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Abstract

In this paper we derive the closed form solution for multistep predictions of the conditional
means and covariances for multivariate GARCH models. These predictions are useful e.g.
in mean variance portfolio analysis when the rebalancing frequency is lower than the data
frequency. In this situation the conditional mean and the conditional covariance matrix of
the cumulative higher frequency returns until the next rebalancing period are required as
inputs in the mean variance portfolio problem. The closed form solution for this quantity
is derived as well. We assess the empirical value of the result by evaluating and compar-
ing the performance of quarterly and monthly rebalanced portfolios using monthly MSCI
index data across a large set of GARCH models. The value of using correct multistep pre-
dictions is assessed by comparing the performance of the quarterly rebalanced portfolios
based on the correct multistep predictions with the quarterly rebalanced portfolios incor-
rectly based on 1-step predictions and the monthly rebalanced portfolios. Using correct
multistep predictions generally results in lower risk and higher returns. Furthermore the
correctly computed quarterly rebalanced portfolios exhibit higher returns than monthly
rebalanced portfolios. The empirical results thus forcefully demonstrate the substantial
value of multistep predictions for portfolio management.
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1 Introduction

In this paper we derive the closed form solution for multistep predictions of the conditional

means and covariances from multivariate GARCH models. These predictions are useful e.g.

in mean variance portfolio analysis, when the rebalancing frequency is lower than the data

frequency, as in the problem studied in the application: We assess the empirical value of

this result by evaluating the performance of quarterly rebalanced portfolios using monthly

MSCI index data, and compare their performance with the performance of two corresponding

portfolios. The latter are given by: the portfolio incorrectly based on using 1-step predictions

in quarterly rebalancing respectively the monthly rebalanced portfolio.

Multistep prediction in GARCH models has been considered previously in e.g. Baillie and

Bollerslev (1992), who derive the minimum mean squared error forecasts for the conditional

mean and the conditional variance of univariate GARCH processes. We extend their results

to the multivariate case and derive closed form representations for the conditional mean and

the conditional covariances h-steps ahead. In addition we derive the explicit formula for

the conditional covariance of the sum of the conditional means up to h-steps ahead. This

corresponds to the conditional variance of the cumulative returns over an h-period horizon,

when modelling asset returns.

The result is, as already mentioned, useful for mean variance portfolio analysis, when

portfolio reallocations take place at a lower frequency than the data used in estimating the

underlying GARCH models. Mean variance portfolio analysis (see section 3.1) requires esti-

mates of expected returns and their covariances. If the rebalancing frequency is lower than

the data frequency, the expected returns over the rebalancing interval are given by the cu-

mulative expected returns at the higher data frequency. Hence, the need for the conditional

variance of cumulative returns. If the portfolio is adjusted quarterly, as in our empirical appli-

cation, and GARCH models are estimated using monthly data, the conditional covariance of

the cumulative returns can only by computed from the predictions for the conditional means

and covariances up to 3-months. The empirical part of our study is closely related to Ledoit,

Santa-Clara and Wolf (2003), Nilsson (2002) and Polasek and Pojarliev (2001a, 2001b), who

apply 1-step predictions from multivariate GARCH models for portfolio selection using - as

we do - MSCI regional indices. By contrast, our study is based on multistep predictions.1

1Morillo and Pohlman (2002) try to tackle the multistep prediction problem in GARCH models by resorting
to Monte-Carlo techniques. The theoretical properties (and the practical implementation) are, however, not
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Furthermore, our empirical results are based on a larger set of GARCH models.2

The ‘value’ of the derived multistep predictions for portfolio management is evaluated

on monthly data for six regional MSCI indices during the evaluation period January 1992

to December 2003. For a large number of GARCH models (48 to be precise), the minimum

variance portfolios are tracked, both for monthly and quarterly rebalancing. In the latter case

the quarterly rebalanced portfolios correctly based on multistep predictions and those incor-

rectly based on 1-step predictions are evaluated. The following main results are obtained. A

majority of the portfolios based on GARCH models, we label them GARCH portfolios, result

in lower risk and higher Sharpe ratio than the naive portfolio based on the sample mean and

covariance. All GARCH portfolios outperform the naive portfolio in terms of return. The

