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ABSTRACT

The paper considers the estimation of the coefficients of a single equation in the presence

of dummy intruments. We derive pseudo ML and GMM estimators based on moment

restrictions induced either by the structural form or by the reduced form of the model.

The performance of the estimators is evaluated for the non-Gaussian case. We allow for

heteroscedasticity. The asymptotic distributions are based on parameter sequences where

the number of instruments increases at the same rate as the sample size. Relaxing the usual

Gaussian assumption is shown to affect the normal asymptotic distributions. As a result

also recently suggested new specification tests for the validity of instruments depend on

Gaussianity. Monte Carlo simulations confirm the accuracy of the asymptotic approach.
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1 Introduction

Over the past few years renewed1 interest in the quality of instrumental variables inference

has led to a significant understanding that ‘weak instruments’ can lead to problems when

conventional (first-order) asymptotic inference techniques are used. That is to say, the

asymptotic distributions of estimators can depart considerably from the exact finite-sample

distributions even if the sample size is large. The quality of the approximations depend

crucially on the relevance of the instruments, as expressed by the correlation between

instruments and explanatory variables, and on the number of instruments. The departures

from asymptotic normality include bimodality, bias, fat tails, and missized tests (see e.g.

Nelson and Startz (1990a,b), Buse (1992), Maddala and Jeong (1992), Bekker (1994),

Bound et al. (1995), and Staiger and Stock (1997)).

Hahn and Inoue (1999) distinguish, in the recent literature, two alternatives for con-

ventional (first-order) large-sample asymptotics. The first is the ‘weak-instrument asymp-

totics’, or ‘local-to-zero asymptotics’, of Staiger and Stock (1997), where the correlation

between instrument and endogenous regressor vanishes as a function of sample size. See

also Wang and Zivot (1998). Analyses based on pretesting for weak instruments are given

in Hall, Rudebush and Wilcox (1996), Shea (1997), Zivot, Startz, and Nelson (1998), and

and Startz, Nelson, and Zivot (1999). The second alternative is the ‘many-instrument

asymptotics’, where the number of instruments grows at the same rate as the sample

size. This approach was first mentioned in Anderson (1976). It was used in e.g Kunitomo

(1980, 1986, 1987) and Morimune (1983), and more recently in Bekker (1994). Hahn and

Hausman (1999) show the similarity of this approach to a second-order Edgeworth expan-

sion and use it to specify new specification tests for the validity of instrumental variables.

Hahn and Inoue (1999) describe Monte Carlo experiments and conclude that reporting

Bekker’s (1994) confidence interval would suffice for most microeconometric applications.

All results derived under ‘many-instruments’ methodology have been restricted to the

Gaussian case. This may seem a harmless limitation since, in the model we consider, con-

ventional first-order asymptotic approximations are not affected by departures from Gaus-

sianity. However, the exact distributions of estimators are affected by such departures and

1Instrumental variables methodology has a long history in econometrics. See e.g. Anderson and Rubin
(1949) and Anderson (1950). Surveys have been given by e.g. Mariano (1982) and Phillips (1983). Bowden
and Turkington (1990) use it as an organizing principle. Applications can be found in the context of ‘natural
experiments’ such as e.g. Angrist (1990), and Angrist and Krueger (1991, 1992).
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it will be demonstrated these sensitivities are not washed out by the ‘many-instruments’

methodology. In this paper, we extend the results of Bekker (1994) by relaxing the assump-

tion of Gaussianity. We show that the asymptotic distributions remain normal, but third-

and fourth-order moments do enter the expressions. In our context, this holds in particular

for the conventional instrumental variable (IV), or 2SLS, estimator. It also holds, to some

extent, for the LIML estimator. However, other estimators, whose formulation is closely

connected to the model specification, are not affected by such departures.

In addition to relaxing the usual distributional assumption, we also allow for heterosce-

daticity, which provides an extension relevant for empirical applications. The derivation

of our asymptotic results in this broader context was enabled, however, by restricting

our attention to dummy instruments. We consider group indicators as instruments. This

need not mean that our analysis is of limited applicability. Frequently, in the context of

‘natural experiments’, instruments do take the form of categorical variables. Such dummy

instruments may come naturally, such as the lottery numbers in Angrist (1990), or the

season of birth in Angrist and Krueger (1991, 1992), or they may be due to a grouping of

the data based on socio-demographic variables. Such grouping, with the aim to generate

instruments, has also been used in models with panel data by e.g. Deaton (1985), and

Angrist (1991).

In other cases, it may be useful to replace instruments by group-indicator instruments

defined as functions of the original instruments. That is to say, functions of instruments

may also serve as instruments. In particular, such a reformulation can be useful in a single-

equation context, where no assumptions are made about reduced form equations. In that

case, first-stage regressions need not be linear in the original instruments and functions

may provide additional relevant first-stage regressors.

In this paper we therefore consider the estimation of the coefficients of a single equation

based on instruments generated by a grouping of the data. We derive (pseudo) ML and

GMM estimators, whose performances will be evaluated by asymptotic distributions based

on ‘many-instruments asymptotics’. Angrist and Krueger (1995) refer to such asymptotics

as ‘group asymptotics’, which seems to be a suitable name in the present context. We

show the group-asymptotic distributions to be more accurate in their approximations to

the finite sample distributions of the estimators compared to large sample approximations.

We find that GMM estimators based on moment restrictions induced by the struc-
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tural form of the model are inconsistent under group asymptotics. Furthermore, their

asymptotic normal distributions are affected by third and fourth-order moments. We do

not expect these effects to be restricted to the present context with dummy instruments.

In particular, the specification tests of Hahn and Hausman (1999) can be expected to be

valid only in the Gaussian case. However, (pseudo) ML and GMM estimators based on

the reduced form moment restrictions are found to be group-asymptotically consistent,

with simple asymptotic distributions2.

The structure of the paper is as follows. Section 2 formally introduces the model. In

Section 3 we present GMM and ML estimators. We describe a class of moment estimators

and show that GMM estimators based on moment conditions induced by the structural

form are not within this class. Section 4 discusses group asymptotics. The asymptotic

distributions of the estimators are given in Section 5, where the moment estimators from

the class defined in Section 3 are found to be consistent. Section 6 describes consistent

estimation of the asymptotic covariance matrices. Monte Carlo simulations are presented

in Section 7. The Appendix contains the derivations of the asymptotic distributions.

2 The model and some reformulations

Consider the estimation of the coefficients δ ∈ IRg of a single equation,

yt = x′
tδ + εt, t = 1, . . . , n,(1)

where some of the right-hand-side variables are jointly endogenous, i.e. E (εt|xt) need not

equal zero. Additional information is provided by observations on instrumental variables

zt ∈ IRl that do satisfy the mean-independence condition:

E (εt|zt) = 0.(2)

We consider a cross-section context, where observations on (yt, xt, zt) are iid. Exogenous

variables in xt will not be partialled out. They may serve as instruments in zt. We derive

asymptotic distributions of estimators of δ, and we estimate confidence sets, based on

an alternative asymptotic approach where the number of instruments increases with the

number of observations.

