861 0.929 1.019 1.467 2194 2452 2.691 2983
1000 0.801 0.871 0.940 1.030 1.480 2.206 2463 2.701 2991
10000 0.821 0.890 0.960 1.051 1.502 2.228 2.484 2.719 3.006
00 0.833 0.903 0.921 1.063 1.515 2.241 2498 2.734 3.023

Table 1: Fractiles of the range statistic 7, (T')

Brownian motion. More specifically, through assumption B it is straightforward
to prove that the sample range, as far as the time and space axes are rescaled,
goes - apart for a scale factor - to the range of a Brownian motion, i.e.

T2 ~ mi = B(s)}— inf {B
(t;{{?%wt} tﬁ?ﬁﬁ%})ﬂ(gﬁﬁ (@) = &, 1B
(16)

while assumptions B2’ B5 and K allow to standardize the 1.h.s. of 16 by /)\\T in
order to get an asymptotic distribution which is free of nuisance parameters.

Table 1 contains the fractiles of 7, (T"). The finite sample values are ob-
tained through simulation of x; with gaussian IID (0, 1) error component’; the
truncation lag ¢ in the computation of /)\\T is set to 0; this choice implies that
the empirical range is normalized by the standard deviation of the residual of
a regression of z; on x; 1 and a constant term. The asymptotic critical values
are obtained by using the following representation of the distribution function
of the range of a Brownian motion on [0, 1] (see Borodin and Solminen, 1996,
or Feller, 1957, in terms of probability density function):

Fa)=1+ 4\/?2 (1)* kexp (_ k22a:2)

It can be noticed that the range statistic has increasing variance as T' grows
(see also Figure 1): consequently, as the test is left-tailed the use of the asymp-
totic critical values can lead to over-reject the null hypothesis, i.e. the size of
the test can be greater than the selected significance level.

We can now pay attention to the more general case of a linear trend in data.
It is clear that in this case the range statistic 7, (T') is useless, as the linear
trend “kills” the stochastic trend of the process, and the test statistic simply
grows at the rate T%/2 while its variance goes to 0: consequently, the null is
never rejected, even in the presence of nearly-boundary conditions. Therefore
it is necessary to refer to the range statistics 7, (T') and 7, (T'), which are
computed after a preliminary deterministic detrendization. By assuming that
the data generating process is the random walk with drift

Ty = Tg—1 + P+ ug

and assuming that conditions B’ and & hold, the following proposition can be
proved:

9See note 11.
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Figure 1: Cumulative distribution function of 7, (T') for (from left to right)

T = 50,100, 250, +o0.

0.0 01 02 03 034 05 06 07 08 09 1.0
T T T T T T T T T

L L
0.0 0.5 3.5 4.0

T 0.01 0.025 0.05 0.1 0.5 0.9 095 0975 099
50 0.705 0.751 0.794 0.851 1.109 1.456 1.564 1.660 1.773
100 0.699 0.748 0.796 0.856 1.133 1.504 1.621 1.726 1.851
250 0.707 0.759 0.809 0.873 1.160 1.546 1.670 1.781 1.914
500 0.716 0.769 0.820 0.885 1.177 1.568 1.693 1.807 1.942
1000 0.725 0.779 0.830 0.896 1.889 1.583 1.709 1.823 1.961
10000 0.744 0.798 0.849 0916 1.212 1.607 1.734 1.849 1.986
00 0.755 0.809 0.861 0.927 1.223 1.620 1.747 1862 2.001

Table 2: Fractiles of the range statistic 7, (T')

Proposition 2 Under the assumptions B’ and K, as T — oo the following weak

convergence holds

Tro (T) = sup {V(s)} — inf {V(s)}
s€[0,1] 5€[0,1]

Tr, (T) = sup {V*(s)} — inf {V*(s)}
s€[0,1] 5€[0,1]

where {V (s),s € [0,1]} is a standard Brownian bridge
V(s)=B(s)—sB(1)

and {V*(s),s € [0,1]} is the stochastic process

V*(s) = B(s) +6s (/OlB(r)dr—2/01rB(r)dr)

which is, up to a level-shift factor, a detrended Brownian motion.

Proof. See Appendix A.
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T 0.01 0.025 0.05 0.1 0.5 0.9 095 0975 099

50 0.682 0.723 0.763 0.815 1.055 1409 1.530 1.641 1.776
100 0.671 0.716 0.760 0.815 1.073 1.445 1.572 1.689 1.831
250 0.676 0.724 0.770 0.829 1.097 1482 1.614 1.735 1.883
500 0.685 0.734 0.780 0.840 1.112 1.501 1.635 1.757 1.907
1000  0.693 0.742 0.790 0.850 1.124 1.515 1.649 1.772 1.923
10000 0.711 0.761 0.809 0.869 1.146 1.539 1.672 1.796 1.947
00 0.722 0.772 0.819 0.880 1.157 1.550 1.682 1.806 1.956

Table 3: Fractiles of the range statistic 7, (T)

The proposition shows that, if the data are characterized by a linear trend,
then it is possible to compute the range statistic on the detrended data and the
corresponding normalized statistic has a nondegenerate asymptotic distribution
which can be expressed in terms of the range of Brownian functional. Obviously,
the range statistics 7, (T) and 7, (T') have different asymptotic distributions,
and this is consequence of which method is used to detrend the data: in the
former case, the “efficient” estimate of the trend parameter leads to the range of
a Brownian motion, detrended by the straight line which goes through its first
(B (0) =0) and last (B (1)) values while, in the latter case, the “OLS” detren-
dization leads to the range of a Brownian motion, detrended by the line which
has the minimum distance (in terms of the integral of the squared differences)
from the path of the process'’.

