
Optimal Delegation¤

DezsÄo Szalay
University of Mannheim

January 26, 2000

Abstract

How should a principal delegate a task to an agent? This paper studies
the choice of an agent's discretion as a contracting problem. We show that
the agent's freedom of action can be used as an e®ective incentive device:
the agent's initiative is determined by the discretion he has in decision
making. Due to this incentive e®ect the relationship between the severity
of the con°ict of principal's and agent's interests and the agent's optimal
discretion in decision making is potentially non-monotonic: it may be
optimal to curtail a subordinate's authority over decision making even if
there are no con°icting interests concerning that decision.

Our theory provides a rationale for commonly observed phenomena
such as "demanding clear statements" from advisors or "imposing an in-
novation bias" on an organizational structure.

Key words: authority, discretion, initiative

1 Introduction

Standard agency theory assumes that the agent's action space is given. In some
contexts, however, it is of interest to study how much freedom of action an agent
should be given. This is a key issue for the theory of delegation.
The problem of delegation has previously been studied by HolmstrÄom (1984)
and Armstrong (1994) and from a di®erent perspective by Aghion and Tirole
(1997). HolmstrÄom and Armstrong address the question of how much discretion
an agent should be given if principal and agent do not share the same objective.
The principal's optimal choice re°ects the following tradeo®: on the one hand
the agent has some superior information, which can be used to improve the
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quality of decision making. Giving the agent more discretion may therefore
allow the principal to make use of the agent's information. On the other hand
the principal faces the risk that the agent may abuse the freedom of action this
provides. In this literature on the optimal "discretion" of agents, the information
structure is taken as given.
Aghion and Tirole (1997) in contrast study the problem of delegation in a con-
text where the contracting parties' information structures are endogenous. Their
main point is that the transfer of authority to an agent will encourage the agent's
initiative. Consequently when deciding on the optimal allocation of authority
the principal's decision will re°ect the tradeo® between loss of control and in-
creased initiative of the agent. However, Aghion and Tirole address the problem
of delegation as a binary choice problem between di®erent institutions, i.e. the
principal has no choice on how to delegate the decision as he has in HolmstrÄom's
or Armstrong's paper.1

The present paper studies a hybrid of these two distinct approaches to the
allocation of authority (or optimal choice of discretion). In our model, the
agent's information arises endogenously from costly e®orts of learning as in
Aghion and Tirole (1997). We focus on a particular situation where giving
the right to decide to the agent is optimal. In addition we assume that the
principal has the right - as in the literature on discretion - to exclude certain
projects from the agent's choice set, i.e., the principal has "veto" or "gatekeeping
counterpower" (Tirole (1999)). We ask: how should the principal optimally
use this veto power? or equivalently: how much discretion should the agent
optimally be given in this context?
Our analysis highlights another incentive e®ect of discretion. The agent's free-
dom of action itself can be used as an incentive device. The most interesting
result of the paper is that due to these incentive e®ects of discretion the relation-
ship between the severity of the con°ict of interest and the principal's optimal
choice of discretion is not necessarily monotonic. Somewhat surprisingly the
present paper shows that in the very case where objectives are shared (read:
preferences are identical) the principal may want to restrict the agent's freedom
of action! This stands in sharp contrast with the results of HolmstrÄom (1984)
and Armstrong (1994) as well as commonly held wisdom.
Though counterintuitive at ¯rst sight the economic rationale for the result is
easy to explain heuristically. The timing of events and the information structure
is as follows: at the time of contracting, agent and principal have symmetric in-
formation. After the contract is signed, the agent learns about the nature of the

1Tirole (1999) develops the "complete contracting" version of the Aghion and Tirole (1997)
paper. He discusses the institution of giving authority to the agent with the principal having
"gatekeeping counterpower". In this institutional setting the principal is given the right
to exclude certain alternatives a priori. However, his point is to show that the concept of
authority is not an artefact of modelling the problem as an incomplete contracting problem.
To illustrate this idea, he shows that we can ¯nd an institution in an incomplete contracting
context that implements the same outcome as the optimal complete contract. Giving authority
to the agent with the principal having gatekeeping counterpower is an example of such an
institution. This point is distinct from our question of how to use gatekeeping counterpower
optimally.
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optimal choices from his own as well as the principal's perspective. Thereafter
he picks his preferred alternative out of those that are allowed in the contract.
We assume that the e®ort he spends to acquire information is not observable
and hence noncontractible.
This situation gives rise to a number of tradeo®s at the time of contract design.
The nature of the tradeo® depends on whether the principal expects there to
be con°icting interests once the agent has acquired his information or not. If
the principal has to expect such con°icts then his optimal choice of contract
re°ects the tradeo® of improved quality of decision making and increased initia-
tive by the agent on the one hand versus the danger of opportunistic behavior
by the agent (i.e. loss of control) on the other hand. If the principal expects no
such con°icts concerning project choices, the nature of this tradeo® is di®erent,
because there is no loss of control when the agent gets more discretion. On
the contrary: interfering with the choices of an agent who always acts in the
principal's best interest can only decrease the quality of decision making. How-
ever, limiting the agent's discretion (or curtailing his authority) appropriately
will elicit more initiative from the agent. The nature of the tradeo® is thus
completely reversed.
Limiting the agent's discretion e®ectively serves as a punishment scheme. Maybe
somewhat surprisingly this punishment scheme will always (almost surely) hit
the agent harder when he is ignorant than when he is well informed. He therefore
has a strong incentive to avoid being ignorant. The really surprising thing,
however, is that the principal might actually bene¯t from such a device in the
very case where agent and principal have identical preferences!
Our theory might help explain some real world phenomena: politicians, when
they approach economists for their advice, want to hear clear statements about
whether a policy is good or bad. Thus, the answer, "it depends" is excluded from
the agent's choice set, although it is often the best answer that can be given (and
it is certainly the best answer for an economist, if he has no speci¯c information).
As a consequence the economist - provided that he has a preference for correct
answers - will spend more time thinking about the correct solution.2 Judges or
members of a jury can e®ectively only choose between guilty and non guilty. The
judgement "don't know" is implicitly excluded from the choice set, because the
guiltyness of an accused must be proven beyond reasonable doubt. Consequently
the judge and the jurors have a strong incentive to think hard about guiltyness
or nonguiltyness of the accused.3 As a last example, consider a corporate culture
with a strong bias for innovations. The ¯nding in the paper might give some
rationale for the "we do it di®erently" doctrine. If headquarters follows the
policy "whatever we do we will not stick to the status quo" division managers
will have a strong incentive to become informed, about what change exactly
should be implemented.

2However, there are other factors which also come to mind in this particular situation.
Politicians also like to have someone to blame if things go wrong.

3We do not claim that society's rationale for this particular aspect of our legal system was
the one given in our proposition 1 below. But it is fair to say that it is a side e®ect of the
procedure.
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The remainder of the paper is structured as follows. Section 2 introduces the
model. Section 3 treats the case of complete alignement of interests. Section 4
o®ers a more general treatment of the problem, allowing for con°icts of interests.
Section 5 concludes.

2 The model

We consider an agency problem in which the payo®s of both the principal and the
agent depend on an action x chosen by the agent as well as on two parameters,
´ and '; according to the speci¯cation

U(x; ´) = k ¡ A

2
(x ¡ ´)2 (1)

and

¼ (x;') = K ¡ 1

2
(x ¡ ')2 (2)

where U is the payo® of the agent and ¼ the payo® of the principal. A is a
measure of the agent's relative distaste for risk (read: relative to the principal).
We will henceforth interpret the action x as the choice of a particular "project".
The parameters ´ and ' are assumed to be realizations of random variables ~́
and ~' with joint distribution function F´;'. More precisely

Assumption 1 : (´;') have identical, symmetric marginals f´ = f':

At the time of contracting both agent and principal know f but neither of them
knows the realization of ~́ and ~':
Between the time the contract is written and the choice of the action x the
agent tries to get informed. By exerting e®ort e the agent is informed about the
realizations of both ~́ and ~' with probability e - uninformed with probability
1 ¡ e - and bears costs of e®ort g(e); where g(e) is convex and satis¯es the
Inada conditions: g0(e) > 0; g00(e) > 0; lime!0 g0(e) = 0; lime!1 g0(e) = 1: The
agent's choice of e is not observable to the principle. Moreover, the principal
does not observe whether the agent successfully learned the true realizations of
~́ and ~' or not.
The agent chooses the action x according to his information4. We study a
situation where the principal cannot use monetary contracting schemes:

Assumption 2 : The agent does not react to monetary incentives.

In light of assumption 2 there is no way to make the reward of the agent depen-
dent on the realized payo® of the principal, ¼; even if ¼ is perfectly observable

4In contrast to Aghion and Tirole (1997) we assume that the agent directly chooses a
project. There is thus no communication of information about the realizations of ~́ and ~':
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and veri¯able:5 Therefore, the principal can only contract on the observable
decision x in a nonmonetary sense:

Contracts: the principal restricts the choice of x to an admissable set ¡:

The situation is thus one where the agent cares "much more" for his private
bene¯t than he cares for other sources of income. Assumption 2 is admittedly
very restrictive but it serves the purpose of emphasizing the impact of the agent's
discretion on his initiative. There is, however, an alternative way to justify
our approach. Instead of assumption 2 one can impose the following set of
assumptions: suppose U and ¼ are noncontractible. In addition to the private
bene¯ts, the agent derives utility V (w) from ¯nancial income. The agent is
in¯nitely risk averse with respect to income shocks. The principal is risk neutral
with respect to ¯nancial income.
In this situation, the principal can write monetary contracts on the decision x:
However, the optimal nonmonetary contract and the optimal monetary decision
based contract will - under our assumptions - be equivalent in the following
sense: they will both implement the same outcome in terms of e®ort and project
choices. (Payo®s will di®er of course.)67

The nature of con°icts: Under assumption 1 there is no con°ict of interest

concerning project choice ex ante: both principal and agent agree that x
!
= ¹ is

the best choice. However, ex post - i.e. conditional a speci¯c realization (´;')
of (~́; ~') - the principal and his agent do not necessarily agree what the best

project is: the agent's preferred alternative is x
!
= ´ while the choice x

!
= '

is in the principal's best interest. Since marginals are identical, the correlation
coe±cient ½ between ´ and ' is a su±cient statistic for the expected extent of
this con°ict of interest concerning project choice ex post.

