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Abstract

In “new economic geography” models, spatial concentration typically
arises either because of worker mobility or because of vertical linkages
among firms. We examine a setup that combines those two approaches
in conjunction with local congestion costs. We find that, as trade costs
are lowered, the spatial concentration of total activity (“agglomeration”)
follows an inverse u-shaped evolution, while the degree of specialization of
locations increases. The evolution of spatial configurations accommodated
by this model is consistent with changes in sectorial employment patterns
within US metropolitan areas over the 1850-1990 period.
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1 Introduction

Imagine a city with two districts (a central city and its suburbs) and two indus-
tries with increasing returns to scale at a stage where transport costs between
the two districts are prohibitive. Each industry will be evenly spread between
the two locations to supply local demand at low cost, and thus the internal
geography of the city will be made of two diversified districts. Imagine then
that transport costs decrease, and that firms and their workers are allowed to
move. Firms will tend to concentrate in a single location (the central city) to
save on fixed costs, workers will move to this central city, but this will in turn
crowd this location, so that some firms may in fact be better off locating in the
suburb. In a such simple model, it is hard to say what will be the concentration
pattern of the two industries within the two locations. It is further hard to say
how this internal geography might evolve with falling trade costs and what will
be its impact on the relative size of the two locations as they become more and
more integrated.

Abdel-Rahman and Anas [2] consider this issue to primary importance in the
latest Handbook of urban and regional economics. A glance at the economic ge-
ography literature indicates two types of outcome. Abdel-Rahman [1] proposes
two configurations: a specialized configuration, where each location receives
only one industry, and a diversified configuration, where each location hosts
both industries. These configurations are determined by interactions between
returns to scale and transport costs: when returns to scale are high, firms have
an incentive to concentrate in one location, hence specialization; when transport
costs prevail more, firms spread between locations to supply local demand at
low cost, hence diversification. Duranton and Puga [4] propose a configuration
where diversified and specialized locations coexist. The diversified locations are
locations where innovating firms locate to develop their ideal production process
and then switch to specialized locations for mass production.

Our framework can accommodate these two outcomes: when trade costs are
high, firms spread evenly between the two locations to supply local demand at
low cost, leading to diversified locations; at intermediate trade costs, agglomer-
ation effects interact with congestion costs and transport costs to shape a diver-
sified core and a specialized periphery; and at sufficiently low trade costs, each
industry concentrates in one location, leading specialized locations. Patterns of
urban evolution in the United States are consistent with such an outcome. The
census micro data collected and harmonized by the Minnesota Population Cen-
ter based on random samples of the American population drawn from fourteen
federal censuses between 1850 and 2000 allow us to extract some salient facts.1

1www.ipums.org
See the reference section for authors details.
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Figure 1: Specialization in central and peripheral US metropolitan districts.
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Figure 2: Relative employment in central and peripheral US metropolitan districts.
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We focus on tradable goods and services and construct four aggregated in-
dustries: durable manufactured goods, non-durable manufactured goods, finan-
cial services and business services.2 Figure 1 computes the Krugman bilateral
specialization index in US city centers and suburbs which represent our two lo-
cations.3 We observe an increasing specialization between the core (city centers)
and the periphery (suburbs) over the period 1850-1990. Closer inspection of the
data reveals that city centers have been specializing in financial and business
services while suburbs are specializing in manufactures. Figure 2 shows the evo-
lution of relative employment. It seems that central districts first received more
workers until a peak around 1940, and then started losing employment relative
to the suburbs.

These results correspond to the following spatial evolution: as integration
proceeds within a city, specialization increases monotonically, in parallel with
a non-monotonic agglomeration trend where center first gains and then loses
workers. The aim of this paper is to build a model that reproduces this outcome.
We analyze what we believe is a parsimonious model for the purpose at hand,
building on well known analytical tools of the new economic geography. The
model features both interregionally mobile labor and input-output linkages, thus
combining the main locational forces of the “core-periphery” model initially
developed by Krugman [7] and the “vertical linkages” model of Krugman and
Venables [8].4 In addition, our model has two imperfectly competitive sectors
that differ in the intensity of their vertical linkages, and we add an exogenous
congestion cost.5

We study our model in terms of its prediction in three dimensions of the
spatial economy:

• the spatial distribution of aggregate activity, which we refer to as “ag-
glomeration”,

• the sectorial composition of locations, which we refer to as “specializa-
tion”, and

• the tendency of different industries to locate in the same or in different
locations, which we refer to as “co-location”.

2Financial services include security and commodity brokerage and investment, insurance
and real estate. Business services include advertising, accounting, auditing and book-keeping
services.

3For most of the years, the IPUMS sample includes 1,000 individuals. We dropped years
using a different sample size for the sake of coherence. This is why some years are missing in
Figure 1 and 2.

4Puga [11] has developed a model that encompasses both the core-periphery and the
vertical-linkages models as special cases. Our model differs from that of Puga by two asym-
metries we introduce: the two sectors have different intensities of intra-industry linkages, and
labor is sector-specific, that is each sector uses a specific type of labor so that workers can
move between regions but not between sectors. This, arguably, makes our model more suit-
able to the analysis of relatively small-scale spatial reallocations such as those occurring inside
individual metropolitan areas.

5Multi-sector models with vertical linkages have been developed by Venables [13] and
Fujita, Krugman and Venables [6] in chapter 16. Our framework differs from theirs by the
two asymmetries described in the previous footnote.
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The qualitative predictions of the new economic geography models can be
categorized into three types. The first type features dispersion and no spe-
cialization at high transports costs, agglomeration and specialization at inter-
mediate transport costs, and finally agglomeration and specialization again at
low transports costs (Krugman [7], Krugman and Venables [9] and Puga [11]).
Models of the second type feature dispersion and specialization at high trans-
port costs, agglomeration and specialization at intermediate transports costs
and finally “redispersion” and “despecialization” at low transport costs (Krug-
man and Venables [8], Venables [13] and Puga [11]). The third type appears
in chapter 16 of Fujita, Krugman and Venables [6] where there is dispersion
at any transports costs associated with the following specialization pattern: no
specialization at high transport costs, specialization at intermediate transport
costs and “despecialization” at low transport costs.

Simulations of our model suggest a simple but striking evolution of the two-
location economy as trade costs are gradually reduced. We find that, at early
stages of integration, when trade cost are still very high, industries tend to split
evenly between the locations, so that sectors co-locate within each location,
and there is no specialization. When trade costs fall to some intermediate
level, a core-periphery distinction emerges among the two locations: the strong-
linkages industry partially, then totally, clusters in one location (the center)
which also receives some weak-linkages industry firms. As trade costs keep
decreasing, the weak-linkages firms located in the center start relocating to
the periphery. Finally, once trade costs have fallen sufficiently low, locations
completely specialize, and industries no longer co-locate.

The paper proceeds as follows: we present the building blocks of our model in
Section 2; Section 3 reports simulation results that characterize the equilibrium
configurations for changing trade costs and variations in other key parameters.
We summarize the qualitative behavior of the model in Section 4, and Section
5 concludes.

2 The model

Our basic setup is as follows. We consider a two-location two-industry model.
Trade between the two locations are of “iceberg” type τ , such that for each unit
of a good shipped from location 1, only 1/τ unit arrives in location 2 (τ > 1).
The economy consists of two monopolistically competitive industries producing
differentiated goods x and y under increasing returns to scale. Each variety of
each differentiated good is produced by a unique firm. For a differentiated good
m (m = x, y), the number of varieties produced (and thus the number of firms
located) in location r (r = 1, 2) is denoted nm,r. Labor is sector specific, that
is, there are x−type workers and y-type workers. These workers can move be-
tween regions but not between sectors.6 We assume intra-industry input-output
linkages, with stronger linkages in industry y than in industry x. There are no
inter-industry linkages, so that the interaction between sectors is only through

6This assumption is empirically realistic (see for instance Miller, 1984, and Flinn, 1986).
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general equilibrium effects. All workers are also consumers, and we write that
λm,1 workers of industry m are located in region 1 and (1 − λm,1) are located
in region 2, with 0 ≤ λm,1 ≤ 1. Finally, we assume congestion costs within
each region: as the number of firms in a region increases, the real wage of that
region decreases by a factor δ. This is the easiest way to introduce significant
congestion costs so as to counterbalance the two agglomeration forces (workers
mobility and input-output linkages). These congestion costs can be thought of
in a number of ways, such as the opportunity costs of commuting, environmen-
tal degradation or costs of immobile factors such as land. In Appendix 1, we
describe a model that endogenises the congestion costs by including an agri-
cultural sector with immobile workers.7 The resulting equilibrium equations
are similar, but it turns out that the congestion costs induced by the immobile
agricultural sector are never sufficient to yield the spatial evolution we seek to
reproduce in this paper.

