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Abstract

This paper analyzes the impact of overconfidence on the timing of entry in
markets, profits, and welfare. To do that the paper uses an endogenous timing
model where (i) players have private information about costs and (ii) one player
is overconfident and the other is rational. The paper shows that for moderate
levels of self-confidence there is a unique cost-dependent equilibrium where the
overconfident player has a higher ex-ante probability of entering the market
before the rational player. In this equilibrium self-confidence reduces the profits
of the rational player but can increase the profits of the overconfident player
provided that cost asymmetries are small. Finally, we show that overconfidence
reduces welfare, except when cost asymmetries are very small.
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1 Introduction

This paper studies the impact of self-confidence on the timing of entry into
a market. Our main research question is whether overconfident players enter
markets before rational players or not. We also evaluate the impact of over-
confidence on players’ profits and on welfare. To perform this analysis we use
Branco’s (1998) endogenous timing model where two players are privately in-
formed about their cost (which can be either high or low), compete in quantities,
and must decide whether to enter the market at date 1 or at date 2.1 The nov-
elty here is the assumption that one of the players is overconfident while the
other one is rational.

The rational player has a correct belief about his cost of production. The
overconfident player can be mistaken about his cost with positive probability.
More precisely, we assume that if the overconfident player’s cost is low, his
perception is correct and he thinks that he has a low cost. However, if the
overconfident player’s cost is high, his perception can be mistaken and he might
think that he has low cost.

The main finding of the paper is that there exists a unique cost-dependent
equilibrium where the overconfident player has a higher ex-ante probability of
moving at date 1 than the rational player. In other words, the overconfident
player is more likely to be the leader than the rational player. We also show
that this equilibrium only exists if the level of self-confidence is moderate.

The intuition behind this result is as follows. In a cost-dependent equilibrium
a player with a low cost perception enters the market at date 1 whereas a player
with a high cost perception enters the market at date 2. Since an overconfident
player has an higher ex-ante probability of having a low cost perception than a
rational player, he also has a higher ex-ante probability of entering the market
before the rational player. This equilibrium breaks down if self-confidence is
high since a rational player with low cost would be better off by deviating and
producing at date 2.2

Next we study the effects of self-confidence on players’ profits and welfare
in the cost-dependent equilibrium. We find that moderate self-confidence is
good for the overconfident player as long as cost asymmetries are small. The
impact of higher self-confidence on the overconfident player’s profits depends
on a trade-off between a “leadership gain” and an “overproduction loss.” It is a
well known result that, if players compete in quantities, the Stackelberg leader’s
profits are higher than those of the follower. The overconfident player’s mistaken
perception gives him a Stackelberg leadership gain since higher self-confidence
increases the probability that he enters the market before the rational player.

1Endogenous timing models endogeneize the entry decision in markets. In these models
there are usually two players and two productions periods. Players can produce in the first
period or they can delay their decision until the second period after observing the action of
the other player (if the other player decided to produce in the first period) or observing that
the other player also decided to wait.

2For all levels of self-confidence there exist two cost-independent equilibria where one of the
players produces at date 1 independently of his cost perception and the other player produces
at date 2.
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However, the mistaken perception leads to overproduction which lowers market
price and reduces profits. If cost asymmetries are small the leadership gain
dominates the overproduction loss and the bias is beneficial for the overconfi-
dent player. If cost asymmetries are large the opposite happens and the bias
reduces the overconfident player’s profits. We also show that the bias of the
overconfident player always hurts the rational player.

Finally, we show that overconfidence reduces welfare (the sum of consumer
surplus and players’ profits) for most values of the parameters of the model. In
fact, we find that overconfidence can only increase welfare if cost asymmetries
are very small. Overconfidence increases market output which increases con-
sumer surplus. However, the increase in market output also reduces aggregate
profits. If cost asymmetries are very small the increase in consumer surplus is of
first-order but the reduction in aggregate profits is of second-order and so self-
confidence increases welfare. When cost asymmetries are moderate or large the
reverse happens and self-confidence reduces welfare. These findings are consis-
tent with the theory of the second-best. It is well known that in a world where
at least one distortion is present, introducing a new distortion can increase or
reduce welfare. Since the duopoly market structure of the endogenous timing
game is a distortion, introducing overconfidence (a new distortion) can increase
or reduce welfare.

Our paper is related with two branches of economic literature: endogenous
timing and self-confidence. The literature on endogenous timing provides con-
ditions and criteria under which firms play either a sequential-move Stackelberg
game or a simultaneous-move Cournot game in oligopolistic markets. A semi-
nal paper is Hamilton and Slutsky (1990). They assume that two players must
decide a quantity to be produced in one of the two periods before the market
clears. If a player commits to a quantity in the first period, he acts as a leader
but he does not know if the other player has chosen to commit also in the first
period or not. If a player waits until the second period to do a commitment,
then he observes the action of the other player in the first period. This game
has three subgame perfect Nash equilibria: one Cournot equilibrium in the first
period, and two Stackelberg equilibria where one firm leads and the other fol-
lows. Only the Stackelberg equilibria survive elimination of weakly dominated
strategies. Branco (1998) extends Hamilton and Slutsky’s model by assuming
that players are privately informed about their costs. He shows that there exists
a cost-dependent Perfect Bayesian equilibrium where the player with a low cost
produces in the first period and the player with a high cost produces in the sec-
ond period. As we mentioned, our paper extends Branco’s (1998) by assuming
that one of the agents is overconfident.

