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Abstract 

 

 This paper introduces state dependent utility into the standard Mehra and Prescott (1985) 
economy by allowing the representative agent’s coefficient of relative risk aversion to vary with 
the underlying economy’s growth rate.  Existence of equilibrium is proved and its asymptotic 
properties analyzed.  This generalization leads to level dependent marginal rates of substitution, 
a property that sharply distinguishes this model from the standard construct.  For very low 
coefficients of relative risk aversion, the equilibrium risk free and risky security returns are 
demonstrated to have volatilities and an associated equity premium that substantially exceed 
what is found in the data.  This provides a contrasting perspective on the classic “equity premium 
puzzle.” 
 
Keywords: state dependent utility, equity premium, equity premium puzzle 
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1.  Introduction 

 This paper explores the implications for asset pricing of allowing the representative 

agent’s coefficient of relative risk aversion to vary with the economy’s growth rate of 

consumption. That such preference representations are consistent with the choice theoretic 

foundations of utility theory was first argued in Savage (1972).  Myerson (1991) provides an 

axiomatic base for the precise form considered here.   

 In light of the increasing popularity of the state dependent utility framework, no doubt 

motivated by observations suggesting the pervasiveness of changes in the markets’ tolerance for 

risk, it seems appropriate to explore the full implications of this modeling hypothesis for asset 

pricing in particular. Our main result is that, at least for the very natural formulation that we 

adopt, the consequences of allowing risk aversion to be state dependent are extreme. They arise 

from the fact that agents’demand for securities will depend not only upon the growth rate of 

consumption (as in the canonical case, cf. Mehra and Prescott (1985)) but upon its level as well. 

The end-effect is to introduce another source of variation to the pricing kernel, one that is 

unrelated to the volatility of the underlying fundamentals and whose importance grows 

disproportionately as the economy itself is growing.   

 The implications of this latter feature are such as to alter dramatically the form of the 

classic asset pricing puzzles: for standard parameterizations, the equity premium is easily 

matched or exceeded, the risk free rate is asymptotically too low, the Hansen-Jagannathan 

bounds are easily satisfied, and the standard deviations of equity and risk free returns are too 

large relative to the data. At the minimum, our uncovering of this disturbing property should 

serve as a warning signal for those relying on state dependent preferences to help them resolve 

some outstanding puzzles.  
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 General support for the hypothesis that risk aversion is state dependent may be found in 

recent results from the experimental psychology and economics literatures.  Isen and Patrick 

(1983), Isen and Geva (1978) and Nygren et al. (1996) present evidence suggesting that happy 

decision makers – those who have received a consumption increase – are much less willing to 

gamble than control groups.  Isen (1996) interprets these results as suggesting that persons in a 

“good mood” are more reluctant to gamble because losing might undermine their good mood.  

Bosh-Domènech and Silvestre (1999) report the results of an experiment in which the subjects 

were given title to a random payout of money and were asked if they wished to insure against a 

20% chance of having their personal monetary realization taken from them.  Half of the subjects 

chose to insure, but only if their income realization fell within the high level category, a response 

that associates greater risk aversion with higher income levels. Strictly speaking, these 

experiments do not focus on pure growth rate effects, and we are unaware of any experiment that 

does.  Nevertheless, they are consistent with the postulate of associating higher risk aversion 

with greater consumption growth and higher consumption levels.  Broadly speaking, this is the 

perspective that risk aversion is procyclical. 

Strong empirical evidence to the contrary is provided by Gordon and St-Amour (2002) 

who postulate a model with time varying risk aversion not unlike the one to be considered here, 

and estimate the implied process on risk aversion arising from per capita consumption and 

financial return data.  Their basic finding is that risk aversion is strongly countercyclical, rising 

during recessions and falling during expansions.  In addition, the Gordon and St.-Amour (2002) 

CRRA estimate moves opposite to the University of Michigan index of consumer confidence, a 

fact that is also broadly consistent with their finding of countercyclical risk aversion. 
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These results are also in harmony with the basic postulates underlying the habit formation 

literature where, ceteris paribus, higher current consumption levels (and thus growth rates ex 

post) are associated with locally lower risk aversion on the part of the representative agent.  We 

adopt the countercyclical perspective as our benchmark.  The results we obtain are independent, 

however, of the specific pattern of this variation: the same implications are associated with 

procyclical or countercyclical risk aversion.  

Other relevant literature includes Campbell and Cochrane (1999), Constantinides (1986), 

Mehra and Sah (2001), and Kraus and Sagi (2002).  Constantinides (1986) initiated the by-now-

substantial habit formation literature.  Using this device Campbell and Cochrane (1999), more 

recently, present a precisely calibrated model that is broadly consistent with the stylized facts of 

the financial markets.  The level of effective risk aversion they employ is, however, quite high.  

The present paper replicates many of the results in their model with much lower effective risk 

aversion; this is possible because the underlying risk variation mechanism is fundamentally 

different from that in Campbell and Cochrane (1999).  Also of direct relevance is Mehra and Sah 

(2002), who derive the partial equilibrium effects of small fluctuations in agents’ subjective 

preferences (discount rates and risk aversion) on the volatility of asset prices.  Our model may be 

viewed as the return-focused, general equilibrium counterpart of the Mehra and Sah (2002) 

analysis.  A related (the underlying mechanism is similar) but much more elaborate model can be 

found in Kraus and Sagi (2002).  We discuss this paper and Melino and Yang (2001) in more 

detail in a later section. 

 An outline of the paper is as follows:  Section 2 presents the model in the context of the 

classic setting of Mehra and Prescott (1985), while the solution methodology is detailed in the 

associated appendix.  Section 3 provides a full overview and interpretation of a numerical 
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analysis of the model, and explores the consequences of admitting a more general stochastic 

structure.  A comparison with other models in the literature is provided in Section 4 while 

Section 5 concludes the paper. 

2.  The Model 

 2.1  The Model 

 In this section we present an adaptation of the Mehra and Prescott (1985) model and 

detail the methodology for computing its financial equilibrium.  Since the model is so familiar 

the description will be parsimonious.  

 There is a financial market in which an equity claim to an exogenous output stream{yt} is 

traded.  Output grows at the stationary stochastic growth rate xt according to 

(2.1)   yt+1  = xt+1yt.   

 An infinitely lived representative agent with state dependent utility organizes his 

preference for random consumption paths according to 

(2.2)   t
0 t t

t 0

? ß u(c , ) ,
∞

=

 
α 

 
∑  

where t tu(c , )α  = 
t1

t

t

c
1

−α

− α
 is the agent’s period utility function and E the expectations operator.  

The agent’s CRRA, at, is presumed to vary stochastically through time.  Subsequently we will 

relate at closely to the output growth rate xt but for the moment it will be useful to preserve the 

added generality.  In principle, the state of this economy is therefore the triple (yt, xt, at). 