2.1 First Best

The ¯rst best corresponds to a situation where all variables can be written
into an enforcable contract, i.e. everything is observable and veri¯able. Such a
contract will directly specify a particular choice of e and a choice of x contingent
on the agent's information.
To provide a benchmark we will characterize this ¯rst best for the case of per-
fectly aligned interests concerning project choice, i.e ´ ´ '. The contract will
thus specify x = ´ for the case where the agent knows the realization of ~́ and
x = ¹ for the case where the agent does not know the true realization of ~́:

5Recall that the agent's information on realizations of ~́ and ~' is not observable to the
principal.

6This is shown in Appendix B part (i).
7This discussion shows in particular that our approach of nonmonetary contracting on

decisions, i.e. the choice of discretion, can equivalently (in well de¯ned environments) be
understood as an optimal choice of monetary decision based rewards. Monetary decision based
rewards have ¯rst been studied by Dewatripont and Tirole (1999) in a di®erent context: they
show that it may be better to have di®erent agents advocating the pros and cons, respectively,
of a certain matter rather than having one agent searching for the truth directly.
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The ¯rst best e®ort level is de¯ned as the e®ort level that maximizes joint
surplus.8 To derive this we must ¯rst calculate the value of information. From
(2) the principal's payo® conditional on the agent knowing ´ is K; while the
agent will enjoy utility k (from (1)). Conditional on the agent being ignorant
the principal's payo® is: K ¡ 1

2

R
(¹ ¡ ´)2dF´ = K ¡ 1

2¾2; while the agent will

then have utility k ¡ A
2
¾2: The optimal choice of e solves

max
e

K + k ¡ (1 + A)¾2

2
+ e

(1 + A)¾2

2
¡ g(e)

and therefore satis¯es

(1 + A)¾2

2
!
= g0(e)

I.e. the agent spends e®ort to learn until the marginal cost of e®ort is equal to
the marginally avoided disutility of risk for the principal and himself.

2.2 Discretion as a Contracting Problem

The agent's information and his e®ort choice are not observable to the principal.
In the absence of monetary compensation schemes, the principal will choose the
admissable set ¡ in such a way as to maximize his expected payo®. More
formally the principal's maximization problem is:

max
x00;x0(:);¡;e

eE¼(x0(´); ~́; ~') + (1 ¡ e)E¼(x00; ~') (3)

s.t.

x0(´) 2 arg max
x2¡

U(x; ´) 8´ (4)

x00 2 arg max
x2¡

EU(x; ~́)

EU(x0(´); ~́) ¡ EU(x00; ~́) = g0(e) (5)

eEU(x0(´); ~́) + (6)

(1 ¡ e)EU(x00; ~́) ¡ g(e) ¸ 0;

The ¯rst term inside the brackets in (3) represents the principal's expected payo®
when he knows that an agent who knows the realizations of ~́ and ~' (henceforth
an informed agent) chooses his most preferred alternative (given the restriction
¡). The second term represents the analogue for an ignorant agent's choice.
(4) are the incentive compatibility conditions on the choice of alternative of the

8The present model is one of private bene¯ts, which makes the interpretation of ¯rst best
a bit di±cult. It should be noted that our results do not depend on this de¯nition of ¯rst
best. The only important thing is that there is some underinvestment at all.
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informed agent (henceforth x0(:)) and on the choice of an ignorant agent (x00

henceforth), respectively. (5) is the IC condition for the agent's e®ort choice.
Finally (6) is the agent's individual rationality constraint, which is assumed to
be nonbinding for all ¡:9

Notation: The following shortcuts will henceforth be used for the agent's and
the principal's expected payo®s under contract ¡ (anticipating incentive com-
patible choices according to his information and (4)):

E¼0
¡ : = E¼(x0(´); ~́; ~'); E¼00

¡ := E¼(x00; ~') (7)

EU 0
¡ : = EU(x0(´); ~́); EU 00

¡ := EU(x00; ~́)

The tradeo® the principal faces - for instance if the correlation between ´ and '
is relatively low - can be seen from the incentive compatibility conditions on the
agent's project choice (4) and on his e®ort choice (5). Through its impact on
x0(:) and x00; ¡ directly a®ects the principal's payo®. Increasing ¡ (to be made
precise below) increases the danger of misbehavior of sel¯sh agents. On the other
hand there is also an indirect impact of ¡ on the principal's payo® through
the agent's e®ort choice (via (5)). The agent's e®ort choice is an increasing
function of the wedge between the expected utility levels across the uninformed
and informed state, respectively. The levels themselves are increasing in the
degree of discretion or, put the other way, decreasing in the stringency of the
restrictions, the agent faces.10 To induce higher e®ort the agent has either to
be rewarded in case he is informed, i.e he has to be given greater discretion for
the choice of alternatives, or he has to be punished in case he is ignorant.
The problem is not completely standard. The di®erence stems from the fact
that the principal controls the degree of freedom the agent has when he takes
his decision: the principal maximizes with respect to sets which in turn are
the side constraints on the agent's choices. To get a handle on the problem we
impose the following restriction on the principal's choices:

Assumption 3 : The principal restricts himself to use only one interval control
and one interval prohibition at a time.

To clarify what we have in mind here, think of a worker in charge of buying
goods for his company. His principal restricts his choices with the following
rules: "buy at least yl but not more than yh items of article xy:" Formally
¡ = dom f(´)n[¡1; yl); (y

h;1]: This will be called an interval control. ¡ =
dom f(´)n(yl; yh) shall be called an interval prohibition. Under this restriction
the agent is allowed to buy either less than yl or more than yh items of the
good, but nothing in between. In contrast ¡ = dom f(´) means "do whatever

9Without monetary transfers this assumption is obviously needed for a meaningful analysis.
We will discuss the impact of this assumption on our results below in detail.
10This will be made precise below. For the moment it su±ces to note, that the value of

a constrained maximization problem cannot be higher than the value of an unconstrained
problem.
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you deem right". Any collection of open sets can be described as a combination
of controls and prohibitions. But for the moment, we simply assume that the
principal uses only one prohibition and one control at the same time. We thus
do not allow him to forbid any collection of open sets. However, it will be shown
below, that this is a result rather than an assumption!

3 Perfectly Aligned Interests: The Degree of Free-
dom as an Incentive Device

If the principal and his subordinate have perfectly aligned interests, there is
obviously no need for safeguards against opportunistic behavior ex post. There-
fore full freedom of action would be optimal if it were not for the problem of
e®ort choice. To see this formally, note that both E¼0

¡ and E¼00
¡ are maximized

at ·¡ = dom f(´) and any ¡0 6= ·¡ must introduce deviations from ¯rst best
choices ex post. It is immediate that the principal will not ¯nd it optimal to use
interval controls.11 One is tempted to conclude that the agent's decision space
should be completely unrestricted. However, this is not generally true.
Although the incentive problem concerning project choice vanishes if ½ is equal
to 1; the underinvestment problem due to moral hazard in e®ort choice does
not. Relative to the social optimum the agent exerts too little e®ort, because
he does not value the improvement in the principal's utility from an informed
decision. The principal may therefore want to restrict the agent's choice set so as
to increase his e®ort choice. The questions are then whether this is feasible and
rational for the principal. Consider ¯rst feasibility: assume that the principal
uses an interval prohibition of the form

¡̂ = dom fn(¹ ¡ ²; ¹ + ²) (8)

for some speci¯c ² > 0: I.e. the principal allows everything but choices within a
symmetric interval around the mean.

The agent's best response to this rule is

x0(¡̂; ´) =

8
<
:

´ for ´ 2 dom fn(¹ ¡ ²; ¹ + ²)
¹ ¡ ² for ´ 2 [¹ ¡ ²; ¹)
¹ + ² for ´ 2 [¹;¹ + ²]

(4')

x00(¡̂) = f¹ + ²

i.e. he minimizes the (expected) deviation from the unrestricted best choice,
which would be x = ´ if the agent is informed and x = ¹ if the agent is
ignorant.12 The agent's expected utility levels under ¡̂; conditional on being

11A formal proof of this statement follows in proposition 3.
12We can pick x00 = ¹ + ² without loss of generality since both principal and agent are

indi®erent between ¹¡ ² and ¹+ ²:
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informed (EU 0
²)

13 and, respectively, on being ignorant (EU 00
² ) are then (by sym-

metry)

EU 0
² = k ¡ A

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´ (9)

EU 00
² = k ¡ A

2

Z
(¹ + ² ¡ ´)2dF´ = k ¡ A

2
(¾2 + ²2)

From (5) and (9) the agent's incentive compatible e®ort choice is

e(²) = h

"
A

(¾2 + ²2) ¡ 2
R ¹+²

¹ (¹ + ² ¡ ´)2dF´

2

#
(5')

where h := g0¡1(:) (which exists by g00(e) > 0): It turns out that ¡̂ has a very
clearcut in°uence on the e®ort choice of the agent:

Lemma 1 e is increasing in ²:

Proof: see in the appendix.

The intuition is very simple. Since the agent's e®ort choice must be incentive
compatible, we know from (5) that it is determined by the marginal gains the
agent gets if he learns about (´; '): This wedge between expected utility, condi-
tional on being informed and conditional on being uninformed, EU 0

² ¡EU 00
² , can

be increased by two ways. The principal can reward the agent if he is informed
or he can punish him if he is not. Since, relative to ¡; it is not possible to reward
the agent more the principal punishes the agent14. This punishment is e®ective
because its impact on the agent's utility is more severe when the subordinate
is ignorant: conditional on the agent being informed, the optimal choice will
only by coincidence, i.e. small probability, lie in the excluded interval, while
conditional on being ignorant the agent always wants to choose the excluded
alternative x = ¹: It should be noted that this result holds generically , i.e.
does not depend on any distributional assumptions as long as there is some
uncertainty at all.