The critical values of the range statistics 7, (T") and 7-, (T') are reported in
tables 2 and 3 respectively. For the finite sample critical values, we again set
qr = 0; figures 2 and 3 report the simulated distributions for different values of
the sample size.

For the 7, (T) statistics it is possible to provide also exact asymptotic
critical values. The random variable sup,e(g 1) {Vs} — infscjo,1) {Vs}, i.e. the
range of a Brownian bridge, can in fact be equivalently expressed as K =
SUpye(o,1] {/V2 — Vs|}, which is known as the Kuiper statistic (see Shorack and
Wellner, 1987). Its distribution function is known and is given by (Kuiper, 1960;
Kennedy, 1976)

o0

Pr(C <) =123 (4722 - 1) exp (-2
Jj=1

To our knowledge, the range of the detrended Brownian motion has not been
expressed in a closed form, therefore the asymptotic critical values reported in
table 3 are obtained through simulation®!.

0The Brownian Bridge is in fact given by V (s) = B (s) — B (0) — ﬂlliufgls = B(s) —
sB (1), while the detrended Wiener process is given by (see Schmidt and Phillips, 1992)
W (s) = B(s) — &g — @15, where &g and &1 minimise the least squares criterion in the Lo
norm, namely fol (B (r) — @g — ayr)?dr. Solving for @ and &y gives @1 = 12 fol rB(r)dr —
6 fol B(r)dr,ap = fol B (r) dr—ai1/2, which leads to the following expression for the detrended
Wiener process: W (s) = B(s) + (6s — 4) fol B(r)dr+ (6 — 12s) fol rB (r) dr; this expression
differs from V* only for the quantity 6 fol rB(r)dr — 4f01 B (r) dr, which is independent of s
and consequently represents just a level shift.

11 We estimate small sample and asymptotic critical values by means of response surfaces.
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Figure 2: Cumulative distribution function of 7, (T) for (from left to right)
T = 50,100, 250, +00.
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Finally, in figure 4 the asymptotic cumulative distribution functions of 7, (T),
7r, (T) and 77, (T'). As expected, the standard range statistic tends to take, on
average, higher values with respect to the detrendization-based statistics; fur-
thermore, compared with efficient detrending, OLS detrending produces, on
average, values closer to the origin and - consequently - leads, on average, to a
lower range.

5 The behavior of the test statistics under the
alternative hypothesis

Under the null hypothesis, each of the range statistics proposed in paragraphs
2.3 and 3 has an asymptotic distribution which is nondegenerate, nonexplosive,
free of nuisance parameters and, moreover, with fractiles which can be computed
through simulation or (in some special cases) through exact formulas. We are
now able to concentrate our attention on the last step of our analysis, that

Firstly, for 18 values of T' (i.e. 50, 60, 75, 100, 125, 150, 200, 250, 300, 400, 500, 750, 1000,
1250, 1500, 2000, 5000 and 10000), 100000 standard gaussian random walks are generated
and the test statistics are computed; this simulation is repeated 50 times and the fractiles of
interest are stored. For each fractile, small sample critical values are interpolated by means
of the response surface regression

1/2

ga(13) = qa(00) + 1 T ? 4+ 9o Ti + 7512 % + vi, T4 = 50,60, ..., 10000. (17)

where the intercept term, gq(00), is the a fractile of the asymptotic distribution and is therefore
treated here as an unknown parameter. As in MacKinnon et al. (2000), regression equation
(17) is estimated by means of GMM, which furthermore allows to test the selected specification.
It is interesting to notice that, while in the estimation of unit root and cointegration test
statistics the terms Tf and Ti3 mostly need being included (while Til/2 and Tig/2 can be
drop), for range statistics Til/2 and Ti3/2 need being included (while 72 and 73 do not).

Finally, in the case of the 7, (T') and 7r, (T) statistics (whose asymptotic distributions
are known) the maximum estimation error of the adopted response surface methodology is in
modulus less than 0.01.
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Figure 3: Cumulative distribution function of 7, (T') for (from left to right)
T = 50,100, 250, +00.
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is to obtain the distribution of the proposed statistics under the alternative
hypothesis and to evaluate their local power properties.