2.1 Consumers

Let us focus on location 1 (the corresponding results for location 2 are analo-
gously derived). All consumers are identical, and they consume all the varieties
produced in the economy. They share the following Cobb-Douglas utility:

U = xµy1−µ, (1)

where 0<µ<1. Hence, consumers spend a share µ of their income on good x
and 1− µ on good y. x and y are Dixit-Stiglitz composites of varieties i:

x =

(∫ nx,1

0

x
(σ−1)/σ
i,1 di+

∫ nx,2

0

x
(σ−1)/σ
i,2 di

)σ/(σ−1)
, (2)

y =

(∫ nx,1

0

x
(σ−1)/σ
i,1 di+

∫ nx,2

0

x
(σ−1)/σ
i,2 di

)σ/(σ−1)
. (3)

The elasticity of substitution σ (with σ > 1) is assumed to be constant and iden-
tical for all the varieties of the two goods. Solving the consumer maximization
problem yields the following price indices (see Appendix 2 for the derivations):

Gm,1 =
[
nm,1p

1−σ
m,1 + nm,2 (τpm,2)

1−σ
] 1
1−σ

, (4)

Gm,2 =
[
nm,1 (τpm,1)

1−σ + nm,2p
1−σ
m,2

] 1
1−σ

, (5)

where pm,r is the equilibrium price of all varieties of good m in location r. We
can also derive the demand function for each variety in each location:

7Since we do not have a traditional sector, we have to find a numeraire. We cannot use a
differentiated good as numeraire because markups vary with the intensity of returns to scale.
Since nominal wages are simply set in each labor market, we thus use the wage of industry y
in location 2, which will be always defined in the model, as the numeraire.
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Qm,1 = Em,1p
−σ
m,1G

σ−1
m,1 +Em,2p

−σ
m,1τ

1−σGσ−1
m,2 , (6)

Qm,2 = Em,1p
−σ
m,2τ

1−σGσ−1
m,1 +Em,2p

−σ
m,2G

σ−1
m,2 , (7)

where Qm,r denotes the quantity of a given variety of good m produced in
location r, and Em,r is the is the total expenditure on this variety in location r.

2.2 Producers

We assume that all firms share an identical production technology involving
a fixed input Fm, which can differ between industries, and a unique constant
marginal input γ. Both inputs are expressed in terms of a composite Zm,r.
Following Fujita et al. [6] in chapter 14, we assume that for each location
this composite input can be expressed, up to a constant threshold, as Zm,r =
l1−αmm,r Ψαmm,r, where lm,r denotes the quantity of labor, Ψm,r is a CES composite of
intermediate good for industry m in location r including all the varieties of good
m, and αm represents the share of intermediate inputs in the total production
requirement for good m. The optimal combination of the composite inputs is
derived in Appendix 3. Following standard simplifying practice, we assume that
the substitution elasticity among varieties in the composite input Ψ equals the
substitution elasticity in consumers’ utility function, σ. Importantly, we impose
that αx < αy, so that intermediate inputs have a lower weight in the production
technology of industry x than in that of industry y.

A firm’s total cost is Fm + γQm,r, where Qm,r is the quantity produced.
Profits of a firm in industry m and location r are:

πm,r = pm,rQm,r − w1−αmm,r Gαm
m,r (Fm + γQm,r) (8)

Firms with monopoly power set marginal revenue equal to marginal cost,
where MR = pm,r

(
1− 1

ε

)
, ε being the price elasticity of demand. Since, in

monopolistic competition, ε→ σ as n→∞, firms’ optimization implies that:

pm,r

(
1−

1

σ

)
= γw1−αmm,r Gαm

m,r. (9)

With free entry and exit in all industries, profits are driven to zero in equi-
librium. Substituting (9) in (8) at the zero-profit equilibrium yields the opti-
mal level of firm output Q∗

m = Fm (σ − 1) /γ and the associated optimal input
Z∗m = Fm + γQ∗

m = Fmσ. Since firms make zero profits in this scenario, their
wage bill must be proportional to the total value of production, in accordance
with the labor share of inputs, and hence wm,rλm,r = (1− αm)nm,rpm,rQ

∗

m.

2.3 Normalizations and equilibrium

We can make some normalizations that simplify the model without loss of gen-
erality. First, following Fujita et al. [6], we impose that the marginal input
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requirement equals the constant markup, that is γ = (σ − 1) /σ, which implies
that:

pm,r = w1−αmm,r Gαm
m,r. (10)

We can also choose the fixed input requirement Fm such that the equilibrium
firm scale becomes Q∗

m = (1 − αm)
−1. The value of a location’s wage bill in

each of these industries now simplifies to wm,rλm,r = nm,rpm,r. Combining this
equation with equations (4), (5) and (10) leads to the following expressions for
the sectorial price indices in the two locations:

G1−σ
m,1 = λm,1w

1−σ(1−αm)
m,1 G−αmσ

m,1 + λm,2w
1−σ(1−αm)
m,2 G−αmσ

m,2 τ1−σ, (11)

G1−σ
m,2 = λm,1w

1−σ(1−αm)
m,1 G−αmσ

m,1 τ1−σ + λm,2w
1−σ(1−αm)
m,2 G−αmσ

m,2 . (12)

It is evident that the price index of an industry in a given location depends
on the industry’s wage rate in the location as well as on the price index of
that sector in the other location. We can derive the wages associated with the
optimal level of production using equations (6) and (7):

Qm,1 = Em,1p
−σ
m,1G

σ−1
m,1 +Em,2p

−σ
m,1τ

1−σGσ−1
m,2 = Q∗

m,1 = (1− αm)
−1, (13)

Qm,2 = Em,1p
−σ
m,2G

σ−1
m,1 +Em,2p

−σ
m,2τ

1−σGσ−1
m,2 = Q∗

m,2 = (1− αm)
−1, (14)

which we can re-write as:

pσm,1
1− αm

= Em,1G
σ−1
m,1 +Em,2τ

1−σGσ−1
m,2 , (15)

pσm,2
1− αm

= Em,1G
σ−1
m,1 +Em,2τ

1−σGσ−1
m,2 . (16)

Using the pricing rule (10) we obtain the following wage equations:

[
w1−αmm,1 Gαm

m,1

]σ
= (1− αm)

[
Em,1G

σ−1
m,1 +Em,2τ

1−σGσ−1
m,2

]
, (17)

[
w1−αmm,2 Gαm

m,2

]σ
= (1− αm)

[
Em,1G

σ−1
m,1 τ

1−σ +Em,2G
σ−1
m,2

]
. (18)

Wages in the two sectors are linked through expenditures E, which take into ac-
count both final and intermediate consumption. At the zero-profit equilibrium,
wages constitute the only source of income. Combining equation (1) with the
optimal shares of the composite inputs (derived in Appendix 3), we can derive
the following expenditure equations:
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Em,r = µm (λx,rwx,r + λy,rwy,r) +
αm

1− αm
λm,rwm,r, (19)

where µm is µ for industry x and 1−µ for industry y. The last step is to define
the real wage equations. We assume that there are congestion costs, such that
the real wage falls with the number of workers in a location. Specifically, we
postulate the following real wage equation:

ωm,r =
wm,r (λx,r + λy,r)

−δ

Gµ
x,rG

1−µ
y,r

, δ > 0, (20)

where the exponent δ represents the real-wage reducing impact of congestion in
each location. The full model consists of the sixteen non-linear equations (11),
(12), (17), (18), (19) and (20) for r = 1, 2 and m = x, y. For a given allocation of
labor between industries and locations λm,r, these equations define the short-run
equilibrium, that is the market clearing price indices and wages. In the long run,
sectorial labor moves between locations in response to real wage differences.8

We can summarize this model by describing the locational forces at work.
There are two agglomeration forces: forward and backward linkages. These
forces are due to the fact that firms tend to locate close to both the final and
intermediate goods big markets. There are two dispersion forces: the market
crowding effect (within each sector) and the congestion cost (within as well as
across sectors). We now explore how these forces combine to shape the internal
geography of our two-location economy as economic integration proceeds.

3 Numerical analysis

We are interested in the model’s predictions regarding agglomeration, special-
ization and co-location at different levels of trade costs. Our definition of these
location features is in terms of numbers of workers (rather than in, say, out-
put values). Since the equilibrium equations derived in the previous section are
highly non-linear, the model is not analytically tractable, and we have to resort
to numerical analysis to explore equilibria.9

In the following, we will describe the equilibrium regime for two sets of
parameters: αx=0.40, αy=0.45 , 0.65≤ δ ≤0.70 and αx=0.43, αy=0.47 , 0.68≤
δ ≤0.80 that allow consistent solutions and yield interesting results. We assume
reasonable returns to scale (σ = 4) and an equal budget share for the two
goods (µ = 1/2). These two assumptions ensure the results not to depend on
asymmetries (namely higher returns to scale or higher consumption share for
one of the two goods) other than the two we assume in this paper: different
intensity of intra-industry linkages, and inter-industry labor immobility. For
these parameter combinations, the model accommodates four types of equilibria:

8We imply the usual ad hoc migration dynamics whereby the flow of migrants is a linear
function of the real wage difference between the two locations (see Baldwin et al., 2003, ch.
2, for a thorough discussion).