Our paper is also related to the fast growing literature in economics and man-
agement on the implications of overconfidence for individual decision-making
and strategic interactions. Heifetz and Spiegel (2000) is the paper that is most
closely related to ours. Their paper shows that in a large class of strategic in-
teractions the equilibrium payoffs of overconfident players may be higher than
those of rational players. This happens because overconfidence can lead the ad-
versary to change equilibrium behavior, possibly to the benefit of overconfident

3



agent. Our finding that if cost asymmetries are small, the profits of the over-
confident player increase while those of the rational player decrease is consistent
with Heifetz and Spiegel (2000).

2 The Model

There are two players. One is rational, denoted by r, and the other one is
overconfident, denoted by o. The two players produce an homogeneous good
whose price is given by p = a − qr − qo, where is qr and qo are the quantities
produced by the rational and the overconfident player, respectively, with a > 0.
To produce the good players incur a cost. We assume that marginal cost of
production is constant and that there are no fixed costs. The marginal cost of
each player, Ci, i = r, o, might take on the values 0 (low) and c (high) with
equal probability, where a > c > 0.

Players are privately informed about their costs. Each player receives a signal
Xi that is correlated with his cost, where Xi ∈ {0, c}. For the rational player
the relation between the signal and his cost his given by Pr (Xr = c|Cr = c) = 1
and Pr (Xr = 0|Cr = 0) = 1, that is, the rational player is perfectly informed
about his cost. For the overconfident player the relation between the signal and
his cost is given by Pr (Xo = c|Co = c) = 1 − s, Pr (Xo = 0|Co = c) = s, and
Pr (Xo = c|Co = 0) = 0, where s ∈ [0, 1]. The parameter s captures the degree of
self-confidence since it represents the probability that the overconfident player
receives a signal that his cost is 0 when his cost is c. If s = 0 there is no
overconfidence and the model collapses to Branco (1998). If s = 1 we have the
maximum level of self-confidence since the overconfident player always thinks
that his cost is 0. Higher values of s imply a higher level of self-confidence.

2.1 Timing of Decisions

Players must decide a quantity to be produced at one of two dates. At date
1 they simultaneously decide how much to produce. These decision are then
publicly revealed. Any player who does not produce at date 1, may decide his
level of production at date 2. Finally, at date 3, given the production decisions,
the market clears. The timing of the model is:

1. Nature draws players’ costs

2. Each player receives a signal about his cost.

3. Players may decide the quantity to be produced at date 1.

4. A player who has not produced at date 1 decides his quantity at date 2.

5. The market clears at date 3.

For a player there is a clear trade-off between the timing decisions. A player
that produces at date 1 gets the possible benefit of acting as a leader, producing
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first and influencing the other player’s decision, if the latter has decided to
produce at date 2. However, by producing at date 1, a player chooses his
quantity without observing the timing of the opponent’s move, risking that the
opponent also produces at date 1. To the contrary, a player who decides to
wait and produce at date 2, cannot influence the rival’s decision, if the rival
has decided to wait, but will have more information when deciding since he
can observe the quantity chosen by the rival or the rival’s decision to wait.
The choices of the players regarding the date of production can be described
in terms of the leader-follower dichotomy: a player who produces at date 1
acts as the leader, while a player who produces at date 2 acts as a follower.
Thus, the structure of the model provides a framework for the study of the
choice of moment of production in a quantity setting duopoly, with asymmetric
information about costs and overconfidence as the driving forces.

3 Equilibria

In this section we analyze the equilibria of the model. The equilibrium concept
used to solve this game is the Perfect Bayesian Equilibrium (PBE) which re-
quires that strategies yield a Bayesian equilibrium in every “continuation game”
given the posterior beliefs of the players, and beliefs are required to be updated
in accordance with Bayes’ law whenever it is applicable.

To incorporate overconfidence into this setting we follow the approach intro-
duced by Squintani (2006) who considers events where the players self-perception
may be mistaken but such that player i is playing a given game, that player j
thinks that player i thinks that player j’s perception is correct, that player i
knows that player j believes that her perception is correct and so on. In other
words, we assume that the rational knows that if the overconfident player’s cost
is c the overconfident player can think that his cost is 0 with probability s.
In turn, the overconfident player knows that the rational player thinks that if
the overconfident player’s cost is c the overconfident player can think that his
cost is 0 with probability s. However, the overconfident player thinks that the
rational player is mistaken about that. So, in this model players might agree to
disagree. Therefore, the rational player knows that the ex-ante probability that
the overconfident player perceives a signal of high cost is

Pr (Xo = c) = Pr (C = c)Pr (Xo = c|C = c) + Pr (Xo = 0)Pr (Xo = c|C = c)

=
1

2
(1− s) + 1

2
0 =

1

2
(1− s),

and the ex-ante probability that the overconfident player perceives a signal of
low cost is

Pr (Xo = 0) = Pr (C = 0)Pr (Xo = 0|C = 0) + Pr (C = c)Pr (Xo = 0|C = c)

=
1

2
1 +

1

2
s =

1

2
(1 + s).

As in Branco (1998), we characterize the set of equilibria of this game by
describing the players’ equilibrium strategies and we distinguish between two
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types of equilibria: cost-dependent and cost-independent. In a cost-dependent
equilibria each player chooses a different period to produce according to his cost
perception (high or low). In cost-independent equilibria each player chooses to
produce in a certain period independently of his cost perception.

Our first result characterizes the cost-dependent equilibrium of the game.