Nearly bounded I (1) processes, as in definitions 1 and 3, do not explicitly
model the reflection mechanism which keep the process within the boundaries.
Nevertheless, power evaluation needs explicitly a precise formulation of the data
generating process under the alternative. Without loss of generality!?, the fol-
lowing process is here considered: given a sequence {u;},~, which satisfies the
heterogeneity and weak dependence conditions B’ and whose long-run variance
exists and is equal to the positive constant A, we define the process {z;} through
the recursion _ _

br if g1 +us > by
Ty — bT if Tp—q +us < bT (18)
ri_1 +up elsewhere

with the band parameters defined as

by = e\T/? (19)
by = cA\TY/? (20)

with —o0o < ¢ < € < oo; furthermore, without loss of generality, we can set
the initial condition zy = 0, which implies ¢ < 0 < ¢. It is easy to show that
{z;} is a nearly bounded integrated process, as it satisfies all the requirements
of definition 3. Furthermore, it can be noticed that for finite 7" the boundaries
are sticky in the sense of definition 2, as the probability that the process stops
exactly on one boundary is not zero almost surely; this assumption, together
with the behavior of the process near the boundaries (as in formula (18))!%, even

121t can be proved that local power remains unchanged within a wide class of reflection
mechanisms.

L3 This process is known as random walk with reflecting barriers (see Cox and Miller, 1965;
Rose, 1997). At each time ¢, if the process exceeds the boundary, say b, of an amount €, then it
is forced to lie in b, independently of the value of &; the reflection mechanism is therefore sticky.
Alternatively, it is possible to define a regular reflection in several ways. As an example, it
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Figure 4: Asymptotic cumulative distribution functions of (from left to right)
7, (1), 77, (T) and 7, (T).
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if not necessary, is particularly useful as it allows to obtain closed expressions
for the distributions of the test statistics.

The null hypothesis of no boundary conditions is a limit case of (18) and
it can be obtained by simply letting the constants ¢ and ¢ go to infinite. This
property allows us to evaluate the power of the tests as the distance of the
boundaries from the initial value of the process increase.

Let us firstly concentrate our attention on the range statistic 7, (7). In
order to evaluate its distribution, we can prove the following generalization of
Donsker’s invariance principle:

Theorem 1 Let {xt}tTZO be defined as in (18), with the boundaries satisfying
(19)-(20), —00 < ¢ <€ < 00, and let BE (s), s € [0,1] be a regulated Brownian
motion, with barriers in ¢ and ¢, starting in BE (0) = 0. Then, in the space of
the cadlag functions D|0, 1], the following weak convergence holds
L[sT)
NT'1/2
Proof. See Appendix A.

= B{(s), all s € [0,1]

This version of the functional central limit theorem states that the nearly-
bounded integrated process {z;}, well-normalized, converges to a regulated
Brownian motion'*. Thus, the presence of two nearly-boundaries induces the

can be assumed that if the boundary is exceeded of ¢, then the process is “reflected” to the
position b — e: consequently, the process does not stop on the boundary unless € = 0 (and
this case can be ruled out by assuming that e is a continuous random variable)and hence the
boundary is regular.

MWe will not give here a deep inspection of the properties of the regulated Wiener process,
for which we refer the reader to the existing literature (see, e.g., the excellent book of Harrison,
1985, in the framework of flow systems; Dixit, 1993, for some general economic applications;
Bertola, 1994, within target zone modelling; Cavaliere, 1997, for some inferential properties).
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Figure 5: Asymptotic power function of the 7, (T') test (solid line) against the
alternative of a reflected random walk, for different values of the band parameter
¢ and significance levels a = 0.05 and o = 0.10 (7" = 1000), compared with the
asymptotic power of the Phillips-Perron Z,. (p) test (dotted line).
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presence of two reflecting barriers in the limiting Brownian motion. We can
now analyze how this property is transferred onto the behavior of the range
statistics:

Corollary 1 Under the assumption of Theorem 1, if the long-run variance es-

timator )\T satisfies condition K then )\T Lo X, which implies the following
convergence:

1o al

r, (T) = sup {BE(S)} — seiﬁ)f:l] {B

()} (21)
Proof. See Appendix A.

This corollary states that XT — X in probability, even if the data generating
process is nearly bounded. This surprising result derives from one if the main
characteristic of the regulated Brownian motion (see Harrison, 1985, prop. 1.6):
the set of points where the sample path is “regulated” in order to lie between
the two boundaries has zero Lebesgue measure. Consequently, the bias induced
by the boundaries is asymptotically negligible and does not affect the estimator
of the long-run variance.

As a consequence, the sample range converges to the range of a regulated
Brownian motion while, in the absence of boundaries, it converges to the range
of a standard Brownian motion. The distribution of the random variable on the
r.h.s. of (21) is not defined on all the nonnegative real set, but is truncated, as
it cannot take values greater than ¢ — ¢. Thus, as ¢ — ¢ decreases, the power of
the test increases.