2If the LIML estimator, which is derived under the assumption of homoscedasticity, is evaluated under
heteroscedasticity, it is found to be group-asymptotically inconsistent in general.
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The general difficulty in using instrumental variable inference is the practical one of

finding instruments. As noted by Kendall and Stuart (1979, Chapter 29.35), a solution

might be based on a grouping of observations. Such instrumental group indicators may

arise naturally in the context of ‘natural experiments’. Consider, for example, the random

lottery numbers in Angrist (1990), the season of birth in Angrist and Krueger (1991),

or the timing of mayoral and gubernatorial elections in Levitt (1997). In other cases

grouping based on noncategorical instruments may provide a useful procedure to produce

instruments. That is to say, let the remaining system equations be given in reduced form

by:

x′
t = z′tΠ + v′,(3)

where elements of vt are zero for explanatory variables that serve as instruments. Con-

trary to the usual approach when specifying a system of equations—but similar to Bekker

(1994)—we do not assume E (vt|zt) = 0 in general. In other words, the linearity assump-

tion is applied in a single-equation context and the first-stage regressions need not be

linear: E (x′
t|zt) 6= z′tΠ.

Of course, if the instrumental variables zt contain only indicator variables, the linearity

of the regression E (xt|zt) is satisfied automatically. In general, however, we might consider

functions f(zt) ∈ IRm of the instruments zt as new instruments to achieve identification3,

or to increase the quality of the instruments. Such reformulated instruments satisfy the

exogeneity condition E (εt|f(zt)) = E ( E (εt|zt)|f(zt)) = 0. Furthermore, if the first-stage

regressions are nonlinear, the new instruments may show increased relevance, as expressed

in R2 or ‘partial R2’, when compared to the original instrument(s)4.

In particular, we consider stepfunctions of zt as new instruments. These stepfunctions,

or indicator functions, separate the sample into j = 1, . . . ,m groups. The new instruments

can be formulated as f(zt) = ejt, where the vectors ejt are columns of the m×m identity

matrix. As mentioned above, such a reformulation of instruments implies that the first-

stage regressions become linear: E (x′
t|f(zt) = ej) = e′jA, where A is an m × g-matrix

containing the m group means of x′
t. Another advantage is that heteroscedasticity can be

modelled without making further assumptions, i.e. E (ε2
t |f(zt) = ej) = σ2

j , j = 1, . . . ,m.

3For example, Lewbel (1996) uses functions of real income level as new instruments to analyse U.K.
fuel demand data.

4For discussions of “partial R2” in a context of weak instruments see Shea (1997), Hall et al. (1996),
Wang and Zivot (1998), Zivot et al. (1998) and Startz et al. (1999).
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In addition to these observations, the reformulated framework enabled us to study the

consequences of nonnormally distributed disturbances.

Thus motivated, we consider many-instruments-asymptotic inference, or group-

asymptotic inference, for δ based on dummy instruments. In order not to complicate

the notation unduly, we will use the notation zt for the (reformulated) dummy instru-

ments, i.e. the vectors zt are assumed to be columns of the m × m identity matrix. The

model can be summarized as follows. We consider a random sample of n observations on

the random vector (y, x′, z′) ∈ IR1+g+m, with finite fourth-order moments, such that

yt = x′
tδ + εt,

x′
t = z′tΠ + v′t,

E ((ε, v′t)|zt) = 0,

E
(
(ε, v′t)

′(ε, v′t)|zt = ej

)
= Σj =


 σ2

j σj12

σj21 Σj22


 ,

(4)

for t = 1, . . . , n and j = 1, . . . m. For identification we assume:

rank (Π) = g.(5)

In reduced form we write ut = εt + v′tδ, and

(yt, x
′
t) = z̃t

′Π(δ, Ig) + (ut, v
′
t),

E ((ut, v
′
t)|z̃t) = 0,

E
(
(ut, v

′
t)
′(ut, v

′
t)|z̃t = ej

)
= Ωj =


 ω2

j ωj12

ωj21 Ωj22


 .

(6)

The relation between Ωj and Σj is given by

Ωj =


 1 δ′

0 Ig


Σj


 1 0

δ Ig


 .

Let the observations from the jth group, where zt = ej , be indexed by i = 1, . . . , nj and

let Π = (π1, . . . , πm)′, then the model equations are also given by

yij = π′
jδ + uij , i = 1, . . . , nj ,

xij = πj + vij, j = 1, . . . ,m.
(7)
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The transformed model (4), (6), or (7), derived from from (1) and (2), is related to the

literature in several ways. First, as mentioned above, it is related to intrumental variables

models applied in a context of ‘natural experiments’. Another application is when data

consist of time series of cross-sections as considered by Deaton (1985), Angrist (1991)

and Verbeek and Nijman (1993). The model is also very closely related to the errors-in-

variables literature. If nj = 1 and we assume homoscedasticity, Ωj = Ω, j = 1, . . . ,m, and

Gaussian disturbances, the model is known in the errors-in-variables literature as a linear

functional relationship (Madansky, 1959, Moran, 1971, Kendall and Stuart (Chapter 29),

1979, Aigner et al. 1984). In fact, the origin (cf. Anderson, 1976, p.34) of the group-

asymptotic approach can be found in this connection.

If nj > 1, the model is also known as a linear functional relationship with replicated

observations. Kunitomo (1986, 1987) applied group asymptotics to this model. He con-

sidered the case of a single jointly endogenous explanatory variable and assumed both

homoscedasticity and Gaussianity. Here we relax these assumptions. We show that both

heteroscedasticity and non-Gaussian disturbances affect the outcomes.

3 GMM based on structural and reduced-form moment con-

ditions

We consider moment restrictions formulated either in terms of the transformed structural

model (4), or in terms of its reduced form (6). We will argue that the latter approach is to

be “strongly preferred” to the former one. The same words were used by Anderson, Ku-

nitomo and Sawa (1982, p.1025) with regard to 2SLS and LIML. In fact, as will be shown,

these are the GMM estimators under homoscedasticity, based on moment restrictions in-

duced by the structural form (4) and the reduced form (6), respectively. Consequently,

LIML can be interpreted both as a ML estimator, under a Gaussian assumption, and

as a GMM estimator, which is in accordance with the minimum distance interpretation

given by Goldberger and Olkin (1971), and it agrees with Pagan’s (1979) interpretation

of LIML as an instrumental variable estimator using the implied reduced form coefficients

to generate instruments. However, for the general heteroscedastic case we find the ML

estimator, under Gaussianity, is different from the GMM estimator based on the reduced

form (6).
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The resulting estimators are all functions of the first two sample moments

Ȳj = (ȳj, x̄
′
j)

′ =
1
nj

nj∑
i=1

(yij , x
′
ij)

′,

Sj =
1

nj − 1

nj∑
i=1

((yij

xij

)
− Ȳj

)((yij

xij

)
− Ȳj

)′
.

(8)

In fact, the estimators are functions of Mj and Sj, j = 1, . . . ,m, where

Mj = wj ȲjȲ
′
j ,(9)

and

wj = nj/
m∑

j=1

nj.

A particular function δ̂(Mj , Sj , j = 1, . . . ,m) is said to be in the class of moment estima-

tors based on the statistics Mj and Sj, j = 1, . . . ,m, if

δ̂( E (Mj), E (Sj), j = 1, . . . ,m) = δ.(10)

The expectations are given by

E (Mj) = wj(δ, Ig)′πjπ
′
j(δ1Ig) + Ωj/

m∑
j=1

nj,

E (Sj) = Ωj.