 Taking security prices as given the representative agent solves  
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(2.3)  

t
0 t t

t 0

t t 1 t t t t

t

max E u(c , )

s.t. c z p z (p y )

0 z 1,

∞

=

+

 
β α 

 

+ ≤ +

≤ ≤

∑

 

where t t t tp p(y ,x , )= α  denotes the period t price of the equity claim, and zt = z(yt, xt, a t) the 

fraction of the perfectly divisible share held by the agent.  By well known arguments, 

equilibrium for this economy is characterized by the asset price function p(yt, xt, at) that solves: 

(2.4)  u1(yt,a t) p(yt, xt, at)  =  [ ]1 t 1 t 1 t 1 t 1 t 1 t 1u (y , ) p(y , x , ) y .+ + + + + +β α α +∫  

 t 1 t 1 t 1 t t tdF(y ,x , ; y , x , )+ + +α α  

 In a like fashion, the period t price of a risk free asset, paying one unit of the output good 

in every state next period and assumed to be in zero net supply, is given by 

(2.5)   
1 t 1 t 1 t 1

t t t t
1 t t t

u (y , x )
q(y ,x , a ) ßE

u (y , x )
+ + +α  =  α  

. 

 The corresponding conditional period rates of return for these security, denoted 

respectively by re(yt+1, xt+1, at+1; yt, xt, at) and fr (yt, xt, at) are thus: 

   re(yt+1, xt+1  at+1 ; yt, xt, at) = t 1 t 1 t+1 t 1

t t t

p(y , x , a )  y  
p(y , x a ) 

+ + ++  - 1, and 

   f
t t t

t t t

1
r (y , x a )

q(y , x ,a )
=  - 1. 

 

Equation (2.4), in particular, is obtained from substituting the market clearing conditions 

ct = yt and zt  = 1 into the representative agent’s necessary and sufficient first order condition.  For 

the specialized functional forms specified later in the paper, we prove that an equilibrium exists 

constructively.  See Appendix 1.  
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 Of crucial significance for asset pricing is the behavior of the representative agent’s 

equilibrium intertemporal marginal rate of substitution (IMRS).  Under the utility specification 

considered here, this quantity assumes the form 

(2.6) 
t t 1

t 1

1 t 1 t 1 t 1
t , t 1

1 t t t

t

t 1

u (y , x , )IMRS
u (y , x , )

(y )
(x )

+

+

+ + +
+

α −α

α
+

α= β
α

= β
 

 
 Two features stand out relative to the IMRSt, t+1  in the standard Mehra and Prescott 

(1985) economy where at =  a, and IMRSt, t+1  = 
t 1

1
xα

+

 
β 

 
: 

 (i)  the IMRSt, t+1  depends on the output level yt, and 

 (ii)  there is an added source of volatility, at, which is fundamentally different from the 

customary pure consumption uncertainty.  With variation in at the agent’s period utility varies 

even if there is no uncertainty in his consumption growth rate.  To distinguish this latter source 

of risk from the variation in utility arising from consumption uncertainty alone, it will be referred 

to as “mood” or “outlook” uncertainty in recognition of the observation that an individual’s 

mood can substantially affect his assessment of his objective circumstances.  Adding this feature 

to an otherwise parsimonious-in-the-extreme model makes explicit, in one particularly simple 

way, the assertion that such mood swings can potentially influence an individual’s economic 

behavior.  Note also that these mood swings are fully anticipated by the agent and thus may be 

fully hedged.  The results to follow are thus unrelated to any aspect of market incompleteness. 

 It is the associated level effect, however, that gives these mood swings potency for asset 

pricing.  From (2.6) we see that as yt increases the standard deviation of the IMRSt, t+1  will 

similarly increase as at – at+1  is stochastically negative and then positive.  As a result, the agent 
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will increasingly desire to smooth his consumption without in fact being able to do so.  

Anticipating somewhat the results to follow this effect gives rise asymptotically to very high 

equilibrium risk free asset prices (and thus low risk free rates) and to very low equity prices (and, 

simultaneously, high equity returns).  A high equity premium follows accordingly. 

 2.2  Sources of the Level Effect 

 The period utility function  
1-cu(c)=

1

α

− α

%

%
 is a special case of the specification 1-u(c)=?c α%% , 

with ?%  a bounded random variable with ?<0 for 1α >% % .  The question to be explored is whether 

the level effect is due in any way to variation in the multiplicative factor ?% , rather than variation 

in α%  itself, or to some complex interaction of 
1

?
1

 
 − α 

%
%

 with α% .  There are a number of ways to 

tackle this issue, two of which are considered below. 

 2.2.1   If the results are solely attributable to the multiplicative factor ?% , then the 

specification 1-u(c)=-c α%  should rule them out.  But it does not.  As before, let 1 2a {a , a }∈%  with 

1 1 2 2a a(x ) a(x ) a= < = .  With this simplified utility specification, the IMRSt, t+1  now has the 

form  

(2.7) 
t t 1

t 1

t t 1
t , t 1

t 1 t

(y ) (1 )
IMRS

(x ) (1 )

+

+

α −α
+

+ α
+

−α
=

− α
 . 

Assuming a t>1 for all t, the standard deviation of this quantity will also grow without 

bound as yt increases.  At least at this superficial level there is no indication that the 

multiplicative factor is the source of the results. 

2.2.2   Let us next consider the other extreme where it is assumed that 
1-?c

u(c) = 
1

α

− α

%
:  no 

variation in the CRRA, but variation in the multiplicative factor. 
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 The associated maximization problem of the representative agent is  

(2.8)   
t

1-
t t

t{ z }
t=0

cmaxE ß ?
1

∞  
  −  
∑ %

α

α
 

  s.t.     t t t+1 t t tc +p z (p +y )z≤  

where zt denotes the fraction of the equity security demanded.  In equilibrium 

( t t t+1 tt+1 tc = y ,  y  = x y%  ,  and zt =1), the equity pricing function must satisfy 

      [ ]t+1
t t t+1 t+1 t+1 t+1 t+1 t+1 t t

t

p(x , ) = (x )  p(x , ) + y ,  dG (x , ; x , )−αθ
θ β θ θ θ

θ∫
%

% . 

 The same solution procedure as in Mehra and Prescott (1985) will work for the above 

equation because the level of output is not present in the pricing kernel; that is, the IMRS is level 

independent.  Its standard deviation does not grow with output. Variations in the multiplicative 

factor ?% appear not to drive the results.  We note that problem (2.8) is formally equivalent to the 

standard Mehra and Prescott (1985) formulation where the discount factor is stochastic, a model 

with no unusual asset pricing features.1 

 Whatever unexpected asset pricing features this model may possess, these comments 

suggest that CRRA variation can be their only source.  It remains only to calibrate the model and 

to explore its remaining implications numerically. 

2.3  Probability Structures. 

 We follow Mehra and Prescott (1985) exactly and specify a two state Markov chain 

governing the growth rate of output: 

                                                 
1 We need to qualify this comment somewhat.  In a model with Epstein-Zinn/Weil preferences where the CRRA and 
the elasticity of intertemporal substitution (EIS) can be specified independently, Melino and Yang (2001) find that 
state dependent time preferences can have substantial effects, when employed in conjunction with a variable CRRA.  
In particular, in conjunction with a variable CRRA, it can serve as a substitute for variation in the EIS in achieving a 
high premium. 
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(2.9)   












−+=

++=
=

21121

1211

2

1
1

21

pp

pp

dµ1x

dµ1x
x

xx

 

 In the spirit of the habit formation literature, we first assume at∈{a1, a2} where 

a1=a(x1)<a(x2) = a2 :  the agent is relatively less risk averse in the high-growth-in-output state. 

