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Abstract

In the context of multivariate regression (MLR) and simultaneous equations (SE),
it is well known that commonly employed asymptotic test criteria are seriously
biased towards overrejection. In this paper, we propose exact likelihood based
tests for possibly nonlinear hypotheses on the coefficients of SE systems. We
discuss a number of bounds tests and Monte Carlo simulation based tests. The
latter involves maximizing a randomized p-value function over the relevant nui-
sance parameter space which is done numerically by using a simulated annealing
algorithm. We consider limited and full information models, in which case we
introduce a multi-equation Anderson-Rubin-type test. Illustrative Monte Carlo
experiments show that: (i) bootstrapping standard instrumental variable (IV)
based criteria fails to achieve size control, especially (but not exclusively) under
near non-identification conditions, and (ii) the tests based on IV estimates do not
appear to be boundedly pivotal and so no size-correction may be feasible. By
contrast, likelihood ratio based tests work well in the experiments performed.

Key words: Monte Carlo tests, bounds tests, simultaneous equations, non-
linear hypotheses, finite sample tests.



1 Introduction

FEconometricians are often confronted with technical difficulties arising from si-
multaneity when testing parameter restrictions in systems of equations. With few
exceptions, the distributions of standard test statistics are known only asymptot-
ically due to feedback from the dependent variables to the explanatory variables.
There will obviously be approximation errors when the asymptotic results are
applied to samples of moderate size as is frequently the case in simultaneous equa-
tions (SE) applications. Although long recognized as a serious issue in statistical
inference, finite sample validity has not received the attention it deserves in such
contexts. Indeed, tests of parameter significance have almost invariably been based
on asymptotic procedures.

Exact procedures have been proposed only for a few highly special cases. Early
in the development of econometric theory relating to the SE model, Haavelmo
(1947) constructed exact confidence regions for OLS reduced form parameter es-
timates and corresponding structural parameter estimates. Bartlett (1948) and
Anderson and Rubin (1949) proposed exact F-tests for specific classes of hypoth-
esis in the context of a structural equation along with corresponding confidence
sets. Maddala (1974) and Dufour and Jasiak (1999) have described finite sample
single-equation procedures which can be viewed as extensions of the latter proce-
dures. Some exact specification tests have also been suggested for SE. In particular,
Durbin (1957) proposed a bounds test against serial correlation in SE and, more re-
cently, Harvey and Phillips (1980, 1981a, 19815, 1989) have suggested tests against
serial correlation, heteroskedasticity and structural change in a single structural
equation. In both cases, the tests are based on residuals from a regression of the
estimated endogenous part of an equation on all exogenous variables. An exact
F-test involving reduced form residuals was proposed by Dufour((1987), Section 3)
for the hypothesis of independence between the full vector of stochastic explanatory
variables and the disturbance term of a structural equation. This procedure gener-
alizes earlier tests suggested by Wu((1973), T3 statistic) and Hausman((1978), eq.
2.23). From a different standpoint, the finite sample distributions of commonly
used estimators and test statistics have also received attention in the literature.
For a review of the main findings in this area, the reader may consult Phillips
(1983) and Taylor (1983). It is clear from these results that the exact distributions
in most cases depend on nuisance parameters. Except for special hypotheses, no
work seems presently available that resolves the problem of nuisance parameters
in finite samples.

Because of the computational complexity of maximum likelihood methods in
SE models, statistical inference has generally been based on instrumental variable
(IV) methods. The problems associated with asymptotically valid tests in IV
regressions are discussed in Dufour (1997). In particular, it is shown that usual
t-type tests, based on common IV estimators, such as two-stage least squares, have



significance levels that may deviate arbitrarily from their nominal levels since it is
not possible to bound the null distributions of the relevant test statistics to obtain
valid inference. This results from identification concerns and is related to the so-
called “weak instruments® problem; see, e.g. Nelson and Startz (1990a, 19900),
Buse (1992), Maddala and Jeong (1992), Angrist and Krueger (1994), Staiger
and Stock (1997), Bound, Jaeger and Baker (1995), Hall, Rudebusch and Wilcox
(1997), Cragg and Donald (1996), and Wang and Zivot (1998).1

With the declining cost of computing, a natural alternative to traditional infer-
ence are simulation-based methods such as bootstrapping; for reviews, see Efron
(1982), Efron and Tibshirani (1993), Hall (1992), Jeong and Maddala (1993),
Vinod (1993), Shao and Tu (1995), Li and Maddala (1996) and Davidson and
MacKinnon(1999a, 19996, 1999¢). These surveys suggest that bootstrapping can
provide more reliable inference for many problems. In connection with the SE
model, examples in which the bootstrap outperforms conventional asymptotics in-
clude: Freedman and Peters (1984a), Green, Hahn and Rocke (1987), Hu, Lau,
Fung and Ulveling (1986), Korajczyk (1985) and Dagget and Freedman (1985).
Others however, find that the method leads to little improvement, e.g. Freed-
man and Peters (1984b), Park (1985) and Beran and Srivastava (1985). Clearly,
there appears to be a conflict in the conclusions regarding the effectiveness of the
bootstrap in SE contexts.?

This paper addresses these issues and develops alternative simulation based
test procedures in limited and full information SE models. Whereas conventional
procedures are asymptotically justified, the tests we propose are motivated by fi-
nite sample arguments. We focus on likelihood ratio (LR) based statistics. This
choice is motivated by the propositions in Dufour (1997) pertaining to LR’s bound-
edly pivotal characteristic, 7.e. the fact that LR admits nuisance-parameter-free
bounds. Specifically, Dufour (1997) (Theorem 5.1) provides an exact bound on the
null distribution of the LR criterion given general - possibly non-linear®- hypothe-
ses on the coefficients of a Gaussian structural equation. In a different (although
related) context, namely the multivariate linear regression (MLR) model*, Dufour
and Khalaf (1997) propose a pivotal bound on the null distribution of LR, under
general possibly non-linear non-Gaussian hypotheses. Dufour (1997)’s result may
be obtained as a special - although non-optimal - case of the latter bound. In the
present paper, we extend Dufour and Khalaf (1997)’s bound on the standard LR

'For further results relevant to the issue of non-identification, see also Sargan (1983), Phillips
(1984, 1985, 1989), Choi and Phillips (1992), McManus, Nankervis and Savin (1994).

2In fact, it is well known that bootstrapping may fail to achieve size control when the asymp-
totic distribution of the underlying test statistic involves nuisance parameters [see Athreya (1987),
Basawa, Mallik, McCormick, Reeves and Taylor (1991) and Sriram (1994).

3SE LR tests often involve non-linear hypotheses implied by the structure; in connection, see
Bekker and Dijkstra (1990) or Byron (1974)

“The relationship between the MLR and the SE model is readily seen: when all the prede-
termined variables of a SE system are strictly exogenous, the reduced form is equivalent to a
(restricted) MLR system.



test to the SE context.

The results we obtain on the finite sample bound have two further implica-
tions. First, for the specific hypothesis which sets the value of the full vector of
endogenous variables coefficients in a limited information framework, we show that
Wang and Zivot (1998)’s asymptotic bounds test may be seen as an asymptotic
version of the bound we propose here. We use this result to extend the validity of
Wang and Zivot (1998)’s bound to the case of general linear hypotheses on struc-
tural coefficients. Secondly, for general test problems in the limited information
framework, it turns out that our bound is highly related to the Anderson-Rubin
test criterion. In this regard, we also propose a multi-equation Anderson-Rubin-
type test which also admits a pivotal bound based on the results of Dufour and
Khalaf (1997) relating to SURE models. In view of the renewed interest in the
Anderson-Rubin test (see Dufour (1997), Dufour and Jasiak (1999), Staiger and
Stock (1997) and Wang and Zivot (1998)), extensions to a systems context may
prove useful for empirical work.

Although the bounds we introduce here are nuisance-parameter-free, their null
distributions may be quite complex. In view of this, we propose, following Dufour
and Khalaf (1997), to apply the Monte Carlo (MC) test procedure to obtain a sim-
ulation based exact p-value based on the bounds. For further reference, we call the
p-value so obtained a BMC p-value. MC test procedures [first proposed by Dwass
(1957) and Barnard (1963)] may be viewed as parametric bootstrap tests applied
to statistics whose null distribution does not involve nuisance parameters, with
however a fundamental additional observation: the associated randomized test
procedure can easily be performed to control test size exactly, for a given number
of replications. Dufour (1995) extends MC tests to nuisance-parameter-dependent
statistics. A randomized procedure called maximized Monte Carlo (MMC) method
is specifically proposed which yields provably exact tests (in the sense of level con-
trol).> Here we propose to combine the BMC test strategy outlined above with
an MMC test, which can be run whenever the bounds test is not significant. To
understand this strategy, recall that the BMC test is exact in the sense that re-
jections (at level a) are conclusive. Furthermore, as will become clear form our
presentation, the MMC method may be much more expensive (computationally)
then the BMC method, which justifies our sequential procedure. We will also show
that the MMC algorithm may be written in a way to include a standard paramet-
ric bootstrap as a first step. Possibly expensive iterations - to obtain the maximal
MC p-value in question which underlies the MMC test - may thus be saved if the
bootstrap p-value exceeds a.

It is important, at this stage, to emphasize that the distributional theory which
underlies the above procedures holds without imposing regularity conditions on the
null hypothesis. In particular, our proposed tests are valid whether identification

SFor further references regarding MC tests, see Dufour and Kiviet (1996, 1998), Kiviet and
Dufour (1997), Dufour, Farhat, Gardiol and Khalaf (1998) and Dufour and Khalaf (1999).



constraints hold or not. Consequently, identification problems are resolved without
the need to introduce non-standard, e.g. local-to-zero, asymptotics. Furthermore,
although exactness is obtained under parametric assumptions (which are duly de-
fined in the paper), normality is not strictly required.