(11)

It will be shown that GMM estimators based on moment restrictions formulated in terms

of the structural form (4) do not satisfy the moment equations (10). As a result these

estimators might be badly located. As will be shown, this is reflected by their group-

asymptotic inconsistency.

3.1 GMM based on structural-form moment conditions

For our computations we use matrices Σj, or Ωj, that are nonsingular. However, our

results also hold for singular matrices5. GMM estimation based on (4) can be formulated

in terms of the following moment equations:

E
[
zt(yt − x′

tδ, x
′
t − z′tΠ)

]
= 0.

5This is implied by a continuity argument since singular matrices can be approximated arbitrarily close
by nonsingular matrices. Alternatively, one may transform the model into a form where the covariance
matrices of the observations are nonsingular. Then one may perform the necessary inversions and, finally,
one may retransform the outcome to find the same result.
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The GMM estimator for δ under homoscedasticity is given by

δ̂IV = argmin
δ

m∑
j=1

δ̃′Mj δ̃, δ̃ = (1, δ′)′

= (
m∑

j=1

wjx̄j x̄j
′)−1

m∑
j=1

wj x̄j ȳj.

(12)

It follows from (11) that δ̂IV does not satisfy (10), which explains intuitively the bias of this

estimator. The same holds for the heteroscedastic version. Let σ̂2
jIV be an estimate of σ2

j ,

for example (1,−δ̂′IV)Sj(1,−δ̂′IV)′, then the GMM estimator based on the structural-form

moment equations is given by

δ̂IVGLS = argmin
δ

m∑
j=1

δ̃′Mj δ̃

σ̂2
jIV

.(13)

3.2 GMM based on reduced-form moment conditions

GMM based on (6) can be formulated in terms of the following moment restrictions:

E
[
zt(yt − z′tΠδ, x′

t − z′tΠ)
]
= 0.

The GMM estimator under homoscedasticity is given by6

δ̂LIML = argmin
δ

∑m
j=1 δ̃′Mj δ̃∑m

j=1(nj − 1)δ̃′Sj δ̃
, , δ̃ = (1, δ′)′.(14)

Here we used
∑m

j=1
(nj−1)Sj∑m

j=1
(nj−1)

as an (unbiased) estimate for Ωj = Ω. Indeed δ̂LIML is the

LIML estimator, i.e. the ML estimator under the assumptions of homoscedasticity and

normality of the disturbances.

Under homoscedasticity the LIML estimator is a moment estimator in the sense of

(10). However, in case of heteroscedasticity LIML will satisfy (10) only if the group sizes

nj are equal. As a consequence we find LIML to be group-asymptotically inconsistent in

general. By making a small adaptation, we do get such a moment estimator:

δ̂MM = arg min
δ

∑m
j=1 δ̃′Mj δ̃∑m
j=1 δ̃′Sj δ̃

.(15)

This estimator equals the LIML estimator if the group-sizes are equal. If the group-

sizes vary it still satisfies (10): it will be group-asymptotically consistent even under

6All derivations are available from the authors.
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heteroscedasticity. The computation of both MM (15) and LIML (14) amounts to a

simple eigenvalue problem.

The GMM estimator under heteroscedasticity is given by

δ̂GMM = arg min
δ

m∑
j=1

δ̃′Mj δ̃

δ̃′Sj δ̃
,(16)

where we used Sj as an (unbiased) estimator of Ωj. It follows from (11) that this GMM

estimator is a moment estimator in the sense of (10). However, the computation of the

GMM estimator (16) cannot be reduced to a simple eigenvalue problem. Here we need an

iterative optimization procedure. The MM estimator may serve as a starting value.

The question is whether the GMM estimator (16) is also the ML estimator under

normality and heteroscedasticity, as it is true for LIML in the homoscedastic case. We

found it to be different. The maximum likelihood estimator is given by

δ̂ML = argmin
δ

m∑
j=1

nj log
( nj − 1∑m

j=1 nj
+

δ̃′Mj δ̃

δ̃′Sj δ̃

)
.(17)

Just as GMM, (16), it is a moment estimator and it can be computed iteratively using the

MM estimator as starting value. We also notice that in case of just-identification, when

m = g, all estimators coincide and satisfy
∑m

j=1 Mj
ˆ̃δ = 0.

4 Group-asymptotics

Notice that if the group sizes equal one, nj = 1, then ‘large-sample’ asymptotics, applied

to formulation (7), would amount to m → ∞. In fact, Anderson (1976, 1984) showed

that estimation in the linear functional relationship is equivalent to limited information

estimation of a single equation in a simultaneous equations model. However, in the latter

case the asymptotics would be different. So, the exact distribution of a single estimator

would be approximated by different ‘large-sample’ distributions depending arbitrarily on

how the model has been formulated. In fact, the origin of the alternative asymptotic

approach can be found in this connection: group-asymptotics combines7 both approaches.

7Such combination was first suggested in Anderson (1976, p. 34).

9



We use the approach described in Bekker (1994), where the number of instruments

is allowed to grow as the number of observations increases. Hahn and Inoue (1999) refer

to such sequences as ‘many-instruments-asymptotics’, and Hahn and Hausman (1999)

interpret the resulting approximations as a convenient method of Edgeworth expansion

“with wider applicability than might be thought considering Bekker-type asymptotics in

isolation.”

In traditional large sample asymptotics, the first-stage regression coefficients can be

consistently estimated by OLS. As a result the uncertainty about the first-stage regression

coefficients does not affect the large-sample asymptotic distribution of the 2SLS estimator.

Exact knowledge about these coefficients would not increase the large-sample asymptotic

efficiency8. However, such additional information might be very useful in the actual finite-

sample setting. Consequently, one may expect large-sample approximations to be overly

optimistic in terms of efficiency. As a result, sizes of conventional large-sample tests based

on 2SLS might become abysmally large (cf. Hahn and Hausman, 1999). By contrast,

under group asymptotics, the number of first-stage regression coefficients increases with

the number of instruments and should be viewed as incidental parameters (cf. Neyman

and Scott, 1948). Consequently, these parameters cannot be consistently estimated and

the uncertainty about the group means πj, which is present in the finite sample, will also

be present asymptotically.

In fact, we consider replicated groups, indicated by k = 1, . . . ,K, such that the obser-

vations in the replications are independent with different group means πjk and covariance

matrices Ωjk = Ωj, j = 1, . . . ,K. The latter condition allows for consistent estimation of

these covariance matrices. For the independent random (g + 1)-vectors (yijk, x
′
ijk), where

i = 1, . . . , nj, j = 1, . . . ,m, and k = 1, . . . ,K, we have

E (yijk, x
′
ijk) = π′

jk(δ, Ig),

Var (yijk, x
′
ijk) = Ωj .

(18)

So, the data in the sample conform to K = 1, where the index k has been suppressed.