In order to evaluate the power properties we compute the asymptotic power
function for the 7, (T') test, i.e. the percentage of rejections under the alterna-
tive hypothesis . The boundary coefficients ¢ and ¢ are chosen equal in absolute
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Figure 6: Asymptotic power function of the 7, (T') (solid line) and 7 (T') test
(dashed line) against the alternative of a reflected random walk, for different
values of the band parameter ¢ and significance levels a« = 0.05 and « = 0.10
(T = 1000), compared with the asymptotic power of the Phillips-Perron Z.. (p)
test (dotted line).

o
o

20 30 10 50 60 70 80 90
T T T

10

value and opposite in signs, i.e. € = —c = ¢ > 0, with ¢ taking values in the
interval (0,1.8]. Furthermore, the process {u;} is chosen gaussian I7D(0,1), in
order to eliminate the influence of the long-run variance estimation procedure;
consequently, the truncation lag qr is set to 0. Small sample critical values
are used, with the significance level set to 0.05 and 0.10. Results obtained for
T = 1000 are illustrated in figure 5.

As expected, power decreases as the distance between the boundaries grows.
For ¢ lower than 0.4 (0.45), the test has unit asymptotic power for the signif-
icance level a = 0.05 (0.10). Unfortunately, there are values of ¢ ®which lead
to an undetectable boundary structure: this evidence is meaningful as, when
the boundaries are relatively too far (i.e. ¢ > 0.95 for o = 0.05, ¢ > 1.05 for
a = 0.10), then the probability of the process to reach the boundaries is not
significant and, on the real set [0,1], the limiting regulated Brownian motion
has mostly the same dynamic properties of the standard Brownian motion.

We can now turn the attention to the 7, (T') and 77, (T). As such modified
range statistics are introduced just to eliminate the presence of linear trends,
instead of simulating a nearly bounded process with trend and linear boundaries
power analysis can be conducted by simulating the same process used for the
previous test. Results obtained by applying small sample critical values, with
significance levels 0.05 and 0.10 and 7" = 1000 are plotted in figure 6. It can
be noted that, with respect to the 7, (T') test, for & = 0.05 (0.10) the power
function starts growing as far as ¢ gets lower than 1.2 (1.4); for & = 0.05 (0.10)
unit power is now achieved for ¢ < 0.225 (¢ < 0.20) for the 7, (T) test, and is
achieved for ¢ < 0.275 (¢ < 0.225) for the 7, (T') test. At a 0.10 significance

5 That approximately are ¢ > 1 for a = 0.05 and ¢ > 1.1 for a = 0.10.
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level, the 7, (T') test seems dominating the OLS detrended test, even if for a
0.05 level such result is less clear.

It is interesting to observe that, even in the absence of a linear trend, the
7r, (T) test does not dominate the other two tests, in the sense that for certain
values of the band parameter c the detrended range tests are able to detect the
presence of reflecting condition whereas the standard range test can not.

Finally, asymptotic power of the range tests is compared with the power of
a standard Phillips Perron tests, which is not explicitly defined in order to test
the presence of reflecting conditions, but it can have power also against bounded
alternatives. Asymptotic power of the Phillips Perron Z,,. (p) test and Z., (p)
test for the trend case are also reported in the previous figures.

Basically, the performed simulation shows that also standard unit root tests
can be useful to detect nearly-bounded variation, even if their power is substan-
tially lower than the power achieved by referring to range-based statistics.

6 An application

The proposed test are illustrated with an application on the dynamics of the
Deutsche Mark (DM) /U.S. Dollar (USD) exchange rate. Although in principle
this exchange rate can freely float, it is know that Central Banks occasionally
intervene in the foreign market in order to stabilize the exchange rates around
implicit targets. Moreover, international agreements like the Plaza Agreement
of September 1985 or the Louwvre Accord of February 1987 require Monetary
Authorities to intervene in order to increase the stability of the international
monetary system and maintain the exchange rate around specific levels.

The present analysis concerns the DM/USD exchange rate dynamics, after
the Louvre Accord and until the end of 1998. In particular, we are interested in
understanding if the range of variability of the DM/USD exchange rate has been
affected by Central Banks intervention or if it behaves like a free floating rate:
it is in fact well documented that during this period both the Federal Reserve
and the Bundesbank frequently intervene on the foreign market!® to limit the
exchange rates variability.

We consider (100 times) the logarithms of the weekly spot rates from 23
February 1987 to 31 December 1998 (618 observations), which are plotted (as
deviations from the initial value of the series) in Figure 7. With respect to the
first trading day after the Louvre Accord, during this period the exchange rate
reached is minimum, —9.75, in June 1989 and its maximum, 29.27, in May 1995,
which corresponds to an excursion of 39.03.

By using the proposed tests, we can now investigate if such a range is com-
patible with the standard I (1) hypothesis or, otherwise, if is significant of the
presence of mean reversion, due to the presence of stabilizing intervention. Re-
sults, for different values of the truncation parameter g are reported in table
4; note that, for weekly data, ¢r = 9 corresponds to two months, gy = 13
approximately to three months and g = 17 to a four-month period.