 Notice under this specification that output growth and the CRRA are perfectly negatively 

correlated.  This latter feature can be relaxed in a straightforward and simple way by specifying a 

joint process on a and x as governed by a Markov chain of the form 

(2.10) 

1 1 1 2 2 1 2 2

1 1

1 2

2 1

2 2

(x , ) (x , ) (x , ) (x , )
(x , ) H

(x , ) H
(x , ) H
(x , ) H

α α α α
α Φ π σ

α π − ∆ Φ − ∆ σ
α σ Φ − ∆ π + ∆
α σ π Φ

 

  

In the above formulation, the entries F, p, s, ?, and H may be selected to admit any specification 

of corr(at, at -1), corr(yt, yt -1), and corr(at, yt).  This added generality will be seen to leave the 

fundamental results of the paper largely unaltered, however.  For this reason we take (2.9) as the 

benchmark output process for most of our discussion. 

 Let us next specialize equations (2.4) and (2.5) to accommodate our specific output 

process; with this substitution they become, respectively: 

(2.11)    ip(y,x )  = 
j j

i i

2 2
j j

j ij j j ij 
j 1 j 1

(yx ) (yx )
yx p(yx , x ) , and

(y) (y)

− α −α

−α −α
= =

β π + β π∑ ∑ , 

(2.12)   
j

i

2
j

i ij
j 1

(yx )
q(y,x )

(y)

−α

− α
=

= β π∑  
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 Equation (2.11), although the direct analogue of the pricing equation (7) in Mehra and 

Prescott (1985), is fundamentally more complex in structure.  In particular the pricing function, 

which solves (2.11), cannot be homogeneous of degree one in output (as in Mehra and Prescott 

(1985)) so that (2.11) represents a countably infinite set of (level dependent) linear equations.  

Furthermore, the equilibrium pricing function cannot be expressed as the fixed point of a 

contraction.  Nevertheless, there is a certain recursivity present in the structure of equation 

(2.11), which can be readily exploited to construct its solution.  See also Appendix 1. 

 2.4  Asymptotic Properties of the Risk Free Security Price 

In the calibration to follow, we will need to choose reasonable values of a1 and a 2 and the 

risk free security price will be seen to yield clues as to what they should be.  For this reason it 

will be useful to explore the asymptotic behavior of the risk free security price as output grows 

without bound through time.  In order to simplify the discussion further, let us also restrict the 

probability transition structure to the two state Mehra and Prescott (1985) case; with p11 = p22 =p.  

Since the ultimate goal is to explore relative model performance, such a restriction is appropriate 

at this point anyway. 

Under these restrictions, for any output level yt, the prices of the risk free asset in the high 

and low growth states are, respectively 

(2.13)  t 1q(y ,x )












−+=
1

2

1

1

a-
t

-a
t2

a-
t

-a
t1

)(y

)y(x
p)(1

)(y

)y(x
p ß  

      { }2121 aa
t

a-
2

-a
1 )(yp)x1()p(x ß −−+= , and  

(2.14)  t 2q(y ,x )












−+= − 1212 aa
t

a-
1

a-
2 )(yp)x1()p(x ß . 

Since a1- a  2<0, 1-
t 1 1q(y ,x ) (x ) αβπa  as ∞aty , and  
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1
)(xßp

1)x,(yr
1a

1
1t

f −−a , finite.  For the low growth state, however,  

 t 2q(y ,x ) ∞a  as ∞aty  because a  2- a 1>0.  As a result, 1)x,(yr 2t
f −a .  With each 

state having equal asymptotic likelihood, the unconditional average risk free rate fEr  satisfies,  

(2.15) 1
 )(xßp

1
2
1Er

1a-
1

f −







a ,  as ∞aty . 

Furthermore, it is monotonically decreasing with time. 

 In a like fashion the unconditional asymptotic standard deviation satisfies  

(2.16)  
12a

f 1
2 2

(x )1SDr
8 ß p  

 
 
 

a ; it is monotonically increasing. 

 Notice that in expression (2.15) (also in (2.16)) only the high-growth-low-risk-aversion 

values are represented.  Otherwise, the intuition encapsulated therein is pretty much standard: 

agents with higher subjective discount factors ß bid up security prices thereby lowering the risk 

free rate.  In a like fashion, a higher p suggests greater risk: consumption growth rates are either 

highly persistently favorable or unfavorable; risk averse agents value risk free assets more highly 

in these circumstances similarly bidding up prices.  Somewhat counterintuitively, as the agent 

becomes more risk averse in the high growth state (larger a1), asymptotic risk free security prices 

in that same state decline, a fact that leads to a higher asymptotic standard deviation. 

 It is important also to realize that these results do not depend critically on the assumption 

of greater risk aversion specifically in the low growth state.  If the converse were true; that is, if 

states one and two change roles so that a1 > a2, a scenario perhaps more in harmony with the 

experimental psychology literature, then 2
t 2 2q(y ,x ) (x )−αβπa  and t 1q(y ,x ) ∞a .  The 

asymptotic formulae for fEr  and fSDr  are altered accordingly (in particular, 
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1

f
-a

1 1

1 1Er 1
2 ßp (x )  

 
− α 

a   as  ty ∞a ), but their essential form remains the same.  Which state 

displays the greater risk aversion is thus not significant for the majority of the results to follow. 

 Recognizing that the price of the risk free asset effectively identifies the state contingent 

MRS, the remarks above have the implication that the expected MRS effectively becomes 

asymptotically unbounded, and it is this fundamental feature that drives many of the results. 

2.5 Calibration: Benchmark Formulation 

 To the extent possible, we initially rely on the original Mehra and Prescott (1985) 

calibration.  In particular, Mehra and Prescott (1985) choose ß = .96, µ = .018, d  = .036, and p = 

.43 in order to match the mean, standard deviation, and first order autocorrelation in the growth 

rate of U.S. per capita consumption.  It remains first to specify a1 and a2.  As mentioned earlier, 

we look to the risk free security price to provide clues. 

