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Options and Efficiency in Multiperiod Security Markets

Abstract

We extend the result of Ross (1976, Quart. J. Econ., 90, 75-89) that European op-
tions generate complete markets from the single-period to a multiperiod setting. We find
that multiperiod Furopean options on a trading strategy generate dynamic completeness
for every arbitrage-free price process, provided that the trading strategy has non-negative
terminal dividends and separates states at the terminal date. Furthermore, we show that
if the uncertainty and information structure in an economy are such that the number of
immediate successors of every non-terminal event is non-decreasing over time, then multi-
period FEuropean options on a trading strategy generate dynamic completeness for almost
every arbitrage-free price process under a significantly weaker condition on the trading strat-
egy’s terminal dividends. This condition requires the trading strategy to have non-negative
terminal dividends and to separate states at the terminal date conditional on the informa-
tion available at the previous date. Finally, we examine the minimum number of options

generating dynamic completeness for almost every arbitrage-free price process.

Journal of Economic Literature Classification Numbers: D52, D61.
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1. Introduction

Furopean options have been recognized as appropriate derivative securities to generate
complete markets, i.e., full spanning of the contingencies in an economy.! Complete markets
lead to an efficient allocation of risk in equilibrium. Ross [28] showed that in a single-period
setting, Furopean options on a portfolio having non-negative dividends and separating states
(i.e., paying different dividends in different states) generate complete markets. In this paper
we extend Ross’ result to multiperiod security markets.

There is a simple way of extending Ross’ result. An appropriate set of single-period Eu-
ropean options available at every trading date generates dynamic completeness (see Friesen
[14]). However, in practice options are retraded (i.e., multiperiod) and few maturity dates
are available for trade. It would be costly to issue options at every trading date.?

In contrast, we consider multiperiod Furopean options issued at the initial date with
maturity at the terminal date. We investigate dynamic completeness with multiperiod Fu-
ropean options for every arbitrage-free price process (for the primitive securities and the
options); Fxamining a particular arbitrage-free price process would not be satisfactory since
one may obtain dynamic completeness for some security prices but not for others.?

We introduce two notions of multiperiod separation. A trading strategy separates states
at the terminal date if its terminal dividends provide per se a full description of the state
of nature. A substantially weaker notion of separation is that of a trading strategy that
conditionally separates states at the terminal date, i.e., a trading strategy whose terminal

dividends provide a full description of the state of nature given the information available at

1 See Arditti and John [1], Banz and Miller [4], Breeden [5], Breeden and Litzenberger [6], Brown and Ross
[7], Demange and Laroque [10], Green and Jarrow [15], Hakansson [16, 17, 18], John [19, 20], and Schrems
[29].

2 A difficulty that may arise when options are issued is the existence of equilibrium. See Kahn and Krasa [21]
and Polemarchakis and Ku [26] for robust examples of non-existence of equilibrium with American options

in a single-period setting and with European options in a multiperiod setting, respectively.
3 See, for example, Magill and Quinzii [23, pp. 235-237]. Detemple and Selden [11] showed that if a non-

redundant option is issued, then the prices of the primitive securities generically change. Therefore, it is also
not appropriate to take as given the incomplete markets prices of the primitive securities.



the previous date.

Our first major result says that multiperiod European options on a trading strategy
having non-negative terminal dividends and separating states at the terminal date generate
dynamic completeness for every arbitrage-free price process. An interesting asset pricing
implication is that multiperiod FEuropean options can be used to price any security (in
particular, single-period Furopean options). While the assumption of separation at the
terminal date can be weakened, we show that in general, multiperiod Furopean options on a
trading strategy having non-negative terminal dividends and conditionally separating states
at the terminal date do not generate dynamic completeness for every arbitrage-free price
process.

The notion of dynamic completeness for every arbitrage-free price process is restrictive.
When there are no multiperiod European options on a trading strategy generating dynamic
completeness for every arbitrage-free price process, there may still exist multiperiod FEuro-
pean options on that trading strategy generating dynamic completeness for “almost every”
arbitrage-free price process. Furthermore, the number of multiperiod FEuropean options gen-
erating dynamic completeness for every arbitrage-free price process can be relatively large.

For that reason we then examine dynamic completeness for “almost every” arbitrage-free
price process, which we refer to as generic dynamic completeness. Our second major result
says that when the number of immediate successors of every non-terminal event is non-
decreasing over time, multiperiod Furopean options on a trading strategy generate generic
dynamic completeness under a significantly weaker condition on the trading strategy’s ter-
minal dividends. This condition requires the trading strategy to have non-negative terminal
dividends and to conditionally separate states at the terminal date. We show that this re-
sult does not extend to event trees in which the number of immediate successors of every
non-terminal event decrease over time.

We find that the minimum number of multiperiod European options on a trading strategy



generating generic dynamic completeness can be relatively large. We then show that either
multiperiod European options on several trading strategies or exotic options on a single
trading strategy can substantially reduce the minimum number of options generating generic
dynamic completeness.