This paper makes two further contributions relevant to simulation-based tests.
First, we show that standard bootstrap-type tests may not be fully successful in
the case of LR-based statistics and may fail in the case of Wald IV-based tests.
Furthermore, we show that randomization cannot improve the performance of IV-
based Wald tests; given the severity of the problem in the presence of identification
difficulties, the case is made here for LR tests. To do this, we undertake to explore
specifically the identification issue in the context of a small simulation experiment.
More precisely, our main findings are: (i) MC methods based on randomization
procedures where unknown parameters are replaced by estimators do not achieve
size control, and (ii) MMC p-values for IV-based test are always one; in other
words, it is does not appear possible to find a non trivial bound on the rejection
probabilities, so that standard asymptotic and bootstrap procedures are deemed
to fail when applied to such statistics. In contrast, LR-based MMC tests allow one
to control the level of the procedure.%

The paper is organized as follows. Section 2 develops the notation and defini-
tions. Section 3 presents our general test strategy. Linear hypotheses in the single-
equation set-up are considered as a special case in section 4. We also consider
another example which extends the Anderson-Rubin test to the multi-equation
context. Simulation results are reported in Section 5 and Section 6 concludes the

paper.

2 Framework

We consider a system of p simultaneous equations of the form

YB+XI'=U, (2.1)
where Y = [y1, ..., ¥p] is an n X p matrix of observations on p endogenous
variables, X is an n x k matrix of fixed (or strictly exogenous) variables and
U=lu, .., ul =[U1, .., U] is a matrix of random disturbances. The

coefficient matrix B is assumed to be invertible. The equations in (2.1) give the
structural form of the model. Pre-multiplying both sides by B! leads to the
reduced form

Y=XN+V, T=-TB™, (2.2)

or equivalently
y= I, ® X)m+v, (2.3)

SMMC p-values are computed using a simulated annealing (SA) optimization algorithm; for a
description of the latter, see Corana, Marchesi, Martini and Ridella (1987) or Goffe, Ferrier and
Rogers (1994).



where y = vec(Y), 7 = vec(Il), v =vec(V) and V = [v1, ..., vp] = [Vi, ..., V,|'is
the matrix of reduced form disturbances. Further, we suppose the rows U] , ..., U},
of U satisfy the following distributional assumptions:

Ut ~ Jwt, t=1 y eee s N, (24)

where the vector w = vec(wy , ..., wy) has a known distribution and J is an
unknown non-singular matrix. In particular, this condition will be satisfied when

wy ~ N0, 1), t=1, ..., n. (2.5)

More generally, when U; has finite second moments, its covariance matrix will
be var(U;) = JJ' = Q and the covariance matrix of V; will be Var(V;) =
(B~ 1YQB~! = 3. Note that the system’s unrestricted reduced form (URF) is
an MLR model.

A key feature of SE models is the imposition of identification conditions on
the structural coefficients. Usually, these conditions are formulated in terms of
zero restrictions on B and I'. In addition, a normalization constraint is imposed
on the endogenous variables coefficients; this is usually achieved by setting the
diagonal elements of B equal to one. We can rewrite model (2.1), given exclusion
and normalization restrictions as

where Y; and X4; are n X m; and n X k; matrices which respectively contain the
observations on the included endogenous and exogenous variables of the model. Tf
more than m; variables are excluded from the i-th equation, this equation is said
to be over-identified.

Many problems are formulated in terms of limited-information (LI) models,
comprised by a particular structural equation and the reduced form associated
with the included right-hand side endogenous variables such as

yi = Y8, + Xy + i = Z;0; + uj,

Y, = X101 + XoiIlo + Vi, (2.7)

where Z; = [V;, X1, & = (8},7);)and Xy, refers to the excluded exogenous
variables. The associated LI reduced form is

ERd —XH,+[UZVZ},HZ—[M H%l, (2.8)
T = B + 71, T2 = 2535 (2.9)

The necessary and sufficient condition for identification follows from the relation
mo; = Ilp;3,. Indeed (3, is recoverable if and only if

rank(Ily;) = m;. (2.10)



3 Hypothesis tests on structural coefficients based on
reduced forms: the general case

Consider the problem of testing arbitrary restrictions on the structural parameters
of model (2.1), under (2.4). Given the transformation that takes the structural
system into its reduced form (2.3), namely Tl = —T' B!, the constraints in ques-
tion imply nonlinear restrictions on the reduced form parameters. In general, the
induced restrictions on Il may be expressed as

Ho: R € Ao, (3.1)

where R is (r x kp) of rank r and Ag is a non-empty subset of R". This char-
acterization of the hypothesis includes linear restrictions, both within and across
equations, and allows for nonlinear as well as inequality constraints. The LR
criterion to test Hy is nln(A),where

M

A= 2ol

; (3.2)

L

with 35 and 3 being the restricted and unrestricted ML estimators of X in (2.3).
In the statistics literature, A™! is often called the Wilks criterion.

In this context, the theory and test procedures detailed in Dufour and Khalaf
(1997) are directly applicable and may be summarized as follows. To obtain a
pivotal bound on the null distribution of A, consider restrictions of the form

H : QTIC = D, (3.3)

such that Hj C Hy, where () is a ¢ x k with rank ¢ and C is p x ¢ with rank c.
Linear restrictions that decompose into the latter specific form are called uniform
linear (UL) in the MLR literature. Let A*(q,c) be the reciprocal of the Wilks
criterion for testing the latter restrictions. Then, from Dufour and Khalaf (1997)
(Theorems 3.1 and 4.1), it is easy to see that: (i) the null distribution of the
LR statistic for UL hypothesis involves no nuisance parameters under (2.4) and
may easily be obtained by simulation, and (ii) the distribution of A is bounded by
the distribution of A* (g, ¢). Formally, these observations yield the following basic
result.

Theorem 1 Consider the MLR model (2.1) with (2.4). Let A be the statistic
defined by (3.2) for testing restrictions which, when written in terms of the reduced
form (2.3), take the form (3.1). Further, consider restrictions of the form QIIC =
D that satisfy 3.1 where Q is g X k with rank q and C is p X ¢ with rank c. Let
A* (q,c) be the inverse of Wilks’ criterion for testing the latter restrictions. Then
under the null hypothesis, PIA > X\*(a)] < «, for all 0 < a < 1, where X*(a) is
determined such that P[A* (q,c) > X\ (a)] = .



The underlying distributional conditions, namely of the (2.4) form, are appreciably
less restrictive than those of traditional multivariate analysis of variance which
require normal errors. Furthermore, Theorem 1 is valid whether identification is
imposed or not. Indeed, the results from Dufour and Khalaf (1997) (specifically
Theorem 4.1) which we used here were obtained without imposing any regularity
assumption. No further assumptions were needed to extend these results to the
SE test context.

For certain specific cases under (2.5), bounding critical points may be obtained
from the F distribution. In particular, if ¢ = 1,

q[A*(g,1) — 1]

p— ~ F(q,n—k). (3.4)

Pivotal bounds can be derived in a similar way for the SURE model. This in-
volves rewriting the test problem in terms of the MLR model of which the SURE
system under consideration is a restricted form. We will use SURE-type restric-
tions in the context of the Anderson-Rubin systems test which will be introduced
in the next section.

As emphasized above, the bounds implied by Theorem 1 typically involve non-
standard distributions”, however, they can be easily obtained using the BMC
method. The procedure may be summarized as follows (see also Appendix B).
From the observed data, compute the LR test statistic. Generate N simulated
values of the bounding the statistic under the null hypothesis. Then a bounds MC
p-value is obtained from the rank of the observed value of the test statistic within
the set [ observed LR , simulated bounding statistics }

From the description of the BMC procedure, it is easy to see the relation-
ship between MC and parametric bootstrap tests. When the statistics simulated
depend on nuisance parameters (say #), a MC p-value, conditional on ¢ which
we will denote py(LR|f) may be obtained as follows. From the observed data,
compute the LR test statistic. Given 8, generate N simulated values of LR
under the null hypothesis. Then the rank of the observed LR within the set
[ observed LR , simulated LRs } yields py(LR|#). The (standard) parametric

bootstrap corresponds to the case where a consistent estimate of 6 (compatible
with the null hypothesis), say @, is used in the latter algorithm. Following the no-
tation set in Dufour and Khalaf (1999), we will refer to px(LR|6) under the name
Local MC (LMC) p-value. The MMC method involves maximizing pn(LR|6) over
all values of # compatible with the null hypothesis.

At this stage, two points are worth noting. It is evident that for all 0 < a <1
and V@, if the bootstrap p-value exceeds «, then the MMC p-value will also exceed
«. This means that non-rejections in the context of LMC tests may be inter-
preted "exactly”, with reference to the MMC test. Furthermore, by construction,

"We will show in the next section that an important special case corresponds to the F distri-
bution, using (3.4).



if the BMC p-value is less than «, then we can be sure that the MMC p-value is
also less than a. On observing that the BMC procedure avoids the (numerical)
complications associated with maximizing py(LR|f), we recommend the following
sequential procedure (with level «). Obtain a BMC p-value first and reject the
null hypothesis if the BMC p-value is < a. If not, obtain an LMC p-value (which
corresponds, as argued above, to a standard parametric bootstrap) using the con-
strained MLE of 8. If the LMC p-value exceeds «, then conclude the test is not
significant. Otherwise, run an MMC algorithm. To cut cost, it is not necessary to
run the maximization routine to convergence: one may exit and conclude the test
is not significant whenever a p-value which exceeds « is reached.

The above test procedure may be applied in a full information, sub-system
or single-equation set-ups. We will take up specific single and multi-equation
problems in the next section.

4 Hypothesis tests on structural coefficients based on
reduced forms: Special Cases

In this section, we focus on specific - yet quite common - test problems: (i) tests
of linear constraints on the coefficients of a single structural equation, and (ii) a
generalization of the Anderson-Rubin test to the multi-equation context.