A positive impact of ² on e is a necessary condition for the optimality of a ¡̂-type
control, where ¡̂ is given by (8), but it is of course not su±cient. Analogously
to (9) one can derive the principal's expected utility conditional on the fact that
his agent has learned the realizations of ~́ and ~' (that the agent is ignorant of
the realizations, respectively)

E¼0
² = K ¡

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´ (10)

E¼00
² = K ¡ 1

2
(¾2 + ²2)

13With a slight abuse of notation we write EU 0² for EU 0dom fn(¹¡²;¹+²) :
14Note that the principal thereby decreases both EU 0 and EU 00 but the di®erence EU 0 ¡

EU 00 increases.
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where E¼0
² and E¼00

² have been de¯ned in (7). Plugging15 (5') and (10) into
(3), the principal's maximization problem can be restated as an unconstrained
problem:

max
²

e(²)E¼0
² + (1 ¡ e(²))E¼00

² (11)

So if ²¤ > 0; it satis¯es the ¯rst order condition

@E¼00
²

@²
+ e

@

@²
[E(¼0

² ¡ ¼00
² )] +

@e

@²
E(¼0

² ¡ ¼00
² )

!
= 0 (12)

Obviously, the principal will use a ¡̂-type control if and only if the derivative of
his payo® with respect to ² is positive at ² = 0: Assume thus:

Assumption 4a: (1 ¡ e(² = 0) < A¾2

g00(e(²=0))2
:

Assumption 4b: g000(e)
g00(e)2 ¸ 4

A¾2 ;8e:16

Remark 1: Assumption 4a is not yet a condition on the primitives of the model.
Yet, it contains the economic rationale of the arguments. Proposition 2 below
translates the results into conditions on the parameters of the model.

Then:

Proposition 1 (I) the principal will optimally set ²¤ > 0 if A4a holds.
(II) If in addition A4b holds; then there exists exactly one value ²¤; ²¤ > 0;
which solves (12).
(III) ¡̂ = dom f´n(¹ ¡ ²¤; ¹ + ²¤) is the unique optimal interval prohibition.

(IV ) ¡̂ is the unique optimal policy, i.e. for ½ = 1 imposing A3 is without loss
of generality.

Proof: see in the appendix.

The crucial question is whether the increase in the agent's e®ort supply is large
enough to justify the ex post utility losses that the principal in°icts on himself.

To give an intuitive explanation for the condition in A4a, 1¡ e(0) < A
g00(e(0))

¾2

2 ;

consider ² very small but positive: with probability (approximately) 1¡e(0) the
agent is ignorant and the principal just shoots himself in the foot, by setting
² > 0: The marginal impact of increasing ² on E¼00

² is then equal to ¡²: (With

15Observe that the direct cost of using the prohibition is identical for the principal and the
agent. Thus, although the rule has favorable incentive e®ects, the principal will - once the
agent's e®ort is sunk (but of course before the agent takes his decision concerning projects) -
always regret having prohibited some choices as he cuts on expectation into his own °esh by
using them.
16A4a is a condition on the ¯rst derivative of the principal's problem, A4b is one on the

second derivative. A detailed discussion of A4a follows right after the statement of proposition

1. A4b is a su±cient condition guaranteeing that @2e
@²2

< 0 for large enough ²; implying that
the problem gets concave eventually.
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probability e(0) there is also a negative impact on E¼0
²; but this e®ect vanishes

as ² is chosen small enough.) This must be compared with the incremental risk
avoidance, i.e. additional e®ort supplied due to a marginal increase in the wedge

E(U 0
²¡U 00

² ) times the impact of avoided risk on the principal's utility: A
g00(e(0))

¾2

2 :

(It is shown in the appendix that the impact of increasing ² on E(U 0
² ¡ U 00

² )
becomes indistinguishable from ² for ² very small.) If the net impact of these
e®ects is positive the principal will use the rule ¡̂:
Restricting attention to symmetric rules like ¡̂ only is without loss of generality.
The important characteristic of ¡̂ is that it extracts maximum initiative from
the agent at a given cost. Any nonsymmetric restriction, for instance, allows
the agent to escape the punishment partially: if he is ignorant anyway he does
not really care in which direction he has to deviate from the optimal choice.
This depends of course on the symmetry of both the payo® function and the
underlying distribution of random variables. Furthermore, ¡̂ excludes the op-
timal choice under ignorance. This gives the agent a strong incentive to avoid
being ignorant, i.e. to learn, since the expected marginal disutility of such a
policy is always larger when he ends up without knowing the true realizations
of the random variables.
When interests are perfectly aligned, it is not necessary to impose A3: the
principal will voluntarily choose the policy ¡̂ even if we allow him to choose
from any possible combination of collections of open sets. The reason being
that ¡̂ is cheapest rule that increases the agent's e®ort supply. Any other rule
either decreases the agent's e®ort supply and the expected payo® from a well
informed decision (i.e. E¼0

²) or if it increases the agent's e®ort supply it will be
more expensive than ¡̂:

Remark 2: The comparison so far involves only direct cost and bene¯ts, i.e.
the private costs of additional e®ort are borne entirely by the agent. Since
the principal cannot use any monetary transfers, there is simply no way to
compensate the agent. But since the IR-condition is nonbinding initially, this
causes no problems. Moreover, it is straightforward to extend the argument to
the case of a binding IR-condition when monetary contracts are admitted. (see
Appendix B (ii))

The next proposition ¯rst (part (i)) states conditions under which we are more
likely to observe the use of such interval prohibitions and second (part (ii)),
given that we observe them, how large they should be. For the derivation of
result (iii)17 and the analysis of the remaining part of the paper it is necessary
to impose more structure on the distribution of (´;') :

Assumption 1' : (´;') are bivariate normal with joint density f´;' and iden-
tical marginals f´ = f', i.e. ´ » N(¹;¾2); ' » N(¹;¾2):

17Note however, that (i) and (ii) do not make use of this assumption!
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Proposition 2 Under A1, A4a and A4b:
(i) the principal is more likely to set ²¤ > 0 if the agent's distaste for risk is
weak (A small) and/or the underlying risk is small (¾2 small) and
(ii) the optimal size of the prohibition is the larger the smaller A is.
Under A1':
(iii) The impact of ¾ on ²¤ is ambiguous.

Proof: see in the appendix.

Intuitively, the principal should use prohibitions as an incentive device if they
are not too costly and have a large and positive impact on the agent's initiative.
A priori, the e®ects due to increases in the agent's distaste for risk or the
underlying risk itself are not clear. This ambiguity is due to the fact, that these
factors in°uence both how the agent reacts to changes in his freedom of action
as well as how large his e®ort supply already is when he is given full freedom
of action. While the level e®ect, @e

@A is always positive, the growth or change

e®ect, @2e
@²@A is negative under A4b. Moreover, under A4b, the second e®ect

dominates the ¯rst. Thus, the negative impact on the incrementally avoided
risk due to the introduction of a prohibition is always dominant. It must be
emphasized, however, that these e®ects are so clearcut if and only if we are

willing to impose a lower bound (more speci¯cally 4
A¾2 ) on 1

g00
g000

g00 ; the product

of 1
g00(e) and its derivative, i.e. the curvature of the marginal cost function.18

The economic rationale for these e®ects is then very straightforward. There is
little reason to use a costly incentive device if the agent's motivation is already
high enough and/or he does not respond appropriately to prohibitions.
The reason that the prohibited interval be the smaller the more the agent hates
risk, i.e. @²

@A < 0; is exactly the same. This, however, is not true for a change
in the underlying risk, which has an ambiguous e®ect on the optimal size of
the prohibited interval. A detailed discussion is relegated to the appendix, so
we discuss here only the e®ect which is of ambiguous sign: it is not clear how
the agent's responsiveness to incentive schemes is a®ected by changes in the

underlying risk, i.e. the sign of @2e
@²@¾ is not clear: There is a negative impact,

because a higher risk causes the agent to supply a higher level of e®ort at
full freedom of action: c.p. it is harder to motivate the agent if he already
works quite hard. But now there is also a positive impact because any given
incentive scheme will have a more pronounced e®ect on the agent's e®ort supply.
This is because the wedge between his utility levels is an increasing function of
underlying risk. It is not clear which of these two e®ect dominates.

4 Con°icting Interests

So far only the border line case of perfect alignement of interests has been dis-
cussed. In this special case there was no need for the principal to protect himself

18Unfortunately, I have no good intuition for the third derivative of a cost function. However,

A4b was imposed to guarantee that @2e
@²2

< 0 if the size of the prohibition gets large enough:
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from ex-post-opportunistic behavior of his agent, since the only deviation from
¯rst best was the agent's e®ort choice. In general, i.e. when ~́ and ~' do not co-
vary one for one with each other, both the agent's e®ort choice and his project
choice will not coincide with the ¯rst best choices. Concerning the project
choice, the worst case scenario for the principal is given by a realization-tuple
´; ' of ~́; ~' where ´ and ' are extremely far apart. As a consequence, the agent
when left unrestricted to choose whatever he deems right, might then choose an
alternative which gives the principal a very low private bene¯t. In other words
we introduce divergence of interests ex post. The principal can majorize the
expected impact on his private bene¯ts of this divergence of interests ex post if
he forbids extreme alternatives a priori.
We will say that by setting some speci¯c ¸ = ¸0 the principal allows all choices of
x 2 [¹¡¸0; ¹+¸0]; i.e. forbids all choices of x 2 (¹+¸0;1] and x 2 [¡1; ¹¡¸0);
combined with the ²-controls from above, we have ¡̂0 = dom f´n[¡1; ¹¡¸)(¹¡
²; ¹ + ²)(¹ + ¸;1]: The agent's best response to this restriction is

x0(¡̂0) =

8
>>>>>><
>>>>>>:

¹ ¡ ¸ for ´ 2 [¡1; ¹ ¡ ¸)
´ " [¹ ¡ ¸; ¹ ¡ ²]
¹ ¡ ² " (¹ ¡ ²; ¹]
¹ + ² " (¹;¹ + ²)
´ " [¹ + ²; ¹ + ¸]
¹ + ¸ " (¹ + ¸;1]

(4")

x00 = f¹ + ²

giving him expected utility levels

EU 0
¸;² = k ¡ A

½Z 1

¹+¸

(¹ + ¸ ¡ ´)2dF´ +

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´

¾
(13)

EU 00
¸;² = k ¡ A

¾2 + ²2

2

where we use the fact, that - by symmetry - we only have to consider the upper
half of the support of ´: As for the principal, his expected utility from informed
decisions of his agent changes to: E¼0

¸;² = K¡
( R R ¹+²

¹
(¹ + ² ¡ ')2dF´dF'j´

+
R R ¹+¸

¹+² (´ ¡ ')2dF´dF'j´ +
R R 1

¹+¸(¹ + ¸ ¡ ')2dF´dF'j´

)
(14)

while E¼00
¸;² is unchanged relative to E¼00

² by the introduction of ¸-controls.
(E¼0

¸;² := E¼0(x0(´); ~́; ~') and E¼00
¸;² := E¼00(x00; ~') where x0(:) and x00 obey

now (4")). The bene¯t of forbidding extreme alternatives a priori for the prin-
cipal is the protection against extreme con°icts. The restriction e®ectively ma-
jorizes the utility loss of the principal in the worst case. The °ipside of the coin
is of course that the principal might end up forbidding a choice that he would
actually want to have implemented ex post and that the agent will respond with
less e®ort.