Our conclusions are different from those reached by Bajeux-Besnainou and Rochet [3]
in a multinomial framework generalizing the economy of Cox, Ross, and Rubinstein [8].
Bajeux-Besnainou and Rochet concluded in pp. 1-2 that Furopean options “are not a good

[13

instrument for dynamic spanning” and that “only path-dependent (‘exotic’) options may
generate dynamic spanning.” Our findings about the ability of few options to generate generic
dynamic completeness are related with the result of Kreps [22]. Kreps showed that “almost
every” set of long-lived securities with cardinality equal to the largest number of immediate
successors of an event among all non-terminal events generates dynamic completeness.*
This paper is organized as follows. In Section 2 we outline the model. In Section 3 we
investigate the existence of multiperiod FEuropean options generating dynamic completeness
for every arbitrage-free price process. In Section 4 we examine generic dynamic completeness
with multiperiod Furopean options. In Section 5 we study the minimum number of mul-

tiperiod options generating generic dynamic completeness. Section 6 concludes. All proofs

are given in the Appendix.

2. Dynamically Complete Markets

Consider an event tree economy as described, for example, in Duffie [12, Chapter 2|. Let
T = {0,...,T}, where T € N is the number of periods in an event tree. The uncertainty and
the information structure are described by a filtered probability space (Q, F,{F ¢}ter, P),
where Q is a finite set of states of nature, f = [ =29 and f; is the information available

at time t € T. Let = (Z_7) be the set of events at all dates t > 0 (respectively, t < T'). Let

4 See Duffie and Huang [13] for a continuous-time framework.
5 A filtered probability space is a quadruple (Q, F,{F;}ieT, P), where € is a state space, F is a sigma algebra
of subsets of €, {F;}:cr s a non-decreasing sequence of sub-sigma algebras of F, and P is a probability
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k = #(Z) and n¢ be the number of immediate successors of event £ € =_7.

There are J € N primitive securities. Let J ={1, ..., J}. The dividend process of security
j € J is d’, which is assumed adapted.® Tet d = {d’};c;. Let p = {p’},c; denote an
ex-dividend price process for the primitive securities.

A trading strategy is denoted by h € H, where H is the set of all R’-valued processes. We
use the term “portfolio” instead of “trading strategy” when T" = 1. Frictionless short-sales
are allowed. The dividend process d"(p) generated by trading strategy h € H under price

process p is defined by
dy(p) =hyv-(pr+di) —he-p, VEET, (1)

where h_, = 0.
An arbitrage for a dividend-price process (d,p) is a trading strategy h € H such that
d"(p) > 0 and d"(p) # 0. We say that price process p is arbitrage-free if there exists no

arbitrage for (d,p). Whenever p is arbitrage-free, we have

pr=0,Vjel. (2)
It follows from (1) and (2) that the terminal dividend d% does not depend on p for every
trading strategy h € HL.

We denote a consumption process by ¢ € C, where C is the set of all R-valued processes.

The following notion of dynamic completeness is standard.

Definition 1. A dividend-price process (d,p) is dynamically complete if, for every consump-
tion process ¢ € C, there is a trading strategy h € H such that d?(p) = ¢;, t > 0. Otherwise,

(d,p) is incomplete.

We use the term “complete” instead of “dynamically complete” when T = 1. Let Dy (&)

[Pii1(&)] be a (J X ng,) matrix of one-period dividends (respectively, prices) for the primitive

measure on (£, F).
6 A process X = {X,}ier is adapted if X; : Q@ — R is measurable with respect to (£, F) for every ¢ € T.

Throughout, all processes are assumed to be adapted.
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securities at event & € = . We say that a dividend-price process (d, p) is one-period complete
at event & € = _p if

rank[Dyy1(§) + Pryi(§e)] = e, (3)

If (d,p) is one-period complete at & for every & € [, where t < T, then (d,p) is one-period
complete at time t. It follows from (2) and (3) that one-period completeness of (d, p) at time
T — 1 does not depend on p.

The following is a well known result.

Lemma 1. A dividend-price process (d,p) is dynamically complete if and only if (d,p) is

one-pertod complete at every event £ € = .

There is an infinite number of distinct arbitrage-free price processes for every dividend
process d. It follows from (3) that one-period completeness of a dividend-price process (d, p)
at an event & € [y, where t < T'— 2, depends on p. Using LLemma 1, it may be the case
that (d,p) is dynamically complete but (d,p') is incomplete for p # p’. Since security prices
determine whether a dividend-price process is dynamically complete, Definition 1 is not
satisfactory for the purposes of our paper.

We now introduce a notion of dynamic completeness for every arbitrage-free price process.

Definition 2. A dividend process d is dynamically complete if (d,p) is dynamically complete

for every arbitrage-free price process p.

Under standard monotonicity assumptions on consumer preferences, if dividend process
d is dynamically complete, then every Radner [27] equilibrium consumption allocation with
d is an Arrow-Debreu [2, 9] equilibrium consumption allocation and, therefore, it is Pareto
optimal.

We say that a dividend process d is one-period complete al event £ € =Z_p if (d,p) is

one-period complete at £ for every arbitrage-free price process p. If d is one-period complete



at & for every & € [, where t < T, then d is one-period complete at time t.

3. Dynamic Completeness with Options

Suppose that the dividend process of the primitive securities is not dynamically com-
plete. The question we are interested in is whether amending the primitive securities with
multiperiod options generates a dynamically complete dividend process. In a single-period
setting, Ross showed that options on portfolios are better suited to generate complete mar-
kets than options on individual securities. Therefore, we consider in our multiperiod setting
options on trading strategies.