9All of the numerical computations were done using the software GAMS.
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1. both industries are evenly spread between the two locations,

2. the two industries are each completely concentrated in a different location,

3. industry y is completely concentrated in one location and industry x is
unevenly spread between the two locations,

4. industry x is evenly spread while industry y’s share is higher in one loca-
tion.

In terms of agglomeration, the distribution of aggregate labor (and hence
activity) across locations, regimes 1 and 2 represent perfect dispersion, and
regimes 3 and 4 represent partial agglomeration. In terms of specialization,
locations’ relative industry shares, regime 1 is completely diversified, regime 2 is
completely specialized and regimes 3 and 4 are incompletely specialized. Finally,
regarding co-location, the two industries are perfectly co-located in regime 1,
partially co-located in regimes 3 and 4 and perfectly separated in regime 2.

3.1 Sustainability of completely specialized equilibria

As a first step, we explore the conditions under which a completely specialized
equilibrium (where workers of each industry are completely concentrated in one
location) is sustainable. Henceforth we assume that, if complete specialization
applies, industry x clusters in location 1 and industry y in location 2, so that
λx,1 = λy,2 = 1 and λx,2 = λy,1 = 0. For these values of λm,r, the congestion
cost parameter δ does not matter in the real wage equations (20) and combining
equations (11)-(12) and (20) yields the following relations between nominal and
real wages:

ωx,2
ωx,1

= τ1−2µ
wx,2
wx,1

, (21)

ωy,1
ωy,2

= τ2µ−1
wy,1
wy,2

. (22)

Using the previous conditions on λm,r, equations (11)-(12) and (19) simplify,
and we can substitute them into the wage equations to obtain the following
expressions:

w
(1−αx)σ
x,1

1− αx
=

(
µ+

αx
1− αx

)
w
σ(1−αx)
x,1 + µwy,2w

σ(1−αx)−1
x,1 , (23)

w
(1−αx)σ
x,2

1− αx
=

(
µ+

αx
1− αx

)
w
σ(1−αx)
x,1 τ1−σ−αxσ + µwy,2w

σ(1−αx)−1
x,1 τσ−αxσ−1,

(24)
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w
(1−αy)σ
y,1

1− αy
= (1− µ)wx,1w

σ(1−αy)−1
y,2 τσ−αyσ−1+

(
1− µ
+

αy
1−αy

)
w
σ(1−αy)
y,2 τ1−σ−αyσ,

(25)

w
(1−αy)σ
y,2

1− αy
= (1− µ)wx,1w

σ(1−αy)−1
y,2 +

(
1− µ+

αy
1− αy

)
w
σ(1−αy)
y,2 . (26)

We want to track how ωm,r/ωm,s evolves with falling trade costs. We fo-
cus on the two sets of parameters described above and simultaneously solve
equations (23)-(35) for different levels of trade costs. We can then compute
the relevant relative real wages using equations (21) and (22) and plot them in
Figure 3 (and Figure 17 in Appendix 8).

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7

α x=0.40 , α y=0.45 
ω x2/ ω x1

ω y1/ ω y2

τ

τX
S                                     τY

S

Figure 3: Sustain points of the two industries.

The sustain points are τSx � 2.3 and τSy � 2.9 for αx=0.40, αy=0.45

(τSx � 2.6 and τSy � 3.3 for αx=0.43, αy=0.47). Figure 3 shows that the
two industries are completely concentrated in different locations at sufficiently
low trade costs. For intermediate trade costs, complete concentration of the x
industry in location 1 is no longer sustainable while industry y remains clustered
in location 2. In this intermediate range, because of the existence of the conges-
tion costs, industry x will not necessarily spread evenly across the two locations
- an issue we will explore later on. For high trade costs, the agglomeration of
the strong input-output industry is not sustainable either, and neither of the
two industries is completely concentrated in one location.
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3.2 Incompletely specialized equilibria

3.2.1 Sustainability of concentration of one industry

So far, we have consciously neglected a relevant but complicating fact: for
τ > τSx (see Figure 3 above), λx,1 is no longer equal to 1, and thus we cannot
retain only equations (23)-(26) to analyze the sustainability of the complete-
concentration equilibrium of industry y. In fact, for τ > τSx , the simulations
underlying Figure 3 imply that we neglect the impact of congestion costs. In
order to take into account congestion costs, we use the full expressions for the
price index, expenditures and nominal and real wages, with the condition that
λy,2 = 1. This condition simplifies the industry y price index, but we now
have an additional variable, λx,1. To close the model, we use the fact that
workers in industry x migrate between locations 1 and 2 until the real wage in
the two locations is equalized. This yields a system of nine equations with nine
unknowns described in Appendix 4. The next step is to solve these nine non-
linear equations numerically for different values of trade and congestion costs.
Unfortunately, we cannot solve the equation system for our baseline parameters.
But we can obtain some results by setting αx = 0.25 and αy = 0.5 rather than
αx = 0.40 and αy = 0.45, with µ = 0.5.
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Figure 4: Sustain points ignoring congestion costs.
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Figure 5: Sustain points including congestion costs.

Before correction (Figure 4) the sustain points was τSx � 1.54 and τSy � 4,

and after correction (Figure 5) the values are τSx � 1.54 and τSy � 2.3. The

lower value of τSx in industry y is consistent, since the deviation of industry x
from full concentration in location 1 induces a higher population size in location
2, and thus δ matters more in reducing concentration forces in industry y.

In sum, the analysis of sustain points suggests that economic integration
will favor the concentration of industries in different locations, and the sector
with stronger input-output linkages will become concentrated “earlier” than
that with weaker input-output linkages.

3.2.2 Location of the dispersed industry

Figure 3 has shown an incomplete-specialization range of trade costs for which
the concentration of the weak input-output industry in location 1 is not sus-
tainable while the strong input-output linkages industry remains clustered in
location 2. Now, we examine what happens to the non-concentrated industry
in this parameter range.

In the incomplete-specialization range, we have that λy,1 = 0 and λy,2 = 1,
i.e. industry y remains concentrated in location 2. We choose the wage of this
industry in location 2 as the numeraire, setting wy,2 = 1. The complete concen-
tration of industry y in location 2 is sustainable as long as the real wage in this
location is higher than that in location 1 (ωy,2 > ωy,1). These conditions sim-
plify the equilibrium equations (11),(12), (17), (18), (19) and (20), as presented
in Appendix 5.
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The analysis consists of simultaneously solving these nine non-linear equa-
tions for different values of trade costs. We then compute the real wage differ-
ential in industry x, ωx,1−ωx,2 and plot it against λx,1. Figures 6-8 (and 18-20
in Appendix 8) plot the computed real wage differentials against labor shares in
industry x for our baseline parameter combinations, that is αx=0.40, αy=0.45,
0.65≤ δ ≤0.70 and αx=0.43, αy=0.47, 0.68≤ δ ≤0.80.

The simulations lead to a consistent set of qualitative results:

• when trade costs are very low, the real wage gap is in favor of location
1 (ωx,1 − ωx,2 > 0), inciting industry x’s workers to locate in location 1.
Hence, we observe full concentration of industry x in this location;

• when trade costs increase, the real wage gap is negative for high values of
λx,1 and positive for low values, so that we have a stable partial equilibrium
λ∗x,1;

• λ∗x,1 decreases as trade costs increase and increases as congestion costs
increase.
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Figure 6: Real wage differential in industry x.
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The first result reflects the sustain point analysis: when trade costs are low,
firms can supply both markets at low cost, and because of vertical linkages they
have an incentive to agglomerate in one location (location 1 for x-firms and
location 2 for y-firms). If trade costs are higher, it becomes costly to supply
remote consumers, and some x-firms will relocate to location 2, and the x-firms
share in location 1 will be λ∗x,1 rather than 1. It is obvious that the share of
relocating x-firms in location 2 (1 − λ∗x,1) will be higher the higher the trade
costs. On the other hand, since the size of location 2 increases because of the
relocation of some x-firms, congestion costs increase. These higher congestion
costs will attenuate the incentive of x-firms to relocate in location 2, yielding a
stable partial concentration of x-firms in location 2.

The pattern of equilibria is slightly different for αx=0.43, αy=0.47, 0.68≤
δ ≤0.80 (see Figures 18-20 in Appendix 8), especially for relatively low conges-
tion costs and trade costs. For these values, we obtain three equilibria: one full
stable concentration, one partial unstable concentration and one partial stable
concentration of industry x, instead of only one full stable concentration. For
higher trade and congestion costs, the results are the same and are summarized
in the following proposition.

Proposition 1 At high trade costs, location 2 receives all y-firms and more than

half of x-firms; as trade costs fall, the weak-linkages industry moves away from

the strong-linkages industry, and location 1’s share in x-firms increases. Once

trade costs are low enough, the weak-linkages industry completely concentrates

in location 1 and the strong-linkages industry totally concentrates in location 2.