4.1 Limited Information tests

To illustrate how the above results may be used, we consider here the problem of
testing linear restrictions in a Ll framework. For exposition simplicity, we shall
restrict attention to hypotheses that set several structural coefficients to specific
values. More precisely, we consider in turn hypotheses of the form:

Hoy: 3; = 3%, (4.5)
Hos : 511‘ = (1Ji7 (4~6)

where 3; = (3;, 8%) and By; is my; x 1, and
Hos : B = 8%, 71z = Vs (4.7)

where v1; = (Y15, Vie:) and yq9; is k2; x 1.When the model is identified, (4.5)
corresponds to the following restrictions

My/3; = 7o, (4.8)

or equivalently,
w1 1l 1 _
o m [y w

8



where
51 = [O(kfki,ki)v Tk >

and O, ;) denotes a zero s x j matrix.

The formulae for the standard 2SLS and LR-based test statistics for such prob-
lems are provided in Appendix A. As pointed out by Davidson and MacKinnon
((1993), chapter 18), the LI model involves a triangular system in which case
MLE can be obtained by solving an eigen-value problem. Furthermore, the LI
LR statistic may be computed from two characteristic roots; see Kadane (1971),
Morimune and Tsukuda (1984), Wang and Zivot (1998) and Oya (1997), among
others. Thus, although non-linear restrictions intervene, iterative maximum like-
lihood algorithms are not needed in practice, a result of interest from the point of
vue of randomized tests. We will show next how to derive the bounding statistic
in each specific case. Once we obtain the form of the latter statistic, it is then
straightforward to implement the sequential procedure described in the previous
section.

Conforming with the notation used in Appendix A, let 291 and 3; be the error
covariance LIML estimates imposing and ignoring (4.8), where the latter corre-
sponds to the unrestricted reduced form. Further, let f]zﬂ denote the LIML error
covariance estimate imposing the exclusion restrictions implied by the structure.
Observe first that (4.9) is indeed UL, which implies that the statistic |S0] /5] is
pivotal. Following the notation introduced in the context of Theorem 1 to refer to

UL-hypothesis test statistics, let us define
LRYE = nlln(Af (k- ki, 1)), (4.10)
01\~ — R, =
|24]

Now consider the LIML based LR statistic

LRE = nlln(AH)], (4.11)
o 12
01 ‘XA)LI‘

Following the arguments of Section 3, we see that the distribution of A% is bounded
by the distribution of A§; (k — ki, 1).

Whereas n[In(Af{)] has a x?(m;) asymptotic distribution only under identi-
fication assumptions, LR} is asymptotically distributed as x?(k — k;) whether
the rank condition holds or not. The asymptotic distribution of the LR}{ statistic
is thus bounded by a x?(k — k;) distribution independently of the conditions for
identification. This result was derived under local-to-zero asymptotics in Wang
and Zivot (1998). Furthermore, exact bounds based on the F(k — k;,n — k) dis-
tribution may also be derived for this problem if the normality assumption (2.5)



holds. Indeed, (3.4) implies that

(k — k)
-y

IAG] (k= B, 1) — 1] ~ Pk — Eiyn — k).

It is useful to recall that k& — k; is actually the number of ”instruments” in the
familiar 1V-based formulation of the LI model.

The important thing to note regarding the latter bound is that it relates to
the well known Anderson-Rubin (AR) statistic. Bartlett (1948) and Anderson
and Rubin (1949) Anderson and Rubin (1949) suggested an exact test that can be
applied only if the null takes the (4.5) form. The idea behind the test is quite
simple. Define y” = y; — YZB? . Under the null, the model can be written as
Y5 = X1i71; + ui- On the other hand, if the hypothesis is not true, y;” will be a
linear function of all the exogenous variables. Thus, the null may be assessed by
the F test that the coefficient of the “excluded“ regressors is zero in the regression
of ¥~ on all the exogenous variables. It is straightforward to show using the results
on UL hypotheses in Dufour and Khalaf (1997) that the AR statistic associated
with (3; = 3} corresponds to a monotonic transformation of the LR criterion for
testing the UL hypothesis Hmﬂ? = Tr9; against an unrestricted alternative.

Let us now consider the hypothesis (4.6). On partitioning IIy; = [II11;, IT12;]
and Tly; = (a1, a9;] conformably with 3; = (3);,54;)" the corresponding reduced
form restrictions may be expressed as

1
w1 I Ilhgs 0
S 3 | =o, 4.12
2 [ mo;  1lo1;  1loo; ] 512 (4.12)
—D9;

where
Sy = [O(kfki, ki) 7I(k7ki)} .

Let 292 and 3; be the error covariance LIML estimates imposing and ignoring
(4.12), where the latter corresponds, as in the above example, to the unrestricted
reduced form. Further, let f]fl denote the LIML-constrained error covariance
estimate. These estimates lead to two LR-based statistics:

LRYR = nin(AJM) (4.13)
, 3202
AMR = ‘Az 7
|34
and
LR = n[ln(Af) (4.14)
102
LI _ ‘Ei



The non-linearities in connection with (4.12) stem from the fact that 35, is un-
known. However, the special case of (4.12) that corresponds to specific (unknown)
values of [3y; takes the UL form. Let Ajy(k — ki, 1) denote the reciprocal of the
Wilks statistic for testing these UL restrictions against an unrestricted alternative.
Then conservative bounds for A% and AJ4f can be obtained form the statistic
Abo(k—k;, 1) or the F(k— k;,n — k) when applicable. To derive Afy(k—k;, 1), any
choice for 35; may be used in practice. Indeed, since the statistic’s null distribu-
tion is nuisance-parameter-free (which justifies its use as a bounding statistic) the
value retained for 3,; does not matter at all.

To conclude this example, note that our results here have further implications
on Wang and Zivot (1998)’s asymptotic bound. Indeed, whereas LR has a
x%(my;) asymptotic distribution only if identification holds, n[ln(Afy(k — ks, 1))] is
asymptotically distributed as x?(k — k;) irrespective of the identification status.
This implies that the asymptotic distribution of LRY is bounded by a x?(k — k;)
distribution independently of the conditions for identification. It follows that Wang
and Zivot (1998)’s asymptotic bound is applicable beyond the Anderson-Rubin-
type hypothesis. Finally, it is straightforward to see that Wang and Zivot (1998)’s
bound is also valid (asymptotically) for the statistic LR}, in which case it has
the potential of a tighter fit. Of course, the same comment also holds for our exact
bound.

Similar results may be derived under (4.7). In this case, the implied reduced
form constraints are

1 0
w1 Il Iliog 0 0
S 3 | = e 4.15
3 [ mo; 1oy Ilogg ] gh 7(1)21 (4.15)
—P2;

where

53 = [O(k*(ki*km), ki—in)’I(k*(ki*in))} .
Thus, conservative bounds for the associated LR-LIML A§{ can be obtained from
the statistic Afs ((k — (ki — k2;)),1) corresponding to the special case of (4.15)
where (35, is known, or the F ((k — (k; — k2;)),n — k) when applicable, as previ-
ously shown. An asymptotic x?(k— (k; —ko;)) bound may also be considered for the
LR statistics, where k — (k; — ko;) represents the effective number of ”instruments”.

4.2 A multi-equation Anderson-Rubin type test

The AR test has recently received renewed interest. See, for example, Staiger and
Stock (1997), Dufour and Jasiak (1999) and Wang and Zivot (1998). However, as
it stands, the AR test ignores any restrictions relating to equations other than the
ith. Here, we discuss an extension to the multiple equation framework.

Consider, in the context of (2.7) hypotheses of the form

Ho:B3,=p%, i=1, ..., p. (4.16)

11



Now define Y~ = [y, ...,y;’], where y~ = y; — Y;3?, i =1,...,p. Under the null
hypotheses, the system of equations corresponds to the SURE model

y;v = leli + Uq, 1= 17 RN ) (4'17)

whereas under the alternative the relevant specification is the MLR model includ-
ing all the exogenous variables. Thus the problem reduces to testing the underlying
SURE exclusion restrictions. Since the test involves the coefficients of different re-
gressors within a MLR model, an exact critical value is not available. Nevertheless,
the tests described in Dufour and Khalaf (1997) are applicable and lead to valid
inference. Obtaining a bounding statistic is straightforward. The underlying UL
hypothesis involves the exclusion of all variables which serve as instruments in any
of the p equations.

The test can be readily extended to accommodate additional constraints on the
exogenous variables coefficients. Maddala (1974) treats the single equation case.
Specifically, consider hypothesis of the form

Hos : 8; = 87, 711 = 0, (4.18)
where ,;; is a subset of ;. Partition the matrix Xj; accordingly and let
yo =y~ Vil - Xnim i=1 ..., p (4.19)
Then the restricted model becomes the SURE system
Yo~ = Xyoiyge; F i, t=1, ..., P, (4.20)

and the test may be carried out as above. Note that the tests are also applicable
in a sub-system framework. However, as with the single equation AR test, the
requirement is that all structural coefficients pertaining to the right-hand-side
endogenous variables be specified under the null.

5 A Simulation study

This section reports an investigation, by simulation, of the performance of the
various proposed test procedures. We focus on the LI examples. In each case,
we also study 2SLS-based Wald tests, which are routinely computed in empirical
practice. The asymptotic and MC test versions of the latter tests are considered.
Since a bound is not available for these tests, we focus on the LMC and MMC
tests. Unfortunately, our results confirm that IV-based tests realize computational
savings at the risk of very poor performance. All the experiments were conducted
using Gauss-3861 VM version 3.2 and each was based on 1000 replications.
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5.1 Monte Carlo design.