Proposition 1: If ω(s) ≤ x ≤ 5+s
9+3s , and s ≤ s(x), with x = c/a, ω(s) =

41−2s+2s2−2
√
6(2−s)(4+s)

29+28s−10s2 , s(x) = 3
√
3
√
5+68x+314x2+588x3+369x4−(10+28x+106x2)

7+34x+67x2 ,
then here is a cost-dependent equilibrium in which the players will have the
following strategies:

Overconfident player

1. If the overconfident player has the perception that his cost is equal to 0:
(a) He produces at date 1;

(b) He produces qo =
3a+c+(a+c)s

8+2s ;
(c) If he had not produced at date 1 and the rational player had produced qr

at date 1, he would produce according to qo =
a−qr
2 , at date 2;

(d) If neither player had produced at date 1, he would produce qo =
2a+c
6 at

date 2;
2. If the overconfident player has the perception that his cost is equal to c:
(a) He produces at date 2;

(b) If he were to produce at date 1, he would produce qo =
9a−13c+(3a−c)s

24+6s ;
(c) If the rational player has produced qr at date 1, he will produce according

to qo =
a−c−qr

2 , at date 2;
(d) If the rational player has not produced at date 1, he will produce qo =

a−c
3 ,

at date 2;

Rational player

1. If the rational player has cost equal to 0:
(a) He produces at date 1;
(b) He produces qr =

3a+c−2sc
8+2s ;

(c) If he had not produced at date 1 and the overconfident player had produced
qo at date 1, he would produce according to qr =

a−qo
2 , at date 2;

(d) If neither player had produced at date 1, he would produce qr =
2a+c
6 at

date 2;
2. If the rational player has cost equal to c:
(a) He produces at date 2 ;

(b) If he were to produce at date 1, he would produce qr =
9a−13c+(3a−9c−2cs)s

(3+s)(8+2s) ;

(c) If the overconfident player has produced qo at date 1, he will produce
according to qr =

a−c−qo
2 , at date 2;

(d) If the overconfident player has not produced at date 1, he will produce
qr =

a−c
3 at date 2 ;

Proposition 1 says that if cost differences are sufficiently high and the level
of overconfidence is moderate, then there exists a cost-dependent equilibrium
where a player with a low cost perception produces at date 1 and a player with a
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high cost perception produces at date 2.3 Thus, the production moments reveal
the players’ cost perceptions.4

More importantly, in the cost-dependent equilibrium the overconfident player
has a higher ex-ante probability of producing at date 1 than the rational player.
When the overconfident player’s cost is low the timing decision is not affected
by overconfidence since it keeps playing in the first period. However, if the over-
confident player’s cost is high, then the player can have a mistaken perception
which leads him to enter the market at date 1. In contrast, the rational player’s
ex-ante probability of moving at date 1 is not affect by the overconfidence of
the rival. Thus, for overconfident player the ex-ante probability of moving at
date 1 is equal to his ex-ante probability of getting a low cost signal, (1 + s)/2,
whereas for the rational player it is equal to the ex-ante probability of having
low cost, 1/2.

The strategies described in Proposition 1 are an equilibrium if and only if
cost differences are sufficiently high, that is, c/a > ω(s), and overconfidence is
moderate, that is, s < s(x). When overconfidence is moderate but cost differ-
ences are not sufficiently high, the previous strategies will not be an equilibrium.
A player with a high cost perception would gain by deviating and producing at
date 1. However, both players producing at date 1 is not an equilibrium. One
can show that if overconfidence is sufficiently low but cost differences are not
sufficiently high, then the player with a low cost perception will still produce
at date 1, but the player with a high cost perception will randomize between
producing at date 1 or waiting to produce at date 2.5

When cost differences are sufficiently high but the level of overconfidence is
greater than s∗, the strategies described in Proposition 1 will not be an equilib-
rium. The existence of a upper bound for overconfidence is quite intuitive since a
high level of overconfidence implies that an overconfident player who follows his
cost-dependent equilibrium strategy produces at date 1 with a very high proba-
bility. However, if the rational player knows that there is a very high probability
that the overconfident player produces at date 1, he does not have incentives
to play according his cost-dependent equilibrium strategy. Particularly, if the
rational player has low cost he would gain by deviating and producing at date
2.

Are there are any circumstances in which a rational player can enter the
market with a higher ex-ante probability than an overconfident player? The
answer to this question is yes. The endogenous timing game has two pure
strategy cost-independent equilibria: (i) the overconfident player produces at

3For the equilibrium to be well defined it must also be the case that cost differences are
not so high that entering the market is not attractive for a rational follower with cost equal
to c. This is guaranteed by c ≤ 5+s

9+3s
a.

4Proposition 1 also tells us that four outcomes are possible: a Cournot outcome will result,
if both players wait to produce at date 2; a Stackelberg outcome will emerge, if one player
produces at date 1 and the other does it at date 2 (there are two of these outcomes); and a
double leadership outcome appears if both players produce at date 1.

5The implications of overconfidence are the same for both types of cost-dependent equi-
libria (high and low cost differences). Therefore we do not characterize the cost-dependent
equilibrium with low cost differences.
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date 1 and the rational player at date 2 and (ii) the rational player produces at
date 1 and the overconfident player at date 2. Proposition 2 shows that there
are no other equilibria in our model.

Proposition 2: For ω(s) ≤ x ≤ 5+s
9+3s , and s ≤ s(x) there does not exist a Per-

fect Bayesian equilibria whose strategy profiles differ from the cost-independent
equilibrium of Proposition 1 or from the two cost-independent equilibria.