13



Formally, the principal now solves

max
²;¸

e(²; ¸)E¼0
²;¸ + (1 ¡ e(²; ¸))E¼00

²;¸ (15)

where e(²; ¸) now combines the information contained in (5') and (13), while
E¼0

²;¸ is given by (14). This program yields the ¯rst order conditions

@

@²
E¼00

² + e
@

@²

£
E(¼0

²;¸ ¡ ¼00
² )

¤
+

@e

@²
E(¼0

²;¸ ¡ ¼00
² )

!
= 0 (FOC²)

e
@

@¸
E¼0

²;¸ +
@e

@¸
E(¼0

²;¸ ¡ ¼00
²;¸)

!
= 0 (FOC¸)

Proposition 3 (ia)An optimal solution to problem (15) exists. (ib)The solu-
tion is unique (a.e.).
Value of Delegation:
(ii)The principal is better o® if he contracts with agents whose interests are more
in line with his own, i.e. @

@½
E¼0

²;¸ > 0:
Optimal Use of Interval Prohibitions:
(iii)Under A4a and A4b it is optimal to set ² > 0 if ½ is su±ciently close to
1; @²¤

@½ ¸ 0:
Optimal Use of Interval Controls:
(iv)If ½ · 0 it is optimal to set ¸¤ = 0:
(v)If 0 < ½ < 1 the principal will choose the boundary of the interval control
such that ¸¤ > ¹̧; where ¹̧ = arg maxE¼0

²;¸: If ½ = 1, ¸¤ = ¹̧:
(vi) ¸¤ increases in ½:

Proof of part (i)-(iii) and (vi): see in the appendix.
Proofs of parts (iv) and (v): To make delegation worthwhile at all, the principal

must bene¯t if his agent is well informed. This requires that E
³
¼0

²;¸ ¡ ¼00
²;¸

´
¸

0; which in turn a®ords ½ ¸ 0: The principal can only loose if he gives dis-
cretion to an agent who's interests are opposed to his own. To see part (v),

consider the equation e @E¼0

@¸ + @e
@¸E

³
¼0

²;¸ ¡ ¼00
²;¸

´
!
= 0: The agent reacts posi-

tively on increased freedom of action ( @e
@¸ > 0). If a solution exists, we must

therefore necessarily have @E¼0

@¸ < 0; (since E
³
¼0

²;¸ ¡ ¼00
²;¸

´
¸ 0; too). An im-

portant though purely technical result is established in Lemma 2, which has
been relegated to the appendix: E¼0

²;¸ is a quasiconcave function of ¸: This

implies, for 0 < ½ < 1; together with the arguments above that ¸¤ > ¹̧: That
½ = 1 ) ¸¤ = ¹̧ is shown in the appendix. Essentially this is due to the fact
that for ½ < 1; the principal can, by decreasing ¸; increase E¼0

²;¸ a bit without
reducing e®ort supply a lot. This proves the claims:

Interval prohibitons serve to motivate the agent to supply high e®ort. Interval
controls are designed to protect the principal from opportunistic behavior of
his agent. Forbidding the choice which is best under ignorance is a very costly
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incentive instrument. It will only be used if the bene¯t of doing so is su±ciently
large. However, the principal will not bene¯t greatly if an agent, whose preferred
choices are always "far away" from the principal's preferred choices, puts in more
e®ort. Therefore the principal will contend himself with using safeguards only.
The principal can never gain anything by delegating to an agent who is against
him on average (½ · 0) - no matter how he delegates the task. As long as
the principal does not ¯nd it optimal to give his agent full discretion, he will
give a freedom of action, which is larger than would be optimal from an ex
post perspective only. By sacri¯cing some of the expected bene¯ts from an in-
formed decision of his agent, he induces a higher e®ort choice of him. Agents
whose interests are closer aligned with those of the principal get more free-
dom. It should be noted that this result is due to the assumption of identical
marginals. If the prior means of principal and agent di®er, agents with higher
½ need not be better for the principal nor need they be given a larger degree
of freedom. However the result that a principal can induce higher e®ort by the
use of interval-prohibitions - i.e. by forbidding the agent's most preferred alter-
native when ignorant - applies in this case too. Note also that the cost of using
these prohibitions decreases as the prior means move apart. In contrast to the
present situation the principal does not punish himself ex post when he makes
the ignorant life for his agent unpleasant. Apart from these considerations it
should be possible to eliminate di®erences in opinions ex ante trough some kind
of screening procedure.
An important robustness consideration concerns the policies the principal is
allowed to choose from. So far we have simply assumed that the principal uses
only prohibitions and controls as speci¯ed in Assumption 3. But this is actually
a result, rather than an assumption:

Proposition 4 Under A1', if ¾ is large, ¡̂0 is the unique optimal policy.

Proof: see in the appendix.

While the formal analysis is relegated to the appendix, an intuitive sketch shall
be given here. We have already shown, that in the special case of ½ = 1; ¡̂
was the unique optimal solution. This implies that we cannot improve upon
the interval prohibition as speci¯ed there, i.e. either ² = 0 or excluding a
symmetric interval (¹ ¡ ²; ¹ + ²) from the choice set of the agent is part of
an optimal policy. But in stead of interval controls only we should allow the
principal to exclude any collection of open sets from the agent's choice set. As a
result, we now must consider three candidates for optimal policies: in addition
to prohibiting (¹¡ ²; ¹+ ²) use (i) interval controls only, or (ii) a countable but
possibly in¯nite number of prohibitions of the type (¹+°i ¡ ti; ¹+°i + ti) with
¹+°h+1 ¡th+1 > ¹+°h + th or (iii) a combination of these two policy types (i)
and (ii). Note carefully that restricting attention to symmetric policies located
around some speci¯c points ¹ + °i is without loss of generality, since we can
also take care of asymmetric policies by simply rede¯ning ¹ + °i appropriately.
However, the concept can only apply to ¯nite values, since otherwise we cannot
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¯nd the "middle" of a prohibited interval. Thus interval controls are not the
limit of these policies as t ! 1!
It is economically intuitive and proven formally in the appendix that prohibiting
two intervals (¹ + °1 ¡ t1; ¹ + °1 + t1) and (¹ + °2 ¡ t2; ¹ + °2 + t2) with
¹ + °2 ¡ t2 > ¹ + °1 + t1 is a suboptimal policy, since we leave the agent the
possibility of reacting in the wrong direction. But consequently, if it is optimal
to exclude some speci¯c alternatives beyond a certain threshold ¹ + ¸; then
it must be optimal to exclude all alternatives beyond the threshold19. Hence
interval controls are optimal.

5 Conclusions

The principal uses two types of instruments to control the agent's behavior.
Agents which are known to have interests very much out of line with those of the
principal have to be controlled with instruments restricting their misbehavior.
Their choice set will be a narrow set around the optimal choice under ignorance.
Obviously those agents will also deliver little e®ort, because they will hardly be
able to use their improved knowledge in their own best interest. Agents with
interests which parallel those of the Principal may be subject to another kind of
restriction on their choice set. Since the principal bene¯ts very much from their
increased e®orts he could try to make life unpleasent for them if they have to
decide under ignorance. Such an e®ort enhancing control must therefore forbid
the choice which is optimal under ignorance. The surprising thing is that a
principal might ¯nd it optimal to use such instruments even if the agent is a
perfect clone of himself!
The bottom line of our argument is that curtailing the discretion or limiting the
authority of agents may have as favorable incentive e®ects as increasing their
discretion or giving them more authority. Moreover, the impact on the expected
payo® of the principal might well be positive. While Aghion and Tirole (1997)
have found that delegating authority -thus increasing discretion- might well be
a good thing, even if there are con°icting interests, the present paper points at
the mirror image of this result: curtailing discretion might well be a good thing
even if there are no con°icts of interests! As a consequence, there need not
be a monotonic relationship between the severity of the con°ict of interest and
the restrictiveness of the optimal decision space. An agent with better aligned
interests need not be given a higher degree of freedom - even if he would always
(on expectation) use this additional freedom in the principal's interest!
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7 Appendix A

We consider controls of the type ¡ = dom f´n[¡1; ¹¡¸][¹¡ ²; ¹+ ²][¹+¸; 1]:
¡ e®ectively truncates the distribution of ´: In view of the quadratic payo®
functions, the mathematical analysis will involve ¯rst and second moments of the
resulting truncated distribution. We will use the following notation troughout:

De¯nitions and Notation:

² dF´ = f(´)d´; dF'j´ = f(' j´ )d'

² ¢F² := F (¹) ¡ F (¹ ¡ ²) = F (¹ + ²) ¡ F (¹)

² dG² := dF´

¢F²

² ± := ¹ ¡
R ¹

¹¡² ´dG² =
R ¹+²

¹ ´dG² ¡ ¹

² F¹¡¸ := 1 ¡ F (¹ + ¸) = F (¹ ¡ ¸)

² dG¸ := f(´)
F¹¡¸

d´

² º :=
R 1

¹+¸ ´dG¸ ¡ ¹ = ¹ ¡
R ¹¡¸

¡1 ´dG¸

dG²

d´ is the density of ´; conditional on the fact that ´ 2 [¹ ¡ ²; ¹]: ¹ ¡ ± is the

mean of ´; conditional on ´ 2 [¹¡ ²; ¹]: Likewise, dG¸

d´ is the probability density

of ´, conditional on the fact that ´ 2 [¹ + ¸; 1]: º + ¹ is the conditional mean
of ´, conditional on the fact that ´ 2 [¹ + ¸;1]:

Proof of Lemma 1 (@e
@²

> 0):. We know that the agent's e®ort choice
satis¯es

g0 !
= EU(x0(´); ~́) ¡ EU(x00; ~́)

!
=

A

2
(¾2 + ²2) ¡ A

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´
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Hence

e = h

µ
A

2
(¾2 + ²2) ¡ A

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´

¶

where h := g0¡1 exists by strict convexity of g:

@e

@²
=

1

g00(e)
@

@²

·
A

2
(¾2 + ²2) ¡ A

Z ¹+²

¹

(¹ + ² ¡ ´)2dF´

¸

By Leibniz's rule we have @
@²

h
A
2 (¾2 + ²2) ¡ A

R ¹+²

¹
(¹ + ² ¡ ´)2dF´

i

= ¡A

½Z ¹+²

¹

2(¹ + ² ¡ ´)f(´)d´ ¡ ²

¾

= A [² ¡ 2¢F² f² ¡ ±g]

Hence

@e

@²
> 0 () ² ¡ 2¢F² f² ¡ ±g > 0

Observe now that this will always be true except in pathological cases: We have
± · ² because a mean is a convex combination. 2¢F² · 1 because at most half
of the mass can lie in the upper half of the distribution. Thus only in the case
where ± = 0 and ² is set equal to the upper bound of the distribution e®ort will
not increase. Observe however that ± = 0 means that the distribution has point
mass around ¹; i.e. is degenerate on ¹: We can thus safely ignore this case.