3.3 Stability of the symmetric equilibrium

Now we turn to the stability analysis of the perfectly dispersed equilibrium,
where both industries are spread evenly across the two locations (λx,1 = λx,2 =
λy,1 = λy,2 = 0.5). As stated above, our model differs from existing economic
geography models (e.g. those mentioned in the introduction) in two key ways:
we assume an asymmetry in the intensity of intra-industry linkages (industry
x is assumed to have lower input-output linkages) and two types of labor, spe-
cific to each industry (workers can move between locations but only within the
same industry). These two asymmetries substantially affect the usual perfectly
dispersed equilibrium when trade costs are very high.

We are interested in the following question: “starting from a perfectly dis-
persed equilibrium, how does a reallocation of labor between locations affect
relative real wages?” If relative wages change in favor of the location that
receives the labor inflow, then the initial configuration was not a stable equilib-
rium. Conversely, if relative wages change in favor of the location from which
labor has migrated, then the initial configuration was a stable equilibrium.

One specificity of our model is that we have two state variables: the weak-
linkage industry labor allocation (λx) and the strong-linkages industry labor
allocation (λy). This increases the complexity of the perfectly dispersed equilib-
rium. To make the model tractable, we refer to the two assumptions dλx/dλy =
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dωx/dλy and dλy/dλx = dωy/dλx, which means that a reallocation of labor in a
given industry affects labor in the other industry through the variation induced
in the real wage of this latter industry.10

We are interested in the variation in real wages due to labor reallocation
dωx/dλx (dωy/dλy). A positive value in this this variation suggests that labor
reallocation implies a real wage gain, hence the perfectly dispersed equilibrium
breaks. To solve the model, we focus on price indices, expenditures and nominal
and real wages equations. The perfectly dispersed equilibrium implies that Gx,1

= Gx,2 = Gx , Gy,1 = Gy,2 = Gy , wx,1 = wx,2 = wx , wy,1 = wy,2 = wy.
First, we have to evaluate the symmetric equilibrium values of the variables and
then totally differentiate the system formed by price indices, expenditures and
nominal and real wages.11 These steps are described in detail in Appendices
6a and 6b. Our model is symmetric in the sense that dλx,1 = -dλx,2 = dλx,
dλy,1 = -dλy,2 = dλy, dwx,1 = -dwx,2 = dwx, dwy,1 = -dwy,2 = dwy, dGx,1 =

-dGx,2 = dGx, dGy,1 = -dGy,2 = dGy, dωx,1 = -dωx,2 = dωx, dωy,1 = -dωy,2
= dωy. At the perfectly dispersed equilibrium, we find that:

wx,1= wx,2=(1− αx) / (1− αy)
wy,1 = wy,2=1

Gx,1= Gx,2=(1− αx) / (1− αy)
[(
1 + τ1−σ

)
/2
]1/[1−σ(1−αx)]

Gy,1 = Gy,2=
[(
1 + τ1−σ

)
/2
]1/[1−σ(1−αy)]

Total differentiation around the perfectly dispersed equilibrium yields ten
equations of interest: the derivative of Gm with respect to λm, the derivative
of wm with respect to λx and λy and the derivative of ωm with respect to
λx and λy.

12 Using the same benchmark parameter values as in the sustain
point analysis, we can simultaneously solve these equations for different levels of
trade and congestion costs. This allows us to plot dωx/dλx (dωy/dλy) against
τ for our baseline parameter values αx=0.40, αy=0.45 , 0.65≤ δ ≤0.70 (and
αx=0.43, αy=0.47 , 0.68≤ δ ≤0.80 in Appendix 8). As long as these derivatives
are negative, indicating that migration of workers to the other location reduces
their real wage, perfect dispersion is a stable equilibrium.

10This assumption is an ad-hoc way to link migration to the real wage of the two industries.
An alternative approach would be to set different levels of λx and λy exogenously and to
combine the final effects, but this would increase the complexity of the simulations beyond
the scope of this paper.

11The linear approximation to the function y = f (x) around x∗ and y∗ = f (x∗) involves

computing dy =
n∑

j=1

∂f
∂xj

(x∗) dxj . This is derived in Appendix 6b.

12Note that the derivative of Gx (Gy)with respect to λy (λx) is zero with the chosen
functional forms.
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Figure 9: Stability of the perfectly dispersed equilibrium.
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Figure 10: Stability of the perfectly dispersed equilibrium.
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Figure 11: Stability of the perfectly dispersed equilibrium.

Figures 9-11 (Figures 21-23 in Appendix 8) plot dωx/dλx and dωx/dλy for
different parameters values. We find that, when trade costs are very high, the
two industries split evenly between the two locations to supply local consumers
at low cost. Dispersion forces are stronger than agglomeration forces. As trade
costs decrease, we reach a first break point τB1y (equal to 5.5, 4.2 and 3.3 for
δ=0.65, 0.67 and 0.70 respectively) at which the strong-linkages industry de-
viates from the symmetric equilibrium to concentrate in the center. Because
of congestion costs, industry y will concentrate only partially until the sustain
point τSy , which is the trade cost level for which full concentration becomes sus-
tainable. To get this partial agglomeration, we would have to solve the complete
equations system defining the equilibrium (the four price index equations, the
four expenditure equations, the four nominal wage equations and the four real
wage equations). This system turns out to have no numerical solution. How-
ever, the existence of congestion costs helps us to infer that the strong-linkages
industry will partially agglomerate in location 2, and that share will increase
until full concentration as trade costs keep on decreasing.

The symmetric equilibrium in industry x breaks at a lower trade cost τB1x
(equal to 2.9, 2.6 and 2.3 for δ = 0.65, 0.67 and 0.70 respectively) and the sim-
ulations indicate that τSy > τB1x , which suggests that when industry x deviates
from the perfectly dispersed equilibrium, the results obtained in Section 3.2.2
describes x-firms’ relocation behavior.

As trade costs keep decreasing, we reach a “reverse break point” first in
industry x, τB2x (equal to 1.6, 1.7 and 1.8 for δ = 0.65, 0.67 and 0.70 respectively)
and then in industry y, τB2y (equal to 1.4, 1.5 and 1.5 for δ = 0.65, 0.67 and 0.70

respectively). Our simulations indicate that τB1x and τB1y decrease as congestion

costs increase, and that τB2x and τB2y increase as congestion costs increase. This
means that, at very low level of trade costs, the perfectly dispersed equilibrium
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is a possible outcome.
We can summarize the break point analysis in the following proposition:

Proposition 2 Starting from a symmetric equilibrium at high or low trade

costs, the strong-linkages industry has a higher incentive to deviate from this

equilibrium to exploit agglomeration externalities.

3.4 The bifurcation diagram

In this section, we sum up the previous findings on firms location as trade
and congestion costs vary. Our simulation results for the various specialized
and dispersed configurations suggest a coherent pattern. At high trade costs,
the two industries spread evenly between the two locations. As trade costs
fall, the strong-linkages industry deviates first from the symmetric equilibrium
and partially concentrates in one location. As trade costs decrease further,
agglomeration forces matter more, and we end up with a full concentration of
industry y in location 2. Meanwhile, the weak-linkages industry remains spread
evenly between the two locations until a critical level of trade costs, τB1x <τSy ,
below which this industry partially concentrates in location 2. As trade costs
keep on decreasing, agglomeration forces also matter more in industry x, and
we end up with a full concentration of industry x in location 1. For very low
trade costs, we can have a full concentration of each industry in one location,
or an even spread of the two industries between the two locations.

Figure 12 illustrates the typical spatial evolution generated by our model.
The bold lines represent industry y (with strong linkages) and the fine lines
represents industry x (with weak linkages). τBm and τSm represent the break
point and the sustain point of industry m respectively . The dashed bold line
represents our inferred pattern for industry y when it deviates from the perfectly
dispersed equilibrium and is not yet totally concentrated in location 2.13

13To have an estimation of what is going on for this trade costs range, we have to solve the
whole equilibrium equations which is numerically infeasible.
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Figure 12: Bifurcation diagram.

Figure 12 reveals a rich pattern of firms location for trade costs in the range[
τSx ; τ

B1
y

]
, and this differentiates our model from existing economic geography

models cited in the introduction. We can distinguish three phases:

1. the weak-linkages industry is evenly spread between the two locations,
while the strong-linkages industry partially concentrates in location 2;

2. the weak-linkages industry is still evenly spread between the two locations,
while the strong-linkages industry is totally concentrated in location 2;

3. the strong-linkages industry remains concentrated in location 2, while the
weak-linkages industry partially concentrates in location 1.

These phases correspond to the following internal geography of our economy:

• Phase1: location 1 receives half of industry x and less than half of indus-
try y, while location 2 receives half of industry x and more than half of
industry y. Location 2 is thus bigger than location 1 in terms of number
of workers.
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• Phase2: location 1 receives half of industry x and no y-firms, while location
2 receives half of industry x and all of the y-firms. Location 2 is again
bigger than location 1.