In the case of the range statistic 7, (T), on the basis of the asymptotic critical
values the null hypothesis is rejected at the 5% significance level for ¢r = 9,
gr = 13 and gp = 17. These values of the truncation lag seem to allow to catch
short-term swings of the exchange rate which cannot be taken into account by

16See, e.g., Dominguez (1998).
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Figure 7: DM/USD spot exchange rate (log form) - 100 times the deviation
from the 23 February 1987 rate.

s ]
o | ]
T 1986‘ ’9‘88 ‘ WQ‘QC ‘ 19‘97 ’9‘94 ‘ 19‘96 ‘ ’9‘98 2606C
Truncation lag qr
qr =0 qgr =1 qr =4
range A test statistic A test statistic A test statistic
ro (T) 29271  1.539 1.020 1.498 1.048 1.566 1.002
rr, (T) 22.831 1.539 0.899 1.499 0.923 1.569 0.881
rq, (T) 17.168 1.539 0.887 1.499 0.912 1.570 0.871
Truncation lag g
qr =9 qr =13 qr =17
range A test statistic A test statistic A test statistic
ro (T) 29.271 1.637 0.959 1.646 0.953 1.670 0.940
rr, (T) 22.831 1.644 0.842 1.656 0.835 1.682 0.822
rr, (T) 17.168 1.644 0.831 1.656 0.825 1.682 0.812

Table 4: Range tests for the I(1) hypothesis
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considering lower values of gr. By referring to the small-sample critical values
(we have already proved that asymptotic values can lead to an over-rejection
of the null hypothesis), the null hypothesis of absence of bounded variation is
rejected at the 10% significance level for gr greater then 4. Moreover, for a 4
month truncation lag the p-value associated to the test statistic is very close
to 5%. These results state that, at a 10% significance level, the exchange rate
exhibits mean reverting dynamics and the I(1) hypothesis must be therefore
rejected.

Similar results are obtained by considering the 7, (T) and 7, (T) statistics,
which implicitly eliminate the influence of the observed depreciation rate of
the Deutsche Mark with respect to the US Dollar. The 7., (T) test allow to
reject the null hypothesis for g > 4 at a 10% significance level; for ¢ = 13
and, in particular, g = 17, the associated p-values are extremely close to 5%.
Finally, statistic 7, (T') rejects at a 10% rate for gr > 9. On the same data,
the nonparametric Z.. (p) unit root test of Phillips and Perron (1988) do not
reject the null of a unit root even at the 10% significance level.

These results suggests that, after the Louvre Accord of February 1987, the
DM/USD spot exchange rate seems to exhibit a mean reversion component
which is particularly effective when such rate reach strong deviation from its
average value. Such dynamic is consistent with the hypothesis that Central
Banks intervene infrequently and, in particular, only when the exchange rate
deviate “too much” from its implicit target - or equilibrium - value.

7 Conclusions

The analyses carried on in this paper move from the following question: given
that a time series exhibits a I (1) behavior, can we claim that there are no re-
strictions on the wideness of the movements the process has around its average
value? In other words: how sure are we that there does not exists a nonobserv-
able mean reversion component which is induced from the presence of boundary
conditions on the trajectory of the process?

In order to give the statistical tools which enable to make inference about
unobservable boundaries, and hence to answer the previous question, we de-
fine a new class of models, which we call nearly bounded integrated processes,
which display a unit root behavior but are constrained to lie within a particular
interval. Unit root processes are clearly nested within this class of processes
model, as they can be obtained by letting the distance of the boundaries from
the starting value of the process going to infinite at a proper rate; therefore,
it is relatively easy to develop statistical methods to test the hypothesis of no
boundaries conditions, i.e. the classic unit root hypothesis.

In this context, standard unit root inference cannot be proved to have the
usual power properties. Therefore, we choose to define new tests which are
based on the sample range, or excursion, of the process: the main idea is that,
if there are boundary conditions, then the range of the process should be signif-
icantly lower (at least on average) than the range of an unrestricted integrated
process. One important characteristic of such tests is that they do not require
to estimate parameters under the alternative hypothesis, but can simply rely on
the estimation under the null of no boundaries conditions.

The proposed tests seem to have improved power with respect to standard
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autocorrelation-based unit root inference. Even if range statistics are gener-
ally highly variable, the results obtained in a simulation exercise shows that
these new methodologies can detect the presence of mean reversion even when
standard unit root tests are not able to discriminate between the null and the
alternative hypotheses.