Proof of Proposition 1:. For the sake of clarity, we ¯rst state all deriva-
tives needed for the evaluation of (12):

@e

@²
=

A [² ¡ 2¢F² f² ¡ ±g]

g00(e)

@2e

@²2
=

A(1 ¡ 2¢F²)

g00(e)
¡ A2 [² ¡ 2¢F² f² ¡ ±g]2

g00(e)
g000(e)
g00(e)2

@

@²
E(¼0

² ¡ ¼00
² ) = [² ¡ 2¢F² f² ¡ ±g]

@2

@²2
E(¼0

² ¡ ¼00
² ) = 1 ¡ 2¢F²

(I)The principal will bene¯t from setting ² > 0 if

lim
²!0

@E¼00
²

@²
+ e

@

@²
E(¼0

² ¡ ¼00
² ) +

@e

@²
E(¼0

² ¡ ¼00
² ) > 0:
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More speci¯cally if

lim
²!0

¡² + e [² ¡ 2¢F² f² ¡ ±g] +
A [² ¡ 2¢F² f² ¡ ±g]

g00(e)
E(¼0

² ¡ ¼00
² ) > 0

or

lim
²!0

2
4

µ
e(²) + A

(¾2+²2)¡2
R ¹+²

¹
(¹+²¡´)2dF´

2g00(e(²))

¶
£

²¡2¢F²f²¡±g
²

3
5 > 1

By lemma (1) ² ¡ 2(² ¡ ±)¢F² > 0: By l'Hôpital lim²!0
²¡2¢F²f²¡±g

² = 1:

lim²!0

³
(¾2 + ²2) ¡ 2

R ¹+²

¹
(¹ + ² ¡ ´)2dF´

´
= ¾2: Thus the principal can ben-

e¯t from ²-controls if e(² = 0) + A¾2

2g00(e(²=0))
is larger than 1, which proves the

¯rst claim.
(II)Given that it pays to increase ² from zero, we must now show that there
exists one and only one ¯nite ² which solves the ¯rst order condition.
Existence: If an ²¤ > 0 solving the principal's problem exists, it is the solution
of the ¯rst order necessary condition:

@E¼00
²

@²
+ e

@

@²
[E(¼0

² ¡ ¼00
² )] +

@e

@²
E(¼0

² ¡ ¼00
² )

!
= 0 (FOC)

or

f² ¡ 2¢F²(² ¡ ±)g
µ

e +
AE(¼0

² ¡ ¼00
² )

g00

¶
!
= ² (16)

and satis¯es the second order condition:

0 >
@2¼00

@²
+ e

@2

@²2
[E(¼0

² ¡ ¼00
² )] + (SOC)

2
@e

@²

@

@²
[E(¼0

² ¡ ¼00
² )] +

@2e

@²2
E(¼0

² ¡ ¼00
² )

or

0 > ¡1 +

µ
e +

AE(¼0
² ¡ ¼00

² )

g00

¶
(1 ¡ 2¢F²) (17)

+
A (² ¡ 2¢F²(² ¡ ±))2

g00

·
2 ¡ Ag000E(¼0

² ¡ ¼00
² )

(g00)2

¸

De¯ne the left hand side of (16) as

z := e f² ¡ 2¢F²(² ¡ ±)g + A(²¡2¢F²(²¡±)
g00 E(¼0

² ¡ ¼00
² ):

Consequently z(0) = 0; lim²!0
@z
@² = lim²!0

z
² > 1 by l'Hôpital and A4a.

Existence requires that @z
@² eventually be smaller than one, the problem thus

eventually being concave. The problem is not globally concave. To see this,
consider the second derivative of the principal's payo® function:

@2¼00
²

@²
+ e

@2

@²2
E(¼0

² ¡ ¼00
² ) + 2

@e

@²

@

@²
E(¼0

² ¡ ¼00
² ) +

@2e

@²2
E(¼0

² ¡ ¼00
² ):
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@2

@²2
E(¼0

² ¡ ¼00
² ) = 1 ¡ 2¢F > 0: @e

@²
@
@²

E(¼0
² ¡ ¼00

² ) > 0: Finally @2e
@²2

= A
g00 (1 ¡

2¢F ) ¡ A2f²¡2¢F²(²¡±)g2

g00
g000

g002 : Now because lim²!0
@z
@²

> 1 we must also have

lim²!0
@2z
@²2 > 1; implying that the problem be convex for small ²: Let then

g000

g002 be bounded below and larger than 4
A¾2 . Then the expression in the second

line of (17): Af²¡2¢F²(²¡±)g2

g00 £
h
2 ¡ Ag000E(¼0

²¡¼00
² )

g002

i
is smaller than zero. The

expression in the ¯rst line is positive upon assumption for small ²: However, as

² is increased its in°uence must vanish: @
@²

h
(1 ¡ 2¢F²)

³
e +

AE(¼0
²¡¼00

² )
g00

´i
=

¡2f¹+²

µ
e +

AE(¼0
² ¡ ¼00

² )

g00

¶
+

½
2 ¡ Ag000 E(¼0

² ¡ ¼00
² )

g002

¾
£

(1 ¡ 2¢F²)A(² ¡ 2¢F²(² ¡ ±)

g00

< 0: Therefore as ² goes out of bounds we must have @2z
@²2

< 0: Consequently z
and the 45±degree line must cross eventually, which proves existence of ²¤:
Uniqueness : Finally we prove that there is a unique value ²¤; which solves the
¯rst order condition: Since the ¯rst order condition implies at ²¤ that

µ
e + A

E(¼0
² ¡ ¼00

² )

g00

¶
(1 ¡ 2¢F²) ¡ 1

= ¡
µ

e + A
E(¼0

² ¡ ¼00
² )

g00

¶
2¢F²

±

²
< 0

and we know that @
@²

³
e + AE(¼0

²¡¼00
² )

g00

´
(1 ¡ 2¢F²) < 0; z must be concave for

all ² > ²¤: (It was only the ¯rst line in (17) that caused problems). Therefore
(16) has exactly one solution.
(III) ¡̂ is a symmetric restriction around the mean. Therefore we must consider
candidates ·¡ which allow x = ¹ or/and are nonsymmetric. Consider thus any ¡̧
with ¹ 2 ¡̧: The agent's choice under ignorance and his as well as the principal's
payo® in this case are left unchanged. But if ¡̧ 6= ¡ there is a negative impact on
the choices and the payo®s ¼0 and U 0 in case the agent is informed. Therefore
¡̧ decreases the wedge between U 0 and U 00 and the agent supplies less e®ort.
These policies are therefore dominated and ¹ =2 ¡̧:
Consider then nonsymmetric restrictions ¡̧ = dom fn[¹¡²1; ¹+²2]. let ²1 < ²2
(w.l.o.g.). Consider the interval [¹+²1; ¹+²2]: In case the agent is not informed
there is no payo® relevant e®ect since the agent prefers to choose x00 = ¹ ¡ ²1:
In case he is informed the e®ect of excluding [¹+ ²1; ¹+ ²2] from the choice set
of the agent is to reduce the payo® of the agent and the principal, and to reduce
the di®erence of payo®s across the informed and uninformed state for the agent.
Therefore the overall e®ect must be negative. This proves the claim.

Proof of Proposition 2. (i) We want to know whether an increase in A or
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¾ makes lim²!0(e + AE(¼0
²¡¼00

² )
g00(e(²)) ) > 1 more likely. Thus @

@A

³
e + AE(¼0

²¡¼00
² )

g00(e(²))

´
=

E(¼0
² ¡ ¼00

² )

g00(e)

µ
2 ¡ Ag000(e)

E(¼0
² ¡ ¼00

² )

g00(e)2

¶
< 0 ( g000(e)

g00(e)2
>

4

A¾2
;8e

The argument of the e®ect of ¾2 is exactly the same.
(ii) Consider the e®ect of an increase in A on the optimal size of the prohibited
interval. De¯ne the function

H(A; ²(A)) :=
@E¼00

@²
+ e

@

@²
[E(¼0

² ¡ ¼00
² )] +

@e

@²
E(¼0

² ¡ ¼00
² )

By the implicit function theorem: @²¤

@A = ¡
@H
@A
@H
@²

: The denominator is the second

order condition, thus negative. @H
@A = @e

@A
@
@² [E(¼0

² ¡ ¼00
² )] + @2e

@²@AE(¼0
² ¡ ¼00

² ) =

E(¼0
² ¡ ¼00

² )

g00
@

@²
[E(¼0

² ¡ ¼00
² )] +

(² ¡ 2¢F²(² ¡ ±))E(¼0
² ¡ ¼00

² )

g00(e)

µ
g000(e)A

E(¼0
² ¡ ¼00

² )

g00(e)2
¡ 1

¶

Hence: ¡@H
@A = (²¡2¢F²(²¡±))E(¼0

²¡¼00
² )

g00(e)

³
g000(e)AE(¼0

²¡¼00
² )

g00(e)2 ¡ 2
´

> 0 by assump-

tion A4b. Hence @²¤

@A < 0:

(iii) Next, rede¯ne H as H(¾; ²(¾)). Then sign@²¤

@¾ = sign@H
@¾ :

@H

@¾
=

@e

@¾

@

@²
[E(¼0

² ¡ ¼00
² )] + e

@2

@²@¾
[E(¼0

² ¡ ¼00
² )] +

@2e

@²@¾
E(¼0

² ¡ ¼00
² )

+
@e

@²

@

@¾
[E(¼0

² ¡ ¼00
² )]

Consider all terms in order:

@e

@¾
=

A

g00(e)

µ
¾ +

Z ¹+²

¹

(¹ + ² ¡ ´)2
·

1

¾
¡ (´ ¡ ¹)2

¾3

¸
dF´

¶

which is larger than zero for ² < ¾ (which is natural, because nobody would
ever want to prohibit an interval containing two thirds of the mass!)