4 Self-Confidence, Profits and Welfare

In this section we characterize effects of self-confidence on profits and welfare.
Let Πo(s) and Πr(s) denote the ex-ante profits of the overconfident and the
rational players, respectively, as a function of s. We take as benchmark scenario
the endogenous timing game played between two rational players. Let Π(0)
denote the ex-ante profits of a player in an endogenous timing game played
between two rational players. We have the following result.

Proposition 3: In the cost-dependent equilibrium:
(i) Πo(s) > Π(0) for all 0 < s ≤ s(x), if ω(s) ≤ x ≤ τ(s);
(ii) Πo(s) < Π(0) for all 0 < s ≤ s(x), if τ(s) < x ≤ 5+s

9+3s ;
(iii) Πr(s) < Π(0) for all 0 < s ≤ s(x).

This result shows that, in the cost-dependent equilibrium, moderate self-
confidence can increase the profits of the overconfident player provided that
cost asymmetries are small. The intuition is as follows. By making a mistake
the overconfident player has a “leadership gain” because it will produce at date 1
instead of date 2. However, the mistaken perception of the overconfident player
will lead him to choose a quantity that is higher than the optimal one given
his true cost. This leads to a loss which increases with the value of c since the
difference between the optimal quantity and the quantity chosen increases with
c. Therefore, for low values of c the “leadership gain” more than compensates
the loss incurred by not playing the optimal quantity. For high values of c the
reverse happen.

Proposition 3 also shows that self-confidence always reduces the profits of
the rational player. This happens because the mistaken perceptions of the
overconfident player lead to a reduction of market share for the rational player.
If the rational player has low cost, then he produces at date 1. However, since
the rational player knows that the overconfidence player is likely to overproduce,
the rational player must produce a smaller Stackelberg leader’s quantity than
if he faced a rational opponent. If the rational player has high cost, then he
produces at date 1. In this case, no matter if the overconfident player produces
at date 1 or at date 2, the rational player will have a smaller market share than
if he faced a rational rival.

We now discuss the impact of self-confidence on players’ profits in the cost-
independent equilibria. In the cost cost-independent equilibrium where the
rational player leads and the overconfident player follows, the impact of self-
confidence on players’ ex-ante profits is similar to that in the cost-dependent
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equilibrium, that is, self-confidence always hurts the rational player but can
be advantageous for the overconfident player. In this equilibrium, the ratio-
nal player produces at date 1 no matter if his cost is high or low and the
overconfident player produces at date 2. Since the rational player knows that
the overconfident player can overproduce with positive probability at date 2, he
must lower his leadership output by comparison with a situation where he would
be faced with a rational opponent. The mistaken beliefs of the overconfident
follower allow him to increase is market share at the expense of the rational
player’s market share. However, if cost asymmetries are large the overconfident
player will be worse off since the optimization mistake loss will be less than the
gain from the increase in market share.

In the cost-independent equilibrium where the overconfident player is the
leader and the rational player the follower, overconfidence hurts both players.
In this equilibrium, the overconfident player always produces at date 1 so there
is no leadership gain from holding mistaken beliefs. However, the mistaken
beliefs will lead the overconfident leader to overproduce which originates a loss.
The rational player is also worse off because he will have a lower market share
than if he would be faced with a rational opponent.

Our last result characterizes the impact of self-confidence on welfare (the
sum of profits and consumer surplus) in the cost-dependent equilibrium. Let
W (0) denote ex-ante welfare in the endogenous timing game played between
two rational players and W (s) denote the ex-ante welfare in the endogenous
timing game played between a rational player and an overconfident player with
self-confidence of s > 0.

Proposition 4: In the cost-dependent equilibrium:
(i) W (s) > W (0) for all 0 < s ≤ s(x), if ω(s) ≤ x ≤ ψ(s);
(ii) W (s) < W (0) for all 0 < s ≤ s(x), if ψ(s) < x ≤ 5+s

9+3s .

Proposition 4 tells us that moderate levels of self-confidence reduce welfare in
the cost-dependent equilibrium, except when cost asymmetries are very small.
The intuition behind this result is as follows. First, self-confidence increases
market output. As we have seen, self-confidence increases the output of the
overconfident player but reduces the output of the rational player. The net effect
is an overall increase in market output since the reduction in the output of the
rational player is less than the increase in that of the overconfident player. The
increase in market output increases consumer surplus which improves welfare.

Second, self-confidence reduces aggregate profits. For low levels of self-
confidence the increase in the ex-ante profits of the overconfident player is less
than the decrease in the ex-ante profits of the rational player. For high levels
of overconfidence the ex-ante profits of both players decrease. This effect of
self-confidence reduces welfare.

When cost asymmetries are very small the increase in consumer surplus is of
first-order and the reduction in profits is of second-order and so self-confidence
increases welfare. However, when cost asymmetries are not very small the re-
verse happens and self-confidence reduces welfare.
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5 Extensions

The endogenous timing model in this paper makes several simplifying assump-
tions. For example, cost are assumed to take only two values, high or low. Low
cost is equal to 0 and high cost is equal to c > 0. The prior probability that
true cost is high or low is 1/2. Demand and costs are assumed to be linear. It
would be straightforward to extend the model by assuming that costs can be c
or c where 0 ≤ c < c. The assumption that the prior probability is 1/2 could
also be relaxed. This would complicate the algebra but it would not change the
main findings of the paper.