The experiments are based on the LI model (2.7). To simplify the exposition,
we henceforth drop the subscript ¢ when referring to (2.7). We consider three
endogenous variables (p = 3 and m = 2) and k = 3, 4, 5 and 6 exogenous variables.
In all cases, the structural equation includes only one exogenous variable, the
constant regressor. In the following tables, d = (k—1) — (p—1) refers to the degree
of over-identification. The restrictions tested are of the form (4.5), and (4.6) with
my1 = 1. The sample sizes are set to n = 25, 50, 100. The exogenous regressors
are independently drawn from the normal distribution, with means zero and unit
variances. These were drawn only once. The errors were generated according to a
multinormal distribution with mean zero and covariance

1 95 -095
x=| .9 1 —1.91 (5.1)
—95 —191 12

The other coefficients were

v =1, By =10, By = —1.5, T = (1.5,2)', Tly — l 1 ] , (5.2)
Or—32)

with
~ 21
- [21] o

The identification problem becomes mores serious as the determinant of IT511, gets
closer to zero. In view of this, we also consider:

= _ i999 ;99_9 1
L= _ :299 :45199 I
= _ :399 :(1)99 I’
i [, ]

We examine the LR statistics (4.11), (4.14), (4.10) and (4.13). In the Tables
which sumarize the results of this experiment, for convenience and clarity, the
tests of the form (4.11) and (4.14) are denoted LRpsarr and those of the form
(4.10) and (4.13) are denoted LRors. We also consider Wald statistics based on
LIML and 2SLS as defined in Appendix A and denote these statistics Waldrarr,
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and Waldsgrg respectively. We report the probability of Type 1 error for the
standard asymptotic x? test, and the LMC, MMC and BMC based procedures.
The subscripts asy, LMC, MMC and BMC which appear in the subsequent Tables
are used to identify these procedures respectively. In the case of the statistic (4.10),
the local MC test is denoted PMC to account for the fact that the test is exact
since the statistic is pivotal. We have also examined the generalized Wang and
Zivot (1998) asymptotic bounds tests to which we refer as BND,. We perform a
power study (by varying the value of Sjaway from the null value of 10) for the
tests which size was adequate.

To generate the simulated samples in the LMC case, we consider the restricted
LIML estimates of the parameters that are not specified by the null, except for the
Waldsgrg statistic. In this case, we use restricted 2SLS estimates for the structural
equation and OLS based estimates for reduced form equations which complement
the system. From these estimates, sum-of-squared-residuals are constructed which
yield the usual estimate covariance estimate.

To ensure the complementarity of the MMC and the bounds procedures, the
exact bounds are obtained by simulation (we do not use the F distribution). The
Tsionas (1995) Simulated Annealing algorithm was implemented to obtain the
maximal p-values. The MC tests in the power study are applied with N = 19 and
99 replications. For experiments restricted to size, we use 19 replications, since as
is well known, the number of replications has no effect on test size in the context
of MC tests. Tables1-5 summarize our findings.

5.2 Results

Although the Monte Carlo experiments were conditional on the selected design,our
results show the following.

1. Identification problems severely distort the sizes of standard asymptotic
tests. While the evidence of size distortions is notable even in identified
models, the problem is far more severe in near-unidentified situations. The
results for the Wald test are especially striking: empirical sizes exceeding 80
and 90% were observed! More importantly, increasing the sample size does
not, correct the problem. This result substantiates so-called “weak instru-
ments“ effects. The asymptotic LR behaves more smoothly in the sense that
size distortions are not as severe; still some form of size correction is most
certainly called for.

2. The performance of the standard bootstrap is disappointing. In general,
the empirical sizes of LMC tests exceed 5% in most instances, even in iden-
tified models. In particular, bootstrap Wald tests fail completely in near-
unidentified conditions.
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. Whether the rank condition for identification is imposed or not, more serious
size distortions are observed in over-identified systems. This holds true for
asymptotic and bootstrap procedures. While the problems associated with
the Wald tests conform to general expectations, it is worth noting that the
traditional bootstrap does not completely correct the size of LR tests.

. In all cases, the Wald tests maximal randomized p-values are always one.
This meant that under the null and the alternative, MMC empirical rejections
were always zero (this result, for space considerations, is not reported in
the Tables). Another Monte Carlo experiment (not reported here) confirms
similar results in the context of a quasi-LR statistic based on derived 25SLS
reduced form estimates.

. The bounds tests and the MMC tests achieve size control in all cases. The
strategy of resorting to MMC when the bounds test is not conclusive would
certainly pay off, for the critical bound is easier to compute. However, it
is worth noting that although the MMC are thought to be computationally
burdensome, the SA maximization routine was observed to converge quite
rapidly irrespective of the number of intervening nuisance parameters.

. The LIML-LMC performs generally better than the generalized Wang and
Zivot (1998) asymptotic bounds tests. Observe however that the LMC test
is not exactly size correct, whereas Wang and Zivot (1998)’s tests sizes were
not observed to exceed 5%. In situations were size was adequate, the LMC
test showed superior power.

. The performance of the Wald-LIML. LMC test may seem acceptable, al-
though the above remark in the case of the MMC p-value also holds in this
case. As expected, power losses with respect to the LR test are noted. Tt
is worth noting that since constrained and unconstrained MLE is done an-
alytically, there seems to be arguments in favor of a Wald test if a LIML
approach is considered.

The above findings mean that 25LS-based tests are inappropriate in the weak in-
strument case and cannot be corrected by bootstrapping. Much more reliable tests
will be obtained by applying the proposed LR-based procedures. The usual argu-
ments on computational inconveniences should not be overemphasized. With the
increasing availability of more powerful computers and improved software pack-
ages, there is less incentive to prefer a procedure on the grounds of execution

5.3 Conclusion

The serious inadequacy of standard asymptotic tests in finite samples is widely
observed in the SE context. Here, we have proposed alternative, simulation-based
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procedures and demonstrated their feasibility in an extensive Monte Carlo experi-
ment. Particular attention was given to the identification problem. By exploiting
MC methods and using these in combination with bounds procedures, we have
constructed provably exact tests for arbitrary, possibly nonlinear hypotheses on
the systems coefficients. We have also investigated the ability of the conventional
bootstrap to provide more reliable inference in finite samples. The simulation re-
sults show that the latter fails when the simulated statistic is IV-based. In the
case of the LR criteria, although the bootstrap did reduce the error in level, it did
not achieve size control. In contrast, MMC LR tests perfectly controlled levels.
The exact randomized procedures are computer intensive; however, with modern
computer facilities, computational costs are no longer a hinderance.
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Table 1. Empirical P(Type I error):

Testing a subset of endogenous variables coefficients, LR tests.

~ 2 1
= 1 2
LRrrmr LRors
d n Asy LMC MMC BMC BDyz | Asy LMC MMC BMC BDy
0 25 5.5 5.3 1.7 1.7 3.1 5.5 5.3 1.7 1.7 3.1
50 5.9 5.3 1.1 1.1 1.6 5.9 5.3 1.1 1.1 1.6
100 | 4.9 4.6 1.8 1.7 1.3 4.9 4.6 1.8 1.7 1.3
1 25 7.5 5.3 0.8 0.8 1.3 6.1 3.8 2.3 2.3 3.2
50 7.9 5.3 0.4 0.2 0.1 4.9 5.2 1.7 1.7 2.2
100 | 6.3 5.1 0.8 0.8 0.7 5.8 4.9 2.4 2.5 2.4
2 25 10.2 5.9 0.4 0.4 0.8 5.9 5.3 1.1 1.1 1.6
50 8.9 5.7 0.8 0.7 0.4 5.8 4.7 2.6 2.6 2.9
100 | 6.4 4.5 0.3 0.2 0.4 5.2 5.0 1.6 1.6 2.0
3 25 149 6.8 0.6 0.6 0.9 8.2 4.5 2.3 2.3 5.2
50 9.8 5.0 0.2 0.2 0.1 6.3 3.9 1.9 1.9 3.1
100 | 7.4 5.1 0.2 0.1 0.0 4.8 4.5 1.7 1.7 2.7
~ 2 1.999

= 1.999 2
0 25 5.5 6.0 1.1 1.1 1.5 5.5 6.0 1.1 1.1 1.5
50 5.5 5.9 1.4 1.3 2.0 5.5 5.9 1.4 1.3 2.0
100 | 4.7 3.9 2.2 1.8 1.9 4.7 3.9 2.2 1.8 1.9
1 25 142 7.1 1.7 1.6 3.0 7.5 4.9 2.3 2.1 4.3
50 12.7 5.6 1.1 1.1 1.2 5.2 4.5 1.6 1.6 2.0
100 | 12.0 6.1 1.5 1.5 1.6 6.1 5.5 2.0 1.9 2.5
2 25 20.0 7.8 1.2 1.1 2.4 7.0 4.4 2.6 2.6 4.2
50 17.0 6.7 1.8 1.5 1.7 6.4 4.4 2.6 2.6 2.9
100 | 15.6 6.1 0.9 0.9 0.9 5.1 4.5 1.6 1.6 2.1
3 25 22.3 8.9 1.4 1.0 2.4 8.8 5.7 3.3 3.3 5.9
50 23.6 8.6 0.9 0.8 1.4 7.1 4.4 2.5 2.5 4.1
100 | 21.0 6.4 1.2 1.0 1.1 54 4.1 2.1 2.1 2.2
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Table 1. Continued. Empirical P(Type I error):
Testing a subset of endogenous variables coefficients, LR tests.