@2

@²@¾
[E(¼0

² ¡ ¼00
² )] = 2

Z ¹+²

¹

(¹ + ² ¡ ´)

·
1

¾
¡ (´ ¡ ¹)2

¾3

¸
dF´ > 0:

@2e

@²@¾
=

2A

g00

Z ¹+²

¹

(¹ + ² ¡ ´)

·
1

¾
¡ (´ ¡ ¹)2

¾3

¸

¡A(² ¡ 2¢F (² ¡ ±))

g00(e)
Ag000(e)
g00(e)2

£
µ

¾ +

Z ¹+²

¹

(¹ + ² ¡ ´)2
·

1

¾
¡ (´ ¡ ¹)2

¾3

¸
dF´

¶
:
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The sign of this expression is ambigous. Finally @
@¾ [E(¼0

² ¡ ¼00
² )] =

µ
¾ +

Z ¹+²

¹

(¹ + ² ¡ ´)2
·

1

¾
¡ (´ ¡ ¹)2

¾3

¸
dF´

¶
> 0:

Thus, the overall e®ect is of no clear sign.

General Derivation of Payo®s: The expressions in the text are not directly
accessible to analysis. For the sake of completeness, the statistical derivation of
a more workable form is provided here:
We consider ¡ = dom f´n[¡1; ¹¡ ¸); (¹ ¡ ²; ¹ + ²); (¹ + ¸;1] with ¸ ¸ ²: The
principal allows all choices within the intervals [¹ + ²; ¹ + ¸]; [¹ ¡ ¸; ¹ ¡ ²]. By
symmetry total utility losses due to these instruments are double the losses in
the upper half of the support of ´:
Derivation of utility losses due to prohibitions and controls: (1) con-
trols: EU 0

¸ = k ¡ A
R 1
¹+¸

(¹ + ¸ ¡ ´)2dF´ :

AF¹¡¸

Z 1

¹+¸

(¹ + ¸ ¡ ´)2dG¸

= AF¹¡¸

½Z 1

¹+¸

´2 ¡ (¹ + º)2dG¸ + (¸ ¡ º)2
¾

= AF¹¡¸

©
V ar(´ j´ 2 [¹ + ¸; 1] ) + (¸ ¡ º)2

ª

A

Z ¹+²

¹

(¹ + ² ¡ ´)2f(´)d´

= A¢F²

©
V ar(´ j´ 2 [¹;¹ + ²] ) + (² ¡ ±)2

ª

Derivation of E¼0
²;¸ : E¼0

²;¸ = K¡
" R ¹+²

¹

R
(¹ + ² ¡ ')2dF'j´ dF´ +

R ¹+¸

¹+²

R
(´ ¡ ')2dF'j´ dF´

+
R 1
¹+¸

R
(¹ + ¸ ¡ ')2dF'j´ dF´

#
(18)

Proceed term by term:
R ¹+¸

¹+²

R
(´ ¡ ')2dF'j´ dF´ =

(1 ¡ ½)¾2 ¡
Z ¹+²

¹

Z
(´ ¡ ')2dF'j´ dF´ (19)

¡
Z 1

¹+¸

Z
(´ ¡ ')2dF'j´ dF´

since 2
R R 1

¹ (´ ¡ ')2dF'j´ dF´ =
RR

(´ ¡ ')2dF'j´ dF´ = 2(1 ¡ ½)¾2:
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Consider next
R R 1

¹+¸(¹ + ¸ ¡ ')2dF'j´ dF´:

=

Z Z 1

¹+¸

(¹ + ¸ ¡ ´ + ´ ¡ ')2dF'j´ dF´ (20)

=

Z Z 1

¹+¸

(¹ + ¸ ¡ ´)2dF'j´ dF´ +

Z Z 1

¹+¸

(´ ¡ ')2dF'j´ dF´ +

2

Z Z 1

¹+¸

(¹ + ¸ ¡ ´)(´ ¡ ')dF'j´ dF´

The term
RR ¹+²

¹
(¹ + ² ¡ ')2dF'j´ dF´ can be expanded the very same way.

Making use of (19) and (20), we can simplify (18) to yield:

(1 ¡ ½)¾2 +
ZZ ¹+²

¹

(¹ + ² ¡ ´)2dF'j´ dF´ + 2

ZZ ¹+²

¹

(¹ + ² ¡ ´)(´ ¡ ')dF'j´ dF´ +

ZZ 1

¹+¸

(¹ + ¸ ¡ ´)2dF'j´ dF´ + 2

ZZ 1

¹+¸

(¹ + ¸ ¡ ´)(´ ¡ ')dF'j´ dF´

Consider now the term
RR 1

¹+¸
(¹ + ¸ ¡ ´)2dF'j´ dF´: Because we can integrate

out over ' (since
R

dF'j´ = 1) the term equals
R 1
¹+¸

(¹+ ¸ ¡ ´)2dF´; which has

been shown to equal F¹¡¸

©
V ar(´ j´ 2 [¹ + ¸;1] ) + (¸ ¡ º)2

ª
: Hence

ZZ ¹+²

¹

(¹ + ² ¡ ´)2dF'j´ dF´ +

ZZ 1

¹+¸

(¹ + ¸ ¡ ´)2dF'j´ dF´

= ¢F²

©
V ar(´ j´ 2 [¹;¹ + ²] ) + (² ¡ ±)2

ª
+

F¹¡¸

©
V ar(´ j´ 2 [¹ + ¸; 1] ) + (¸ ¡ À)2

ª

To evaluate the remaining terms, we make use of both the fact that the marginals
are identical and that they are normal. As a consequence, conditional means
take the form

R
'dF'j´ = (1 ¡ ½)¹ + ½´: Consider then the term

2

ZZ 1

¹+¸

(¹ + ¸ ¡ ´)(´ ¡ ')dF'j´ dF´

= 2

Z
dF'j´

Z 1

¹+¸

(¹ + ¸ ¡ ´)´dF´ ¡ 2

Z 1

¹+¸

(¹ + ¸ ¡ ´)

Z
'dF'j´ dF´

= 2F¹¡¸

½Z 1

¹+¸

(¹ + ¸ ¡ ´)´ ¡ (¹ + ¸ ¡ ´) [(1 ¡ ½)¹ + ½´]dG¸

¾

= ¡2F¹¡¸


(1 ¡ ½)

©
V ar(´ j´ ¸ ¹ + ¸ ) + º2 ¡ ¸º

ª®

Do the same for the analogous term involving ² and add all up to get: E¼0
²̂;¸0 =

K

¡

8
<
:

(1 ¡ ½)¾2 + (2½ ¡ 1)F¹¡¸V ar¸ + (2½ ¡ 1)¢F²V ar²+
F¹¡¸(º ¡ ¸)2 + ¢F²(² ¡ ±)2 ¡ 2(1 ¡ ½)F¹¡¸º(º ¡ ¸)+

2(1 ¡ ½)¢F²±(² ¡ ±):¥

9
=
; (21)

23



The following lemma contains a very useful technical result. Because it is not
by itself economically interesting, it has been relegated to the Appendix.

Lemma 2: E¼0
²;¸ is a singlepeaked and quasiconcave function of ¸. For 1 >

½ > 0; it has an interior maximum, say at ¸ = ¹̧(½) is concave for ¸ · ~̧(½)
and convex for ¸ > ~̧(½):

Proof of Lemma 2. Straightforward di®erentiation of (21) shows that
the derivative of E¼0

²;¸ with respect to ¸ equals:

@E¼0
²;¸

@¸
= 2F¹¡¸(½º ¡ ¸)

We want to show that for ½ < 1; there exists a ¹̧, such that
@¼0

²;¸(½)

@¸ < 0;8¸ ¸ ¹̧:
This can only be the case if there exists a ¸; such that ½º < ¸; 8¸ ¸ ¸: Consider
the equation ½º = ¸ or

½¾
Á(¸

¾ )

1 ¡ ©(¸
¾
)

= ¸

where Á and © are the p.d.f. and c.d.f., respectively, of the standard normal and
we make use of the fact that ¹ + º is the ¯rst moment of a truncated normal
distribution.20 At ¸ = 0 the right hand side of the equation is zero obviously
while the left hand side is strictly positive. The right hand side is increasing in
¸ with slope 1: The derivative of the left hand side is

¡½
¸
¾ Á(¸

¾ )

1 ¡ ©(¸
¾ )

+
½Á(¸

¾ )2

(1 ¡ ©(¸
¾ ))2

=
f¹+¸

(1 ¡ F¹+¸)
½(º ¡ ¸)

thus increasing in ¸: Start with the case ½ = 1 : for ½ = 1 the equation cannot
have a solution because º ¸ ¸; 8¸: We can also state that º0 · 1; 8¸: To see this
consider the change in the slope of the left hand side, i.e. º 00 :

@

@¸

½
f

1 ¡ F
½(º ¡ ¸)

¾
= ½

@

@¸

½
f

1 ¡ F

¾
(º ¡ ¸) + ½

f

1 ¡ F
£

½
f

1 ¡ F
(º ¡ ¸) ¡ 1

¾

It is well known that @
@¸

n
f

1¡F

o
> 0 for a normal distribution. Thus if f

1¡F
(º ¡

¸) > 1 the slope of ½º will increase more and more. Therefore º0(¸) > 1; for
any ¯nite ·̧; implies that º0(¸) > 1 for any ¸ ¸ ·̧: But eventually this implies

20see Johnson and Kotz (1970) p. 81
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lim¸!1(º ¡ ¸) > 0:
Now

º ¡ ¸ = ¾
Á(¸

¾ )

1 ¡ ©(¸
¾ )

¡ ¸

Using l'Hôpital twice we see that

lim
¸!1

¾Á(¸
¾ )

¸(1 ¡ ©(¸
¾
))

= 1 (22)

and therefore

lim
¸!1

º ¡ ¸ = 0

(22) says lim¸!1
º
¸ = 1: But then also lim¸!1 º0 = 1; again by l'Hôpital. This

establishes that º0(¸) · 1;8¸:
Decrease now ½ from 1: This has two e®ects: it shifts the function ½º down and
it decreases its slope to ½º0: Since º0 · 1;8¸; ½º0 < 1 for ½ < 1; 8¸: Thus, the
equation has exactly one solution, ¸(½); for ½ < 1 and ½º ¡ ¸ is negative for all
¸ ¸ ¹̧(½). This ¯nally establishes that E¼0(¸) is a singlepeaked, quasiconcave

function. Consider now
@2E¼0

²;¸

@¸2 = 2 ((1 ¡ ½)f¹+¸¸ ¡ F¹¡¸) : This is positive if
f

1¡F¹+¸
> 1

(1¡½)¸ : Since the left hand side is increasing in ¸; the right hand side

is decreasing in ¸; we will -if ½ < 1- always ¯nd a value ~̧ such that E¼0
²;¸ is

convex for all ¸ > ~̧: This proves the claim.