• Phase 3: location 1 receives more than half of industry x and no y-firms,
while location 2 receives less than half of industry x and all y-firms. Lo-
cation 1’s size increases and location 2’s size decreases.

In addition to these three phases, we have the cases of even spread of the
two industries at high trade costs and full agglomeration of each industry in one
location at low trade costs.

Until now, we have focused on a set of baseline parameters. In the next
section, we test the robustness of our findings with respect to departures from
these baseline parameter values.

3.5 Robustness

One of the challenges of this paper is to retrieve relevant information from six-
teen strongly non-linear equations representing price indices, wages, real wages
and expenditures for the two locations and industries. We used different para-
meter combinations to analyze specialized equilibria and symmetric equilibria.
It appeared that for intermediate values of αx and αy with αx closer to αy, and
intermediate values of congestion costs, the break point analysis is identical to
that obtained with the baseline parameter combinations.

3.5.1 Sustainability of completely specialized equilibria

The sustain point analysis can be reproduced for a wide range of parameters.
For an overview of the impact of these parameters on ωm,r/ωm,s, we organized
the simulation in two ways. First, we set αx = 0.25, αy = 0.5 and let µ vary
from 0.1 to 0.9. Secondly, we set µ = 0.5 and let αx and αy vary from 0.1
to 0.9, with αx < αy. Figures 13 and 14 summarize the findings, with a base
scenario where µ = 0.5, αx = 0.25 and αy = 0.5. For this base scenario, we find
τSx ≈ 1.55 and τSy ≈ 4. The completely specialized equilibria are stable as long
as the relative real wage curves are below 1.
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Figure 13: Relative real wage when µ varies.

Figure 13 illustrates how the sustain point analysis varies when the expendi-
ture share (µ) of each of the two goods varies. When consumers prefer the y good
(which has a high intermediates share in production) more strongly (µ < 0.5),
the real wage curve of this industry moves to the right, and this industry re-
mains clustered in location 2 for higher value of trade costs. Conversely, the
complete concentration of the weak input-output linkages industry breaks for
lower trade costs. The reverse pattern holds when consumers shift expenditure
towards the x good (weak input-output linkages, µ > 0.5). The simulations
show that for µ∗ = 0.6, the complete-concentration equilibria break at the same
trade cost (τ∗ ≈ 2.35) for the two industries. For µ > µ∗, the concentration
of the y industry breaks before that of the x industry as trade costs increase.
We can show analytically that for µ < µ∗, the concentration of the weak input-
output linkages industry implies that of the strong input-output linkages (see
Appendix 7 for the proof). Conversely, for µ > µ∗, the concentration of the
strong input-output linkages industry implies that with the weak input-output
linkages.
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Figure 14: Relative real wages when αx and αy vary.

Figure 14 illustrates how these results vary when the intensities of the input-
output linkages (αx and αy) are changed. We continue to assume that industry
y uses more intermediate goods in its production process than industry x (αx <
αy), but within each industry we can consider different levels of linkages, and
the simulation shows that when this intra-industry linkage increases, the real
wage curve of the two industries moves to the right and therefore the industries
remain clustered for higher value of trade costs.

These simulations show that final expenditure shares and intensity of inter-
mediate inputs act as substitutable concentration forces in this model: a higher
expenditure share or a higher intensity of intra-industry linkages reinforce con-
centration.

3.5.2 Incomplete specialization

The analysis of incompletely specialized equilibria, where industry y is totally
concentrated in location 2 while industry x is spread unevenly between locations,
yield similar results for a wide range of parameter different to the baseline pa-
rameters. At high trade costs, location 2 receives all the y-firms and more than
half of x-firms. As trade costs fall, the weak-linkages industry moves away from
the strong-linkages industry, and location 1’s share in x-firms increases. Once
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trade costs are low enough, the weak-linkages industry completely concentrates
in location 1 and the strong-linkages industry completely concentrates in loca-
tion 2.

3.5.3 Stability of the symmetric equilibrium

The simulations yield various configurations depending on the intensity of intra-
industry linkages and congestion costs. We can summarize these results with
the following four scenarios:

• For any intensity of intra-industry linkages and congestion cost and for
very low trade costs, the symmetric equilibrium is always stable for the
two industries.

• dωm/dλm > 0 for higher trade costs, hence the symmetric equilibrium is
never stable.

• dωm/dλm < 0 for any level of trade costs, hence the symmetric equilibrium
is always stable.

• dωy/dλy < 0 for higher trade costs while dωx/dλx < 0 for any level
of trade costs: the symmetric equilibrium is never stable in the strong-
linkages industry while it is always stable in the weak-linkages industry.

3.5.4 Adding a traditional sector

Appendix 1 describes the model when featuring an agricultural sector. This
approach allows us to use the agricultural good as the numeraire. Most results
obtained are qualitatively identical but the congestion costs induced by the im-
mobile agricultural workers are never sufficient to yield the partial agglomeration
of the x-industry that we obtained in section 3.2.2.

This exercise reveals that our results showing increasing specialization asso-
ciated with a bell-shape agglomeration pattern are not due to our modelling of
congestion costs. However, our formulation of congestion costs appears to be
useful in yielding partial agglomeration (which of course is in line with empirical
observations).

4 Agglomeration, specialization and co-location

Simulations of our model yield a rich set of locational predictions that are sum-
marized in the bifurcation diagram of Figure 12. The behavior of our model
becomes even clearer when we illustrate the equilibria of our model separately
in terms of agglomeration, specialization and co-location. The following graphs
focus on location 2 which we assume to constitute the central location.
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4.1 Agglomeration

We define agglomeration in terms of the locational allocation of total labor.
The typical configuration of equilibrium agglomeration levels at different levels
of trade costs within location 2 is represented in Figure 15.

(λ x,2 + λ y,2)/2

τ

1 -

½ -

0

τY
B1τX

S τS
YτX

B1

Figure 15: Comparative statics of agglomeration.

We find that agglomeration follows a bell-shape trajectory as trade costs are
lowered. Total labor (and hence aggregate activity) is evenly spread between
the two locations when trade costs are high and low. At intermediate trade
costs, location 2’s size increases while location 1’s size decreases. As trade costs
keep decreasing, the size of location 2 starts decreasing until perfect dispersion
corresponding to two equalized locations’ sizes.

4.2 Specialization and co-location

Specialization is defined in our model using the Herfindahl index, H=(λx,2 /
(λx,2 + λy,2))

2+(λy,2 / (λx,2 + λy,2))
2, with 0.5≤ H ≤1. This index is traced

for different levels of trade costs in Figure 16.
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Figure 16: Comparative statics of specialization.

Figure 16 shows an increasing specialization of location 2 as trade costs are
lowered. We have no specialization at high trade costs, since the two industries
are evenly distributed between the two locations. As trade costs are lowered,
some y-firms in location 1 relocate to location 2, hence increasing specialization
in this location. As trade costs keep decreasing, the x-firms located in location
2 start relocating in location 1 and the specialization of location 2 in y-firms
is reinforced while that of location 1 in x-firms is also reinforced. At low trade
costs, the strong-linkages industry (y) is totally agglomerated in location 2 while
the weak-linkages industry is totally concentrated in location 1; hence a perfect
industrial specialization of each location. The decrease in specialization ob-
served for τB1x is due to the fact that when x-firms deviate from the symmetric
equilibrium, they relocate to location 2 and thus reduce the relative share of this
location in y-firms. But this gap is progressively corrected by the relocation of
x-firms to location 1 because of higher congestion costs in the crowded central
city.

Figure 16 also gives insights on the behavior of our model in terms of sectorial
co-location. There is a decreasing trajectory of co-location in location 2 as trade
costs are lowered. The two industries are perfectly co-located at high trade
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costs when the two industries are evenly distributed between the two locations.
As trade costs decrease, some y-firms leave location 1 to relocate to location 2,
reducing the relative share of industry x in location 2. As trade decrease further,
the x-firms located in location 2 start relocating to location 1 and further reduce
the degree of co-location of the two industries in location 2. At low levels of
trade costs, there is no more co-location since each industry is clustered in one
location.

Our results thus appear to depart from the other Dixit-Stiglitz-Krugman
models: at high trade costs we have dispersion associated with no specializa-
tion and perfect co-location, at intermediate transport costs we have partial
agglomeration, partial specialization and partial co-location, and finally at low
transport costs, we have “redispersion” associated with perfect specialization
and no co-location. This locational evolution is consistent with the stylized
facts on US city centers and suburbs over the period 1850-1990 described in the
introduction.