 Since x1 > 1, notice that (2.15) implies that the risk free rate will be made lower if  

a1 is close to one.2  It is also reasonable to hypothesize that, at a minimum, the representative 

agent would only be willing to pay a smaller and smaller fraction of his income to purchase one 

unit of the risk free security as his income grows arbitrarily large.  Such a security, after all, 

                                                 
2 It is possible, of course, to choose an a 1 so as to match exactly the empirically observed average real risk free rate 
of .8% (cf. Mehra and Prescott (1985)).  For ß=.96, x1=1.056, p=.43, working backwards through (2.15) gives an 
a 1=15.96; the agent must be dramatically risk loving in his high growth state.  While this result is perhaps not 
objectionable qualitatively, the magnitude appears too large to be reasonable, a fact that is itself directly attributable 
to the assumed low persistence in the output growth rate (.43).  High persistence (p=.95) yields a more conventional 
a 1=-1.4 under the same calculation.  As with most asset pricing models, the one considered here is thus likely to 
yield a counterfactually high Er f.  These observations remind us how parsimonious the preference construct of 
Mehra and Prescott (1985) actually is.  In particular the CRRA and the elasticity of the intertemporal marginal rate 
of substitution are one and the same (a).  If we retain the natural assumption of risk aversion then the calculations 
above suggest that a matching of the empirical risk free rate will require not only a model where the CRRA and the 
EIMRS say be specified independently but one in which the latter displays considerable variations.  This is 
accomplished in Melino and Yang (2001). 
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represents a claim on only one unit of additional consumption.  To summarize, it is reasonable to 

require that  

 t i

t

q(y ,x )
y

  0a   as ∞aty  for any }x,{xx 21i ∈ . 

 In the case of t 1q(y ,x ) , such a requirement is automatically satisfied.  In the case of 

t 2q(y ,x ) ,  

  t 2

t

q(y ,x )
y

=
( )

t

aa
t

a
1

a
2

y
})(y)p)(x(1x{p

ß
1212 −−− −+

 

          = 
2

1 2 1

a
a a a 12

1 t
t

p(x )
ß (1 p)(x ) (y )

y

−
− − − 

+ − 
 

 

Provided 1aa 12 <− , t 2

t

q(y ,x ) 0
y

a , as ∞aty  as well.  Our restrictions on a1 and a2 are thus 

that a1 ̃  1 and a2 - a1 < 1.3  Both restrictions are convenient, especially the latter one, because it 

suggests that our subsequent results do not require dramatic changes in the CRRA, a property 

that would challenge our sense of what is reasonable. 

These calculations also remind us that the financial return statistics for this model will be 

sensitive to the magnitude of output, and thus to the length of the time series we use as the basis 

of our statistical computations.  Denoting this time series length by the variable “S”, we will 

choose for S = 120, in the case of ß = .96 where the length of the period is interpreted to be one 

year.  In the case of  ß = .99 (period is one quarter), we choose S = 400.  Both of these 

parameterizations are roughly in conformity with the maximum length of available data sets.  All 

                                                 
3 This choice is also broadly consistent with the estimate in Gordon and St-Amour (2002). Their estimates for risk 
aversion are centered at .25. 
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reported statistics are averages of the indicated quantity computed for one thousand individual 

time series. 

 It remains only to fix the initial output level y0, a choice which is in some sense “dual” to 

the choice of the series length with a choice of S=100.  For all reported cases we choose y0=1 

because this choice yields a pE
y

 
 
 

 which is very similar to its constant CRRA counterpart 

1 2
t 2

α + α
α ≡ α = .4  While the pE

y
 
 
 

ratio has limited empirical significance in this model, it 

does constitute a natural statistic around which to standardize.5 

3.  Numerical Results  

 3.1  Replicating the Mehra and Prescott (1985) Experiments 

 Table (1) below presents a benchmark set of cases.  Not only do we report the first and 

second moments of all the series, but their basic correlation structure as well.  In reference to the 

Hansen-Jagannathan bound, the ratio SD(IMRS)/E(IMRS) is also reported; if the model is to 

explain the most basic statistical characteristics of the equity premium this ratio must exceed the 

value 
p

p

r

Er
.37=

σ
 for the U.S. economy.   

                                                 
4 There is another sense in which y0=1 is a natural choice of starting point.  Note from (2.6) that the SD of the 
IMRSt,t+1  will increase without bound both as y t?  ∞ and as yt?  0.  Our results thus all apply to an endlessly 
shrinking economy as well.  These dual asymptotic results suggest y0=1 since departures (in either direction) give 
rise to the phenomena reported here. 
5 By “limited empirical significance” we mean that this ratio corresponds to the (value of equity)/GDP ratio only for 
an economy where all the income is capital income.  If we modify the model to accommodate a situation in which 

only a fraction of the income stream is priced (output less wage income), the resulting p
E

y

 
  
 

 and p
SD

y

 
  
 

 are much 

lower for the same series length.  Mehra (1998) demonstrates that a properly calibrated model can account neither 

for the range nor the variation in the p
y

 
   

 ratio.  His CRRA is constant, however.  
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Table 1 
Summary Return Statistics:  Representative Cases 

(Unless Otherwise Indicated, .036d.018,µ.43,p.96,ß ==== , S = 120, y0 =1) 
All Returns Expressed in Percent (i), (ii) 

 A 
U.S.  
Data  

B 
Mehra-
Prescott 
(1985) 

a1=a 2=3 

C 

 
a 1 = 1.0 
a 2 = 1.5 

D 
 

a 1 = .5 
a 2 = 1.0 

E 
 

a 1 = 4.0 
a 2 = 4.5 

F 
 

a 1 = 2.5 
a 2 = 2.0 

G 
 

a1 = 2.0 
a2 = 2.5 

d=0 
Ere 6.98 9.58 16.95 16.14 21.5 21.57 20.63 

S.D.re 16.54 4.99 53.04 53.17 51.94 60.95 58.69 

Erf .80 9.10 8.47 7.19 15.74 7.69 9.72 

S.D.rf 5.67 1.61 34.21 33.90 35.78 34.95 36.24 

Erp 6.18 .48 8.48 8.94 5.76 13.9 10.91 

S.D.rp 16.67 4.70 34.92 35.26 32.75 44.0 40.27 

e e
t t 1Corr(r ,r )−  -.03 -.33 -.47 -.47 -.47 -.48 -.48 

f f
t t 1Corr(r , r )−  .87 -.15 -.15 -.15 -.14 -.15 -.15 

e f
t tCorr(r , r )  -.09 .34 .77 .77 .79 .64 .74 

SD(IMRS)/ 
E(IMRS)  .11 .20 .32 .39 .54 .49 

1 2p / ; 2y
E E

p
y

 
  
 

α + α
α =

 
 
 

  1 1.05 1.16 1.08 1.14 1.13 

 

(i) Data Sources:  Mehra and Prescott (1985), Mehra (1998), and Jones (2001);  the correlations 
are based on data for the period 1897-1998 , where rf  is the real commercial paper rate and re  

is obtained from Cowles Foundation and CRISP data. 
(ii) Panel B reports results from the original Mehra and Prescott (1985) model when the CRRA is 

fixed at 3a =  
 

Lastly, the ratio  

 1 2
1 2 1

p p
E( ; ) / E ( ; )

y y 2
α + α

α ≠ α α =  

is reported in order to give some sense of the relative magnitude of the price-output ratio 

vis-à-vis its value in a pure Mehra and Prescott (1985) economy. For comparison purposes, Panel 

A provides the by-now-familiar summary financial statistics for the U.S. economy while Panel B 
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provides the corresponding Mehra and Prescott (1985) results for a representative choice of a.  