Finally, it must be stressed that these procedures cannot show significant
power whenever the alternative hypothesis does not belong to the class of
bounded and nearly-bounded processes. To avoid such problems it could be
convenient to combine the proposed range tests with standard unit root infer-
ence into a two-stages procedure, where, in the first step, nonstationarity is
evaluated by means of classical unit root tests (e.g., accordingly to the previous
definition B of the null hypothesis, Phillips-Perron tests), while, in case the null
is not rejected, the presence of boundary conditions is evaluated by means of
the rescaled range tests. This solution allows to use the proposed range tests
in a wider setting, where the alternative hypothesis can be far from the nearly
bounded I (1) class.
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A Mathematical Appendix

In this section we give the proofs for the asymptotic results previously reported.
Before, we introduce the following lemmas (see also Lo, 1991). The first is a
generalization of the well known Donsker’s invariance principle, and is adapted
from Herrndorf (1984). The second is the continuous mapping theorem and can
be found e.g. in Billinglsey in the framework of general Skorohod’s topology.
The third lemma shows the conditions for the weak convergence of the sample
range to the range of the limiting process. Finally, the last lemma shows un-
der which conditions a consistent estimator of the long-run variance A can be
obtained.

Lemma 1 (Herrndorf’s invariance principle) If {e;},-, is random sequence
satisfying assumptions B1— B4, then in the space of the cadlag functions D|0, 1],

as T — oo:
[sT]

1 w
o) = 3 2 S B
where the convergence holds jointly for all s € [0,1].
Proof. See Herrndorf (1984). O

Lemma 2 (Continuous mapping theorem) Ifg () is a function defined from
D[0,1] to itself and almost-surely continuous (i.e. with 0 Lebesgue-measure dis-
continuity set), and if xq (-) € D[0,1] is such xp (-) = B(-), then g (vy (-)) =

g(B())-
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Proof. See Billingsley (1968). O

Lemma 3 In the cadlag space D[0,1], if z1 (-) <> B(-), where B (-) = g (B (")),

with g satisfying the conditions of the previous lemma, then

max {xy (s)} — min {xg(s)} = sup] {E(s)} — inf | {E(s)} (22)

s€[0,1] s€[0,1] s€[0,1 s€[0,1

Proof. The proof is obtained by referring to the continuity of the range function
and the application of Lemma 2. O

Lemma 4 Under conditions B’ and IC, /)\\T 2.

Proof. See Hansen (1992). O

A.1 Proof of Proposition 1

Under the null hypothesis, z; is recursively defined as

t
Ty =g + Z €5 ;
j=1
which implies the equality:

S it ST
MWT €01 | MWT
(23)

ztf— min  {x = sup
o (e~ g ) = e,

By Lemma 1, in D[0, 1]:

Y,
JCT(S)—WHB(S)

where A is defined as in B3, B (-) is a standard Brownian motion and conver-
gence holds jointly for all s € [0,1]; furthermore, Lemma 3 ensures that (23)
converges weakly to the range of the limiting Brownian motion B (-), i.e. to
supye(o,1] { B (8)} — infscpo,1) {B (s)}. The proof is completed by noting that

o1 _
. (T) = VW (Szl[gl?l] {zr (s)} — H[%fl {27 (s )}>

and that Ay 2 X by Lemma 4. O

A.2 Proof of Proposition 2

The proof follows the same lines of the previous case. In particular, it is enough
to prove that the detrended processes converge weakly to well-defined func-
tionals of a Brownian motion; then, by Lemma 3, the ranges of the detrended
processes converge weakly to the ranges of their corresponding limiting processes
and, finally, Lemma 4 ensures that substituting A with its consistent estimator
Ar does not affect the convergence result.
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Consider the detrended process ¥, = x;—x1—Jit, where i = (T' — 1) * (2 — 7).
Under the null hypothesis it follows that

t ¢ T
Izsj—fszr@p(l)
j=1

In the DJ0,1] space we can define the approximant Ty (s) = /\*1T_1/2§[ST] =
Nl (Z Tl LT Ej), s € [0,1], and by lemmas 1 and 2

N Ty

Tr(s) = T/

where the convergence holds jointly for all s and A is defined as in B3; the
limiting process V (s) = B (s) — sB (1) is the well-known Brownian bridge.

Now consider the second detrendization, i.e. Ty = xy — @ — t, where & and
1t are the OLS estimators. The Waugh-Frisch theorem allows to express the
residuals as Ty = (z; — T) — i (t — 1), with i = >, (2 —7) (t =) / 2, (¢ —f)Q.
Again, in D[0,1] we can define the following continuous-time approximant as-
sociated to Ty:

“ B(s)—sB(1)

T-5/2 2o — ) ([sT) — 1 _
T (S) = ﬁ (I[ST] — T) — % TZ_ZEZ[ (][ST} )_(5[)2 } t) % ([sT] — t)

It is easy to prove that jointly for all s € [0, 1]:

ET(s)ﬂB(s)—E—m(s—%) (/OlsB(s)ds—%§> (24)

where B = fo s)ds; the process defined in (24) is the detrended Brownian
motion (see Schmldt and Phillips, 1991). By using lemmas 3 and 4 and by
eliminating the components of the limiting Brownian functional which do not
depend on s it follows that

7, (T) 5 . {B (s) — 125 ( /0 'oB (s)ds — %E) }

—Sei%f’l] {B(s) —12s (/01 sB(s)ds — %E)}

where the process between brackets is a detrended Brownian motion, translated
in order to satisfy B (0) = 0. O

A.3 Proof of Theorem 1

We firstly set by = oo, i.e. the process has a single barrier in br < 0. It
is useful to translate the process of the quantity —bp, such that the process
starts in £p = —bp and has a reflecting barrier is 0. According to the theorem’s
assumptions, zy can be expressed as zg = cA\T2, ¢ > 0.