Large-sample asymptotic theory for simultaneous equations models, where K is fixed

8In fact, in addition to E [zt(yt − x′
tδ)] = 0 the moment restrictions E [zt(x

′
t − z′

tΠ)] = 0 are irrelevant
to produce (12) as a GMM estimator.
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and the group sizes increase, nj → ∞, shows

n1/2(δ̂IV − δ) A∼ N
(
0, (

m∑
j=1

wjπjπ
′
j)

−1
m∑

j=1

σ2
j wjπjπ

′
j(

m∑
j=1

wjπjπ
′
j)

−1
)

,

n1/2(δ̂IVGLS − δ) A∼ N
(
0, (

m∑
j=1

σ−2
j wjπjπ

′
j)

−1
)

,

(19)

where wj has been defined below (9). Furthermore, δ̂IV may be replaced by δ̂LIML or δ̂MM,

and δ̂IVGLS may be replaced by δ̂GMM or δ̂ML. In case of homoscedasticity the asymptotic

distributions coincide. In case of overidentification, m > g, and heteroscedasticity, the

latter estimators are asymptotically more efficient. The large-sample sequence can also be

represented by fixing nj and increasing K under the restrictions

πjk = πj, j = 1, . . . ,m, k = 1, . . . ,K.(20)

Notice that the number of parameters in πjk, j = 1, . . . ,m, remains fixed in this sequence.

As an alternative, we consider sequences where the number of first-stage regression

coefficients πjk increases. That is, sequences where K → ∞ and the restrictions (20) are

relaxed. We let

1
K

K∑
k=1

πjk → π̄j ,

1
K

K∑
k=1

πjkπ
′
jk → πjπ′

j.

(21)

So, we have mK groups, or instruments, and K
∑m

j=1 nj observations. Both increase as

K → ∞. In order to combine such sequences with large sample sequences, we also allow

for increasing group sizes nj:

Km

K
∑m

j=1 nj
=

m∑m
j=1 nj

→ α.(22)

The large sample asymptotics is found for9 α = 0 and π̄j = πj and πjπ
′
j = πjπ

′
j. Sequences

with α > 0 will be referred to as group-asymptotics.

For sequences where K increases and (20) is not satisfied, the GMM and ML esti-

mators, derived under normality, have to be found by optimization over an increasing

9Notice the number of instruments may grow at a rate faster than O(n
1
3 ), which is given as a sufficient

upper bound by Koenker and Machado (1999) for the validity of conventional asymptotic inference about
the GMM estimator.

11



number of incidental parameters. The expressions for these estimators, and also for the

MM-estimator, take forms similar to the ones described in the previous section for K = 1.

However, the definitions of the matrices Sj and Mj in (8) and (9), resp., should be extended

as follows to cases where K > 1:

Ȳjk =
1
nj

nj∑
i=1

(yijk, x
′
ijk)

′,

Sj =
1
K

K∑
k=1

1
nj − 1

nj∑
i=1

((yijk

xijk

)
− Ȳjk

) ((yijk

xijk

)
− Ȳjk

)′
,

Mj =
1
K

K∑
k=1

wj ȲjkȲ
′
jk.

(23)

The asymptotic normality of the estimators is based on the asymptotic normality of

the statistics Sj and Mj . That is, let ηj = vec (Sj ,Mj), then for sequences satisfying (21)

and (22), with wj fixed, we find

n
1
2 (ηj − E (ηj))

A∼ N(0, lim
n→∞ nVar (ηj)),

n = K
m∑

j=1

nj.
(24)

If K is fixed and nj → ∞, or, if nj is fixed and K → ∞, while (20) is satisfied, then (24)

follows from application of the Lindeberg-Lévy CLT. If nj is fixed and K → ∞, while

(20) is not satisfied, the result follows from application of Hajèk-Sidak’s Theorem (Sen

and Singer, 1993, p 119). Based on (24) we find

plim (Sj) = lim
n→∞ E (Sj) = Ωj,

plim (Mj) = lim
n→∞ E (Mj) = wj(δ, Ig)′πjπ′

j(δ, Ig) +
α

m
Ωj.

(25)

So, for the minimum in (16) we find:

plim


 m∑

j=1

ˆ̃
δ
′
GMM Mj

ˆ̃
δGMM

ˆ̃δ
′
GMM Sj

ˆ̃δGMM


 = α.(26)
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5 The group-asymptotic distributions

The large sample asymptotic distributions, as given in (19) show that all estimators are

consistent and their asymptotic distributions are not affected by deviations from Gaus-

sianity. Of course, such deviations do affect the finite sample distributions. The differ-

ence between finite and large sample distributions is due to the approximating nature of

asymptotics. Phillips (1983, p. 508) remarks that “For the process by which asymptotic

machinery works inevitably washes out sensitivities that are present and important in fi-

nite samples”. This holds true for the group-asymptotic distributions as well. However, we

find these approximations to be more accurate and less inclined to wash out sensitivities.

Contrary to large-sample inference, the GMM estimators based on moment conditions

induced by the structural form, i.e. IV and IVGLS, are found to be inconsistent. Fur-

thermore, we find that the group-asymptotic distributions of GMM estimators, derived

under homoscedasticity, are affected by non-Gaussian deviations. That is, both IV, or

2SLS, and LIML are affected. Interestingly, under heteroscedasticity, the GMM estima-

tor based on the reduced form and the ML estimator are consistent and have the same

group-asymptotic distribution that is not affected by third and fourth-order moments.

The derivations of the group-asymptotic distributions are given in the Appendix.

When denoting third and fourth order moments, we drop the index i, i.e. E (εjvjv
′
j) ≡

E (εijvijv
′
ij); in case of homoscedasticity we also drop the index j. If a parameter is

constant over all groups, we drop the index j as well. If a parameter varies, we use a

bar to denote its mean, i.e. Σ̄ ≡ ∑m
j=1 Σj/m. Due to its frequent occurrence we use

φj ≡ σj21/σj .

5.1 IV

The GMM estimators based on the structural form, i.e. IV, (12), and IVGLS, (13), are

not moment estimators in the sense of the moment equations (10). As a result, these

estimators are found to be inconsistent for group-asymptotic sequences if α > 0. Due to

this inconsistency, the group-asymptotic distributions are complicated. Furthermore, the

asymptotic distributions are affected, rather strongly, by deviations from normality. So

the analytical properties of these estimators are far from attractive. Here we will consider

only IV. We give its group-asymptotic distribution for the general heteroscedastic case.

13



It follows immediately from the probability limits (25) of the matrices Mj and Sj that

δ̂IV is inconsistent. Let δ∗IV = plim δ̂IV, then

δ∗IV − δ = α
{ m∑

j=1

(wjπjπ′
j) + αΣ̄22

}−1

σ̄21.

So IV is consistent only if either α = 0, i.e. when large-sample asymptotics is considered,

or σ21 = 0, which amounts to exogeneity of the explanatory variables. The inconsistency

might be small if the group sizes are large and the group means are well-spread, i.e. the

first-stage regressions have a high R2. Furthermore, the endogeneity of the explanatory

variables should not be large. Hahn and Hausman (1999) and Hahn and Inoue (1999)

discuss these matters in detail for an illustrative simple model.