Proof of Proposition 3. For the sake of clarity, we ¯rst state all
derivates. The results follow from straightforward di®erentiation of (21) and

e = h
h
A

³
(¾2+²2)

2
¡

R ¹+²

¹
(¹ + ² ¡ ´)2 ¡

R 1
¹+¸

(¹ + ¸ ¡ ´)2
´i

.

Derivatives with respect to ² :

@

@²
E¼0

²;¸ = 2¢F²(½± ¡ ²)

@2

@²2
E¼0

²;¸ = ¡2¢F² ¡ 2(1 ¡ ½)f¹+²²

@e

@²
=

A [² ¡ 2¢F² f² ¡ ±g]

g00(e)

@2e

@²2
=

A(1 ¡ 2¢F²)

g00(e)
¡ A2 [² ¡ 2¢F² f² ¡ ±g]2

g00(e)
g000(e)
g00(e)2
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Derivatives with respect to ¸ :

@E¼0
²;¸

@¸
= 2F¹¡¸(½º ¡ ¸)

@2

@¸2 E¼0
²;¸ = 2 ((1 ¡ ½)f¹+¸¸ ¡ F¹¡¸) :

@e

@¸
=

2AF¹¡¸(º ¡ ¸)

g00(e)

@2e

@¸2 = ¡g000

g00

·
2A

g00 F¹¡¸(º ¡ ¸)

¸2

¡ 2A

g00 F¹¡¸ < 0

(ia) Existence of a solution follows from Weierstrass's Theorem. Before we
proove uniqueness a.e. (since it uses the same arguments) let us ¯rst proove
(ii). The change in the principal's payo® due to a change in ½ is given by

µ
@

@²
E¼00

² + e
@

@²

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤
+

@e

@²
E(¼0

²;¸ ¡ ¼00
²;¸)

¶
@²

@½
+

µ
e

@

@¸
E¼0

²;¸ +
@e

@¸
E(¼0

²;¸ ¡ ¼00
²;¸)

¶
@¸

@½
+

e
@

@½

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤

The proof of proposition 1 showed that the solution for ² is an interior solution
for ½ = 1: By continuity the same is true for ½ close to 1. Let us further assume
for the moment that the solution for ¸ is an interior solution too. Then, by the
envelope theorem, the ¯rst two lines are equal to zero. The ¯nal step is to show

that @
@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
> 0; 8¸; ² ¸ 0;¸ ¸ ²: @

@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
=

¾2 ¡ 2F¹¡¸V ar¸ ¡ 2¢F²V ar² ¡ 2F¹¡¸º(º ¡ ¸) + 2¢F²±(² ¡ ±)

As @2

@²@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
= 2¢F²± > 0 and @2

@¸@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
= 2(1 ¡

F¹+¸)v > 0; the expression is minimized at ² = ¸ = 0 : @
@½

min
h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
=

¾2 ¡
Z 1

¹

´2 ¡ (¹ + º)2
dF´

1
2

¡ º2

= ¾2 ¡
¡
¾2 ¡ º2

¢
¡ º2 = 0:

Assume then that the solutions are corner solutions. Since at ² = 0 all deriva-
tives with respect to ² are exactly equal to zero, the same argument as above

applies. As for ¸ = ¸max, both
@E¼0

²;¸

@¸ and @e
@¸ tend to zero as ¸ ! 1: Then
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again, the only term we need consider is @
@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
: This proves the

claim.
(ib) Consider now uniqueness. In the case of ²; uniqueness was proven in propo-
sition 1 for the case of ½ = 1. By continuity the same arguments hold also true
for ½ close to 1. Moreover, it will be shown below that ² > 0 if and only if ½
is close to 1. Consider then uniqueness in the case of ¸ : since º ¸ ¸ @e

@¸ ¸ 0:

Furthermore we know from lemma 2 that @¼0

@¸ is positive for ¸ small and ½ > 0:
Hence, the principal's objective must either reach an interior maximum or it
must increase till ¸ = ¸max: In the latter case the solution is obviously unique.
In the former, we have at least one interior solution and a su±cient condition
for uniqueness is that the problem be globally concave. Consider the "¯rst"

interior extremum, i.e. the smallest value ¸¤; satisfying e@¼0

@¸ + @e
@¸ (¼0 ¡¼00)

!
= 0:

Since the ¯rst extremum is a max, the second order condition holds locally:

@2e

@¸2 (¼0 ¡ ¼00) + 2
@e

@¸

@E¼0

@¸
+ e

@2E¼0

@¸2 < 0 (23)

However, the problem need not be globally concave. From Lemma 2 we know
that @¼0

@¸ < 0 for all ¸ > ¹̧(½): Hence, the ¯rst and the second term in (23) are

negative as @¼0

@¸
< 0; @e

@¸
> 0; and

@2e

@¸2 = ¡g000

g00

·
2A

g00 F¹¡¸(º ¡ ¸)

¸2

¡ 2A

g00 F¹¡¸ < 0

However, if ½ < 1; @2E¼0

@¸2 = 2 ((1 ¡ ½)f¹+¸¸ ¡ F¹¡¸) is larger than zero for ¸
su±ciently large. It is thus possible - and we have found no way to exclude this
possibility in general - that there are several interior solutions. However, it is
shown below that this is not an issue for often used e®ort cost functions. (see
below). Assume nevertheless for the sake of the argument that there are several
local extrema. In this case the principal's payo® must be evaluated at all these
values of ¸ satisfying the ¯rst and second order condition.
In this case we can only show uniquness a.e.: let ¸¤

1(½) and ¸¤
2(½) be two values

of ¸ which both maximize the principal's payo®. This cannot be the case except
at a ¯nite number of disconnected points in [0; 1]; i.e. values of ½: To see this,
consider the change in the principal's payo® at the two interior solutions as ½
increases. By the argument in (ii) this is equal to

@E(¼0
²;¸ ¡ ¼00

²;¸)

@½
> 0

By the fact that
@2E(¼0

²;¸¡¼00
²;¸)

@½@¸ > 0 (see above) the change in expected payo®
for the principal is always higher at higher values of ½: Therefore this implies
that ¸(½ + d½) gives the principal a higher payo® than ¸(½ + d½): This proves
the claim.
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(iii)The ¯rst order condition in this case is given by

¡² + e f² ¡ 2¢F²(² ¡ ½±)g (24)

+
@e

@²
£ E(¼0

²;¸ ¡ ¼00
²;¸)

!
= 0

while the second order condition is

¡1 + e (1 ¡ 2¢F² ¡ 2(1 ¡ ½)f¹+²²) (25)

+2
@e

@²
f² ¡ 2¢F²(² ¡ ½±)g

+
@2e

@²2
E(¼0

²;¸ ¡ ¼00
²;¸)

< 0: De¯ne

H(²; ²(½)) :=
@¼00

@²
+ e

@

@²

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤
+

@e

@²
E(¼0

²;¸ ¡ ¼00
²;¸):

By the implicit function theorem @²
@½ =

¡ @H(²)
@½

@H(²)
@²

: The denominator is the second

order condition. It was proved that the solution is a maximum for ½ = 1: By
continuity this is also true for ½ close to 1: Thus, the denominator is negative.

Therefore sign
h

@²
@½

i
= sign

h
@H(²)

@½

i
:

@H(²)

@½
= e

@2

@²@½

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤
+

@e

@²

@

@½

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤
:

@2

@²@½

£
E(¼0

²;¸ ¡ ¼00
²;¸)

¤
= e2¢F²± > 0:

@
@½

h
E(¼0

²;¸ ¡ ¼00
²;¸)

i
¸ 0; 8¸; ² ¸ 0;¸ ¸ ² by (ii) above. This proves the claim.

(v) ¸¤ is ¯nite for ½ < 1 : e@E¼0

@¸ + @e
@¸E(¼0

²;¸ ¡ ¼00
²;¸) = 0: e and E(¼0

²;¸ ¡ ¼00
²;¸)

both attend ¯xed values for ¸ ! 1: Consider lim¸!1(
@E¼0

@¸
@e
@¸

) :

lim
¸!1

2(1 ¡ F¹+¸)(½º ¡ ¸)
2A

g(e)00 (1 ¡ F¹+¸)(º ¡ ¸)
= ¡1

Thus, the increase in E¼0
²;¸ overcompensates the decrease in e:

(vi) To see that d¸
d½ > 0; consider ¯rst local changes. De¯ne the function

H(½; ¸(½)) := e
@¼0

@¸
+

@e

@¸
E(¼0

²;¸ ¡ ¼00
²;¸):
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By the familiar argument: @¸
@½

= ¡
@H
@½
@H
@¸

: Because the second order condition holds

locally at a maximum, the denominator is negative and sign
h

@¸
@½

i
= sign

h
@H
@½

i
:

@H

@½
=

"
@e

@¸

@E¼0
²;¸

@½
+ e

@2E¼0
²;¸

@¸@½

#

@E¼0
²;¸

@½ > 0 (all ²; ¸ ¸ 0; ¸ ¸ ²) by the argument in (ii). There it has also been

established that
@2E¼0

²;¸

@¸@½ = 2(1 ¡ F¹+¸)º > 0: Hence @¸¤

@½ > 0:
Assume again that the principal's problem has two interior solutions. Even
in this case we must have d¸

d½
¸ 0 by the same argument as above, because

@2E(¼0
²;¸¡¼00

²;¸)

@½@¸ > 0 any discrete jumps will be rightwards.