A multiperiod European call (put) option on trading strategy h € H with maturity at time
T and exercise price K € R, (i.e., negative exercise prices are precluded in our analysis), is
a security with terminal dividends given by max(0,d% — K) [respectively, maz(0, K — d)],
and zero dividends at any other trading date. Hence, we allow options on (i) individual
securities, (ii) buy-and-hold trading strategies involving more than one security (i.e., trading
strategies where the position in every security is fixed along an event tree), and (iii) trading
strategies where the position in some security changes as the uncertainty is resolved along
an event tree. We denote a dividend-price process for a set of multiperiod Furopean options
on trading strategy h € H (primitive security j € J) by (e", q) [respectively, (¢’, q)].

In a single-period framework, European options on a portfolio having non-negative div-
idends and separating states generate complete markets. To study dynamic completeness

with multiperiod options we also need a notion of multiperiod separation.

Definition 3. A trading strateqgy h € H separates states at time T if d(Ep) # dn(Ey) for

every Ep,&h € Fr, &0 # &

In other words, trading strategy h separates states at time T if its terminal dividends

provide per se a full description of the state of nature (i.e., if the cardinality of the support



of I's terminal dividends coincides with the number of terminal events). The property given
in Definition 3 may also be called (unconditional) separation at the terminal date.

Although coinciding with the single-period notion of a portfolio separating states when
T =1, our definition of a trading strategy separating states at the terminal date is restrictive
in multiperiod markets. For example, a stock in the multiperiod binomial economy of Cox,
Ross, and Rubinstein does not separate states at the terminal date.

We now provide a substantially weaker notion of multiperiod separation.

Definition 4. A trading strategy h € H separates states at time T conditional on Fr_1 if,

Jor every &1 € Froq, d%(ST) # d%(f/T) for every &, &0 C &ro1, &7 # &

In other words, trading strategy h separates states at time 1" conditional on F _1 if, given
the information available at time T'—1, its terminal dividends provide a full description of the
state of nature. The property given in Definition 4 may also be called conditional separation
at the terminal date.

When T" = 1, our definition of a trading strategy conditionally separating states at the
terminal date coincides with the single-period notion of a portfolio separating states. Using
Definitions 3 and 4, if trading strategy h separates states at time 7', then it separates states
at time T" conditional on F 1 1.

We now illustrate our two notions of multiperiod separation with an example.

Example 1. Consider a two-period event tree with Q = {1,2,3,4}, &1 = {1, 2}, &0 = {3,4},
and &, = {s} for every s € . There are three securities. Security A has dj(&y) = 4,
dil (&95) = 3, and d§(&y,) = 2 for every s € {3,4}. Security B has dF (&) = 4, dB (&) = 3
for every s € {2,3}, and d¥(£24) = 2. Security C has dS (£91) = 4, dS (22) = 3, dS (&a23) = 2,
and d5 (£24) = 1 (see Figure 1). Security A does not separate states at time 2 conditional on

[ 1 and, therefore, does not separate states at time 2. Security B separates states at time



Terminal Dividends of
Primitive Security:
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Figure 1: Security A does not conditionally separate states at time 2 and, therefore, does not
separate states at time 2. Security B conditionally separates states at time 2 but does not separate
states at time 2. Security C separates states at time 2 and, therefore, conditionally separates states
at time 2.

2 conditional on f; but does not separate states at time 2. Finally, security C separates

states at time 2 and, therefore, separates states at time 2 conditional on F{.[]

Let H% be the set of trading strategies h € H having non-negative terminal dividends
and (unconditionally) separating states at the terminal date. Observe that H'{ depends on
the dividend process d.

The following is our first major result.

Proposition 1. For every trading strategy h € HY , there exist multiperiod European options

on h such that (d,e") is dynamically complete.

It follows from Proposition 1 that under the assumption of separation at the terminal
date, there exists a trading strategy on which all multiperiod FKuropean options can be
written to generate a dynamically complete dividend process.

One might conjecture that multiperiod European options on a trading strategy having
non-negative terminal dividends and conditionally separating states at the terminal date
generate a dynamically complete dividend process. The following example shows that such

conjecture is not correct.



Terminal Dividends of
the Primitive Security:
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Figure 2: An example where although there are no multiperiod European options on the primitive
security generating a dynamically complete dividend process, there exists a multiperiod FEuropean
option on the primitive security generating a dynamically complete dividend-price process for “al-
most every” arbitrage-free price process.