The classic equity premium puzzle is clearly evident, as are the other dimensions of model 

failure not emphasized in Mehra and Prescott (1985): the return standard deviations are much too 

low, the mean security returns are uniformly too high, and the correlation structure generally 

does not conform to the data.  The low value of the SD(IMRS)/E(IMRS) ratio is fully consistent 

with these results. 

Panel C reports results under the presumption of both consumption and “outlook” 

uncertainty and we will take it as the benchmark case.  While the coefficient of relative risk 

aversion in each state is very low, the premium rises to 8.48%. 6 The standard deviation of all the 

series have increased enormously and now substantially exceed their corresponding values in the 

data.  Mean security returns are also excessive although less so than for standard deviations, 

particular in the case of the risk free rate and the premium.  The pattern of correlations departs 

little from the Mehra and Prescott (1985) case and the SD(IMRS)/E(IMRS) more than exceeds 

the level necessary to resolve the equity premium puzzle.  All of this is accomplished in a 

context in which pE( )
y

does not  depart much from its corresponding value in the standard Mehra 

and Prescott (1985) economy.  From the perspective of this particular adaptation of the Mehra 

and Prescott (1985) model, the “puzzle” is not that the actual premium and security return 

standard deviations are so high but that they are so low.  

Panels D and E provide comparative statistics when the agent is made, respectively, less 

and more risk averse (relative to Panel C) all the while maintaining the same CRRA risk 

differential of one half.  Comparing Panels C and D we observe that as the agent becomes less 

                                                 
6 This results is broadly consistent with the estimates of Gordon and St-Amour who find that consumption risk 
accounts for less than 1% of the fitted risk premium.  In this model, the premium observed when a1=a 2=2.25 (only 
consumption growth uncertainty) is only 4% of the 7.51% figure. 
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risk averse, average returns to both equity and debt decline, the more so for the risk free security.  

As a result, the premium rises.  We attribute this latter observation to the fact that as a1 and a2 

decline, all the while maintaining .5aa 12 =− , they become more disparate on a relative basis 

(as measured, for example, by the ratio of 
1

2

a
a

; for Panel C this ratio is .50 while for Panel D it is 

2.0).  In effect, although the average level of risk aversion declines, with the familiar 

consequences, relative outlook variation increases.  The latter effects dominate with the result 

that the riskiness of the agent’s overall environment increases.  On a relative basis the risky asset 

becomes less valuable and the premium rises. The relative outlook affect diminishes, however, if 

21 aanda are increased (compare Panels C and E).  In the case of 2

1

a 4.5
1.25

a 4
= = .  As a result 

the premium declines to 5.76%, although mean returns rise and standard deviations are little 

affected.  But this cannot be the full story.  Table (2) presents a set of cases in which a1 and a2 

are progressively increased, all the while maintaining the same differential of a2 – a1 =½.  Panel 

B contains the analogous results for the corresponding Mehra and Prescott (1985) economies. 

What is of interest here is the observation that the consequences of “outlook” uncertainty 

for the premium increase when the average CRRA decreases. This is the exact opposite of the 

Mehra and Prescott (1985) result.  In fact, the premium eventually turns negative for sufficiently 

high CRRA.  Our strong, and somewhat striking, results are a manifestation of low rather than 

high average risk aversion.  Furthermore, the effects are quite large.  For this reason we will 

typically limit a1 and a 2 not only to differ by at most .5 but also to be in the neighborhood of 

one.7 

                                                 
7 We also limit the difference between a 1 and a 2 because otherwise the return standard deviations become extremely 

large.  In the case of 1 2a 1, a 1.75= = , for example, e e f f
Er 35,S.D.r 97, Er 13.3,S.D.r 51,= = = =  
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Table 2 
Comparative Dynamics: Changes in a1, a2, and 

Comparison with Mehra and Prescott (1985) Results 
(ß = 96,  µ = .018,  d = .036,  p = 43,  s = 120,  y0 = 1 

 Panel A Panel B 

 a 1 = 1.0 
a 2 = 1.5  

a 1 = 3 
a 2 = 3.5 

a 1 = 11 
a 2 =11.5 

a1 = 21 
a2 = 21.5 

a=1.25 a =3.25 a =11.25 a = 21.25 

Ere 16.95 20.10 29.92 33.51 6.49 10.00 20.61 24.76 

S.D.re 53.04 52.46 49.60 45.06 3.89 5.15 10.87 17.19 

Erf 8.47 13.43 29.46 38.07 6.33 9.47 17.38 16.82 

S.D.rf 34.21 35.38 38.83 40.12 .66 1.75 6.20 10.37 

Erp 8.48 6.68 .46 -4.56 .15 .53 3.23 7.94 

S.D.rp 34.92 33.54 28.78 25.37 3.82 4.82 8.64 12.55 
e e
t t 1Corr(r , r )−  -.47 -.47 -.47 -.45 -.18 -.34 -.53 -.56 
f f
t t 1Corr(r , r )−  -.15 -.15 -.11 -.02 -.15 -.15 -.15 -.15 

Corr )r,r( f
1t

e
t −  .77 .78 .82 .83 .18 .35 .61 .69 

SD(IMRS)/ 
E(IMRS) 

.20 .18 .30 .56 .04 .11 .37 .63 

1 2

p
y

; 2
p
y

E

E

 
   

α +α
α =

 
  

 
 

1.05 1.02 .98 .94 1 1 1 1 

 

We have postulated that agents display less risk aversion when they are confronted by the 

experience of greater consumption growth.  As noted in the introduction, Bosch-Domenech and 

Silvestre (1999) present indirect evidence, however, that the contrary is the case.  For this reason 

it is appropriate to consider a sample of cases under the orthogonal assumption that agents 

display more risk aversion in the high growth state, 12 aa > , an assertion that suggests a strong 

                                                                                                                                                             
pEr 21= and pS.D.r 70= (all return measures in percent). 
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desire “to preserve one’s gains when they are high.” The results of this exercise are summarized 

in Panel F of Table 1.  Comparing Panels C and F we observe that the mean and S.D. of equity 

returns both increase while the opposite is true for the risk free security.  As a result the pEr  

rises in Panel F to 13.9%: if anything the results are strengthened when low growth is associated 

with low risk aversion.  Notice that the correlation structure is largely unaffected.  Bearing in 

mind these observations and preferring the hypothesis most consistent with the data, the case of 

Panel C is retained as the benchmark.   