We firstly need to proof the following proposition:
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Proposition 3 An alternative representation of (18) is given by the recursive
equation

g = xo+ S+ Ly
t
Sy = Zi:l Ut
L, = - ngér; {zg + Sy; 0} (25)

Proof. Firstly, note that at each ¢ the process can be written as x; = x; 1 +us+
ly, where I, = — (x4 +u) 1 {zy—1 + u; < 0}; so, in case the process falls under
the barrier in 0, I; “regulates” its trajectory, bringing z; back onto the barrier
0. Recursive substitutions allow to express x; as ¥, = xo + > g, i + S g, li =
xg + St + Ly, where S; is the ordinary partial sum process and L; = Z§=1 l;.
We need to show relation (25), which can be proved by induction. For ¢t = 0,
So = 0, Lo = min {z9;0} = 0 and the relation is therefore satisfied. Assume
that the relation is satisfied at time t, i.e. L; = —ming<; {xg + Sy;0}. At
time t + 1, if & +w; > 0, then l;41 =0, Lyy1 = Ly = —ming < {zo + Sp; 0} =
—ming <443 {zo + Sp; 0} and the relation (25) is satisfied. On the other hand,

if Ty + U1 < 0, then lt+1 = — (It + ut+1) = — (w() + St + Lt + ut+1), which
implies —Lt+1 = g + St+1. But as lt+1 > 0, —Lt+1 = X9 + St+1 < —-L; =
mint/gt {Z’O + St/; 0}, which gives mint/§t+1 {l‘o + St/,O} =29 + St+1 = _Lt+1
and the proposition is proved. O

We can now consider the D[0,1] element xy (s) = )flT_l/Qm[ ]

or(s) = et 2 _ oy Sent | Leny ) Seny
AWT WT - WT WT )\\/T &

By Lemma 1, A\~!'71/ Qx[ST] “ B(s) and, by applying the continuous mapping
theorem it follows that

+ {1‘0 + St/ 0}

S,
mf {1‘0 + S} mf {mo + Sy} = 1r<1f { ey 0}

T N_ AWT

—12f{c+B(T),O}

where both convergencies hold jointly for all s. Continuity of the two limiting
functionals implies that process (18) converges weakly to By (s) = ¢+ B(s) —
min, <; {B (r)} which is a regulated Brownian motion on [0, 1], starting in ¢ and
with a reflecting barrier in 0 (Harrison, 1985). O

We can now extend the proof to the two-barrier case. Without loss of gener-
ality we set by = 0, by = eAT/2, zy = ¢T'/2. Unfortunately, when two barriers
are present, it is not possible to define the limiting regulated Brownian motion as
directly as before; still, we prove that the definition of nearly-bounded random
walk (18) corresponds to Harrison’s (1985) construction of regulated Brownian
motion as T — oo.

The proof consists of two steps. Firstly, in the C[0, 1] space endowed with the
uniform metric, we define a continuous approximant which satisfies Harrison’s
construction, and weak convergence is proved. Then, it is shown that weak
convergence holds for the D0, 1] with Skorohod topology version too.
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As in Proposition 3, the process z; can be recursively defined as z; =
2o+ 8¢ + Ly — Vi, where Sy = S0 g, Ly = oo by Vi = S0 o, Iy =
— (-1 + ) 1{z4—1 +ur <0} and v, = (It_l +up — l_)T) 1 {mt_l + ug > ET}
Clearly, z; € [0,br], all t. In order to define a C[0,1] approximant of x;, say
xr (8), it is enough to define C|0, 1] approximations for all its components, i.e.
St, Ly and V;. For the partial sum .S; we can set

[s7]

1 sT — [sT

which represents the process obtained by joining the points (t/T, \™'T—1/28;)
by means of straight lines. For V; and L; we define this approximation in a
slightly different way:

[sT]
ﬁ ; i if ve7141 =0
Vr (s) = y .
WT & Vi + ,\_ﬁ((ST — [sTujsry41 f
- _ if v >0
_ _ U[sT]+1 = V[sT]+1 [sT]+1
(U1 = vom41))1 {ST > [sT]+ Usr) 41 }
L [sT] '
WT ; li if list)41 =0
Lt (s) = ey )
T l; li + W((ST — [sTujsry41 .
- S if I, >0
~(uger1o1 — Vper141))1 {sT > [sT] + _[_llLl[_llﬁ} W by 41

UlsT]+1
With respect to linear interpolations like (26), this construction allows to reduce
the set of increasing points of V' (of L) to the set of points with Sy (s) > ¢
(St (s) <0).