Example 2. Consider the event tree of Example 1. Assume that there is a single primitive
security with dy(€es) = 2 for every s € {1,2}, do(&as) = 1 for every s € {3,4}, and zero
dividends at time 1 (see Figure 2). Note that the primitive security has non-negative terminal
dividends, separates states at time 2 conditional on F; but does not separate states at time 2.
Without loss of generality, suppose that a multiperiod Furopean put option on the primitive
security with exercise price equal to 2 is issued at time 0. Any further multiperiod European
option on the primitive security is redundant. The (2 X 4) matrix of terminal dividends

generated by the primitive security and the option is

2 1 2 1
01 01
It follows from (3) that (d,e') is one-period complete at time 1. Using (3), (d,e', p,q) is

one-period complete at time 0 if and only if

rank p1(&n1) pi(&i2) _o (4)

q1 (511) q (512)

Note that (4) does not hold for every arbitrage-free price process (p,q) with ¢ = « - py,

where 0 < a < 1 and p; > 0. Hence, (d,e',p,q) is not one-period complete at time 0 for
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some arbitrage-free price process (p,q). Using Lemma 1, (d,e!,p, q) is incomplete for some
arbitrage-free price process (p, q). It follows from Definition 2 that (d,e') is not dynamically
complete. However, we shall show in Proposition 2 that (d,e', p, q) is dynamically complete

for “almost every” arbitrage-free price process (p, q).O

Although Example 2 showed that there may not exist multiperiod European options on a
trading strategy having non-negative terminal dividends and conditionally separating states
at the terminal date that generate a dynamically complete dividend process, we show in
Appendix C that the separation assumption imposed in Proposition 1 can be weakened.

The notion of a dynamically complete dividend process is restrictive. First, as Example
2 anticipated, when there are no multiperiod Furopean options on a trading strategy gener-
ating a dynamically complete dividend process, there may still exist multiperiod European
options on that trading strategy generating a dynamically complete dividend-price process
for “almost every” arbitrage-free price process. Second, the number of multiperiod European

options generating a dynamically complete dividend process can be relatively large.

4. Generic Dynamic Completeness with Options

Suppose that the primitive securities do not generate a dynamically complete dividend-
price process for “almost every” arbitrage-free price process (for example, if the number of
primitive securities is smaller than the number of immediate successors of an event). The
question we are interested in is whether amending the primitive securities with multiperiod
options on a trading strategy generates a dynamically complete dividend-price process for
“almost every” arbitrage-free price process.

We use an implication of the absence of arbitrage, i.e., the existence of strictly positive
event prices, to parameterize security prices. Then, we use this parameterization to introduce
a notion of dynamic completeness for “almost every” arbitrage-free price process.

The following is a well-known characterization of the absence of arbitrage.

10



Lemma 2. A dividend-price process (d,p) is arbilrage-free if and only if, for every event

& € 2 1, there exist event prices (&) € R such that

(&) = Do Ve deyi(ern) + pera (&), (5)

Et+1CEe

where 1, , s the price of an event § 1 C & al & € Fy.

Using Lemma 2, we can parameterize arbitrage-free price processes by strictly positive
event prices. The arbitrage-free price process assoclated with event prices ¢ € R% | is defined
by

pe(d, 0, &) = D0 ey v [deyi(§err) F pea(d, 0, 1)), V& € Fe, E< T (6)

Et+1CE

Using the parameterization of arbitrage-free price processes by strictly positive event

prices, we now introduce a notion of generic dynamic completeness.

Definition 5. A dividend process d is generically dynamically complete if the set {1 €
R: @ (d,p(d,y)) is dynamically complete} is open and has full k-dimensional Lebesgue

measure.

Following Magill and Shafer [24] it can be shown that under standard monotonicity,
smoothness, and convexity assumptions on consumer preferences, if dividend process d is
generically dynamically complete, then, for a generic economy (i.e., on an open set of full
measure in the space of endowments for each of the consumers), a Radner equilibrium con-
sumption allocation with d is an Arrow-Debreu equilibrium consumption allocation and,
therefore, it is Pareto optimal.

Let H be the set of trading strategies having non-negative terminal dividends and con-
ditionally separating states at the terminal date. Observe that H¢ depends on the dividend
process d.

The following is our second major result.

11
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Figure 3: (a) An event tree where the number of immediate successors of every time 1 event is
larger than the number of immediate successors of the initial node and, therefore, Proposition 2
holds. (b) An example where the restriction imposed in Proposition 2 on how the uncertainty is
resolved along an event tree does not hold since the number of immediate successors of every time
1 event is smaller than the number of immediate successors of the initial node.

Proposition 2. Suppose that ng, > ne, | for every (§,&-1) € Fe X F1,0<t <T. Then,
Jor every trading strateqy h € HY., there exist multiperiod Furopean options on h such that

(d,e") is generically dynamically complete.

Although Proposition 2 imposes a substantially weaker separation assumption than the
one imposed in Proposition 1, the notion of a generically dynamically complete dividend
process obtained in Proposition 2 is only slightly weaker than the notion of a dynamically
complete dividend process obtained in Proposition 1.

The assumption that neg, > ng, , for every (&,&-1) € Fe X Fi1, 0 <t < T, is a
restriction on how the uncertainty is resolved along an event tree (see Figure 3). This
assumption requires that the number of immediate successors of every non-terminal event
to be non-decreasing over time. An example of an event tree for which Proposition 2 holds
is when every non-terminal event has a fixed number of immediate successors.

The following example shows that Proposition 2 does not extend to event trees in which

12



Terminal Dividends of
the Primitive Security:

2

Figure 4: An event tree where there are no multiperiod European options on the primitive security,
which has non-negative terminal dividends and conditionally separates states at time 2, generating
a generically dynamically complete dividend process.

the number of immediate successors of every non-terminal event decrease over time.