An Example to Proposition 3: The problem has only one local extremum in
the relevant range if we restrict attention to the family of e®ort cost functions

g = c ei

i ; i ¸ 3:21

In this case we have

e =

·
A

c

½
¾2

2
¡ (1 ¡ F¹+¸)(V ar¸ + (º ¡ ¸)2)

¾¸ 1
i¡1

@e

@¸
=

1

i ¡ 1
e

1
i¡1¡1 2A

c
(1 ¡ F¹+¸)(º ¡ ¸)

The ¯rst order condition can then be expressed as

z(¸)
!
= ¡ (º ¡ ¸)

(½º ¡ ¸)
(26)

where

z(¸) = (i ¡ 1)
¾2

2
¡ (1 ¡ F¹+¸)(V ar¸ + (º ¡ ¸)2)

E(¼0
²;¸ ¡ ¼00

²;¸)

The solution to the problem must satisfy
@E¼0

²;¸

@¸ < 0 and E(¼0
²;¸ ¡ ¼00

²;¸) ¸ 0
thus both the left hand side and the right hand side of (26) are nonnegative.

Let ¹̧ solve ½º ¡ ¸ = 0 and ^̧ := min[¸max; µ̧], where µ̧ solves E(¼0
²;¸ ¡ ¼00

²;¸) =

0: Now for ½ > 0; µ̧ > ¹̧: Next observe that lim¸!¹̧ ¡ (º¡¸)
(½º¡¸) = 1; while

1 > z(¹̧) > 0; lim¸!^̧ z(¸) = 1 i® ^̧ = µ̧; while 1 > ¡ (º(µ̧)¡µ̧)

(½º(µ̧)¡µ̧)
> 0: As

(º¡¸)(½º0¡1)¡(º0¡1)(½º¡¸)
(½º¡¸)2 < 0 and

@z
@¸

= (i ¡ 1)
1
A

@(U0¡U00)
@¸ E(¼0

²;¸¡¼00
²;¸)¡ 1

A (U 0¡U 00)
@E(¼0

²;¸¡¼00
²;¸)

@¸

(E(¼0
²;¸¡¼00

²;¸))2
> 0 (26) has exactly

21Instead of the Inada condition lime!1 g
0 =1 we ensure e¤ < 1 by choice of c:
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one solution. If ^̧ = ¸max then we must let ¸ go to in¯nity: lim¸!1 z(¸) = i¡1
2½¡1 ;

while lim¸!1 º¡¸
¸¡½º = 0: Observe that i¡1

2½¡1 > 0 if ½ > 1
2 : But then there always

exists exactly one solution ¸ < ¸max that solves (26) as long as ½ < 1. In
particular this also shows that ¸ = ¸max if and only if ½ = 1: This example shows
that everything works well, i.e. the product e(¸)E(¼0

²;¸ ¡¼00
²;¸) can achieve only

one extremum in the relevant range under quite mild assumptions about e®ort
costs.

Proof of Proposition 4. Consider the candidate policy
¡t = dom f(´)n(¹ + ° ¡ t; ¹ + ° + t): By the familiar arguments E¼0

t =
K ¡ (1 ¡ ½)¾2¡

0
B@

R ¹+°

¹+°¡t
(¹ + ° ¡ t ¡ ´)2dF´ +

R ¹+°+t

¹+°
(¹ + ° + t ¡ ´)2dF´

+2(1 ¡ ½)
R ¹+°

¹+°¡t
(¹ + ° ¡ t ¡ ´)(´ ¡ ¹)dF´

+2(1 ¡ ½)
R ¹+°+t

¹+°
(¹ + ° + t ¡ ´)(´ ¡ ¹)dF´

1
CA

Taking derivatives with respect to t : @
@tE¼0

t =

(¡1)

Ã
(¡2)

R ¹+°

¹+°¡t
(¹ + ° ¡ t ¡ ´)dF´ ¡ 2(1 ¡ ½)

R ¹+°

¹+°¡t
(´ ¡ ¹)dF´

+2
R ¹+°+t

¹+°
(¹ + ° + t ¡ ´)dF´ + 2(1 ¡ ½)

R ¹+°+t

¹+°
(´ ¡ ¹)dF´

!
(27)

We must show that the term inside the brackets is nonnegative. If ½ is equal
to 1; the term inside the brackets becomes (¡2)

R ¹+°

¹+°¡t
(¹ + ° ¡ t ¡ ´)dF´ +

2
R ¹+°+t

¹+° (¹ + ° + t ¡ ´)dF´, which can never be negative: in the ¯rst integrand

(¹ + ° ¡ t ¡ ´); all realizations of ~́ are larger than ¹ + ° ¡ t; in the second all
realizations are smaller than ¹+° +t: (Since marginals are identical, this is also
a proof for the case where distributions are not normal. If ½ < 1; this is no longer
true, since we have used the fact that conditional means are linear.) Making
use of the fact that the distribution is normal the term inside the brackets is
equal to

¡2(° ¡ t) (F¹+° ¡ F¹+°¡t) + 2½¾

µ
Á

µ
° ¡ t

¾

¶
¡ Á

³°

¾

´¶
(28)

+2(° + t) (F¹+°+t ¡ F¹+°) ¡ 2½¾

µ
Á

³°

¾

´
¡ Á

µ
° + t

¾

¶¶

We must show that this is positive. The ¯rst line in (28) is positive i®

(° ¡ t) < ½¾

¡
Á

¡
°¡t
¾

¢
¡ Á

¡
°
¾

¢¢

(F¹+° ¡ F¹+°¡t)
= ½E

µ
´

¯̄
¯̄´ 2 [

° ¡ t

¾
;
°

¾
]

¶

hence i® ½ is large enough. The second line in (28) is positive i®

(° + t) > ½E

µ
´

¯̄
¯̄´ 2 [

°

¾
;
° + t

¾
]

¶
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hence for all values of ½: In particular these two things imply that @
@tE¼0

t < 0
for ½ close to 1:
If ½ is equal to zero, we must only consider

¡2(° ¡ t) (F¹+° ¡ F¹+°¡t) + 2(° + t) (F¹+°+t ¡ F¹+°)

This term will be positive if ¾ is large enough: (° + t) ¡ (° ¡ t) = 2t:
However (F¹+° ¡ F¹+°¡t) ¡ (F¹+°+t ¡ F¹+°) > 0 since an interval of size t
contains more mass the lower the location of the interval. Therefore we must
make sure that (F¹+°+t ¡ F¹+°) is not "much" smaller than
(F¹+° ¡ F¹+°¡t) : This can be done by choosing ¾ large enough, since

lim
¾!1

(F¹+° ¡ F¹+°¡t) ¡ (F¹+°+t ¡ F¹+°) = 0:

To sum up: if ¾ is large; we cannot ¯nd a ° such that F is "very steep" in the
interval [¹ + ° ¡ t; ¹ + °] and "very °at" in the interval [¹ + °; ¹ + ° + t]: has
no "steep" parts.
Since (28) is linear in ½; it is either minimized at ½ = 1 or at ½ = 0; depending
on

sign

µ
Á

µ
° ¡ t

¾

¶
+ Á

µ
° + t

¾

¶
¡ 2Á

³°

¾

´¶

But then, provided that ¾ is large enough, the above arguments imply that
@
@tE¼0

t < 0 for all values of ½ and t ¸ 0: This completes the proof.

8 Appendix B

(i) Equivalence of nonmonetary and monetary decision based rewards:
Suppose that the principal can write monetary contracts, but that bene¯ts are
noncontractible. The agent is in¯nitely risk averse with respect to ¯nancial
income and derives utility V (w(x)) from such income. V thus satis¯es: V 0 > 0;
V 00 < 0: It is easy to see that - everywhere where w() is di®erentiable - we
must have @w

@x = 0 for all x that the principal might want the agent to choose:

For if @w
@x 6= 0; the realized wage would depend on ´; hence would be risky ex

ante. Given the in¯nite risk aversion of the agent this must be suboptimal.
Suppose that the principal does not want the agent to choose an alternative
x 2 (¹ ¡ ²; ¹ + ²): He can guarantee this by using the following wage scheme
wM;N :=

wM = ¡M for x 2 (¹ ¡ ²; ¹ + ²)

wN = N otherwise

for M and N large enough. Provided that N ¡ (¡M) is large enough, the agent
will never choose an x 2 (¹¡²; ¹+²): There is thus no risk in realized monetary
income, since the agent can guarantee himself a ¯xed income in all states. Thus,
the wage scheme (wM ; wN) can implement exactly the same outcome, in terms
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of e and x as the contract ¡ does when the agent does not respond to monetary
incentives at all.

(ii) The case of a binding IR-constraint: Assumption 4a and Proposition
1 compare only the direct costs and bene¯ts on the principal's utility of intro-
ducing interval prohibitions. The cost of increased e®ort is born entirely by the
agent. Since, if the agent does not respond to monetary incentives, there is no
way of compensating the agent for increased e®ort, we had to assume that the
IR-constraint was nonbinding. However, there is a straightforward extension
to proposition 1, when monetary transfers have value. Assume that V is un-
bounded below such that, at the optimal solution of the principal's problem,
the IR-constraint of the agent will be binding. An increase in e must therefore
be compensated by an increase in N: By proposition 1 eEU 0 + (1 ¡ e)EU 00 will
be higher under a wage scheme wM;N than under a °at wage scheme, wN ; say.
But lets assume that the principal compensates the entire additional e®ort cost.
Then introducing wM;N will result in an increased N; according to

@N

@²
=

1
@V
@N

@g

@e

@e

@²
:

Assume that the marginal utility of income for the agent is at least 1. To
overstate the matter, let @V

@N = 1 at the value of N that has the IR constraint
exactly binding for ² = 0: In this case the principal will set ² > 0 if

e +
A¾2

g00(e)2
¡ g0(e)

A

g00(e)
> 1

or since g0(e) = A¾2

2

e +
A¾2

g00(e)2
(1 ¡ A) > 1 (A4a')

This condition now compares both direct and indirect costs: with a probability
1¡e the principal just shoots himself in the foot by setting ² > 0: In addition he

now bears additional wage costs of A2¾2

g(e)002 : The bene¯t is as before, the marginally

avoided risk: A¾2

g(e)002 : The derivative of the left hand side of this inequality is

(1 ¡ A)
¾2

g(e)002

½
2 ¡ A¾2

2

g(e)000

g(e)002

¾
< 0:

A4a' is harder to satisfy than A4a but again more likely to hold the smaller A:
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