~ .5 .499

= 499 5
n LRrrmr LRors

Asy LMC MMC BMC BDyz | Asy LMC MMC BMC BDy

25 1.5 2.3 0.4 0.4 0.4 1.5 2.3 0.4 0.4 0.4
50 1.6 3.4 0.4 0.4 0.4 1.6 3.4 0.4 0.4 0.4
100 | 2.7 4.3 0.8 0.7 0.6 2.7 4.3 0.8 0.7 0.6
25 2.4 2.0 0.2 0.2 0.1 1.5 1.7 0.3 0.3 0.8
50 3.4 3.9 0.4 0.4 0.4 1.6 2.6 0.5 0.5 0.6
100 | 6.0 5.4 0.5 0.5 0.5 2.8 3.7 7.0 7.0 0.8
25 4.3 3.9 0.0 0.0 0.0 1.5 1.2 0.3 0.3 0.2
50 6.6 5.2 0.3 0.3 0.0 1.6 24 0.7 0.7 0.6
100 | 7.2 5.4 0.1 0.1 0.2 1.8 2.4 0.4 0.4 0.5
25 6.4 3.8 0.0 0.0 0.0 2.2 1.4 0.6 0.6 0.1
50 6.3 4.6 0.1 0.0 0.1 1.0 0.9 0.1 0.1 0.3
100 | 10.9 7.1 0.1 0.1 0.2 1.4 2.1 0.7 0.7 0.7

~ 1 .099

= 099 1
25 1.1 1.4 0.3 0.3 0.2 1.1 1.4 0.3 0.3 0.2
50 0.5 1.9 0.1 0.1 0.2 0.5 1.9 0.1 0.1 0.2
100 | 0.6 1.5 0.2 0.2 0.1 0.6 1.5 0.2 0.2 0.1
25 0.6 1.1 0.0 0.0 0.0 0.7 1.0 0.3 0.3 0.4
50 0.9 1.6 0.0 0.0 0.0 0.2 0.7 0.1 0.1 0.0
100 | 1.1 2.4 0.0 0.0 0.0 0.5 1.8 0.0 0.0 0.0
25 0.2 2.2 0.0 0.0 0.0 04 0.8 0.1 0.1 0.1
50 2.5 2.7 0.0 0.0 0.0 0.6 0.7 0.0 0.0 0.1
100 | 1.5 2.7 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0
25 1.1 1.4 0.3 0.3 0.2 1.1 1.4 0.3 0.3 0.2
50 2.4 1.9 0.1 0.0 0.0 06 0.9 0.0 0.0 0.2
100 | 1.8 2.0 0.1 0.0 0.0 0.5 0.5 0.2 0.2 0.2
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Table 1. Continued. Empirical P(Type I error):
Testing a subset of endogenous variables coefficients, LR tests.

~ .01 .009
= 009 .01
LRrrvr LRors

d n Asy MC MMC BMC BDy | Asy LMC MMC BMC BDy4
0 25 1.1 1.3 0.3 0.3 0.2 1.1 1.3 0.3 0.3 0.2
50 0.4 1.4 0.1 0.1 0.1 0.4 1.4 0.1 0.1 0.0
100 | 0.4 1.3 0.1 0.1 0.0 0.4 1.3 0.1 0.1 0.0
1 25 2.1 1.3 0.1 0.1 0.1 0.6 1.0 0.3 0.3 0.4
50 1.8 1.3 0.0 0.0 0.0 0.2 0.1 0.0 0.0 0.0
100 | 2.5 1.6 0.0 0.0 0.0 0.1 0.1 0.0 0.0 0.0
2 25 5.4 1.8 0.0 0.0 0.0 0.5 0.8 0.3 0.2 0.2
50 0.4 1.1 0.0 0.0 0.0 04 0.6 0.0 0.0 0.0
100 [ 1.7 1.7 0.0 0.0 0.0 0.1 0.5 0.0 0.0 0.0
3 25 9.0 2.6 1.0 1.0 0.1 1.4 1.0 0.3 0.3 0.8
50 5.8 2.0 0.0 0.0 0.0 0.7 0.8 0.0 0.0 0.2
100 | 0.4 1.3 0.1 0.1 0.0 0.4 0.5 0.2 0.2 0.1
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Table 2. Empirical P(Type I error):
Testing a subset of endogenous variables coeflicients, Wald tests.

~ 21
H712

Wald - 2SLS | Wald - LIML

d n Asy LMC | Asy LMC

25 148 44 4.8 24
50 | 41 4.5 41 4.1
100 | 5.0 4.6 50 4.9
25 |86 5.8 83 3.9
30 | 64 59 6.2 5.1
100 | 54 4.9 5.5 49
25 [ 11.0 6.8 9.9 43
50 |80 5.8 85 5.1
100 | 7.6 5.9 72 4.7
25 | 142 85 143 4.9
50 | 104 6.0 109 4.7
100 | 81 6.1 74 5.0

~ 2 1.999
1.999 2

25 (23 23 23 19
50 |25 34 25 34
100 | 0.7 2.7 0.7 34
25 182 53 8.6 3.3
30 |46 4.9 5.2 3.0
100 | 42 4.3 51 4.0
25 [ 126 5.9 139 3.1
30 |83 5.1 104 3.8
100 | 7.6 3.7 11.7 3.5
25 | 147 7.3 18.7 4.1
50 | 134 7.9 18.8 4.5
100 | 11.6 5.1 171 3.7
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Table 2. Continued. Empirical P(Type I error):
Testing a subset of endogenous variables coeflicients, Wald tests.

~ 5 499
= 499 5

n | Wald - 2SLS | Wald - LIML
Asy LMC | Asy LMC

25 (46 4.2 46 14
50 |39 46 3.9 20
100 129 3.0 29 17
25 1109 5.8 6.0 2.0
30 | 7.2 5.6 4.8 2.2
100 | 6.8 5.2 5.9 29
25 [ 17.7 11.6 10.5 2.7
50 | 133 74 6.7 24
100 | 11.0 6.8 83 3.1
25 [ 226 102 10.2 24
50 | 18.3 10.5 104 34
100 | 143 7.0 6.3 2.7

~ 1 .099
099 1

25 [ 184 9.5 184 0.9
50 | 11.7 7.6 11.7 0.8
100 | 7.2 6.2 72 08
25 1500 21.2 26.5 0.7
50 | 29.0 126 14.0 0.7
100 | 21.1 9.1 10.8 1.5
25 [ 71.6 35.0 30.5 1.2
50 | 55.5 21.0 21.8 1.5
100 | 41.1  16.5 14.6 1.5
25 | 823 444 334 1.0
50 | 729 299 239 1.1
100 | 58.1 21.2 174 1.3
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Table 2. Continued. Empirical P(Type I error):
Testing a subset of endogenous variables coeflicients, Wald tests.

~ .01 .009
= .009 .01

Wald - 2SLS | Wald - LIML

d n Asy MC Asy LMC

25 [58.1 335 58.1 0.3
50 | 59.2 35.5 59.2 04
100 | 55.5 31.0 55.5 04
25 | 889 579 75.1 04
50 | 849 49.6 66.8 0.7
100 | 85.0 44.8 68.0 0.6
25 | 85.0 44.8 79.7 0.1
50 | 555 21.0 7.9 0.5
100 | 95.3 58.7 743 0.6
25 [99.3 823 844 1.0
50 | 989 76.4 81.6 0.6
100 | 98.9 70.0 7.8 0.5
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Table 3. Empirical P(Type I error):

Testing the full vector of endogenous variables coefficients®

~ 2 1

= 1 2
Waldasrs LRrrvr LRors Waldzrar | AR

d n |Asy LMC|Asy LMC MMC BDy | Asy LMC | Asy MC
0 25 6.2 4.6 7.7 6.0 7.7 6.2 7.7 6.0 6.2 3.7 5.5
50 5.3 4.5 6.7 4.5 6.7 5.3 6.7 4.5 5.3 4.2 5.8
100 | 5.5 5.9 5.1 4.5 5.1 5.5 5.1 4.5 5.5 5.8 4.2
1 25 9.7 5.1 10.9 5.5 3.1 5.2 8.9 5.3 9.2 3.4 4.8
50 7.1 5.1 6.8 4.4 2.1 3.5 6.1 4. 6.7 4.1 4.7
100 | 6.5 4.8 6.6 4.7 2.2 2.4 6.3 4.3 6.3 4.7 5.3
2 25 114 6.2 13.3 6.5 1.6 3.5 8.6 5.0 12.1 4.0 4.6
50 9.5 5.6 10.1 6.8 2.3 2.5 6.9 5.9 8.9 5.0 | 4.9
100 | 8.2 5.9 6.2 4.1 0.8 1.2 5.2 4.2 7.9 5.6 4.2
3 25 14.8 7.2 16.0 7.5 1.4 2.6 11.4 6.3 15.5 5.0 4.4
50 11.8 54 10.2 4.8 1.2 1.7 7.5 5.2 13.0 4.2 5.6
100 | 8.4 6.4 7.4 5.2 0.6 0.2 5.0 4.7 8.0 5.9 4.3
4.3
~ 2 1.999

= 1.999 2
0 25 3.7 3.3 7.7 6.0 6.0 7.7 7.7 6.0 3.7 3.1 5.5
50 2.5 4.1 6.7 4.5 4.5 6.7 6.7 4.5 2.5 3.9 5.8
100 | 2.4 3.5 5.1 4.5 4.5 5.1 5.1 4.5 2.4 3.6 4.2
1 25 8.1 5.0 129 54 3.8 6.9 8.9 5.3 7.7 2.7 4.8
50 4.9 3.3 9.7 5.7 3.4 4.3 6.1 4.6 4.4 1.9 4.7
100 | 4.4 4.0 11.1 5.5 3.6 4.8 13.3 6.3 4.0 4.1 5.3
2 25 12.8 6.5 18.1 6.6 2.4 4.7 8.6 5.0 11.8 4.1 4.6
50 9.9 5.2 15.6 7.2 3.8 3.6 6.9 5.9 9.0 3.6 4.9
100 | 6.5 4.0 13.2 5.7 2.7 2.5 5.2 4.2 6.0 3.2 4.2
3 25 149 6.9 20.7 7.3 2.3 4.1 114 6.3 14.8 3.3 4.4
50 12.1 5.7 20.8 7.3 2.4 3.7 7.5 5.2 14.2 3.6 5.6
100 | 9.2 5.0 173 64 2.2 2.6 5.0 4.7 11.2 3.1 4.3

8Empiricad rejections for the MMC and the BMC LR test under the null were identical.
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Table 3. Continued. Empirical P(Type I error):
Testing the full vector of endogenous variables coeflicients