Our latter results strongly suggest that “outlook” variation, rather than  

consumption variation, is the dominant effect.  To confirm this assertion we examined the return 

characteristics of an economy in which there is no consumption variation at all, i.e., we fix 

12 aa > , and 0d = . The results of this exercise are presented in Table 1, Panel G.  Relative to 

Panel C, the premium is even larger (standard deviations are largely unchanged, however).  This 

suggests that within the class of Lucas (1978) asset pricing models, uncertainty in the period 

utility function of the type considered here will matter overwhelmingly more importantly for the 

characteristics of asset prices than will any postulated variation in the consumption (dividend) 

process. 8   

 3.2  Asset Prices and the Level of Wealth 

 Table 2 reminds us that level effects can reverse standard intuition (in particular, higher 

average risk aversion lowers the premium), a fact that encourages the exploration of the 

consequences of wealth effects more broadly in the model.  Useful information is provided in 

Table 3, where the length of the output series, S, is allowed to vary for two distinct correlation 

                                                 
8 More precisely, while the dividend growth autocorrelations determines the autocorrelation of risk free and risky 
returns, their mean values and standard deviation are governed by changes in the CRRA. 
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structures.9  Panel A is the standard Mehra and Prescott (1985) output process while Panel B 

admits a mild degree of positive output growth correlation. 

Table 3 
Security Return Statistics 

Various Time Series Lengths  
(For all cases, ß = .96,  µ = .018,  d = 0.36) 

 
 

 Panel A 
a 1 = .7, a2 = .9, p = .43 

Panel B 
a1 = .7, a2 = .9, p = .70 

 S=120 S=200 S=400 S=120 S=200 S=400 

Ere 7.01 9.89 24.87 6.31 7.79 15.36 

S.D.re 17.36 31.50 78.46 12.13 22.10 56.23 

Erf 6.01 6.59 8.60 5.51 5.13 2.91 

S.D.rf 13.95 23.25 44.30 8.40 13.37 25.07 

Erps 1.01 3.29 16.27 .80 2.65 12.46 

S.D.rp 9.69 19.27 55.15 8.49 17.06 47.95 

Corr )r,r( e
1t

e
t −  -.52 -.52 -.43 -.16 -.23 -.21 

Corr )r,r( f
1t

f
t −  -.15 -.15 -.14 .38 .39 .41 

Corr )r,r( f
1t

e
t −  .83 .80 .73 .73 .65 .54 

 

 There are several aspects of Table 3 that merit attention.  First, as S increases and the 

agent’s consumption grows, he increasingly resists the purchase of the equity security.  This is 

overwhelmingly a pure “outlook effect”: as agents become wealthier they become increasingly 

concerned for a reversal of fortune, and the equity security provides no hedge against this 

possibility. 

 Of greater interest is the differing behavior of the average risk free rate across the two 

cases.  While the mean risk free rate increases with consumption in Panel A, the reverse is true in 

                                                 
9 For these discussions we temporarily abandon the benchmark case (Table 1, Panel C), as the base case (S=120) 
with a 1-a 2=.50 exhibits enormous mean returns and return standard deviations as S grows.  For Table 3 we thus 
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Panel B.  It is the difference in the basic risk structure of the two cases that accounts for the 

difference: Panel B describes the higher risk environment as consumption growth is non trivially 

persistent.  In Panel A, the stochastic growth structure is close to independence. 

 In contrast to the case of Panel A, the parameterization of Panel B thus implies that 

periods of negative consumption growth may persist for many periods.  As agents become 

wealthier, this possibility becomes of greater concern, so much so as to reverse the pattern of risk 

free security prices: these prices are bid up in Panel B as the agents become wealthier.  The other 

manifestation of this same effect is the fact that all security prices are higher under Panel B on a 

comparative case by case basis.  Another way to accentuate the centrality of the level effect is to 

compute the analogous results for Panels A and B where growth is absent (µ=0).  In the case of 

Panel A, the mean premium is .19% while in Panel B it is .26% (in both cases for all values of 

S). 

 At this point where do we stand?  There are a few tentative conclusions that may be 

reached.  First, when level effects are admitted into the model, the nature of the asset pricing 

puzzles in a standard Mehra and Prescott (1985) economy is radically transformed.  The standard 

deviations of equity and risk free returns – as well as of the premium – are typically excessive, 

the equity premium itself is frequently too large, and the Hansen-Jagannathan bound is easily 

satisfied.  All this is accomplished in an environment where the price to output ratio is within 

reasonable bounds.  On the other hand, the results of Table 3 report nonstationarity in the re and 

rf series, something that is generally understood to be absent in the data.   

 3.3  Replicating the Basic Stylized Facts: How Close Can We Come? 

 In this section we attempt to identify the specific parameters that appear key to presenting 

a better replication of U.S. data.  There is little flexibility along most dimensions if we are to be 

                                                                                                                                                             
reduce a1-a 2 to .4. 
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faithful to Mehra and Prescott’s (1985) formulation.  In fact, all that is possible is to modify the 

stochastic structure in order to break the perfect negative correlation between a and x.   

 Accordingly, we admit independently specified (i.e., (x, ) 1ρ α ≠%% ) stochastic processes on 

x,and α%%  as per (2.10).  Table 4 presents an initial comparative analysis for a wide class of 

probability structures.  No a priori attempt is made to replicate the specific U.S. output process.  

The tentative message of these cases is pretty much as before: premia can easily be very large, 

though usually at the cost of excessive return volatility.  As noted earlier, these standard 

deviations are very sensitive to the CRRA differential.  As the differential increases, furthermore, 

expected equity returns increase while the expected risk free rate decreases, both effects being 

consistent with the increase in effective risk. 

 The chief beneficiary of this generalization appears largely to be a potential improvement 

in the correlation structure of returns vis-à-vis the cases of Table 1.  In the case of Panel 2B, for 

example, e e
t t 1(r , r )−ρ and f f

t t 1(r , r )−ρ  now almost exactly match the data.  While e f
t t(r , r )ρ  is still too 

high, it is much less than in standard formulations.  For this particular choice of probability 

structure, t t 1(x , x )−ρ  is still low (as in the data) while t t(x , )ρ α  is slightly positive, a fact that 

suggests that the version of the model which best reflects the experimental literature (i.e., which 

asserts that the agent is generally more risk averse in the high payoff state) is also the version 

that best replicates the data. 
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Table 4 
Statistical Return Summaries 

Various Correlation Structures(i) 

For all Cases:  µ = .018,  d = .036,  ß = .96,  S = 120 
All Return Quantities in Percent 

(a) mean return   (b) standard deviation of return 
 

Panel 1 
a 1 = 1.1, a2 = 1.4 

 A B C D 

 (a) (b) (a) (b) (a) (b) (a) (b) 

re   9.64 26.94 7.18 12.67 9.27 25.20 7.24 13.39 

rf   6.00 16.86 5.70 5.70 6.56 17.04 5.96 6.70 

rp   3.64 20.07 1.49 11.17 2.71 17.52 1.29 11.31 

e e
t t 1(r , r )−ρ  -.4 .11 -.39 .09 

f f
t t 1(r , r )−ρ  .09 .79 .09 .80 
e f
t t(r , r )ρ  .67 .52 .73 .60 

Panel 2 
a 1 = 1.1, a2 = 1.7 

 A B C D 

 (a) (b) (a) (b) (a) (b) (a) (b) 

re   20.47 64.78 10.09 32.21 19.60 62.43 10.45 35.37 

rf   5.37 31.82 3.74 10.11 6.48 32.01 4.36 11.12 

rp   15.10 51.33 6.35 30.58 13.11 48.33 6.09 33.11 

e e
t t 1(r , r )−ρ  -.34 .01 -.33 -.01 

f f
t t 1(r , r )−ρ  .09 .79 .09 .78 

e f
t t(r , r )ρ  .63 .40 .40 .41 

 
(i) Correlation Structure Resultant Matrix (2.10) 
 Corr(xt, xt-1) Corr(a t, at-1) Corr(xt, a t) f  p s  H ?  
Panel A  .1 .1 .1 .5298 .0202 .0247 .4253 .01 
Panel B .1 .1 .8 .8393 .0607 .0742 .0258 .03 
Panel C .8 .8 .1 .5496 .0004 .0034 .4466 .03 
Panel D .8 .8 .8 .8996 .0004 .0034 .0966 .03 

 



 

 24 

Note also that for both panels, cases B and D are closely similar.  Both agree only on the ?(xt, a t) 

dimension, a fact tha t gives added support to the latter assertion. 