In order to present the asymptotic distribution, let σ2∗
j = (1,−δ∗′IV)Ωj (1,−δ∗′IV)′ and

σ∗
j21 = (0, Ig)Ωj(1,−δ∗′IV)′, then

n1/2(δ̂IV − δ∗IV) A∼N(0, VIV),

VIV = (A1 + A2)−1(B1 + B2 + B3)(A1 + A2)−1,

where

A1 =
m∑

j=1

wjπjπ
′
j, A2 = αΣ̄22,

B1 =
m∑

j=1

σ2∗
j wjπjπ′

j,

B2 =
m∑

j=1

{wj(δ∗IV − δ)′πjπ
′
j(δ

∗
IV − δ)Σj22

− wjσ
∗
j21(δ

∗
IV − δ)′πjπ′

j − wjπjπ′
j(δ

∗
IV − δ)σ∗

j12

+ (α/m)σ2∗
j Σj22 + (α/m)σ∗

j21σ
∗
j12},

B3 =
m∑

j=1

[
wj

(
α

wjm

)2 {
E((εj − v′j(δ

∗
IV − δ))2vjv

′
j) − σ2∗

j Σj22 − 2σ∗
j21σ

∗
j12

}

− 2(α/m)π̄′
j(δ

∗
IV − δ)E((εj − v′j(δ

∗
IV − δ))vjv

′
j)

+ 2(α/m)π̄jE((εj − v′j(δ
∗
IV − δ))2v′j)

+ 2(α/m)E((εj − v′j(δ
∗
IV − δ))2vj)π̄′

j

]
.
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We find the asymptotic IV distribution is affected by deviations from normality. That

is to say, the third-order moments in B3 vanish only under normality, where B3 = 0,

or if α = 0, so that A2 = B2 = B3 = 0. In the latter case we find the large-sample

asymptotic distribution as given in (19). In general the asymptotic distribution seems

rather complicated, although the expression becomes more transparant when terms of

order α2 are ignored.

In addition to the inconsistency, the expression for the asymptotic distribution shows

the 2SLS estimator is affected rather strongly by non-Gaussianity. As this result can be

expected to hold in general, i.e. not restricted to a context with indicator instruments,

it shows the tests proposed in Hahn and Hausman (1999), which are based on biased-

corrected 2SLS, are affected by non-Gaussianity. Whether this could have a relevant

effect on the accuracy of the proposed inference procedures remains to be seen.

5.2 LIML

It is well-known from Neyman and Scott (1948) that ML estimators of structural param-

eters are not necessarily consistent in the presence of incidental parameters. However, the

incidental parameters in the group-asymptotic sequences do not affect the consistency of

the LIML estimator, (14). It is consistent under homoscedaticity, since in that case it

is a moment estimator in the sense of the moment equations (10). Its group-asymptotic

distribution has been computed under the assumption of homoscedasticity. It is given by

n1/2(δ̂LIML − δ) A∼N(0, VLIML),

VLIML = σ2A−1
1 (B1 + B2 + B3)A−1

1 ,

where

A1 = B1 =
m∑

j=1

wjπjπ′
j ,

B2 =
α

(1 − α)
(Σ22 − φφ′),
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B3 =
(

α

1 − α

) m∑
j=1

[
(wj − m−1)

{
π̄j(E(ε/σ)3φ′ + E((ε/σ)2v′))

+ (E(ε/σ)3φ + E((ε/σ)2v))π̄′
j

}]
+

(
α

1 − α

)2 m∑
j=1

[
(wj − m−1)2

wj

{
E(ε/σ)4φφ′ + E((ε/σ)2vv′)

−φE((ε/σ)3v′) − E((ε/σ)3v)φ′ − Σ22 + φφ′} ] .

Again we find the group-asymptotic distribution is affected by non-Gaussian disturbances.

The third- and fourth-order moments in B3 vanish only under normality, where B3 = 0,

or if either α = 0 so that B2 = B3 = 0, or group-sizes are equal: wj = m−1. Especially in

the latter case the asymptotic distribution of LIML is more simple than the one found for

2SLS if α > 0. Of course, if α = 0 the asymptotic distribution boils down to (19) again.

We also find, under normality and homoscedasticity, that LIML is group-

asymptotically efficient among the other consistent estimators considered in this paper.

That is, under normality and homoscedasticity. VLIML ≤ VMM = VGMM, where the differ-

ence is zero if the group sizes are equal or α = 0.

These results for LIML have been derived under the assumption of homoscedasticity.

We found LIML to be consistent over this restricted parameter space. However, in case of

heteroscedasticity, LIML is no longer a moment estimator in the sense of (10). In general,

under heteroscedasticity (when LIML is not an ML estimator even under Gaussianity),

LIML is inconsistent. However, using a small adaptation we were able to formulate the

MM estimator (15). If the group sizes are equal, LIML is numerically equivalent to the

MM estimator. The latter estimator is a moment estimator, in the sense of (10), even

if the disturbances vary heteroscedastically. Its group-asymptotic distribution has been

computed for the general heteroscedastic case.

5.3 MM

The moment estimator (15) is consistent under heteroscedasticity and its group-asymptotic

distribution is given by

n1/2(δ̂MM − δ) A∼N(0, VMM),

VMM = A−1
1 (B1 + B2)A−1

1 ,
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where

A1 =
m∑

j=1

wjπjπ′
j,

B1 =
m∑

j=1

σ2
j wjπjπ′

j ,

B2 = α
m∑

j=1

wjσ
2
j

(wjm − α)

{
Σj22 − φjφ

′
j + 2(φj − σjσ21

σ2
)(φj − σjσ21

σ2
)′
}

.

Its large sample asymptotic distribution, found for α = 0, is the same as for LIML. Re-

markably, and contrary to LIML, the group-asymptotic distribution of the MM estimator

is not affected by third and fourth order moments. In addition to its consistency, the

simple asymptotic distribution of the MM estimator is an attractive property. This holds

in particular for the construction of confidence intervals based on an estimation of VMM.

Due to its consistency under heteroscedasticity the MM estimator may also serve as an

initial value to compute the GMM and ML estimators iteratively.

5.4 GMM and ML

The GMM estimator (16) based on the heteroscedastic reduced form is numerically dif-

ferent from the ML-estimator under heteroscedasticity (17), but their group-asymptotic

distributions are equal. Contrary to the estimators derived under homoscedasticity, they

are consistent in general. The asymptotic distribution is given by

n1/2(δ̂GMM − δ) A∼N(0, VGMM),

VGMM = A−1
1 (B1 + B2)A−1

1 ,

where

A1 = B1 =
m∑

j=1

σ−2
j wjπjπ′

j,

B2 = α
m∑

j=1

wjσ
−2
j

(wjm − α)

(
Σj22 − φjφ

′
j

)
.

Here we find a relatively simple group-asymptotic distribution that is not affected by

deviations from Gaussianity. The large sample asymptotic distribution, found for α = 0,

is efficient under both hetero and homoscedasticity. Also, if α 6= 0 and σ2
j = σ2, we

find VGMM ≤ VMM, although the difference is zero in case of homoscedasticity, i.e. when

Σj = Σ. However, it cannot be established in general that VGMM ≤ VMM. If the group
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sizes are equal, wj = 1/m, and σ2
j = σ2 then we find VGMM = VLIML. Consequently, the

GMM estimator has many attractive properties, incuding a remarkably simply asymptotic

distribution, which is not affected by third and fourth-order moments.

6 Consistent estimation of the group-asymptotic distribu-

tions.

In order to compute confidence intervals based on the asymptotic distributions, by invert-

ing Wald-tests, the group-asymptotic covariance matrices should be consistently estimated.