~ .5 .499

= 499 .5
n Waldasrs LRrrmr LRors WALD v | AR

Asy LMC | Asy IMC MMC BD, | Asy PMC | Asy LMC

25 5.6 4.0 7.7 6.0 6.0 7.7 7.7 6.0 5.6 2.8 5.5
50 3.6 4.5 6.7 4.5 4.5 6.7 6.7 4.5 3.6 4.1 5.8
100 | 2.7 3.4 5.1 4.5 4.5 5.1 5.1 4.5 2.7 3.0 4.2
25 11.9 6.4 12.8 5.4 3.7 6.7 8.5 5.3 8.9 2.7 4.8
50 6.5 5.2 9.7 5.8 3.4 4.5 6.1 4.6 4.8 3.1 4.7
100 | 5.6 4.4 11.1 5.5 3.6 4.8 6.3 4.3 4.1 4.2 5.3
25 18.9 10.3 18.0 6.6 2.4 4.7 8.6 5.0 14.2 3.3 4.6
50 12.1 6.2 15.7 7.3 3.8 3.6 6.9 5.9 10.2 2.6 4.9
100 | 9.4 5.0 13.2 5.7 2.7 2.5 5.2 4.2 7.2 2.8 4.2
25 23.0 10.2 209 7.2 2.4 4.1 114 6.3 16.8 3.5 4.4
50 18.5 8.2 209 7.1 2.5 3.7 7.5 5.2 15.8 3.4 5.6
100 | 12.4 6.1 172 64 2.2 2.6 5.0 4.7 12.2 3.6 4.3

~ 1 .099

= 099 .1
25 21.7 129 7.7 6.0 6.0 7.7 7.7 6.0 21.7 3.0 5.5
50 13.9 104 6.7 4.5 4.5 6.7 6.7 4.5 13.9 2.9 5.8
100 | 8.8 6.8 5.1 4.5 4.5 5.1 5.1 4.5 8.8 3.1 4.2
25 55.9  28.8 13.0 5.5 3.8 6.8 8.9 5.3 299 25 4.8
50 33.7  16.7 9.8 5.7 3.4 4.3 6.1 4.6 16.2 1.8 4.7
100 | 23.0 10.8 10.8 54 3.6 4.9 6.3 4.3 11.7 2.7 5.3
25 75..4 44.8 18.6 6.7 2.6 5.1 8.6 5.0 35.1 2.7 4.6
50 60.4  26.8 15.7 5.7 3.9 3.6 6.9 4.6 16.2 1.8 4.9
100 | 44.1 18.9 13.4 6.0 2.9 2.5 5.2 4.2 16.9 24 4.2
25 85.5 52.5 215 7.5 2.4 4.0 114 6.3 37.8 2.6 4.4
50 77.3 373 205 7.1 2.4 3.8 7.5 5.2 28.6 2.9 5.6
100 | 61.0 22.7 174 6.1 2.2 2.5 5.0 4.7 21.5 2.9 4.3
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Table 3. Continued. Empirical P(Type I error):

Testing the full vector of endogenous variables coeflicients

.01 .009
= 009 .01
n Waldasrs LRrrvr LRors Waldrryr | AR
Asy LMC | Asy LMC MMC BDy | Asy PMC | Asy LMC
25 68.7 51.1 7.7 6.0 6.0 7.7 7.7 6.0 68.7 3.7 5.5
50 68.6 52.0 6.7 4.5 4.5 6.7 6.7 4.5 68.6 3.6 5.8
100 | 64.6 44.3 5.1 4.5 4.5 5.1 4.5 4.5 64.6 3.2 4.2
25 92,5 726 14.3 6.1 4.9 7.6 8.9 5.3 79.0 3.8 4.8
50 91.1 66.5 10.9 6.0 4.1 4.9 6.1 4.6 73.1 3.9 4.7
100 | 90.2 61.3 11.3 5.1 3.7 5.0 6.3 4.3 711 3.2 5.3
25 98.9 85.3 21.8 6.4 3.1 5.8 8.6 5.0 82.3 2.8 4.6
50 98.4 79.4 18.1 6.1 4.4 4.6 6.9 4.6 73.1 3.9 4.9
100 | 97.5 T71.5 14.7 54 3.1 2.9 5.2 4.2 76.9 3.2 4.2
25 99.6 90.7 26.5 7.7 3.1 5.3 11.4 6.3 84.9 2.5 4.4
50 99.3 87.2 23.6 6.5 3.0 5.3 7.5 5.2 82.2 3.8 5.6
100 | 99.1 81.9 20.7 6.2 2.8 3.0 5.0 4.7 78.5 2.7 4.3
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Table 4. Power:
Testing the full vector of endogenous variables coeflicients

Hy: 347 =10 LRrimL LRors | Waldp ;i | AR
n d B N | LMC MMC BMC BD, | PMC LMC
25 0 101 19| 129 12.9 12.9 12.9 | 12.9 14.2 15.2
99 | 14.1 14.1 14.1 14.1 15.0
10.2 19 | 33.4 33.4 33.4 33.4 | 33.4 32.3 39.3
99 | 37.1 37.1 37.1 37.1 34.6
10.3 19 | 59.2 59.2 59.2 59.2 | 59.2 51.0 67.2
99 | 65.8  65.8 65.8 65.8 56.9
10.5 19 | 88.5 88.5 88.5 88.5 | 88.5 72.8 95.7
99 | 94.0 94.0 94.0 94.0 77.6
11 19 | 99.6 99.6 99.6 99.6 | 99.6 82.7 1.0
99 | 1.0 1.0 1.0 1.0 86.0
1 101 19199 7.1 7.1 11.2 | 9.5 12.2 10.4
99 | 12.2 8.0 8.0 11.4 13.8
10.2 19 | 26.5 19.0 19.0 31.7 | 23.6 28.0 29.0
99 | 30.2 22.8 22.8 27.4 32.6
10.3 19 | 47.9 38.4 38.4 55.8 | 43.0 44.5 51.5
99 | 55.0 44.4 44.3 50.4 51.1
10.5 19 | 82.0 73.7 73.7 89.6 | 78.3 68.7 86.6
99 | 88.6  80.8 80.8 84.8 73.8
11 19 | 98.4 97.7 97.7 99.9 | 97.9 79.3 99.7
99 | 99.9 99.4 99.4 99.6 83.6
2 101 19 | 13.5 5.2 5.1 9.3 9.3 11.5 10.7
99 | 14.6 5.5 5.4 10.5 12.6
10.2 19 | 314 16.4 16.2 29.0 | 25.3 25.9 29.7
99 | 35.9 19.0 18.8 29.4 29.9
10.3 19 | 54.5 34.5 34.3 51.5 | 46.9 42.3 51.0
99 | 59.6 39.2 38.8 48.8 48.9
10.5 19 | 84.3  68.7 68.7 87.6 | 76.5 65.6 86.6
99 | 91.5 77.0 76.8 84.5 69.8
11 19 | 99.1 97.3 97.3 99.8 | 98.2 77.2 99.6
99 | 1.0 99.2 99.2 99.5 80.1
3 101 19 | 13.2 4.2 4.2 8.2 8.9 12.4 10.5
99 | 15.0 4.7 4.2 9.9 12.6
10.2 19 | 32.2 12.6 12.3 23.1 | 21.7 28.3 25.7
99 | 35.9 14.2 13.7 24.6 30.9
10.3 19 | 56.6 28.4 27.9 46.9 | 43.4 46.6 48.1
99 | 61.4 32.6 30.7 46.5 49.7
10.5 19 | 88.5 66.8 65.4 86.2 | 76.7 66.2 85.1
99 | 93.1 73.8 71.3 84.1 72.3
11 19 | 98.9 96.1 96.0 99.7 | 97.7 77.4 1
99 | 1.0 99.1 99.0 99.6 81.9
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Table 4. Continued. Power:

Testing the full vector of endogenous variables coeflicients

Hy: (1, =10 LRrrmr LRoLs | Waldprar | AR |
n d By N | LMC MMC BMC BD. | PMC LMC
50 0 10.1 19| 23.4 23.4 23.4 27.3 | 23.4 26.0 24.4
99 | 24.3 24.3 24.3 24.3 27.4
10.2 19 | 58.5 58.5 58.5 70.0 | 58.5 57.7 66.4
99 | 65.4 65.4 65.4 65.4 63.9
10.3 19 | 86.5 86.5 86.5 94.3 | 86.5 80.3 93.1
99 | 92.7 92.7 92.7 92.7 85.1
10.5 19 | 99.2 99.2 99.2 99.1 | 99.2 93.1 99.9
99 | 99.9 99.9 99.9 99.9 94.4
11 19 | 1.0 1.0 1.0 1.0 1.0 95.9 1.0
99 | 1.0 1.0 1.0 1.0 96.3
1 10.1 19 | 20.5 13.5 13.5 19.0 | 17.1 24.1 20.5
99 | 22.4 15.6 15.6 19.3 25.9
10.2 19 | 59.9 48.0 48.0 59.2 | 53.2 57.9 60.9
99 | 66.9 54.0 54.0 60.2 62.9
10.3 19 | 87.9 81.7 81.7 92.0 | 84.7 82.1 92.8
99 | 93.2 88.4 88.4 90.7 84.8
10.5 19 | 99.5 98.8 98.8 99.8 | 99.1 92.2 99.8
99 | 99.9 99.7 99.7 99.8 94.4
11 19 | 1.0 1.0 1.0 1.0 1.0 95.6 1.0
99 | 1.0 1.0 1.0 1.0 96.4
2 10.1 19| 23.0 11.1 11.1 15.5 | 18.2 22.0 20.4
99 | 24.3 11.9 11.8 20.1 24.1
10.2 19 | 61.3 42.1 42.1 53.1 | 52.8 56.0 59.8
99 | 67.6 46.4 45.8 57.5 59.0
10.3 19 | 88.4 77.0 76.9 88.6 | 83.1 76.2 89.9
99 | 93.2 83.8 83.6 89.1 80.7
10.5 19 | 99.6 98.3 98.3 99.9 | 98.8 89.7 99.9
99 | 99.9 99.6 99.6 99.8 91.6
11 19 | 1.0 1.0 1.0 1.0 1.0 94.3 1.0
99 | 1.0 1.0 1.0 1.0 1.0 94.8
3 10.1 19| 17.7 6.9 6.6 9.7 13.3 18.1 17.1
99 | 22.8 7.7 6.9 16.9 22.9
10.2 19 | 54.5 28.0 27.3 38.5 | 42.3 50.2 48.8
99 | 61.8 31.8 30.7 46.2 54.5
10.3 19 | 82.7 61.5 60.1 74.5 | 73.6 73.4 81.8
99 | 90.1 68.7 67.2 79.4 78.8
10.5 19 | 99.0 94.8 94.7 98.6 | 97.2 89.0 99.0
99 | 99.6 98.2 98.0 98.9 92.2
11 19 | 1.0 1.0 1.0 1.0 1.0 85.2 1.0
99 | 1.0 1.0 1.0 1.0 1.0 95.3
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Table 4. Power:
Testing the full vector of endogenous variables coefficients