Example 3. Consider a two-period event tree with Q = {1,2,3,4,5,6}, &, = {1,2},
&2 = {3,4}, &3 = {5,6}, and &, = {s} for every s € Q. Since ng, < ng, for every & € F,
this event tree does not satisfy the monotonicity assumption on the number of immediate
successors of every non-terminal event imposed in Proposition 2. Assume that there is a single
primitive security with dy(&ys) = 2 for every s € {1,3,5}, do(&as) = 1 for every s € {2,4,6},
and zero dividends at time 1 (see Figure 4). Note that the primitive security has non-
negative terminal dividends and separates states at time 2 conditional on f ;. Without loss
of generality, suppose that a multiperiod European put option on the primitive security with
exercise price equal to 2 is issued at time 0. Any further multiperiod Furopean option on
the primitive security is redundant. Using (3), for every arbitrage-free price process (p, q),
(d,e',p,q) is not one-period complete at time 0. Using Lemma 1, (d,e', p,q) is incomplete

for every arbitrage-free price process (p,q). Therefore, there are no multiperiod European

13



options on the primitive security such that (d,e') is generically dynamically complete.” []

5. The Minimum Number of Options Generating Generic Dynamic Complete-
ness

Suppose that the dividend process of the primitive securities is not generically dynami-
cally complete. Since it is costly to issue options, we now investigate the minimum number
of options generating a generically dynamically complete dividend process.

For tractability, let S > 2 be the number of immediate successors of every non-terminal
event. Observe that the event trees examined in this section satisfy the monotonicity as-
sumption on the number of immediate successors of every non-terminal event imposed in
Proposition 2. It follows from Proposition 2 that if H # (), then there exist multiperiod
Furopean options generating a generically dynamically complete dividend process. Hence,
we assume that H # 0.

There are 2 < J < S primitive securities. We assume that there is a security j € J with
dp(6r) =1, Vér € F, (7)

i.e., a bond that is one-period riskfree at time 7" — 1 and pays a unit terminal dividend.® For

simplicity, we assume that
rank[Dr(§r-1)] = J, Yér-1 € Fr-1, (8)

l.e., every primitive security is non-redundant at every event &7 1 € F 1.
Let k°(d") be the minimum number of multiperiod European options on trading strategy

h € H such that the dividend process (d, e”) is generically dynamically complete.

Proposition 3. For every trading strategy h € HY, S — J < k¢(d") < (S —J)- ST 1.

7 An example can be constructed such that the support of the primitive security’s terminal dividends depends
on the information available at time 1, and still no set of multiperiod European options on the primitive

security would generate a generically dynamically complete dividend process.
8 This bond can be generated with long positions at time 7' — 1 on a trading strategy h € HS and a

multiperiod European put option on A with a sufficiently high exercise price.

14



It follows from Proposition 3 that a generically dynamically complete dividend process
can be generated with a number of securities (including the primitive securities and the
options) lower than the number of terminal events S?. It can be shown that, for every
2<J< S, T > 1, there exist a dividend process d and a trading strategy h € H such that
ke(d") =S —J [k5(d") = (S —J) - ST 1]

Since k¢(d™) can be quite large, we now allow multiperiod European options on several
trading strategies. Let e denote the dividend process for a set of multiperiod European
options possibly on distinct trading strategies. Let k°(d) be the minimum number of mul-
tiperiod European options possibly on distinct trading strategies such that the dividend

process (d, e) is generically dynamically complete.

Proposition 4. There exist S — J multiperiod Furopean options possibly on distinct trading

strategies such that (d,e) is generically dynamically complete, i.e., k°(d) =S — .J.

It follows from Proposition 4 that allowing multiperiod European options on several
trading strategies, can substantially reduce the minimum number of multiperiod European
options generating a generically dynamically complete dividend process.

Alternatively, we now consider “exotic” options on a single trading strategy. An example
of an exotic option is a multiperiod European call (put) option on a trading strategy h € H
with risky ezercise price, i.e., a security with terminal dividends given by max(0,d% — X)
[respectively, maz(0, X — d%)], where X : Q—R, is a measurable function with respect to
[ 71, and zero dividends at any other trading date. Let 2" denote the dividend process for
a set of multiperiod Furopean options on trading strategy h € H with risky exercise price.

Let k% (d") be the minimum number of multiperiod European options on trading strategy
h € HY with risky exercise price such that the dividend process (d,z") is generically dy-
namically complete. Since a multiperiod European option is an example of the multiperiod

exotic option provided above, we have k*(d") < k#(d") for every trading strategy h € H, .

15



Proposition 5. For every trading strategy h € HY, *(d") = S — J.

Proposition 5 says that a relatively small number of multiperiod Furopean options with
risky exercise price on a single trading strategy, which has non-negative terminal dividends
and conditionally separates states at the terminal date, generate a generically dynamically

complete dividend process.