5 Conclusion

We have tracked locational equilibria in an integrating economy consisting of
two locations, using a new economic geography model with two industries, two
industry-specific interregionally mobile production factors and exogenous loca-
tional congestion costs. We assume that the two industries have different intensi-
ties of intra-industry linkages, and workers are allowed to move between regions
but not between sectors. These assumptions make our model more suitable to
the analysis of relatively small-scale spatial reallocations such as those occurring
inside individual metropolitan areas, or regions within a country. We found that,
at early stages of integration, industries tend to evenly split between locations so
that sectors co-locate within each location with no specialization. When trade
costs fall to an intermediate level, a core-periphery distinction emerges among
the two locations: the strong-linkages industry partially then totally clusters
in one location (the core) which also receives weak-linkages industry firms. As
trade costs further decrease, the weak-linkages firms located in location 2 relo-
cate to location 1 until full agglomeration. Finally, once trade costs have fallen
sufficiently low, locations completely specialize, and industries no longer co-
locate. However, at those advanced levels of integration, the peripheral location
recaptures activity from the core, so that the overall degree of agglomeration is
reduced. The threshold values of trade cost, as well as the uniqueness or multi-
plicity of equilibria in certain parameter ranges, depend on the calibration of the
model, in particular with respect to the expenditure shares of the two industries
and to the importance of locational congestion costs. Our model accommodates
the locational patterns of Abdel-Rahman [1] and Duranton and Puga [4]: we
have first diversified locations when trade costs are high, at intermediate trade
costs specialized and diversified locations coexist, and at low trade costs we have
only specialized locations. Our results thus reproduce the stylized facts on US
metropolitan employment patterns over the period 1850-1990.

28



References

[1] H. M. Abdel-Rahman, When Do Cities Specialize in Production?, Regional
Science and Urban Economics 26 (1996) 1-22.

[2] H. M. Abdel-Rahman, A. Anas, Theories of Systems of Cities, forthcoming
in J. V. Henderson and J-F Thisse (Eds), Handbook of Urban and Regional
Economics vol. 4., 2004

[3] R.E. Baldwin, R. Forslid, P. Martin, G.I.P. Ottaviano, F. Robert-Nicoud,
Economic Geography and Public Policy, Princeton University Press, 2003.

[4] G. Duranton, D. Puga, Nursery Cities: Urban Diversity, Process Innova-
tion, and the Life Cycle of Products, American Economic Review 91(2001)
1454-1477.

[5] C. J. Flinn, Wages and Job Mobility of Young Workers, Journal of Political
Economy 94(1986) 88-110.

[6] M. Fujita, P. Krugman, A. J. Venables, The spatial economy: cities, loca-
tions and international trade, MIT Press: Cambridge, MA, 1999.

[7] P. Krugman, Increasing Returns and Economic Geography, Journal of Po-
litical Economy 99(1991) 483-499.

[8] P. Krugman, A. J. Venables, Globalization and the Inequality of Nations,
Quarterly Journal of Economics 110(1995) 857-880.

[9] P. Krugman, A. J. Venables, Integration, specialization, and adjustment,
European Economic Review 40(1996) 959-967.

[10] R. A. Miller, Job Matching and Occupational Choice, Journal of Political
Economy 92(1984) 1086-1120.

[11] D. Puga, The Rise and Fall of locational Inequalities, European Economic
Review 43(1999) 303-334.

[12] S. Ruggles, M. Sobek et al., Integrated Public Use Microdata Series: Ver-
sion 3.0, Minneapolis: Historical Census Projects, University of Minnesota,
2003.

[13] A. J. Venables, Equilibrium Locations of Vertically Linked Industries, In-
ternational Economic Review 37(1996) 341-359.

[14] A. J. Venables, The International Division of Industries: Clustering and
Comparative Advantage in Multi-industry Model, Scandinavian Journal of
Economics 101(1999) 495-513.

29



APPENDIX

Appendix 1: The Model with a Traditional Sector

In addition to industry x and y, we consider an agricultural sector produc-
ing a homogenous good under constant returns to scale. This good is traded
costlessly and used as numeraire. There are agricultural-type workers who are
immobile and we assume an initial even distribution of these workers between
the two locations, that is λa,1 = λa,2 = 1/2.

Let us focus on a single location. All consumers are identical, and they
consume all the goods produced in this location. They share the following
Cobb-Douglas utility:

U = aδxµy1−µ−δ (27)

where 0 < δ, µ < 1. This function means that consumers spend a share δ of
their income on the agricultural good, a share µ on good x and 1 − µ − δ on
good y.

All the results derived in the paper are the same except for expenditures
and real wage equations. Wages in the two monopolistic sectors are linked
through expenditures E, which take into account both final and intermediate
consumption. At the zero-profit equilibrium, wages constitute the only source
of income. Equation (1) suggests that all consumers spend a share δ, µ and
1−µ−δ on the a, x and y goods respectively. Combining this with the condition
of optimal share of the composite inputs (derived in Appendix 2), we can derive
the following expenditure equations:

Em,r = µm (λx,rwx,r + λy,rwy,r + λa,r) +
αm

1− αm
λm,rwm,r (28)

where µm is µ for industry x and 1− µ − δ for industry y. The last step is to
redefine the real wage equations, which are now only nominal wages deflated by
the cost of living in a given location:

ωm,r =
wm,r

Gµ
x,rG

1−µ−δ
y,r

. (29)

The sustain point analysis is conducted as in section 3.1 and yields similar
results. Equations (21)-(35) are changed to:

ωx,2
ωx,1

= τ1−2µ−δ
wx,2
wx,1

(30)

ωy,1
ωy,2

= τ2µ+δ−1
wy,1
wy,2

(31)

w
(1−αx)σ
x,1

1− αx
=

(
µ+

αx
1− αx

)
w
σ(1−αx)
x,1 + µ (1 + wy,2)w

σ(1−αx)−1
x,1 (32)
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w
(1−αx)σ
x,2

1− αx
=

(
µ+

αx
1− αx

)
w
σ(1−αx)
x,1 τ1−σ−αxσ+µwσ−αxσ−1x,1

(
τ1−σ−αxσ+τσ−αxσ−1

2
+wy,2τ

σ−αxσ−1

)

(33)

w
(1−αy)σ
y,1

1− αy
= (1− µ− δ)w

σ(1−αy)−1
y,2






wx,1τ
σ−αyσ−1+

τ1−σ−αyσ

+τσ−αyσ−1

2




+

(
1− µ− δ
+

αy
1−αy

)
w
σ(1−αy)
y,2 τ1−σ−αyσ

(34)

w
(1−αy)σ
y,2

1− αy
= (1− µ− δ) (1 + wx,1)w

σ(1−αy)−1
y,2 +

(
1− µ− δ +

αy
1− αy

)
w
σ(1−αy)
y,2

(35)
The key difference comes from the real wage analysis. Indeed, for the range

of trade costs that exists when the weak-linkages industry’s complete agglom-
eration is no longer sustainable while the strong-linkages industry remains to-
tally agglomerated in location 2, the real wage differential ωx,1 −ωx,2 is always
negative. This indicates that when industry x deviates from the completely ag-
glomerated equilibrium, it collapses in location 2 where industry is still totally
agglomerated. Hence, congestion costs induced by adding an agricultural sector
appear to be not sufficiently high to yield a partial agglomeration of industry x
as we obtain in the paper.

The break point analysis is also conducted as in section 3.3 but the results
are slightly different: there is no reverse break point as in the case developed in
the paper. Equations characterizing the break in Appendix 5b are now:

dGx

dλx
= Z

(
W

1
1−σ(1−α)

(
2(1−α)

(1−σ)(1−β) +
1+ασ−σ
1−σ

dwx
dλx

)
− ασ

1−σ
dGx

dλx

)

dGy

dλy
= Z

(
W

1
1−σ(1−β)

(
2

1−σ +
1+βσ−σ
1−σ

dwy
dλy

)
− βσ

1−σ
dGy

dλy

)

dwx
dλx

= Θ
1

(1−α)σ




Θ1−σ(1−α)Z

(
2
σ
(1−α)µ+α

1−β + (1−α)µ+α
(1−α)σ

dwx
dλx

+ µ
σ
dwy
dλx

)

+σ−ασ−1−(σ+ασ−1)τ1−σ

2(1−α)σ W−
2−(1−α)σ
1−(1−α)σ dGx

dλx





dwx
dλy

= Θ
1

(1−α)σ+1−σ(1−α)Z
(
2µ
σ +

(1−α)µ+α
(1−α)σ

dwx
dλy

+ µ
σ
dwy
dλy

)

dwy
dλx

= Φ
1

(1−β)σ

(
Φ1−σ(1−β)Z

(
2
σ
(1−α)
1−β + (1−µ−δ)

σ
dwx
dλx

+ (1−µ−δ)(1−β)+β
σ

dwy
dλx

))

dwy
dλy

= Φ
1

(1−β)σ




Φ1−σ(1−β)Z

(
2((1−µ−δ)(1−β)+β)

(1−β)σ + (1−µ−δ)
σ

dwx
dλy

+ (1−µ−δ)(1−β)+β
σ

dwy
dλy

)

+σ−βσ−1−(σ+βσ−1)τ1−σ

2(1−β)σ W−
2−(1−β)σ
1−(1−β)σ

dGy

dλy





dωx
dλx

=WΓ
(
1−β
1−α

)−µ (
dwx
dλx

− µW−
1

1−σ+ασ dGx

dλx

)

dωy
dλy

=
(
1−α
1−β

)−µ
WΓ

(
W−

1
1−σ+ασ

dwy
dλy

− (1− µ− δ)W−
1

1−σ(1−β)
dGy

dλy

)

with:
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Γ = − µ
1−σ+ασ −

1−µ−δ
1−σ+βσ

Θ = (1− α)µ+ α+ 2µ (1− β)
Φ = (1− β) (1− µ− δ) + β + 2 (1− µ− δ) (1− α)

Z = 1−τ1−σ

1+τ1−σ ,W = 1+τ1−σ

2 .