Another possible extension would be to allow for a continuum of types in-
stead of two discrete types. In this case, as is mentioned in Branco (1998), the
separating equilibrium would require that players use cutoff strategies, with a
player with a cost perception below the cutoff value committing to a quantity
in first period, while a player with a cost perception above it would prefer to
wait and produce in the second period. We are convinced that allowing for
more general demand or cost functions would not change qualitatively the main
findings of the paper.

6 Conclusion

In this paper we characterize the impact of self-confidence on the timing of entry
in a market, profits, and welfare. To do that we extend the endogenous timing
model of Branco (1998) by assuming that one of the players is overconfident.
We find that, in a cost-dependent equilibrium, the overconfident player has a
higher ex-ante probability of being the leader than the rational player. We
show that this result is valid only if the level of self-confidence is moderate. We
also show that self-confidence always hurts the rational player. However, the
self-confident player can be better off by being overconfident (although he does
not know it) provided that cost asymmetries are small. Finally, we show that
self-confidence increases consumer surplus but reduces aggregate profits. The
second effect dominates for most parameter values of the model.
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8 Appendix

Proof of Proposition 1: Suppose player r plays according to the strategy
defined. Player o has to produce according to a best response whenever possible.
The proof proceeds by showing that the eight steps that describe the strategy
of player o form a best response. First, we determine the optimal production
levels for o in each contingency.
1. Player o has the perception that his cost is equal to 0:
(i) Player o produces at date 1: it may be that r will also produce at date 1, if
he has cost equal to 0, or he will produce at date 2, if he has cost equal to c;
hence, the quantity produced by o must solve the following problem:

max
qo

1

2

(
a− qo −

3a+ c− 2cs
8 + 2s

)
qo +

1

2

(
a− qo −

a− c− qo
2

)
qo.

The solution to this problem is:

qo =
3a+ c+ (a+ c)s

8 + 2s
.

(ii) Player o produces at date 2, knowing that r has produced the quantity qr
at date 1: then o must produce the quantity that solves the following problem:

max
qo
(a− qo − qr) qo,

which leads to production of:

qo =
a− qr
2

.

(iii) Player o produces at date 2, knowing that r has not produced at date 1:
then o infers that r has cost equal to c and that he will produce (a − c)/3 at
date 2; thus o must produce a quantity that solves the following problem:

max
qo

(
a− qo −

a− c
3

)
qo,

which leads to production of:

qo =
2a+ c

6
.

2. Player o has the perception that his cost is equal to c:
(i) Player o produces at date 1: it may be that r will also produce at date 1, if
he has cost equal to 0, or he will produce at date 2, if he has cost equal to c;
hence, the quantity produced by o must solve the following problem:

max
qo

1

2

(
a− qo −

3a+ c− 2cs
8 + 2s

− c
)
qo +

1

2

(
a− qo −

a− c− qo
2

− c
)
qo.
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The solution to this problem is:

qo =
9a− 13c+ (3a− c)s

24 + 6s
.

(ii) Player o produces at date 2, knowing that r has produced the quantity qr
at date 1: then o must produce the quantity that solves the following problem:

max
qo
(a− qo − qr − c) qo,

which leads to production of:

qo =
a− c− qr

2
.

(iii) Player o produces at date 2, knowing that r has not produced at date 1:
then o infers that r has cost equal to c and that he will produce (a − c)/3 at
date 2; thus o must produce a quantity that solves the following problem:

max
qo

(
a− qo −

a− c
3

− c
)
qo,

which leads to production of:

qo =
a− c
3
.

Now, the optimal moment of production of the overconfident player is deter-
mined by looking at the associated expected profits at dates 1 and 2:
1. Player o has the perception that his cost is equal to 0:
(i) If o produces at date 1, his perceived expected profit will be:

π1o =
1

2

(
a− 3a+ c+ (a+ c)s

8 + 2s
− 3a+ c− 2cs

8 + 2s

)
3a+ c+ (a+ c)s

8 + 2s

+
1

2

(

a− 3a+ c+ (a+ c)s
8 + 2s

−
a− c− 3a+c+(a+c)s

8+2s

2

)
3a+ c+ (a+ c)s

8 + 2s

=
3(3a+ c)2 + 3 (4a+ (a+ c)(2 + s)) (a+ c)s

(16 + 4s)2
.

(ii) If o produces at date 2, his perceived expected profit will be:

π2o =
1

2

(

a−
a− 3a+c−2cs

8+2s

2
− 3a+ c− 2cs

8 + 2s

)
a− 3a+c−2cs

8+2s

2

+
1

2

(
a− 2a+ c

6
− a− c

3

)
2a+ c

3

=
1

2

(
5a− c+ 2s(a+ c)

16 + 4s

)2
+
1

2

(
2a+ c

6

)2

13



Comparing the two possible profits of o, one obtains:

3(3a+ c)2 + 3 (4a+ (a+ c)(2 + s)) (a+ c)s

(16 + 4s)2

− 1
2

(
5a− c+ 2(a+ c)s

16 + 4s

)2
− 1
2

(
2a+ c

6

)2

=
(5a2 + 158ac− 19c2) + 2(8 + s)(a2 + 10ac+ 7c2)s

18(16 + 4s)2
,

which, given the restrictions on the parameters, is positive. So, when player o
perceives that his cost is equal to 0, his perceived expected profit from producing
at date 1 is greater than that of producing at date 2.
2. Player o has the perception that his cost is equal to c:
(i) If o produces at date 1, his expected profit will be:

π1o =
1

2

(
a− 9a− 13c+ (3a− c)s

6(4 + s)
− 3a+ c− 2cs

8 + 2s
− c
)
9a− 13c+ (3a− c)s

6(4 + s)

+
1

2

(
a− 3a− 15c+ 3as+ 3cs

12(4 + s)
− c
)
9a− 13c+ (3a− c)s

6(4 + s)

Doing some algebra we find that:

π1o =
(81a2 − 234ac+ 169c2) + (54a2 − 96ac+ 26c2 + (9a2 − 6ac+ c2)s)s

3(16 + 4s)2
.