6. Conclusion

Our paper extends Ross’ result that Furopean options generate complete markets from
the single-period to a multiperiod setting. We obtain two major results. First, we show
that multiperiod Furopean options on a trading strategy generate dynamic completeness
for every arbitrage-free price process, provided that the trading strategy has non-negative
terminal dividends and separates states at the terminal date. Second, we find that when the
uncertainty and information structure in an economy are such that the number of imme-
diate successors of every non-terminal event is non-decreasing over time, then multiperiod
Furopean options on a trading strategy generate generic dynamic completeness under a
significantly weaker condition on the trading strategy’s terminal dividends. This condition
requires the trading strategy to have non-negative terminal dividends and to conditionally
separate states at the terminal date.

We find that in general, the minimum number of multiperiod Furopean options on a
trading strategy generating generic dynamic completeness can be relatively large. We show
that either multiperiod Furopean options on several trading strategies or exotic options on a
single trading strategy can substantially reduce the minimum number of options generating

generic dynamic completeness.
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7. Appendix A

In this section we prove Proposition 2. Ross showed the following.

Lemma Al. Assume that T =1, Q= {1,...,S}, where S € N, and rank|[D1(&)] = J < S.
Then, for every portfolio h € HY , there exist S — J Buropean putl options on h such that

(d,e") is complete.
Lemma A2 follows immediately from Lemma Al.

Lemma A2. For cvery trading strategy h € H<, there exist multiperiod European options

on h such that (d,e") is one-period complete at time T — 1.

Proof. Let h € HY, &1 € Fp_y be arbitrarily chosen. Using Lemma Al, there exist
multiperiod European options on h such that (d,e") is one-period complete at &7 1. Since
&1 1 was arbitrarily chosen, there exist multiperiod Furopean options on h such that (d,e")

is one-period complete at time T"— 1.

Let f: M — N, where M C R*, N C R!, and k,l € N, be a function. [ is a function of
M onto N if f(M) = N. Suppose that f is a function of M onto N. Then, f is one-to-one
if f71(y) is a set with one element for every y € N. [ is smooth if for every T € M there
is an open set U C R” containing T and a function F' : U — R such that F(z) = f(z) for
every x € U N M and all partial derivatives 0"F'/Ox;, - - - Ox;, exist and are continuous. f
is a diffeomorphism between M and N if f is a smooth one-to-one function of M onto N
and f~!is smooth. A set M C R* is a manifold of dimension m € N if every x € M has a
neighborhood W N M that is diffeomorphic to an open set U C R™. Let f: M — N be a
smooth function from a manifold of dimension m to a manifold of dimension n. y € N is a
reqular value if rank|df (x)/dz] = n for every x € f~!(y). The proof of the following result

can be found in Milnor [25, pp. 11].
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Lemma A3. Let [ : M — N be a smooth function from a manifold of dimension m to a
manifold of dimension n, where m > n. If y € N is a reqular value, then the set f~(y) C M

s a manifold of dimension m — n.

Let M* C R

%4+, where s € N, be a s-dimensional manifold with full s—dimensional

Lebesgue measure. For every s € {1,...,7}, where r € N, let ¢* be a (ms x 1) vector in M,

where my € N, let 1), be a (ns X 1) vector in R}*, |, where ns € N, let d; be a (r x 1) vector in

..........

M™ = TT,cqp g M™, P= (. 0, and ¥ = (i, .., Uy).

Lemma A4. If D, : M™ — R™" is such that rank|Ds(y°)] = r for every ¢° € M™s,

s€{l,..,r}, then the set

{0, ) € M™XRY, crank([ D) by +dy Dy(W?) by +dy -+ Dp(y7)-thy +d, ) =7}
(9)

is open and has full (m + n)—dimensional Lebesgue measure.

Proof. Tet Dy : M™ — R™" be such that rank|[Ds(¢*)] = r for every ¢ € M™ s €
{1,...,r}. Let "1 = {(A,..., \,) ER": > A2 =1} be the r-dimensional unit sphere. Let A
s=1

denote a (1 X r) vector in " !. Define f : S 'xM™ x R", — R" by

FOA) =X [ DY) - apy +dy Dy(0?) by +dy -+ Dp(y") -t +dy | (10)

for every (A,E,@e S™IxM™ x R, . Using (10), we have

D) 0 0|
_ 0, ADy®?) - 0,
DF (N0, ) /00 = ’ f( ) | (11)
I 01 02 )\DT(’L/)T) |
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for every (A,E,@e STIxM™ x R?

", where O, is the (1 x n,) vector [0 0 --- 0]. Since

rank|[Ds(¥%)] = r, we have A - Dg(%) # 05 for every s € {1,....r}, A € S" 1. Therefore,

It follows from (12) that (0,...,0) € R" is a regular value. Using Lemma A3, f~1(0,...,0)
is a manifold of dimension »r — 1 +m +n —r = m 4+ n — 1. Define the projection T :

STIXM™ x R, — M™ x R} | by

T\ %, %) = (,9), Y\, )€ S xM™ x R} . (13)

rank(] DY) - apy +dy Dy(@®) by +dy - D(7) -, +d, ) <r

if and only if (E,g)eT(fﬁl(O, ...,0)). Since f1(0, ..., 0) is a manifold of dimension m+n—1,
/740, ...,0) has (m+n)—dimensional Lebesgue measure zero. It follows that Y(f (0, ...,0))
has (m + n)—dimensional Lebesgue measure zero. Hence, the set given by (9) has full

(m 4 n)—dimensional Lebesgue measure. Furthermore, that set is open.