Notice that since the real wage ωm,r does not depend on λm,r,
dωx
dλy

= 0 and
dωy
dλx

= 0.
Finally, adding a traditional sector yields the same qualitative results but the

congestion costs induced by this sector with immobile workers are not sufficient
to induce a partial agglomeration of industry x.

Appendix 2: Derivation of the Price Index

The efficient consumption of each variety of goodm (m = x, y) is the solution
to the following minimization problem (which is in fact the dual of the utility
maximization problem commonly considered):

Min
{∫ nm,1

0
mi,1pm,1di+

∫ nm,2

0
mi,2pm,2τdi

}

s.t. m =
(∫ nm,1

0
m

σ−1
σ

i,1 di+
∫ nm,2

0
m

σ−1
σ

i,2 di
) σ
σ−1

.

pm,r is the price of good m in location r (knowing that all the varieties of a
good have the same price). The Lagrangian for this problem is then:

£ =
∫ nm,1

0
mi,1pm,1di+

∫ nm,2

0
mi,2pm,2τdi+

Gm

{

m−

(∫ nm,1

0
m

σ−1
σ

i,1 di+
∫ nm,2

0
m

σ−1
σ

i,2 di

) σ
σ−1

}

.

Gm, the Lagrange multiplier of the problem, represents the price index of
the composite good m. The first order conditions of this problem are:

pm,1 = Gmm
−
1
σ

i,1 m
1

σ−1

τpm,2 = Gmm
−
1
σ

i,2 m
1

σ−1 .

These expressions can be re-written as:

p1−σm,1m = G1−σ
m m

σ−1
σ

i,1

(τpm,2)
1−σm = G1−σ

m m
σ−1
σ

i,2 .

Summing over i and combining these two relations yields the expression of
the price index for each of the two goods m.

Appendix 3: Deriving the Optimal Input Allocation Rule

In each industry, the optimal way to combine labor and the composite in-
termediate good follows from the cost minimization problems for m = {x, y}:
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Min {wm,rlm,,r +Gm,rΨm,r}
s.t. Zm,r = l1−αmm,r Ψαmm,r.

wm,r is the nominal wage rate in industry m and location r, and we can
derive the optimal input allocation rule:

Ψm,r
lm,r

=
αm

1− αm

wm,r
Gm,r

(36)

Appendix 4: System of Equations Solving for the Agglomerated

Equilibrium of Industry y

Note: Recall that λx,2 = 1− λx,1.

G1−σ
x,1 = λx,1w

1−σ(1−αx)
x,1 G−αxσ

x,1 + λx,2w
1−σ(1−αx)
x,2 G−αxσ

x,2 τ1−σ

G1−σ
x,2 = λx,1w

1−σ(1−αx)
x,1 G−αxσ

x,1 τ1−σ + λx,2w
1−σ(1−αx)
x,2 G−αxσ

x,2

w
(1−αx)σ
x,1 = (1− αx)





(
µ+ αx

1−αx

)
λx,1wx,1G

σ−αxσ−1
x,1 +

((
µ+ αx

1−αx

)
λx,2wx,2 + µwy,2

)
τ1−σG−αxσ

x,1 Gσ−1
x,2





w
(1−αx)σ
x,2 = (1− αx)





(
µ+ αx

1−αx

)
λx,1wx,1G

σ−1
x,1 G−αxσ

x,2 τ1−σ+
((

µ+ αx
1−αx

)
λx,2wx,2 + µwy,2

)
Gσ−αxσ−1
x,2





w
(1−αy)σ
y,1 = (1− αy)

(
(1− µ)λx,1wx,1τ

σ−αyσ−1w
σ(1−αy)−1
y,2 +(

µλx,2wx,2 +
(
1− µ+

αy
1−αy

)
wy,2

)
w
σ(1−αy)−1
y,2 τ1−σ−αyσ

)

w
(1−αy)σ
y,2 = (1− αy)

(
(1− µ)λx,1wx,1w

σ(1−αy)−1
y,2 +(

µλx,2wx,2 +
(
1− µ+

αy
1−αy

)
wy,2

)
w
σ(1−αy)−1
y,2

)

ωx,2
ωx,1

=
wx,2(λx,2+1)

−δ

wx,1λ
−δ
x,1

Gµ
x,1τ

1−µ

Gµ
x,2

ωy,1
ωy,2

=
wy,1λ

−δ
x,1

wy,2(λx,2+1)
−δ

Gµ
x,2

Gµ
x,1τ

1−µ

wx,1λ
−δ
x,1G

µ
x,2 = wx,2 (1 + λx,2)

−δ
Gµ
x,1τ

1−µ

Appendix 5: System of Equations Solving the Real Wage Differ-

ential in the Weak-Input-Output Linkages Industry

Notice that in these equations, λ = λx,2

33



G1−σ
x,1 = (1− λ)w

1−σ(1−αx)
x,1 G−αxσ

x,1 + λw
1−σ(1−αx)
x,2 G−αxσ

x,2 τ1−σ

G1−σ
x,2 = (1− λ)w

1−σ(1−αx)
x,1 G−αxσ

x,1 τ1−σ + λw
1−σ(1−αx)
x,2 G−αxσ

x,2

w
(1−αx)σ
x,1 Gαxσ

x,1 =

[
(µ (1− αx) + αx) (1− λ)wx,1G

σ−1
x,1 +

((µ (1− αx) + αx)λwx,2 + µ (1− αx))G
σ−1
x,2 τ1−σ

]

w
(1−αx)σ
x,2 Gαxσ

x,2 =

[
(µ (1− αx) + αx) (1− λ)wx,1G

σ−1
x,1 τ1−σ

+((µ (1− αx) + αx)λwx,2 + µ (1− αx))G
σ−1
x,2

]

w
(1−αy)σ
y,1 ταyσ =

[
µ (1− αy) (1− λ)wx,1τ

σ−1+
(λ (1− µ) (1− αy)wx,2 + (1− µ) (1− αy) + αy) τ

1−σ

]

ωx,1G
µ
x,1τ

1−µ = wx,1 (1− λ)
−δ

ωx,2G
µ
x,2 = wx,2 (1 + λ)

−δ

ωy,1G
µ
x,1τ

1−µ = wy,1 (1− λ)
−δ

ωy,2G
µ
x,2 = (1 + λ)

−δ

Appendix 6a: Stability Analysis of the Dispersed Equilibrium

If we substitute the expenditures equations in the wage equations, the ex-
pressions we have to totally differentiate are the following:

Gx,1 =
(
λx,1w

1−σ(1−αx)
x,1 G−αxσ

x,1 + λx,2w
1−σ(1−αx)
x,2 G−αxσ

x,2 τ1−σ
) 1
1−σ

Gx,2 =
(
λx,1w

1−σ(1−αx)
x,1 G−αxσ

x,1 τ1−σ + λx,2w
1−σ(1−αx)
x,2 G−αxσ

x,2

) 1
1−σ

Gy,1 =
(
λy,1w

1−σ(1−αy)
y,1 G

−αyσ
y,1 + λy,2w

1−σ(1−αy)
y,2 G

−αyσ
y,2 τ1−σ

) 1
1−σ

Gy,2 =
(
λy,1w

1−σ(1−αy)
y,1 G

−αyσ
y,1 τ1−σ + λy,2w

1−σ(1−αy)
y,2 G

−αyσ
y,2

) 1
1−σ
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wx,1 = (1− αx)
1

(1−αx)σ






[ (
µ+ αx

1−αx

)
λx,1wx,1

+µλy,1wy,1

]

Gσ−αxσ−1
x,1 +

[ (
µ+ αx

1−αx

)
λx,2wx,2

+µλy,2wy,2

]

G−αxσ
x,1 Gσ−1

x,2 τ1−σ






1
(1−αx)σ

wx,2 = (1− αx)
1

(1−αx)σ






[ (
µ+ αx

1−αx

)
λx,1wx,1

+µλy,1wy,1

]