Under Gaussianity and homoscedasticity a consistent estimator of VLIML has been given

in Bekker (1994, (4.11)). In the present context, the covariance matrix VLIML is affected,

to some extent, by third and fourth-order moments. A stronger dependence, which is

present even when group sizes are equal, is present in the asymptotic distributions of IV

and IVGLS. However, we make no attempt at estimating third and fourth-order moments

in order to estimate asymptotic covariance matrices of inconsistent estimators. We only

consider consistent estimation of VMM and VGMM. Such estimators can be easily formu-

lated based on (25) and (26). In fact, for the simulations we used estimators of α for each

group separately.

α̂j = mwj
(1,−δ̂′)Mj(1,−δ̂′)′

(1,−δ̂′)Nj(1,−δ̂′)′
,(27)

where

Nj =
nj − 1∑m

j=1 nj
Sj + Mj ,(28)

and δ̂ is a consistent estimator, such as δ̂MM or δ̂GMM. The matrices πjπ′
j were estimated

by Mj22 − α̂j

m Sj22.

7 Monte Carlo simulations

7.1 The design.

A Monte Carlo study by Hahn and Inoue (1999) confirms that confidence sets based on

Bekker’s (1994) estimator of VLIML perform very well, even when the correlation between

the endogenous regressor and the instruments is very small. The present Monte Carlo
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experiment focusses on the quality of group-asymptotic approximations to the exact dis-

tributions of the estimators and on the performance of group-asymptotic confidence sets

in a heteroscedastic context.

In the simulations the group sizes were taken equal, nj = n/m, so that the LIML and

MM estimators were numerically equivalent. We considered a single explanatory variable

and used, without loss of generality, δ = 0. The 2×2 matrices Σj have been parameterized

as

Σj =


 σ2

j rσjσvj

rσjσvj σ2
vj


 ,

so that the correlation, r, is fixed. The values for σj, σvj and the group means πj were

found by independent drawings from uniform distributions. That is, πj was drawn from

U(1
2p, 11

2p) and both σj and σvj were drawn from U(1
2 , 11

2 ). Consequently, the input

parameters for the simulations were given by: n,m, p and r.

We used three values of n and for each such value we used three values of p. That is,

we used:

n = 120: p = .7, 1, 3;

n = 600: p = .3, .7, 1;

n = 3000: p = .1, .3, .5.

We considered all parameter combinations with m = 3, 10, 30, and r = .1, .5, .7.

Using these 81 parameter combinations we generated Gaussian observations with 20, 000

replications.

The smaller values of p correspond to cases with instruments that are not strong.

However, these values are not that extreme to make the bimodality of the IV distribution

(Nelson and Startz, 1990; Maddala and Jeong, 1992) manifest.

7.2 Approximations.

Let M1 and M2 be given by the maximum absolute difference between the simulated

distributions 10 and the asymptotic approximations for α = 0 and α = α∗ = (m−1)/(n−1),

10The distributions of the estimators have been estimated at the points P (δ̂ ≤ x(Asd1)), x = −3.0(0.5)−
2.0(0.6) − 1.4(0.4) − 1.0(0.2)1.0(0.4)1.4(0.6)2.0(0.5)3.0.
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respectively. The latter value for α equals the ratio of the degree of overidentification and

the total number of degrees of freedom11 (cf. Bekker, 1994). We computed the following

estimators: IV, MM (= LIML), GMM and ML. The asymptotic standard deviation for

IV is denoted by Asd1IV = (VIV/n)1/2 if α = 0, and by Asd2IV if α = α∗. We use similar

expressions for the remaining estimators.

We find for all estimators and virtually all parameter combinations M1 > M2. For IV,

a plot of M1 and M2 against the normalized bias and, for the remaining estimators, plots

of M1−M2 against the normalized standard deviations, Asd2/Asd1, provide pictures very

similar to the ones given in Bekker (1994) for the homoscedastic case.

TABLE 1
Maximum Absolute Differences between

Empirical and Asymptotic
Cumulative Distribution Functions

Mean Maximum
M1 M2 M1 M2

IV .146 .010 .708 .037
MM .025 .016 .122 .065
GMM .039 .030 .136 .093
ML .045 .037 .182 .146

Table 1 gives for each estimator the mean and maximum over the 81 values of M1 and

M2. It shows that the improvement in fit achieved by the alternative approximation, α =

α∗, compared to α = 0 is most dramatic for IV. The fit of IV is rather good. For the other

estimators the deviations between the simulated distribution and their approximations can

be explained in part by the skewness of the distributions (cf. Bekker, 1994). In addition,

the simulated distributions are more spread out compared to their approximations. This

effect is rather mild for MM, but it gets stronger in the sequence MM, GMM, ML. We

find that ML does not perform well for 9 extreme parameter points where the group sizes

equal 4.

11Alternatively, α∗ is the ratio of the number of incidental parameters in Π, (mg), minus the minimum
number needed for identification, (g2), and the number of observations in xij , (ng), minus the number
needed for identification, (g2).
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7.3 Means and MSE’s.

Here we consider the means and MSE’s of the simulated distributions as informative

summary statistics12. For IV we find that the means and MSE’s behave very much like

their asymptotic (α = α∗) counterparts. When plotted against each other we find almost

perfect straight lines with slope 1.

Figure 1: The mean of MM.

Figure 1 gives the mean of MM against f × Asd2MM, where

f = −r/

√√√√ m∑
j=1

njπ2
j /σ

2
vj ,

is a measure of skewness similar to the one used by Bekker (1994). Indeed we find the mean

of the simulations is affected by the skewness. The three differently indicated points13

correspond to the largest values of Asd2MM. For GMM we find very similar plots. For

ML, the number and extremeness of the outliers is much larger.

Figure 2 gives the MSE of MM against (Asd2MM)2. However, we excluded 6 outliers

with relatively weak instruments14 and 2 outliers15 where the group sizes equal 4 . We

find that the MSE is bounded by its asymptotic counterpart, indicating that the simulated

12The first two moments of the exact distributions do not exist for the LIML-like estimators. So the
results should be interpreted with some care. Outliers may be the result of fat tails.

13Found for p = .1, r = .1, m = 10, 30; p = .1, r = .5, m = 30.
14Found for p = .1, r = .1, .5.
15Found for p = .7, r = .1, .5.
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distribution is more spread out than its asymptotic approximation.

Figure 2: MSE of MM.

Figure 3: The ratio of MSE’s of MM and MD.

Figure 3 gives a comparison of the MSE’s of MM and GMM in relation to their asymp-

totic counterparts. That is, we plotted MSEMM/MSEGMM against (Asd2MM/Asd2GMM)2.

The three differently indicated points16 are cases where the fit of the asymptotic approx-

imation is much better for MM (M2 < 0.01) than for GMM (M2 > 0.07). We find that

the ratio of the MSE’s is bounded by its asymptotic counterpart. Furthermore, there is a

clear tendency of GMM to be more efficient than MM.

16Found for n = 120, m = 30, p = 3, r = .1, .5, .7.
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7.4 Confidence intervals.

Based on the estimates of the asymptotic variances, as described in Section 6, 95% confi-

dence intervals have been computed both for α = 0 and for the alternative asymptotics,

where α is estimated. Let the proportion of the 20,000 replications where the true value

δ = 0 was covered by these intervals be given by P1 and P2, respectively.