Lemma A5. Suppose that ne, , > n for every &p—y € Fp_1, where 1 EE max  Ng, ,. If
T—2€F T2
dividend process d is one-period complete at time T — 1, then there is a (J x n) matriz H

such that 7"anl~1:[DT(§T,1)T - H| =mn for every &r1 € Fp_1.

Proof. Assume that ng, , > 7 for every &1 € F 11 and that d is one-period complete at
time T'— 1. Let & 1 € F 11 be arbitrarily chosen. Let D be an arbitrarily chosen (J x 1)
submatrix of Dp(&p_1). Note that rank(D) =n. For every s € {1,...;r}, let 5 be a (J x 1)
vector in RY . Using Lemma A4 withr =7, ny = J, ds =00 --- 0]", Dy(¢*) = D', and

s = 04 for every s € {1,...,7}, we have

Tank:{DT-[gl Oy - 0

3]
—
I
3|

(14)
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for almost every (01,0, ...,07)€ Rif If (14) holds, then

rank{Dr(&r-1)" [0, 0, ... 0. ]} =7 (15)

Since &r 1 was arbitrarily chosen, (15) holds for almost every (01, 0s, ..., 07)€ Rif and for
every &7 1 € Fr 1. Hence, there is a (J X 7) matrix H such that rank|[Dr(ér 1) - H| =%

for every &7 1 € Frogq.

We say that a dividend process d is generically one-period complete at event & € = if
the set {¢ € R, : rank[Dy1(&) + Pra(d, v, &)] = ng, } 1s open and has full k-dimensional
Lebesgue measure. If d is generically one-period complete at & for every & € F¢, where

t <'T, then d is generically one-period complete at time t.

Lemma AG6. Assume thal ng, > ne, , for every (&,&-1) € Fe X Feq, 0 <t <T. A
dividend process d is generically dynamically complete if d is one-period complete at time

T—1.

Proof. Suppose that ng, > ng, | for every (&,&-1) € F¢ X F—1, 0 <t < T, and that d is
one-period complete at time 7' — 1. We now show that d is generically one-period complete
at time T'— 2. Let {79 € F p_9 be arbitrarily chosen. Let r = ng,. ,. For every £5._; C &9,
let ny = ngs,, and ¢s € R, denote a (ng X 1) vector of one-period event prices at {7, ;.
Using Lemma A5, there is a (J x @) matrix H such that rank|Dp(&r 1)" - H] = 7 for
every &7 1 € Frq. Let H, be a (J x r) submatrix of H. Let dy, = [dp (&5 )" - H,]'
and Dy = [Dyp(&5 )" - H,|" for every s € {1,...,r}. Observe that rank(D;) = r for every

s € {1,...,7}. Using Lemma A4, the set

{ eRY, crank([ Dy -4py+dy Doty +ds ... Dy-th+d, ) =7} (16)

is open and has full n—dimensional Lebesgue measure. Hence, d is generically one-period
complete at & 5. Since &p o was arbitrarily chosen, d is generically one-period complete at

time 7" — 2. If T" = 2, then our proof is complete.
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Suppose that T" > 2. We now show that d is generically one-period complete at time
T — 3. Let &3 € [ -3 be arbitrarily chosen. For every s € {1,...,r}, let M™ C R
be the set of one-period event prices at every non-terminal successor of &7. , such that
(d,p(d,v)) is one-period complete at every time ¢t € {T'— 2, T'— 1}. Let r = ng, , and
ns = ng,  for every & 5 C &r 3. Let ¢s € R} denote a vector of one-period event
prices at &5 ,. Let H, be a (J x r) submatrix of H. Let d, = [dr »(&5 )" - H,|' and
Dy(y®) = {|Dy 1(&5 o) + Pr 1 (d,y%, &5 )" - H,} ' for every s € {1,....r}, ¢* € M™. Note

that rank|[Ds(10°)] = r for every s € {1,...,r}, ¥* € M. Using Lemma A4, the set

{(%ﬁ) € M xR, : rank(] DY) i +di Do((?) - ho+dy .. D(¥7) ) +d, )=r}

is open and has full (m + n)—dimensional Lebesgue measure. Hence, d is generically one-
period complete at £r_3. Since &3 was arbitrarily chosen, d is generically one-period com-
plete at time T"— 3. If T" = 3, then our proof is complete.

Suppose now that 7" > 3. Using the above reasoning recursively, d is generically one-

period complete at every time ¢t < 1" — 3. Hence, d is generically dynamically complete.

Proof of Proposition 2. Let i € H, be an arbitrarily chosen trading strategy and suppose
that ng, > ng, , for every (§,&-1) € F¢ X F—1, 0 <t < T. Using Lemma A2, there exist
multiperiod European options on h such that (d,e") is one-period complete at time 7" — 1.

Using Lemma A6, (d,e") is generically dynamically complete.

8. Appendix B

In this section we prove Propositions 3-5.