It is easy to prove that:

1. Ly () and Vr (+) are increasing and continuous with Lz (0) = Vi (0) = 0;
2. zp(s)=c+ Sr(s)+ Ly (s) —Vr(s) €[0,¢, all s € [0,1];
3. Ly (-) and Vr (+) increase only when = 0 and x = € respectively.

From Harrison (1985), Proposition 2.4.6, the continuous mapping zr (-) =
95 (ST (*)) = Sr () +c+ Ly () — Vp (+) is the unique functional which regulates
St (+) to lie within the interval [0,¢] and which satisfies properties 1 — 3. This
allows to obtain the limiting distribution of xr (-) by applying the continuous
mapping theorem, Lemma 2, to the limit of St (-). But St (s) /ATY2 % B(s),
which implies that 2y (s) /JATY2 = g§ (Sg (s) JATY?) = g& (B (s)), which is a
regulated Brownian motion.

To prove weak convergence on the cadlag space D[0, 1] it is sufficient to prove
that the process

xp (s) — iL\/J% (Lr (s) = Liszy) — (Vo (s) = Visay) (27)
+ﬁU[sT1+1 (sT — [sT7])
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converges to 0 in probability on C[0,1]. As both Ly (s) — Lisp) and Vg (s) = Vi)
are in modulus less that A~ i i i
of Ly (s) and the set of increasing points of Vi (s) are disjoint, it follows that

LlsT
xr (s) — )\[\/_]

By referring to Bonferroni inequality, Markov inequality and Condition B2 we
have, for all £ > 0:

)

\/—‘uST—‘rl‘ ST ST \/—‘uST—‘rl

1/2
Pr{ sup ‘xT(s) Tl/Q‘ >2€} < Pr{tnllax ut>5)\T/}

s€[0,1]
T T 1
1/2 P
< ;Pr{ut > eAT } < ; (AE)pr/2E|ut|
T P _ ¢ 1-p/2
= Do AT Bept

which is o (1) since p > 2 and convergence of the process (27) on C[0, 1] follows.
O

A.4 Proof of Corollary 1

We prove the corollary for the case of one barrier in 0. Firstly, by Proposition
3 the long-run variance estimator can be decomposed as:

9 1 qr T 1 qr T
Ap T Z wj Z AItAIt—U\:T Z wj Z (ut+lt) (ut_|j|—|—lt_‘j|)

j=—qr  t=|jl+1 j=—qr  t=|jl+1
1 qr T 1 qr T

= 7 D Wi D wuwytg > owi Y (b +udiy + L3S
Jj=—gqr t=|j|+1 j=—aqr t=[j|+1

Phillips (1987) has shown that under the conditions of the Corollary, then
(1/T) > w; > usus_j; converges in probability to A; hence, to complete the
proof we only need to prove that the last term on the r.h.s. of equation (28)
goes to 0 in probability. Consider the following inequalities

1 T

qr
T Doowi Y (b iy + L)
j=—qr  t=[j|+1
T

1 qr
T Doowi D [l g+ Ll

J=—ar  t=[j|+1

3Ly |Ut‘
< T Z wj 1 maX {‘utH’Z?’lt T1/2 4= 1 {Tl/2 Z i

Jj=—ar Jj=—aqr

IN

as Iy > 0, all t. Now, Ly/T'/? converges weakly to the well-defined ran-
dom variable —Amin,<; {¢+ B (r),0}, see paragraph A.3; furthermore, writ-
ing the truncation lag as ¢r = T%, a < 1/2, see condition K2, the quan-
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tity T—¢ ?if 4 Wi converges to a finite constant K > 0.'7 Hence, in or-

der to prove the corollary one could show that max; {|u¢| /T*/?} is o, (T~%),
ie. Pr{max; {|u /Tl/Q} >e} =o(T~®), all e > 0. Similarly to Paragraph
A.3, under the moment condition B2’, by applying Bonferroni’s inequality and
Markov’s inequality it follows that

T
Pr{t_%laXT{|“t|/T”2}>f} = Pr{t_n;f_iffT{ut}>s/T1/2}sZPr{ut>5/T1/2}

IEREE)

t=1
T
1 P T P
< tz—; ngp/ZE‘ut‘ < ePTP/2 t:sll,l.?,TE‘UA
— Yz Cpa/ia
ep ep

since p > 2 (1 + a/(1 — a)) for conditions B2’ and B4’. As T—/(1=%) = o (T—%)
the above probability converges to 0 and therefore it is proved that the dynamics
of the regulator process L; do not affect the estimation of the error term long-run
variance!'®. Extension to the two-barrier case follows straightly. O

"In general (see Phillips, 1991), K = filw (z) dz, where w (z) is the weighting function
used to compute the long-run variance estimator, see paragraph K1.

18 Note that the proof relies on condition B2’, which imposes existence of 2 (1 + o/ (1 — )™
moments; this is not required to prove weak convergence to regulated Brownian motion, see
proof A.3, where only finite 2t moments (condition B2) are necessary.
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