H():ﬂn =10 LRLH\IL LROLS WaldLU\,{L AR |
n d By N | LMC MMC BMC BD, | PMC LMC

100 0 10.1 19| 40.3 40.3 40.3 48.3 | 40.3 43.6 45.9
99 | 45.1 45.1 45.1 45.1 49.0

10.2 19 { 90.2  90.2 90.2 95.2 | 90.2 88.1 94.5
99 | 94.7  94.7 94.7 94.7 91.9

10.3 19 | 99.7  99.7 99.7 1.0 99.7 98.0 1.0
991999 999 99.9 99.9 99.4

10.5. 19| 1.0 1.0 1.0 1.0 1.0 99.7 1.0
99 | 1.0 1.0 1.0 1.0 99.9

11 19 [ 1.0 1.0 1.0 1.0 1.0 99.9 1.0
99 | 1.0 1.0 1.0 1.0 99.9

1 101 19| 37.1 27.8 27.8 33.9 | 34.2 40.7 39.2
99 | 414  31.6 31.6 37.9 44.3

10.2 19 | 89.0 82.2 82.2 89.0 | 85.9 86.9 91.4
99 | 93.8 87.0 87.0 90.3 89.9

103 19 [ 99.6 99.2 99.2  99.7 | 99.7 97.3 99.8
99 1 99.8 99.8 99.8 99.8 98.3

10,5 19| 1.0 1.0 1.0 1.0 1.0 99.0 1.0
99 | 1.0 1.0 1.0 1.0 99.1

11 19 [ 1.0 1.0 1.0 1.0 1.0 99.2 1.0
99 | 1.0 1.0 1.0 1.0 99.3

2 101 19 35.1 18.1 18.1 23.2 | 27.2 37.7 33.6
99 | 40.7 19.4 18.9 31.4 41.6

102 19| 8.9 70.5 70.4 81.0 | 78.6 83.7 87.1
99 1 95.1 77.0 76.6 84.3 88.6

103 19 [ 98.8 97.0 97.0  98.7 | 97.8 97.1 99.1
99 1 99.6 98.4 98.4 98.8 98.9

10,5 19| 1.0 1.0 1.0 1.0 1.0 99.5 1.0
99 | 1.0 1.0 1.0 1.0 99.6

11 19 [ 1.0 1.0 1.0 1.0 1.0 99.6 1.0
99 | 1.0 1.0 1.0 1.0 99.6

3 101 19| 327 113 11.0 15.3 | 24.7 36.7 27.6
99 | 38.3 156 13.7 27.3 40.6

10.2 19 | 85.2 63.4 62.9 71.6 | 75.6 82.4 83.0
99 1 89.0 70.2 82.0 88.0

103 19 [ 989 934 93.0 98.1 | 96.6 96.4 99.2
99 [ 99.8  97.5 97.2 98.7 98.4

10,5 19| 1.0 1.0 1.0 1.0 1.0 99.4 1.0
99 | 1.0 1.0 1.0 1.0 99.3

11 19 | 1.0 1.0 1.0 1.0 1.0 99.7 1.0
99 | 1.0 1.0 1.0 1.0 99.6
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Table 5. Power:
Testing a subset of endogenous variables coeflicients

Hy: 347 =10 LRrimL LRors
n d B N | LMC MMC BMC BD, |LMC MMC | BMC BD,
25 0 10.1 191 6.9 3.0 2.2 3.0 6.9 3.0 | 2.2 3.3
99 | 6.9 3.4 1.6 6.9 3.4 1.6
10.2 19 | 9.8 4.5 3.5 5.0 9.8 4.5 3.5 5.0
99 | 10.6 5.8 3.5 10.6 5.8 3.5
10.3 19 | 11.8 6.4 5.3 6.4 11.8 6.4 5.3 6.4
99 | 13.2 7.7 4.9 13.2 7.7 4.9
10.5 19 | 14.5 8.9 6.8 9.7 14.5 8.9 6.8 9.7
99 | 17.1 12.0 6.9 17.1 12.0 6.9
11 19 | 16.8 11.3 8.3 11.2 | 16.8 11.3 8.3 11.2
99 | 19.1 14.9 8.1 19.1 14.9 8.1
1 10.1 19| 85 1.5 1.5 2.0 6.7 2.3 2.3 3.9
99 | 85 2.8 1.3 6.9 3.4 2.6
10.2 19 | 11.1 2.5 2.5 4.0 9.0 4.1 4.1 6.9
99 | 12.9 4.4 2.0 9.3 5.2 3.7
10.3 19 | 134 3.7 3.4 6.1 12.0 6.0 5.9 9.1
99 | 15.3 7.2 3.5 12.7 8.0 5.6
10.5 19 | 15.9 5.6 5.3 8.9 14.3 8.1 8.1 12.4
99 | 18.8 10.3 5.8 16.2 11.2 8.4
11 19 | 18.0 8.4 7.0 11.1 | 16.2 9.9 9.2 14.8
99 | 21.6 10.8 7.8 18.4 13.2 10.5
2 101 19| 7.5 0.6 0.5 1.2 5.6 2.5 2.5 4.3
99 | 9.1 1.4 0.7 5.8 2.2 2.1
10.2 19 | 10.6 1.7 1.6 3.3 8.0 4.0 4.0 6.9
99 | 10.9 4.5 1.7 8.1 5.5 3.7
10.3 19 | 134 2.9 2.9 5.3 10.1 6.2 6.2 10.1
99 | 13.6 6.2 2.8 10.6 6.5 5.5
10.5 19 | 15.6 5.4 4.7 7.5 13.0 7.9 7.9 12.9
99 | 15.7 7.9 4.6 13.0 9.0 7.4
11 19 | 17.9 6.5 5.6 9.6 15.2 9.8 9.8 16.0
99 | 194 10.1 5.6 15.3 11.6 9.0
3 10.1 19 | 88 1.1 1.1 1.6 5.4 2.7 2.6 6.0
99 | 8.7 1.9 0.7 5.3 2.8 2.2
10.2 19 | 11.5 1.9 1.5 2.9 7.7 4.2 4.2 7.9
99 | 12.9 3.8 1.3 6.3 3.8 3.1
10.3 19 | 13.9 2.7 2.6 3.7 8.3 4.8 4.8 10.1
99 | 15.1 5.4 2.0 8.3 4.8 4.8
10.5 19 | 16.9 3.2 2.9 5.2 10.5 5.7 5.7 12.8
99 | 177 7.3 2.5 11.4 7.7 6.6
11 19 | 20.4 4.1 3.6 7.6 12.7 7.6 7.6 16.3
99 | 224 8.7 3.5 13.8 10.4 8.7
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Table 5. Power:
Testing a subset of endogenous variables coeflicients

Hy: 347 =10 LRrimL LRors
n d B N | LMC MMC BMC BD, |LMC MMC | BMC BD,
50 0 10.1 19 | 10.3 4.6 4.1 4.3 10.3 4.6 | 4.1 4.3
99 | 10.5 7.5 3.4 10.5 7.5 3.4
10.2 19 | 18.5 10.6 8.6 10.2 | 18.5 10.6 8.6 10.2
99 | 19.8 15.1 7.9 19.8 15.1 7.9
10.3 19 | 254 16.4 12.0 15.3 | 254 16.4 12.0 153
99 | 27.4 21.9 124 27.4 21.9 12.4
10.5 19 | 31.9 23.8 18.8 23.6 | 31.9 23.8 18.8 23.6
99 | 35.2 32.2 19.4 35.2 32.2 19.4
11 19 | 38.3 30.2 23.9 29.4 | 38.3 30.2 239 294
99 | 42.7 37.2 27.0 42.7 37.2 27.0
1 10.1 19| 10.6 2.6 2.3 2.6 8.3 3.8 3.6 5.2
99 | 11.0 4.9 2.5 8.8 5.9 4.0
102 19| 187 7.8 6.0 7.8 15.6 8.7 8.6 11.3
99 | 19.9 11.9 6.3 17.9 13.8 9.2
10.3 19 | 254 11.9 9.7 12.8 | 21.5 13.7 13.2  17.7
99 | 28.8 18.4 10.5 24.7 20.3 15.6
10.5 19 | 34.3 18.8 15.5 19.5 | 29.4 20.2 19.0 5.6
99 | 39.1 27.6 17.0 33.3 28.1 21.7
11 19 | 41.7 25.3 20.7 275 | 37.2 27.0 24.8 33.2
99 | 48.2 35.5 24.0 42.7 36.6 29.0
2 101 19| 8.8 1.7 1.1 1.4 6.7 3.5 3.5 4.6
99 | 10.3 3.5 1.2 6.9 4.1 3.3
10.2 19 | 15.7 4.6 2.8 4.8 11.8 7.2 7.1 9.7
99 | 18.0 7.9 3.5 13.3 9.0 7.0
10.3 19 | 20.4 7.2 5.2 8.2 15.5 9.7 9.6 13.9
99 | 23.4 14.0 5.4 17.9 14.1 9.6
10.5 19 | 26.5 114 9.1 14.0 | 21.1 15.2 15.0 19.8
99 | 30.3 19.5 10.0 25.3 20.7 15.9
11 19 | 33.0 16.4 13.1 18.2 | 26.9 20.6 19.5  26.7
99 | 37.3 22.9 15.6 31.4 27.1 21.3
3 101 19 | 10.3 1.2 0.5 1.1 6.8 2.7 2.7 5.7
99 | 11.9 3.4 0.7 7.1 4.5 3.4
102 19 | 174 3.3 2.2 3.6 12.0 6.9 6.9 11.3
99 | 21.4 7.5 2.8 13.8 9.5 7.4
10.3 19 | 23.4 5.5 4.2 6.3 16.0 10.1 10.1 17.4
99 | 28.8 12.7 4.8 19.2 14.9 12.0
10.5 19 | 31.6 10.5 8.3 12.3 | 23.3 15.2 15.2 24.1
99 | 37.5 20.2 8.9 26.9 21.5 17.7
11 19 | 41.0 15.9 11.9 18.3 | 30.6 22.1 21.2 328
99 | 45.3 27.5 13.6 35.6 29.2 25.3
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Table 5. Power:
Testing a subset of endogenous variables coeflicients