(ii) If o produces at date 2, his expected profit will be:

π2o =
1

2

(

a−
a− c− 3a+c−2cs

8+2s

2
− 3a+ c− 2cs

8 + 2s
− c
)
a− c− 3a+c−2cs

8+2s

2

+
1

2

(
a− a− c

3
− a− c

3
− c
)
a− c
3

=
1

2

(
5a− 9c+ 2as
16 + 4s

)2
+
1

2

(
a− c
3

)2
.

Comparing the two expected profits of o, he will prefer to produce at date 2 if:

(81a2 − 234ac+ 169c2) + (54a2 − 96ac+ 26c2 + (9a2 − 6ac+ c2)s)s
3(16 + 4s)2

≤ 1

2

(
5a− 9c+ 2as
16 + 4s

)2
+
1

2

(
a− c
3

)2

Solving this expression with respect to c, one concludes that o will prefer to
produce at date 2 if:

c >
41− 2s+ 2s2 − 2

√
6
√
64− 32s− 12s2 + 4s3 + s4

28s− 10s2 + 29 a

=
41− 2s+ 2s2 − 2

√
6 (s+ 4) (2− s)

29 + 28s− 10s2 a = ω(s)a

14



We now determine the optimal production levels of the rational player in each
contingency.
1. Player r has cost equal to 0:
(i) Player r produces at date 1: it may be that o will also produce at date 1,
if he perceives that he has cost equal to 0, or he will produce at date 2, if he
perceives that he has cost equal to c; hence, the quantity produced by r must
solve the following problem:

max
qr

1

2
(1 + s)

(
a− qr −

3a+ c+ (a+ c)s

8 + 2s

)
qr

+
1

2
(1− s)

(
a− qr −

a− c− qr
2

)
qr.

The solution to this problem is

qr =
3a+ c− 2cs
8 + 2s

.

(ii) Player r produces at date 2, knowing that o has produced the quantity qo
at date 1: then r must produce the quantity that solves the following problem:

max
qr
(a− qo − qr) qr,

which leads to production of:

qr =
a− qo
2

.

(iii) Player r produces at date 2, knowing that o has not produced at date 1:
then r infers that o has perceived that his cost is equal to c and that he will
produce (a − c)/3 at date 2; thus r must produce a quantity that solves the
following problem:

max
qr

(
a− qr −

a− c
3

)
qr,

which leads to production of:

qr =
2a+ c

6
.

2. Player r has cost equal to c:
(i) Player r produces at date 1: it may be that o will also produce at date 1,
if he perceives that he has cost equal to 0, or he will produce at date 2, if he
perceives that he has cost equal to c; hence, the quantity produced by r must
solve the following problem:

max
qr

1

2
(1 + s)

(
a− qr −

3a+ c+ (a+ c)s

8 + 2s
− c
)
qr

+
1

2
(1− s)

(
a− qr −

a− c− qr
2

− c
)
qr.
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The solution to this problem is

qr =
9a− 13c+ (3a− 9c− 2cs)s

(3 + s)(8 + 2s)

(ii) Player r produces at date 2, knowing that o has produced the quantity qo
at date 1: then r must produce the quantity that solves the following problem:

max
qr
(a− qo − qr − c) qr,

which leads to production of:

qr =
a− c− qo

2
.

(iii) Player r produces at date 2, knowing that o has not produced at date 1:
then r infers that o has perceived that his cost is equal to c and that he will
produce (a − c)/3 at date 2; thus r must produce a quantity that solves the
following problem:

max
qr

(
a− qr −

a− c
3

− c
)
qr,

which leads to production of:

qr =
a− c
3
.

Now, the optimal moment of production of the rational player is determined by
looking at the associated expected profits at dates 1 and 2:
1. Player r has cost equal to 0:
(i) If r produces at date 1, his expected profit will be:

π1r =
1 + s

2

(
a− 3a+ c− 2cs

8 + 2s
− 3a+ c+ (a+ c)s

8 + 2s

)
3a+ c− 2cs
8 + 2s

+
1− s
2

(

a− 3a+ c− 2cs
8 + 2s

−
a− c− 3a+c−2cs

8+2s

2

)
3a+ c− 2cs
8 + 2s

=
3(3a+ c)2 + (9a2 − 30ac− 11c2 + 4(2c− 3a+ cs)cs)s

(16 + 4s)2
.

(ii) If r produces at date 2, his expected profit will be:

π2r =
1 + s

2

(

a−
a− 3a+c+(a+c)s

8+2s

2
− 3a+ c+ (a+ c)s

8 + 2s

)
a− 3a+c+(a+c)s

8+2s

2

+
1− s
2

(
a− 2a+ c

6
− a− c

3

)
2a+ c

3

=
1 + s

2

(
5a− c+ s(a− c)

16 + 4s

)2
+
1− s
2

(
2a+ c

6

)2

Comparing the two expected profits of r, he will prefer to produce at date 1 if:
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3(3a+ c)2 + (9a2 − 30ac− 11c2 + 4(2c− 3a+ cs)cs)s
(16 + 4s)2

− 1 + s
2

(
5a− c+ s(a− c)

16 + 4s

)2
− 1− s

2

(
2a+ c

6

)2
≥ 0

or

1

18(16 + 4s)2
{
(5a2 + 158ac− 19c2)− (25a2 + 214ac+ 193c2)s

+(13a2 + 22ac+ 145c2)s2 + (7a2 + 34ac+ 67c2)s3
}
≥ 0

Solving this expression with respect to s, one concludes that r will prefer to
produce at date 1 if:

s ≤ 3
√
3
√
5a4 + 369c4 + 588ac3 + 68a3c+ 314a2c2 − (10a2 + 28ac+ 106c2)

7a2 + 34ac+ 67c2
.