 With this probabilistic generality all of the conclusions to data remain unaltered: for very 

low levels of average risk aversion, the mean and standard deviation of returns as well as the 

premium and its standard deviation are all easily made too large relative to U.S. data. 

4. Further Comparison with the Literature  

Of interest are other models with changing risk aversion.  It is well known that the 

effective CRRA of a representative agent under habit formation changes with his past 

consumption history.  A recent and particularly comprehensive application of this fact is 

Campbell and Cochrane (1999), who postulate an external habit.  These authors define the 

consumption “surplus above the habit,” ts , by t t t ts =(c -x )/c%  where tx  is the habit, and 

demonstrate that  

 t 11 t t

1 t t t

-c u (c -x ) a
=

u (c -x ) s%
 

where a is the representative agent’s fixed CRRA.  Under the formulation considered in this 

paper, the CRRA is also stochastic and stationary.  For Campbell and Cochrane (1998), however, 

the pricing kernel, 
-a

t+1 t+1

t t

s c
ß ×

s c
 
 
 

,  is a stationary random variable: there are no level effects.  

Viewing the same issue from a slightly different perspective, the consumption surplus variable in 

Campbell and Cochrane (1999) is a deterministic function of current consumption.  This implies 

that all the IMRS variation must be consumption driven.  Without any additional source of risk, 

it is not surprising that they require a relatively high CRRA to achieve their results.  In both of 

these respects their model is fundamentally different from the one considered he re, which 
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accepts nonstationarities as the price of relying on an almost trivially low CRRA (unlike in 

Campbell and Cochrane (1999)). 

 Another related paper is Danthine and Donaldson (2002), which postulates a variable risk 

sharing mechanism as a route to constructing a model which simultaneously reflects the stylized 

facts of the business cycle and the financial markets.  This mechanism also leads to an economy 

with a variable economy-wide CRRA, although their pricing kernel is also stationary.  As in the 

model presented here, the favorable financial properties they report are almost entirely 

attributable to the variation in risk sharing alone.  The one drawback to their model is the 

excessive dividend volatility required to match the data well, a feature unnecessary in the 

formulation considered here. 

 Although they analyze a much more complex multiagent model in continuous time, the 

construct of Kraus and Sagi (2000) shares many of the features of this model as well as many of 

its principal conclusions.  As in this model, they incorporate randomly changing risk aversion.  

They also incorporate elements of market incompleteness, however, a feature absent here.  

Similar to the principal conclusion of this paper, these authors also find that the equity premium 

“depends not so much on the level of relative risk aversion as on the volatility of the relative risk 

aversion.”  Our much simpler model argues that their incorporation of incompleteness may be an 

unnecessary complication.  

 Lastly we mention Melino and Yang (2001) who undertake a similar exercise using 

Epstein-Zinn/Weil preferences where the CRRA and the elasticity of intertemporal substitution 

(EIS) can be specified independently.  With state dependence in both the CRRA and EIS, they 

are able to match perfectly the first two moments of equity and risk free returns.  This result 

follows from two features of their model: (1) the certainty equivalent is linear homogenous 
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which eliminates the level effect, while (2) the variation in two parameters provides additional 

“degrees of freedom.” In effect, the underlying mechanism is thus not the same as the one 

considered here. 

 All of these papers have one thing in common, and it is this:  for replicating financial data 

what is critical is the preference characteristics of the representative agents.  The characteristics 

of the dividend process are only marginally relevant. 

5.  Concluding Comments  

 State dependent preferences are increasingly popular. In finance the accent is applied to 

the plausible hypothesis that risk aversion is not constant. In this paper we have shown that the 

most natural representation of this hypothesis has profound implications for asset pricing. It 

implies in particular that the IMRS is level dependent and that this dependence introduces 

another source of volatility potentially more powerful than the volatility of the fundamentals 

being priced. This in turn leads to a reversal of the paradoxes first identified in the seminal work 

of Mehra and Prescott (1985).  Asymptotically, the risk free rate is too low, the equity premium 

too high, and the standard deviations of all security returns are much too high.  The Hansen-

Jagannathan bounds are easily satisfied.  

Is the model reasonable?  The non-stationarity of the resulting economy is disturbing 

although it can be argued that it would possibly not be detectable with usual tests and available 

data sets. At a minimum our exploration should serve as a warning, for those researchers 

naturally inclined to postulate state dependent preferences, of the powerful mechanism and the 

unintended non stationarity this hypothesis may thus generate for their model environment.  
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Appendix 1 

A.  Constructive Existence of Equilibrium for the Economy of Section 2 

 We construct the equilibrium price function for probability structure (2.9).  Without loss 

of generality, let us assume 1y0 = , { }21i0 x,xxx ∈= , and that ii a)a(x = .  By recursive 

substitution equation (2.11) becomes:  

(A.2.1)  1 2 11-a 1-a 1-a2
0 0 i i1 1 i2 2 ik k1 k 1

k

p(y ,x )=p(1,x )=ßp x +ßp x + ß p p (x x )∑  

     2 11-a 1-a2 3
ik k2 k 2 ik k 1 k 1

k k

ß p p (x x ) ß p p p (x x x )+ +∑ ∑∑ l l l
l

 

        21-a3
ik k 2 k 2

k

ß p p p (x x x )+ +∑∑ l l l
l

K , 

where we have done nothing more that segregate the terms in the sum according to whether the 

state in each future time period is x1 or x2.  We note that the exponent in each term depends only 

upon the last growth realization.  Further grouping of like terms yields 

(A.2.2)  1 11-a 1-a2
i i1 1 ik k1 k 1

k

p(1,x )=ßp x + ß p p (x x )∑ 11-a3
ik k 1 k 1

k

ß p p p (x x x )+ +∑∑ l l l
l

K  

   2 21-a 1-a2
i2 2 ik k2 k 2

k

ßp x ß p p (x x )+ +∑ 21-a3
ik k 2 k 2

k

ß p p p (x x x )+∑∑ l l l
l

 

   i 1 i 2ˆ ˆp ( x , x ) p(x ,x )≡ +  

These semi-prices i jp̂ (x ,x )  can, in turn, be computed as the solution to a system of linear 

equations.  To see this, note that  

(A.2.3)  j j1- 1-2
i j ij j ik kj k j

k

p̂(x , x ) ß x ß (x x )α α= π + π π∑ j1-a3
ik k j k j

k

ß p p p (x x x )+ +∑∑ l l l
l

K  

    j j j1-a 1-a 1-a2 2 3
ij i1 1j 1 j i2 2j 2 j i1jßp x ß p p (x x ) ß p p (x x ) ß p= + + + j1-a