TABLE 2
The level of 95% confidence intervals.

Mean Minimum
P1 P2 P1 P2

IV .888 - .257 -
MM .916 .953 .633 .943
GMM .871 .919 .526 .627
ML .851 .897 .404 .604

Table 2 gives the mean and the minimum over the 81 values of P1 and P2. It shows

that the confidence intervals based on an estimate of α are indeed more accurate. For

IV there is only one confidence interval, based on α = 0, whose performance is frequently

abysmally poor. The accuracy of the alternative intervals is good for MM and moderate

for GMM and ML, although GMM is better than ML. However, for GMM and ML, there

is a clear group of outliers. These are the 9 parameter points with group size 4. If we

exclude this group, then the mean and minimum of P2 for GMM become .942 and .899,

respectively. If we also exclude group size 12, then these quantities become .946 and .927,

resp. So, as long as the group sizes are not too small (≤ 12), GMM performs well.

Figure 4 gives P1 and P2 for MM against (Asd2MM/Asd1MM)2. It shows a systematic

improvement in accuracy when the intervals are based on estimates of α, instead of α = 0.

Although there is a slight tendency to overestimate the exact interval.
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Figure 4: Confidence intervals of MM.

Appendix

In order to derive the group-asymptotic distributions of the estimators, we first give a

matrix formulation of the model. Let the mK × g matrix Π have rows (e′j ⊗ e′k)Π = π′
jk,

where ej and ek are the j-th and k-th column of Im and IK , resp. So, we consider data

conforming to

(yijk, x
′
ijk) = (e′j ⊗ e′k)Π(δ, Ig) + (uijk, v

′
ijk),

where the vectors of (uijk, v
′
ijk) are independent with zero means and covariance matrices

Ωj, for i = 1, . . . , nj, j = 1, . . . ,m and k = 1, . . . ,K.

Collect the data (yijk, x
′
ijk, e

′
j ⊗ e′k) in a matrix (Y,Z), where Y (0, Ig)′ = X contains

the observations x′
ijk. Furthermore, define the projection matrices

Qj = Diag {Z(ej ⊗ ιK)},

Pj = Z(eje
′
j ⊗ IK)Z ′/nj ,

where ιK is a vector of K ones. So Qj and Pj have ranks equal to Knj and K, resp. The

matrices in (23) can now be written as Mj = Y ′PjY/n, and Sj = Y ′(Qj −Pj)Y/{(K(nj −
1)}. We will also use Nj as given in (28): Nj = Y ′QjY/n.
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The results are based on the asymptotic properties of extremum estimators as de-

scribed in Amemiya (1985). For each estimator δ̂ = arg min
δ

(L), we give δ∗ = plim δ̂ =

arg min
δ

( plim (L)) and matrices A and B satisfying

A = plim

(
∂2L

∂δ∂δ′

)∣∣∣∣∣
δ∗

, n1/2 ∂L

∂δ

∣∣∣∣
δ∗

A∼N(0, B).

For the probability limits we use (25) and we notice that

plim (Nj) = wj(δ, Ig)′πjπ′
j(δ, Ig) + wjΩj.

The asymptotic normality is based on (24). We find

n1/2(δ̂ − δ∗) A∼N(0, A−1BA−1).

For the computations we use the following lemma, which is a generalization of

Lemma 1 in Bekker (1994), which has also been applied by Hahn and Hausman (1999).

Consider the expectation and covariance matrix of vectors of the form x = (M +U)′C(M +

U)a, where a,M and C are nonstochastic; a is a vector and C is a symmetric matrix. The

rows of U are i.i.d. with zero expectation and covariance matrix Ω. Let u′ be such a row

and let d be the vector consisting of the diagonal elements of C.

Lemma 1 The expectation and variance of x are given by

E(x) = M ′CMa + tr (C)Ωa,

Var (x) = a′ΩaM ′C2M + a′M ′C2MaΩ

+ Ωaa′M ′C2M + MC2Maa′Ω

+ tr (C2)a′ΩaΩ + tr (C2)Ωaa′Ω

+ d′d{E((a′u)2uu′) − a′ΩaΩ − 2Ωaa′Ω}
+ 2d′CMaE((a′u)uu′)

+ M ′CdE((a′u)2u′) + E((a′u)2u)d′CM.

If U is Gaussian, the terms in which d appears are equal to zero.
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A. IV

Here

L = 1/2
m∑

j=1

δ̃′Mj δ̃,

and

2 plim L = δ̃′
[
(δ0, Ig)′

m∑
j=1

(wjπjπ
′
j)(δ0, Ig) + αΩ

]
δ̃,

so δ∗IV is easily found as the one given in Section 5.1. The first derivative is given by

∂L/∂δ = −(0, Ig)
∑m

j=1 Mj δ̃. Under the additional condition n1/2(K/n−α/m) = o(1), we

find

n1/2E

(
∂L

∂δ

)∣∣∣∣
δ∗
IV

= n1/2 plim
(

∂L

∂δ

)∣∣∣∣∣∣
δ∗
IV

+ o(1) = o(1).

So,

n1/2 ∂L

∂δ

∣∣∣∣
δ∗
IV

= n1/2
{

∂L

∂δ

∣∣∣∣
δ∗
IV

− E

(
∂L

∂δ

)∣∣∣∣
δ∗
IV


+ o(1),

which has asymptotic covariance matrix

BIV = lim
n→∞

m∑
j=1

(0, Ig) Var (Y ′PjY δ̃∗IV)(0, Ig)′/n.

Using Lemma 1 we find BIV = B1 + B2 + B3 as in Section 5.1. The second derivative is

given by ∂2L/∂δ∂δ′ = (0, Ig)
∑m

j=1 Mj(0, Ig)′. So

AIV =
m∑

j=1

(wjπjπ′
j) + αΩ22.

B. LIML

The group-asymptotic distribution of the LIML estimator will be derived under the as-

sumption of homoscedasticity. Equivalent to (14), we may consider

L = 1/2 log

m∑
j=1

δ̃′Nj δ̃

m∑
j=1

δ̃′(Nj − Mj)δ̃
.
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As plim (L), with Ωj = Ω, is minimized by the true value δ, δ̂LIML is consistent. The first

derivative is given by

∂L

∂δ
= Rx,

R =
(0, Ig)

m∑
j=1

(δ̃′Nj δ̃Ig+1 − Nj δ̃δ̃
′)

m∑
j=1

(δ̃′Nj δ̃)
m∑

j=1
(δ̃′(Nj − Mj)δ̃)

,

x =
m∑

j=1

{(Nj − Mj)δ̃ + aNj δ̃} ,

where a = 0. However, we may also choose a = mK/n − 1, so that E(x)|δ = 0. That

is, let Cj = n−1{(mK/n)Qj − Pj}, then tr
∑m

j=1 Cj = 0 and x =
∑m

j=1 Y ′CjY δ̃. So, by

Lemma 1, x has zero expectation. However, the diagonal elements of the matrices Cj are

equal to zero only in case of equal group sizes. We find, by application of Lemma 1

n1/2x
∣∣∣
δ

A∼N(0, Vx),

Vx = lim
n→∞

m∑
j=1

n Var (Y ′CjY δ̃)

=
m∑

j=1

[
σ2(1 − α)2wj(δ, Ig)′πjπ

′
j(δ, Ig)

+ (α2wj + (1 − 2α)α/m)(σ2Ω + Ωδ̃δ̃′Ω)

+ wj

(
α − α

wjm

)2{
E

(
ε2

(
u

v

)
(u, v′)

)
− σ2Ω − 2Ωδ̃δ̃′Ω

}

+ wj(α − 1)

(
α − α

wjm

){
(δ, Ig)′π̄jE

(
ε2(u, v′)

)

+ E

(
ε2

(
u

v

))
π̄′

j(δ, Ig)

} ]
.