2. Player r has cost equal to c:
(i) If r produces at date 1, his expected profit will be:

π1r =
1 + s

2

(
6a− 14c+ 5as− 9cs+ as2 − cs2

14s+ 2s2 + 24

)
9a− 13c+ (3a− 9c− 2cs)s

(3 + s)(8 + 2s)

+
1− s
2

(
a− c
2

+
13c− 9a− 3as+ 9cs+ 2cs2

28s+ 4s2 + 48

)
9a− 13c+ (3a− 9c− 2cs)s

(3 + s)(8 + 2s)

After doing some algebra this expression simplifies to

π1r =
81a2 − 234ac+ 169c2 +

(
54a2 − 240ac+ 234c2

)
s

16 (48 + 40s+ 11s2 + s3)

+

(
9a2 − 90ac+ 133c2

)
s2 − 12acs3 + 36c2s3 + 4c2s4

16 (48 + 40s+ 11s2 + s3)
.

(ii) If r produces at date 2, his expected profit will be:

π2r =
1 + s

2

(
a− c
2

− (3a+ c+ as+ cs)
4s+ 16

)
a− c− 3a+c+(a+c)s

8+2s

2

+
1− s
2

(
a− a− c

3
− a− c

3
− c
)
a− c
3

=
1 + s

2

(
5a− 9c+ (a− 3c) s

16 + 4s

)2
+
1− s
2

(
a− c
3

)2
.
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Comparing the two expected profits of r, he will prefer to produce at date 2 if:

81a2 − 234ac+ 169c2 +
(
54a2 − 240ac+ 234c2

)
s

16 (48 + 40s+ 11s2 + s3)

+

(
9a2 − 90ac+ 133c2

)
s2 − 12acs3 + 36c2s3 + 4c2s4

16 (48 + 40s+ 11s2 + s3)

≤ 1 + s

2

(
5a− 9c+ (a− 3c) s

16 + 4s

)2
+
1− s
2

(
a− c
3

)2

Solving this expression with respect to c, one concludes that r will prefer to
produce at date 2 if:

c >
123 + 143s+ 67s2 + 11s3 − 6

√
2
√
(1 + s) (3 + s) (2 + s) (4 + s)

87 + 53s− 5s2 − 7s3 a = λ(s)a.

Since ω(s) ≥ λ(s) for any s ∈ [0, 1], the condition c > ω(s)a implies c >
λ(s)a. Q.E.D.

Proof of Proposition 2: Using the same approach as Branco (1998) we enu-
merate each type of strategy profile that could be considered and explain why
there cannot exist equilibria with such profiles.
Both players produce at date 1, regardless of their cost perceptions:
This cannot be an equilibrium because if both players choose to produce at
date 1 regardless of their perceptions they don’t have information about the
other player and they cannot guarantee a leadership gain. Thus, a player would
gain by waiting to see the production of the other player and picking his best
response quantity at date 2.
Both players produce at date 2, regardless of their cost perceptions:
This cannot be an equilibrium because if both players wait regardless of their
cost perceptions, then have no information gain by waiting. If they deviate by
committing to a quantity at date 1 they have a first-mover advantage gain.
A player with a high cost perception produces at date 1 and a player with a low
cost perception produces at date 2:
Suppose that there is a cost-dependent equilibrium in which the player with
a high cost perception produces at date 1 whereas the player with a low cost
perception produces at date 2. In this case, the strategy of the overconfident
player in the hypothetical equilibrium would be:
1. If Xo = c, then produce a quantity equal to qo =

1
2s−8 (4c− 3a+ as− 2cs)

at date 1.
2. If Xo = 0, then do not produce at date 1. Produce at date 2 according to
qo =

a
2 − 1

2qr if r has produced qr at date 1, otherwise produce at date 2 qo =
a
3

if neither player has produced at date 1.
The strategy of the rational player in the hypothetical equilibrium would be:
1. If Xr = c, then produce a quantity equal to qr =

1
2s−8 (4c− 3a+ 2cs) at

date 1.
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2. If Xr = 0, then do not produce at date 1. Produce at date 2 according to
qr =

a
2 − 1

2qo if o has produced qo at date 1, otherwise produce at date 2 qr =
a
3

if neither player has produced at date 1.
In this hypothetical cost-dependent equilibrium, the overconfident player with a
low cost perception has expected profits equal to 3

16(s−4)2 (3a− 4c− as+ 2cs)
2
.

However, if the overconfident player deviates and produces at date 1 a quantity
equal to 1

24−6s (9a+ 4c− 3as+ 2cs), he will obtain expected profits equal to

(9a+ 4c− 3as+ 2cs)2

48 (s− 4)2
>
3 (3a− 4c− as+ 2cs)2

16 (s− 4)2
.

Therefore, the strategy profiles cannot be a cost-dependent equilibrium. Q.E.D.