Proof of Proposition 3. Let h € H, be arbitrarily chosen. The claim that x¢(d") > S—J
follows immediately from (8), Lemma 1, and the definition of one-period completeness of
a dividend process at a time T'— 1 event. We now show that x¢(d") < (S — J). ST L

Let &0 € F 11 be arbitrarily chosen. Using Lemma A1, there exist S — J multiperiod
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FEuropean options on h such that (d,e") is one-period complete at & ;. Since &4 1 € Fp 4
was arbitrarily chosen and there are ST~1 events at time T' — 1, there exist (S — J) - S7T~!

multiperiod European options on h such that (d,e") is one-period complete at time 7" — 1.

Using Lemma A6, k¢(d") < (S —J).ST-1

Since we use some of the arguments of the proof of Proposition 5 in the proof of Propo-

sition 4, we first give a proof of Proposition 4.

Proof of Proposition 5. Let h € HY, {71 € F 11 be arbitrarily chosen. Using Lemma
Al, there exist S — J multiperiod Furopean put options on h, say with exercise prices
{Ki(&r-1) }i<i<es— s, such that (d,e") is one-period complete at & 1. Since &y | was arbi-
trarily chosen, consider S — J multiperiod European put options on h with risky exercise
price and terminal dividends given by z = {max(0, X; — d%)}1<1<cs_ s, where, for every

le{l,...S—J}, X;: Q—R, is defined by

{Xi(w)} = {Ki(&r1) A{w} Céra}, w e O

and zero dividends at any other trading date. Clearly, X, is measurable with respect to f 14
for every I € {1,...,S — J}. Note that (d,z") is one-period complete at time T'— 1. Using

Lemma A6, (d,z") is generically dynamically complete.

Proof of Proposition 4. Let h € H be arbitrarily chosen. Using the arguments in the
proof of Proposition 5, there exist S — J multiperiod Furopean put options on h with risky
exercise prices {X;}1<;<s 7 such that (d,z") is generically dynamically complete. Let h' be
defined by

A =dh v 7 — X, Ve {1,...,S — J}, (17)

where 7, =max Xi(w). Since a long position at time 7' —1 in Z; — X; units of the bond paying
we
a unit terminal dividend generates the terminal dividend Z; — X;, h! is well defined for every

le{l,..,5—J}. The terminal dividends of S — J multiperiod FEuropean put options on the
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trading strategies {h'}i<;cs s with exercise prices {Z;}1<;<g s coincide with the terminal

dividends of the exotic options in the proof of Proposition 6. Hence, k°(d) = S — .J.

9. Appendix C

We now show that the separation assumption imposed in Proposition 1 can be weakened.
We say that trading strategy h € H separates n immediate successors of event & € [ at
time T conditional on &, where t < T — 2, if there is a set Z¢, of n distinct immediate

successors of &, such that for every &1 € Z,, there exists & C &y with di(&r) # di(&h)

for every & C &, C &, &q 7 St

Proposition C. For cvery trading strategy h € H that separates ne, — 1 immediale suc-
cessors of event & at time T conditional on & for every & € Fi, t < T — 2, there exist

multiperiod European options on h such that (d,e") is dynamically complete.

Proof. Let h € H be an arbitrarily chosen trading strategy that separates ng, —1 immediate
successors of event & at time 1" conditional on & for every & € F¢, t < T'— 2. Using Lemma
A2, there exist multiperiod European options on h such that (d, e") is one-period complete at
time T'— 1. We now show that there are multiperiod European options on h such that (d, e")

is one-period complete at every time ¢t <T"— 2. Let & € F, where t <T'— 2, be arbitrarily

chosen. Let n = ng,. Tet =, = {€1, -, &1} be the set of immediate successors of &;.
Suppose that h separates &}, 4, ..., 5:3:11 at time 7" conditional on &. Let =¢, = {4, ..., :3:11 .

Using the arguments of Breeden and Litzenberger [6, pp. 625-626], for every &, € Z¢,,
there is a linear combination of multiperiod European options on h paying an unit dividend
at some event {r C &/, and zero dividends at every event &, C &, & # &r. For every
Sfjrl € Eg, let g7, (Sfjrl) be the price of the sth linear combination of multiperiod European
options at ffjrl Consider also a multiperiod Furopean call option on h with exercise price
equal to zero. Let ¢ (1) be the price of such option at {41 € Ezft Whenever (p,q) is

arbitrage free, we have ¢f ;(£5,) = 0if s # 8, s # n, and ¢, (&,) > 0if s = s’ or s = n for
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every &1 € Eg The matrix Q;;1(&;) of one-period prices of the n — 1 linear combinations

of put options and the call option at & is given by

Gpr1(&tr1) 0 e 0 0
0 G (&) 0 0
Qui1(&) =
0 0 ogn(E@n) 0
i qg+1(£t1+1> q?+1(5t2+1> R :3:11) a1 (&) )
Since rank|Q:11(&:)] = n and & was arbitrarily chosen, there exist multiperiod European

options on h such that (d,e") is one-period complete at every &, t < T — 2. The desired

claim follows from Lemma 1.

Example 2 shows that Proposition C does not extend to trading strategies h € H that
only separate ng, — 2 immediate successors of event & at time 1" conditional on & for some

StEFt7t§T_2

Proof of Proposition 1. Let h € HY} be arbitrarily chosen. Clearly, h € HY and h
separates ng, — 1 immediate successors of event & at time 7" conditional on & for every

& € Fe, t < T — 2. The desired result follows from Proposition C.
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