As,

plim (R)|δ =
1

σ2(1 − α)

(
(0, Ig) − φδ̃′

σ

)
= D,

we find BLIML = DVxD′ = σ−2(B1 + B2 + B3), where B1, B2 and B3 are given in Section
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5.2. Finally, the second derivative is given by

∂2L

∂δ∂δ′
= (0, Ig)




m∑
j=1

Nj

m∑
j=1

δ̃′Nj δ̃
− 2

(
m∑

j=1
Nj δ̃

)(
δ̃′

m∑
j=1

Nj

)
(

m∑
j=1

δ̃′Nj δ̃

)2

−

m∑
j=1

(Nj − Mj)

m∑
j=1

δ̃′(Nj − Mj)δ̃
+ 2

(
m∑

j=1
(Nj − Mj)δ̃

)(
δ̃′

m∑
j=1

(Nj − Mj)

)
(

m∑
j=1

δ̃′(Nj − Mj)δ̃

)2




(0, Ig)′.

So, ALIML = σ−2∑m
j=1 wjπjπ

′
j.

C. MM

Here

L = 1/2 log

m∑
j=1

δ̃′Mj δ̃

m∑
j=1

δ̃′Sj δ̃
.

As plim (L) is minimized by the true value δ, δ̂MM is consistent. The first derivative is

given by ∂L/∂δ = Rx, where

R = (0, Ig)

(
m∑

j=1
Sj δ̃δ̃

′ −
m∑

j=1
δ̃′Sj δ̃Ig+1

)
m∑

j=1
(δ̃′Sj δ̃)

m∑
j=1

(δ̃′Mj δ̃)
,

x =
m∑

j=1

Mj δ̃ − a
m∑

j=1

Sj δ̃,

and a = 0. However, Rx is invariant under different choices for a. Therefore, we use

a = K/n, so that E(x)|δ = 0. That is, let x =
∑m

j=1 xj with

(A1) xj = Mj δ̃ − (K/n)Sj δ̃

= n−1Y ′ (njPj − Qj)
nj − 1

Y δ̃ = Y ′CY δ̃,

then the implicitly defined matrix C has diagonal elements equal to zero. Applying Lemma

1 we find
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(A2) n1/2xj

∣∣∣
δ

A∼N(0, Vxj )

Vxj = lim
n→∞nVar (xj)

= σ2
j wj(δ, Ig)′πjπ′

j(δ, Ig) +
αwj

mwj − α
(σ2

j Ωj + Ωj δ̃δ̃
′Ωj).

Furthermore, we have

plim (R)|δ = (ασ2)−2{(σ2)(0, Ig) − (0, Ig)Ωδ̃δ̃′} = D.

So

BMM = D
m∑

j=1

VxjD
′

=
(
ασ2

)−2


 m∑

j=1

σ2
j wjπjπ′

j +
αwj

mwj − α

{
σ2

j Ωj22 − (0, Ig)Ωj δ̃δ̃
′Ωj(0, Ig)′

+ 2(0, Ig)

(
Ωj −

σ2
j Ω

σ2

)
δ̃δ̃′
(

Ωj −
σ2

j Ω

σ2

)
(0, Ig)′

}]
.

The second derivative is given by

∂2L

∂δ∂δ′
= (0, Ig)




m∑
j=1

Mj

m∑
j=1

δ̃′Mj δ̃
− 2

(
m∑

j=1
Mj δ̃)(

m∑
j=1

δ̃′Mj)

(
m∑

j=1
δ̃′Mj δ̃)2

−

m∑
j=1

Sj

m∑
j=1

δ̃′Sj δ̃
+ 2

(
m∑

j=1
Sj δ̃)(

m∑
j=1

δ̃′Sj)

(
m∑

j=1
δ̃′Sj δ̃)2




(0, Ig)′.

So AMM = (ασ2)−1∑m
j=1 wjπjπ

′
j .

D. GMM

Here

L = 1/2
m∑

j=1

δ̃′Mj δ̃

δ̃′Sj δ̃
.

As plim (L) is minimized by the true value δ, δ̂GMM is consistent. The first derivative is

given by

∂L

∂δ
=

m∑
j=1

Rjxj ,

Rj = (0, Ig)
(Sj δ̃δ̃

′ − δ̃′Sj δ̃Ig+1)
(δ̃′Sj δ̃)2

,

xj = Mj δ̃ − aSj δ̃,
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where a = 0. However, we may also use a = K/n so that xj is the same as in (A1).

Furthermore,

(A3)
plim (Rj)|δ = (0, Ig)

(Ωj δ̃δ̃
′ − σ2

j Ig+1)
σ4

j

= Dj .

So

BGMM =
m∑

j=1

DjVxjD
′
j

=
m∑

j=1

σ−2
j

{
wjπjπ′

j +
αwj

mwj − α

(
Ωj22 − (0, Ig)

Ωj δ̃δ̃
′Ωj

σ2
j

(0, Ig)′
)}

.

The second derivative, which can be used in a Newton-Raphson procedure, is given by

∂2L

∂δ∂δ
= (0, Ig)

m∑
j=1

{
Mj

δ̃′Sj δ̃
− 2

Mj δ̃δ̃
′Sj

(δ̃′Sj δ̃)2
− 2

Sj δ̃δ̃Mj

(δ̃′Sj δ̃)2
− (δ̃′Mj δ̃)Sj

(δ̃′Sj δ̃)2

+ 4
(δ̃′Mj δ̃)Sj δ̃δ̃

′Sj

(δ̃′Sj δ̃)3

}
(0, Ig)′.

So, AGMM =
∑m

j=1 σ−2
j wjπjπ′

j.

E. ML

Here

L = 1/2
m∑

j=1

wj log
δ̃′Nj δ̃

δ̃′Sj δ̃
.

As plim (L) is minimized by the true value δ, δ̂ML1 is consistent. The first derivative is

given by

∂L

∂δ
=

m∑
j=1

Rjxj ,

Rj = (0, Ig)
(Nj δ̃δ̃

′ − δ̃′Nj δ̃Ig+1)
δ̃′Nj δ̃δ̃′Sj δ̃

,

xj = aNj δ̃ − wjSj δ̃,

where a = 0. However, we may also choose a = 1, so that xj is the same as in (A1). As

plim (Rj)|δ is as in (A3), we find BML = BGMM. The second derivative is given by

∂2L

∂δ∂δ′
= (0, Ig)

m∑
j=1

wj

{
Nj

δ̃′Nj δ̃
− 2

Nj δ̃δ̃
′Nj

(δ̃′Nj δ̃)2
− Sj

δ̃′Sj δ̃
+ 2

Sj δ̃δ̃
′Sj

(δ̃′Sj δ̃)2

}
(0, Ig)′.

So, AML = AGMM.
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