Proof of Proposition 3: The ex-ante profits of player o are equal to

Πo(s) =
1 + s

2
π1o −

sc

2
q1o +

1− s
2
π2o.

Making use of the expressions obtained for π1o, q
1
o, and π

2
o in Proposition 2 we

have that

Πo(s) =
1 + s

2

3(3a+ c)2 + 3 (4a+ (a+ c)(2 + s)) (a+ c)s

(16 + 4s)2

− sc
2

3a+ c+ (a+ c)s

8 + 2s
+
1− s
2

(
1

2

(
5a− 9c+ 2as
16 + 4s

)2
+
1

2

(
a− c
3

)2)

,

which can be simplified to

Πo(s) =
a2

36(16 + 4s)2
[
967− 998x+ 1039x2 + (637− 230x− 1271x2)s

+2(61 + 40x− 335x2)s2 + 2(1− 2x− 53x2)s3
]
. (1)

The ex-ante profits of player r are given by

Πr(s) =
1

2
π1r +

1

2
π2r

=
1

2

3(3a+ c)2 + (9a2 − 30ac− 11c2 + 4(2c− 3a+ cs)cs)s
(16 + 4s)2

+
1

2

(
1 + s

2

(
5a− 9c+ (a− 3c) s

16 + 4s

)2
+
1− s
2

(
a− c
3

)2)

,

which can be simplified to

Πr(s) =
a2

36(16 + 4s)2
[
967− 998x+ 1039x2 + (349− 1526x+ 889x2)s

−(13 + 478x− 599x2)s2 − (7 + 22x− 137x2)s3
]
. (2)
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The ex-ante profits of a player in an endogenous timing game with two rational
players are:

Π(0) = Πo(0) = Πr(0) =
a2

36

967− 998x+ 1039x2
162

. (3)

The difference between (1) and (3) is given by:

Πo(s)−Π(0) =
sa2

36× 162(16 + 4s)2
[
−(458368 + 188144s+ 27136s2)x2

+(68864 + 36448s− 1024s2)x+ (39296 + 15760s+ 512s2)
]
.

(4)

From (4) we have that Πo(s) > Π(0) as long as

x <
2152 + 1139s− 32s2 + 24(s+ 4)

√
8137 + 2659s+ 96s2

28648 + 11759s+ 1696s2
= τ(s).

The difference between (3) and (2) is:

Π(0)−Πr(s) =
sa2

36× 162(16 + 4s)2
[
−(94592 + 136720s+ 35072s2)x2

+(262912 + 106400s+ 5632s2)x+ (34432 + 18800s+ 1792s2)
]
.

(5)

From (5) we see have that Π(0) > Πr(s) for all 0 < s < s(x) since the restrictions
on the parameters imply that x > x2 and 262912+106400s+5632s2 > 94592+
136720s+ 35072s2. Q.E.D.

Proof of Proposition 4: From (4) and (5), the change in aggregate profits,
△Π, is equal to

△Π = Πo(s)−Π(0)− (Π(0)−Πr(s))

=
sa2

36 (2048 + 1024s+ 128s2)

[
152− 95s− 40s2

−(6064 + 2186s+ 208s2)x− (11368 + 1607s− 248s2)x2
]
.

The ex-ante consumer surplus in the model with the overconfident player is
equal to

CS(s) =
1 + s

4
CS(l, l) +

1 + s

4
CS(l, f) +

1− s
4
CS(f, l) +

1− s
4
CS(f, f)

=
1 + s

4

1

2

(
6a+ 2c+ as− cs

2s+ 8

)2
+
1 + s

4

1

2

(
11a− 7c+ 3as− cs

4s+ 16

)2

+
1− s
4

1

2

(
11a− 7c+ 2as− 4cs

4s+ 16

)2
+
1− s
4

1

2

(
2
a− c
3

)2
.
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After some algebra the above expression simplifies to

CS(s) =
a2

96 (192 + 96s+ 12s2)

[
4498 + 2206s+ 335s2 + 17s3

−(3956 + 20s− 806s2 − 146s3)x+ (2050 + 118s− 781s2 − 163s3)x2
]
.

The ex-ante consumer surplus in the model with two rational players is equal
to

CS(0) =
1

4
CS(l, l) +

1

2
CS(l, f) +

1

4
CS(f, f)

=
1

4

1

2

(
3a+ c

4

)2
+ 2

1

4

1

2

(
3a+ c

8
+
5a− 9c
16

)2
+
1

4

1

2

(
2
a− c
3

)2

=
a2

962
(
2249− 1978x+ 1025x2

)
.

The change in consumer surplus, △CS, is equal to

△CS = CS(s)−CS(0)

=
sa2

96 (1536 + 768s+ 96s2)

[
−344 + 431s+ 136s2

+(15664 + 8426s+ 1168s2)x− (7256 + 7273s+ 1304s2)x2
]

The change in welfare, △W , is the change in aggregate profits plus the change
in consumer surplus:

△W = △Π+△CS

=
sa2

36× 96

[ −(1079712 + 377532s+ 29088s2)x2
(1536 + 768s+ 96s2) (2048 + 1024s+ 128s2)

+
(127296 + 145944s+ 27072s2)x+ (−1440 + 8676s+ 2016s2)

(1536 + 768s+ 96s2) (2048 + 1024s+ 128s2)

]

From the expression above we have that △W > 0 as long as

x <
1768 + 2027s+ 376s2 + 24(s+ 4)

√
209 + 1412s+ 324s2

29992 + 10487s+ 808s2
= ψ(s).

Q.E.D.
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