Hy: 347 =10 LRrrmL LRors
n d By N | LMC MMC BMC BD, | LMC MMC BMC BD,
100 0 10.1 19| 15.7 7.8 6.3 7.9 15.7 7.8 6.3 7.9
99 | 17.1 12.5 7.3 17.1 12.5 7.3
10.2 19 | 33.8 20.8 18.9 22.9 | 33.8 20.8 18.9 229
99 | 37.4 32.1 20.4 37.4 32.1 20.4
10.3 19 | 47.6 34.3 290.1 36.6 | 47.6 34.3 29.1  36.6
99 | 52.3 47.7 33.2 52.3 47.7 33.2
10.5 19 | 62.3 50.8 44.4 52.2 | 62.3 50.8 44.4  52.2
99 | 67.7 63.2 48.8 67.7 63.2 48.8
11 19 | 73.6 65.1 57.8 64.2 | 73.6 65.1 57.8 64.2
99 | 78.5 75.0 63.0 78.5 75.0 63.0
1 10.1 19| 16.9 4.5 4.1 4.7 13.5 6.9 6.7 7.9
99 | 16.6 10.4 4.4 14.6 10.7 6.7
10.2 19 | 34.0 14.5 13.0 16.8 | 29.1 18.6 176 23.5
99 | 38.9 25.9 15.6 32.6 26.7 21.5
10.3 19 | 49.6 26.2 24.0 28.1 | 424 32.2 30.3 34.6
99 | 54.6 44.3 26.0 47.7 39.4 32.1
10.5 19 | 64.0 42.2 37.5 45.6 | 59.3 48.6 44.7  52.5
99 | 69.9 58.9 42.2 63.5 58.1 49.1
11 19 | 73.7 56.5 51.1 60.8 | 70.9 62.6 58.4  66.7
99 | 80.4 68.6 56.1 76.3 72.5 62.5
2 101 19| 174 3.0 2.5 3.8 12.9 6.6 6.5 7.9
99 | 19.0 12.6 3.3 12.9 9.3 7.5
10.2 19 | 38.5 11.7 10.8 13.0 | 26.4 18.5 177 223
99 | 42.1 271 10.7 29.7 25.4 19.9
10.3 19 | 52.9 22.3 19.4 24.8 | 40.7 30.6 29.0 374
99 | 58.6 42.7 21.5 45.0 40.2 33.6
10.5 19 | 66.5 37.8 33.8 43.0 | 574 475 44.6  54.6
99 | 70.9 59.6 38.6 62.5 58.3 50.8
11 19 | 77.0 53.2 47.3 58.0 | 70.9 62.6 50.2  69.0
99 | 82.0 70.7 53.2 75.6 71.1 65.1
3 101 19| 15.5 2.5 1.8 2.2 10.9 6.8 6.6 7.4
99 | 18.2 8.4 1.7 11.0 8.4 6.7
10.2 19| 354 9.0 6.8 8.7 25.2 178 171 21.7
99 | 40.6 20.8 7.7 27.1 22.0 19.2
10.3 19 | 49.1 19.3 14.7 17.7 | 36.6 28.8 276  34.5
99 | 55.8 34.1 15.3 40.6 36.0 30.6
10.5 19 | 64.3 30.3 25.7 31.8 | 52.2 44 .4 42.8  51.7
99 | 72.8 49.5 28.4 59.1 53.1 46.9
11 19 | 74.2 43.2 38.7 48.7 | 66.8 58.1 56.4  68.7
99 | 81.8 64.6 44 .4 74.0 69.9 64.0
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6 Appendix A: Standard Limited Information estima-
tors and hypothesis tests

In the context of (2.7), the 2SLS is

8 = [ZiP(P{P) T P{Zi|' Z{Py(P{P) ™" Plys, (6.4)
P, = [ X X(X'X)'X'Y; |

Wald-type tests for linear restrictions on structural parameters are routinely associated
with 2SLS estimation. For hypotheses of the form R;8; = r;, where R; is a known (g; X m;)
matrix of rank g; and r; consists of known constants, the 2SLS-based Wald test statistic
is

1 R B B .
Tw = 5—2(” — R;6;) — [Ri(Z;Py(P{P)"*P/Z) ' Ry] (r; — R;6;), (6.5)
s = E(yz — Z:8:) (yi — Z:63)'-

Imposing identification, the asymptotic null distribution of 7,, is x?(q). For an asymptotic
theory conformable with under-identification, see Staiger and Stock (1997).

LIML corresponds to maximizing, imposing (2.9), the likelihood function associated
with (2.7)

i+ 1 1
Ly, Y|X1,Xs) = ——”(m; )1n(27r)—gln|2i\—§tr2i 'D!D;, (6.6)
_ vl w1 Il
D = [w Y] X{Wiz Hi2:|

where 3; denotes the relevant error covariance. Numerical maximization may be consid-
ered, yet it is well know that an equivalent solution obtains through an eigen-value/eigen-
vector problem based on the following determinantal equation

[ Yoy ¥i]-A[w Vi) M[y ¥i]|=0 (6.7)
where

M = I-X(X'X)'Xx',
M, = I-—Xi(X;X,)™'X],

and A refers to the eigen value in question. Indeed, it can be shown (see, for example ?
((?), chapter 18)) that estimator of §;

B; =ARGMIN {A(8)}

where




Formally, the LIML estimator of 5 and +, is
31 vy -xwumy vx 17 [y -vMm 69
Fi | X'y X'X X' Y (6.9)

where X is the smallest root of (??), which corresponds to A(3). Furthermore, the LIML
error covariance estimate is

S [y Yi] M|y Y¢]+()\—1)S

n n

v s ][ G](0n vt w1[ 5])
BRI

The LIML-based LR test statistic is

LR=n <ln ‘i?

)= (V] - mf3])

~ ~0
where Y0 is the constrained covariance estimate and A is the constrained minimum of
(6.8).
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7 Appendix B: Monte Carlo Tests

In Dufour (1995) the finite and large sample theory underlying Monte Carlo tests in
the presence of nuisance parameters is discussed. The methodology involved may be
summarized as follows.

Let Ty denote the observed test statistic and suppose its null distribution depends on
the unknown parameter . Conditional on €, a Monte Carlo p-value may be obtained asd
follows. Generate 1i.i.d realizations 11, ..., Ty of T under the null, given 6, and a specified
number N of replications. Rank 7;, 7 =1, ..., N in non-decreasing order and obtain
ﬁN(T()‘@) where
NGy (.I' ) +1

p(alp) = SRS (7.10)
1 & 1, ifzeA
Gx(@) = 7 Y Toma (T =), 1) = {0 0eed
The LMC test corresponds to the critical region
pn(Tolf) <o, 0<a<1, (7.11)

where 0 is a consistent nusiance parameter estimate compatible with the null hypothesis.
Dufour (1995) gives general conditions under which the latter critical region has the correct
level asymptotically, ¢.e. in order to have

lim {P [pN(TO 19) <a| - Ppn(Ty|0) < a}} ~0, (7.12)

n— o0
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for 0 < a <1 and plim(6) = 0. Recall that in our notation, n is the sample size and N
refers to the number of MC replications. Note that (7.12) takes the number of replications
used explicitly into account; in otherwords, (7.12) holds for a given finite N and the sample
size — oco. Furthermore, if the statistic is eventually pivotal, the latter p-value will control
size exactly. For clarity of exposition, we call the nuisance parameter dependent MC
p-value as LMC (conformably with Dufour and Khalaf (1999)) and the pivotal statistics-
based p-value as PMC. A bounds MC p-value is obtained replacing T, ..., Ty (clearly not
Tp) by null realizations of a bounding statistic.

Theoretically exact randomized tests can be obtained as follows. The p-value (7.10)
ought to be maximized with respect to the elements of the intervening nuisance parameters.
Specifically, it is shown by Dufour (1995) that:

P (9 sup (T 0] a> < AN + 1)]

0<a<l

7.13
N +1 - = ( )

where I[z] is the largest integer less than or equal to x and Mj refers to the nuisance
parameter space under the null. We call the procedure based on (7.13) the maximized MC
or MMC test.

In practical applications of MMC tests, a global optimization procedure is needed to
obtain the maximal randomized p-value in (7.13). One such procedure, originally pro-
posed by Corana et al. (1987) and later modified by Goffe et al. (1994) is the simulated
annealing (SA) algorithm. SA starts from an initial point, say 0, , and sweeps the pa-
rameter space at random. An uphill step is always accepted while a downhill step may be
accepted; the decision is made using the Metropolis criterion. The direction of all moves
is determined by probabilistic criteria. As it progresses, SA constantly adjusts the step
length so that downhill moves are less and less likely to be accepted. In this manner,
the algorithm escapes local optima and gradually converges towards the most probable
area for optimizing. SA is robust with respect to non-quadratic and even non-continuous
surfaces and typically escapes local optima. The procedure is known not to depend on
starting values. Most importantly, SA readily handles problems involving a fairly large
number of parameters. These procedures are applied in the context of the Monte Carlo
experiment reported in Section 5.
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