Gσ−1
x,1 G−αxσ

x,2 τ1−σ+

[ (
µ+ αx

1−αx

)
λx,2wx,2

+µλy,2wy,2

]

Gσ−αxσ−1
x,2






1
(1−αx)σ

wy,1 = (1− αy)
1

(1−αy)σ






[
(1− µ)λx,1wx,1+(

1− µ+
αy
1−αy

)
λy,1wy,1

]

G
σ−αyσ−1
y,1 +

[
(1− µ)λx,2wx,2+(

1− µ+
αy
1−αy

)
λy,2wy,2

]

G
−αyσ
y,1 Gσ−1

y,2 τ1−σ






1

(1−αy)σ

wy,2 = (1− αy)
1

(1−αy)σ






[
(1− µ)λx,1wx,1+(

1− µ+
αy
1−αy

)
λy,1wy,1

]

Gσ−1
y,1 G

−αyσ
y,2 τ1−σ+

[
(1− µ)λx,2wx,2+(

1− µ+
αy
1−αy

)
λy,2wy,2

]

G
σ−αyσ−1
y,2






1

(1−αy)σ

ωx,1 =
wx,1(λx,1+λy,1)

−δ

Gµ
x,1G

1−µ
y,1

ωx,2 =
wx,2(λx,2+λy,2)

−δ

Gµ
x,2G

1−µ
y,2

ωy,1 =
wy,1(λy,1+λx,1)

−δ

Gµ
x,1G

1−µ
y,1

ωy,2 =
wy,2(λx,2+λy,2)

−δ

Gµ
x,2G

1−µ
y,2

Appendix 6b: Price Index and Nominal Wages at the Symmetric

Equilibrium

Let consider the optimal input allocation rules:

XI
r

λx,r
=

αx
1− αx

wx,r
Gx,r

(37)

Y I
r

λy,r
=

αy
1− αy

wy,r
Gy,r

(38)

Dividing these two relations yields:

wx,r
wy,r

=
XI
r

Y I
r

Gx,r

Gy,r

αy (1− αy)

αx (1− αy)
(39)
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Then, let consider the optimal final consumption demand:

XF
r = µ

Income

Gx,r
(40)

Y F
r = (1− µ)

Income

Gy,r
(41)

Dividing these two relations yields:

Gx,r

Gy,r
=

µ

1− µ

Y F
r

XF
r

(42)

Combining (39) and (42) yields:

wx,r
wy,r

=
µ

1− µ

αy (1− αx)

αx (1− αy)

(
XI
r

Y I
r

Y F
r

XF
r

)
(43)

Since we consider the symmetric equilibrium, we can assume the following
conditions:

XI
r = αxK1 , Y I

r = αyK1 , XF
r = µK2 , Y F

r = (1− µ)K2 where K1 and
K2 are constants. With these conditions, (43) becomes:

wx,r =
1− αx
1− αy

wy,r (44)

If we take as numeraire the wage in industry y in location 2, we have following
values for the symmetric equilibrium:

wx,1 = wx,2 =
1−αx
1−αy

, wy,1 = wy,2 = 1 ,

Gx,1 = Gx,2 =
1−αx
1−αy

(
1+τ1−σ

2

) 1
1−σ(1−αx)

,

Gy,1 = Gy,2 =
(
1+τ1−σ

2

) 1
1−σ(1−αy)

Using the total differentiation expression, we get the following expressions:
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dGx

dλx
= Z

(
W

1
1−σ(1−αx)

(
2(1−αx)

(1−σ)(1−αy)
+ 1+αxσ−σ

1−σ
dwx
dλx

)
− αxσ

1−σ
dGx

dλx

)

dGy

dλy
= Z

(
W

1
1−σ(1−αy)

(
2

1−σ +
1+αyσ−σ
1−σ

dwy
dλy

)
−

αyσ
1−σ

dGy

dλy

)

dwx
dλx

= Θ
1

(1−αx)σ





Θ1−σ(1−αx)Z

(
2
σ
(1−αx)µ+αx

1−αy
+ 2(1−µ)

σ
dωy
dλx

+ (1−αx)µ+αx
(1−αx)σ

dwx
dλx

+ µ
σ
dwy
dλx

)

+σ−αxσ−1−(σ+αxσ−1)τ
1−σ

2(1−αx)σ
W−

2−(1−αx)σ
1−(1−αx)σ

dGx

dλx






dwx
dλy

= Θ
1

(1−αx)σ
−σ(1−αx)+1Z

(
2
σ
(1−αx)µ+αx

1−αy
dωx
dλy

+ 2(1−µ)
σ + (1−αx)µ+αx

(1−αx)σ
dwx
dλy

+ µ
σ
dwy
dλy

)

dwy
dλx

= Φ
1

(1−αy)σ
−σ(1−αy)+1

Z

(
2
σ
(1−αx)
1−αy

+
2((1−µ)(1−αy)+αy)

(1−αy)σ
dωy
dλx

+ (1−µ)
σ

dwx
dλx

+
(1−µ)(1−αy)+αy

σ
dwy
dλx

)

dwy
dλy

= Φ
1

(1−αy)σ






Φ1−σ(1−αy)Z

(
2
σ
(1−αx)
1−αy

dωx
dλy

+
2((1−µ)(1−αy)+αy)

(1−αy)σ

+ (1−µ)
σ

dwx
dλy

+
(1−µ)(1−αy)+αy

σ
dwy
dλy

)

+
σ−αyσ−1−(σ+αyσ−1)τ

1−σ

2(1−αy)σ
W

−
2−(1−αy)σ
1−(1−αy)σ dGy

dλy






dωx
dλx

=
(
1−αx
1−αy

)1−µ
WΓ




−δ
(
1 +

dωy
dλx

)
+

1−αy
1−αx

dwx
dλx

− µ
1−αy
1−αx

(W )−
1

1−σ(1−αx)
dGx

dλx

− (1− µ)W
−

1
1−σ(1−αy) dGy

dλx





dωx
dλy

=
(
1−αx
1−αy

)1−µ
WΓ

(
−δ
(
dωx
dλy

+ 1
)
+

1−αy
1−αx

dwx
dλy

− (1− µ) (W )
−

1
1−σ(1−αy) dGy

dλy

)

dωy
dλx

=
(
1−αx
1−αy

)−µ
WΓ




−δ
(
1 +

dωy
dλx

)
+

dwy
dλx

− µ
1−αy
1−αx

(W )−
1

1−σ(1−αx)
dGx

dλx

− (1− µ)W
−

1
1−σ(1−αy) dGy

dλx





dωy
dλy

=
(
1−αx
1−αy

)−µ
WΓ

(
−δ
(
dωx
dλy

+ 1
)
+

dwy
dλy

− (1− µ)W
−

1
1−σ(1−αy) dGy

dλy

)
.

We set:

Γ =
µσ(αx−αy)+σ−αxσ−1
(1−σ+αxσ)(1−σ+αyσ)

Θ = (1− αx)µ+ αx + µ (1− αy)
Φ = (1− αy) (1− µ) + αy + (1− µ) (1− αx)

Z = 1−τ1−σ

1+τ1−σ

W = 1+τ1−σ

2

Appendix 7

The condition ωx,1 > ωx,2 translates to wx,1 > τ1−2µwx,2 using equation
(21), and this latter condition combined with equations (23) and (24) implies
that:

wx,1 >
µ (1− αx)

µ+ (1− µ)αx

τ2(1−µ)σ(1−αx)−1 − 1

1− τ1−2µσ(1−αx)
wy,2. (45)
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Equation (35) implies that wx,1 = wy,2 and the condition found above be-
comes:

µ (1− αx) τ
2(1−µ)σ(1−αx)−1 + [µ+ (1− µ)αx] τ

1−2µσ(1−αx) < αx + 2µ (1− αx)
(46)

which is equivalent to:

µ (1− αx) τ
2(1−µ)σ(1−αx)−1 + [µ+ (1− µ)αx] τ

1−2µσ(1−αx) ≤ 1 (47)

for µ ≤ 1/2. For wx,1 = wy,2, equation (25) yields:

(
ωy,1
ωy,2

)(1−αy)σ
=

(1− µ) (1− αy) τ
2µσ(1−αy)−1 + [(1− µ) (1− αy) + αy] τ

1−2(1−µ)σ(1−αy).

Hence, for µ ≤ 1/2 and αx < αy, (46) implies that ωy,2 > ωy,1. That
is, the complete concentration of the weak input-output industry in location 1
implies the complete concentration of the strong input-output linkages industry
in location 2.
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Appendix 8
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Figure 17: Sustain points of the two industries.
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Figure 18: Real wage differential in industry x.
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Figure 19: Real wage differential in industry x.
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Figure 20: Real wage differential in industry x.
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Figure 21: Stability of the perfectly dispersed equilibrium.
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Figure 22: Stability of the perfectly dispersed equilibrium.
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Figure 23: Stability of the perfectly dispersed equilibrium.
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Figure 24: Bifurcation diagram.
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