1 1 1 jp p (x x x )∑ l l l
l
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   j1-a3
i2 2 2 2 jß p p p (x x x )+ +∑ l l l

l

K  

     j j j j1-a 1-a 1-a 1-a2
ij i1 1 1j j 1 1 jjßp x ßp x ßp x ß p p (x x )

 
= + + + 

 
∑ l l l

l

K  

   j j j1-a 1-a 1-a2
i2 2 2j j 2 2 jßp x ßp x ß p p (x x )

 
+ + + 

 
∑ l l l

l

K  

      j j j1- 1- 1-
ij j i1 1 1 j i2 2 2 jˆ ˆx x p(x ,x )   x p(x ,x )

α α α   =βπ +βπ + βπ     

We observe that (A.2.3) constitutes a system of four linear equations in the four unknowns 

i jp̂(x ,x ) , {1,2}j{1,2},i ∈∈ .  They constitute the basic valuation factors for equity securities in 

this economy in a manner that will now be made apparent. 

Our objective is to obtain a recursive style representation for the equity security when the 

current output level is y and the current growth state is )(ax ii . 

(A.2.4)   
1 1

i i

1- 1-
21 k 1

i i1 ik k1
k

(yx ) (yx x )
p(y,x ) ß ß

y y

α α

−α − α= π + π π∑
1

i

1-a
3 k 1

ik k 1 -a
k

(yx x x )
ß p p p

y
+ +∑∑ l

l l
l

K  

    
2 2

i i

1-a 1-a
22 k 2

i2 ik k2-a -a
k

(yx ) (yx x )
ßp ß p p

y y
+ + ∑

2

i

1-a
3 k 2

ik k 2 -a
k

(yx x x )
ß p p p

y
+ +∑∑ l

l l
l

K  

  1 i 2 i1- 1-
i 1 i 2ˆ ˆy p(x ,x )  y p(x ,x )α + α α + α= + . 

 Given a sequence of growth rates {xt} generated to respect the chosen transition matrix 

(2.9) and the resulting output sequence as per (2.1), the corresponding equilibrium price 

sequence tp  can thus be generated as per 

(A.2.5)  1 t 2 t1- 1-
t t t t t 1 t t 2ˆ ˆp p(y ,x )   y p(x ,x ) y p(x ,x )α + α α +α= = +  
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with the associated equity return sequence is given by  

  e t 1 t 1
t,t 1

t

p y
r 1

p
+ +

+

+
= −    

 Expression (A.2.5) makes sense if the semi prices i jp̂(x , x )  are well defined.  A strong 

sufficient condition (but one satisfied by the benchmark case) is that  

(A.2.6.)  j1
i(x ) 1−αβ < ,  i {1,2}, j {1,2}.∈ ∈  

 This development leads to the following theorem: 

Theorem A.1.1:  Suppose u(  ) is strictly increasing, strictly concave, and continuously 

differentiable on (o, 8), and that condition (A.2.6) is satisfied.  Then an equilibrium price 

function exists for the economy of Section 2. 

Proof:  Equation (2.11) represents the representative agents necessary and sufficient first order 

condition on which the market clearing conditions have been imposed.  By construction a price 

function satisfying (A.2.5) will satisfy (2.11).  By (A.2.6) such a price function exists and is well 

defined.   

 

B.  Constructing Sequences of Equilibrium Risk Free Security Prices and Rates of Return 

As noted in the text (equation (2.12)), the risk free security is priced according to: 

(A.2.7)   t t iq(y ,x x )= =
j

i

a2
t j

ij a
j 1 t

(y x )
ß p

(y )

−

−
=
∑ . 

 Once again, t iq(y ,x ) is level dependent so that equation (A.2.7) also represents a 

countably infinite system necessitating numerical solution methods. 
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 The procedure  is much simpler than in the case of the equity security, however.  For the 

same {xt} and associated {yt} constructed above, the corresponding sequence of risk free asset 

prices was constructed according to (A.2.6) with the risk free rate series defined according to 

  f
t t

t t

1
r (y , x ) 1.

q(y , x )
= −  

 For all cases reported in this paper the lengths of the constructed time series of returns 

were no less than 10,000.  All financial statistics represent averages of those obtained for 10,000 

independently constructed time series.  As a final check on our procedures we precisely 

replicated the results in Mehra and Prescott (1985) for the cases of their parameterization.  These 

remarks bring with them the appreciation not only of the elegance and simplicity of the Mehra 

and Prescott (1985) formulation but also of its highly specialized nature. 

 

C:  Pure Monte-Carlo Simulation of Equation (2.11) 

 Here we provide an alternative to the procedure of sections A and B and one that was 

used as a verification for computational accuracy. 

Our alternative statistical summaries of equity and risk free return distributions are based 

on return sequences of length 10,000.  To generate these latter sequences we began by first 

generating a time series of random output growth rates { }tx of 10,001 unit length, which 

respected (2.9).  The corresponding output sequence { } 000,10t
0tty =

=  then satisfied.  

(A.2.8)   y0  ≡   1, 

yt   =   xt  yt -1, t = 1, …, 10,000.  

At each time period, the corresponding equity price t tp(y , x ) was estimated as follows: 

suppose for some time period ˆ ˆt tt, (y , x )%  = ( iy, x% ).  Starting from xi, we next generated 1000 
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independent growth rate sequences { } ,1000...,,2,1k,x k
s =  each of length 1,000 (s = 1, …, 1000) 

(for every sequence k, { }k
1x  ≡  xi), all of which respected (2.9). 

To each of these sequences { }k
sx , there corresponds an associated output sequence 

generated as per 

  k
0y y s 0= =%  

  1000...,,2,1sxyy k
s

k
1s

k
s == − . 

Using these sequences the price of the security, e
iP (y, x )% was then estimated as 

(A.2.9)   ip(y,x )%   
k
s

i

a(x )k10001000
s ks

sa(x )
k 1 s 1

(y )1 ß y
1000 (y)

−

−
= =

= ∑ ∑ %
 

 In a similar fashion, the corresponding price of the risk free security, iq(y,x )%  is directly 

computed via (2.12).  The choice of k = 1000 and s = 1000 is somewhat arbitrary.  It is justified 

by the fact that if ,)x( α≡α  and the model is otherwise parameterized as in Mehra and Prescott 

(1985) (same ),,,,,,, 22211211 ππππδµβ then the Monte-Carlo solution methodology replicates 

the price and return results those authors obtain to three decimal places when 10≤α .  This latter 

upper bound vastly exceeds any values of )x( iα needed for our principal results. 

 Both methods gave identical results to two decimal places. 
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