multistep prediction is of considerable value for quarterly rebalanced portfolios. For 33 out

of 48 models, the portfolios based on the correct predictions show lower risk than the corre-

sponding portfolios based on incorrect predictions. More remarkably, all GARCH portfolios

based on correct predictions result in higher returns and Sharpe ratios than those based on

incorrect predictions. The average over-performance is 0.24 % return per annum. We also

evaluate monthly rebalanced portfolios for the same set of models. The quicker inclusion of

information in monthly rebalanced portfolios results in lower risk than the quarterly rebalanc-

ing for almost all models. This fact forcefully demonstrates the value of GARCH volatility

modelling. However, somewhat surprisingly, monthly rebalancing does not lead to higher

returns, even when abstracting from transaction costs. The highest returns are obtained by

quarterly rebalanced portfolios based on correct multistep predictions.

The paper is organized as follows: In section 2 the multistep prediction problem is solved.

section 3 contains the empirical application in portfolio management. Section 4 briefly sum-

marizes and provides conclusions. In the appendix we describe in detail the variance equations

of the implemented GARCH models and present detailed results of the empirical application.

2 Multistep Prediction in Multivariate GARCH Models

In this section we derive the closed form solution for the multistep minimum mean squared

error (MSE) prediction of the conditional means, variances and covariances for multivari-

clear.
2Contrary to Nilsson (2002), we exclude GARCH-in-Mean models, whose multistep predictions are not

covered by our result and are a subject of further research. Polasek and Pojarliev (2001a) use a Bayesian
approach to GARCH modelling.
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ate GARCH models. Based on these results we also present the solution for the conditional

variance of the sum of the predictions over h-periods. To facilitate implementation we further-

more derive recursive formulations for the results. The results of this section can e.g. be used

for the prediction of cumulative returns in mean-variance portfolio analysis as exemplified in

section 3.

2.1 The General Case

Since the seminal contribution of Engle (1982), ARCH and GARCH type models have become

standard tools to model financial market data. Modelling and predicting financial data has

to take into account the widespread phenomenon of volatility clustering, i.e. that periods of

sustainedly high volatility and periods of sustainedly low volatility are present. This volatility

clustering can e.g. be modelled by ARCH or GARCH type models.3 During the last two

decades an enormous variety of GARCH models has been developed, see e.g. Bollerslev,

Engle and Nelson (1994) or Gourieroux (1997) for surveys of some of the models developed.

Multivariate GARCH models consist of two equations. The first one is an ARMA equation

for the vector valued observations, rt ∈ R
n say. In portfolio applications rt is the vector of

returns for n assets. Thus, the mean equation is of the form rt = c+A1rt−1+· · ·+Aprt−p+εt+

B1εt−1 + · · · + Bqεt−q with Ai, Bj ∈ R
n×n. The innovation εt has time-varying conditional

covariance, denoted by Σt = var(εt|It−1), where It−1 denotes the information set at time

t− 1. The model is called GARCH model, if the variance equation, describing the evolution

of Σt is (appropriately parameterized and vectorized) an ARMA equation in Σt and εtε
′
t. For

examples see the appendix. If the variance equation reduces to an autoregression, the model

is termed an ARCH model.

If in the portfolio optimization problem introduced in section 3.1, the investment horizon

is larger than one period, predictions for the cumulative returns are needed, which in turn

require multistep predictions. Consider for example the situation that rebalancing takes place

every h months, but monthly data are available. In our empirical application below h =

3. The cumulative returns over an h-period horizon, henceforth denoted as r[t+1:t+h], are

3An alternative model class is given by stochastic volatility models, see e.g. Harvey, Shephard and Ruiz
(1994).
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straightforwardly calculated from the single period returns, rt+i, as follows
4

r[t+1:t+h] = rt+1 + · · ·+ rt+h

Thus, the conditional covariance matrix of the cumulative returns r[t+1:t+h] is

var(r[t+1:t+h]|It) = var(rt+1 + · · ·+ rt+h|It)

=
h∑

i=1

var(rt+i|It) +
h∑

i,j=1,i6=j

cov(rt+i, rt+j |It) (1)

where It denotes the information set at time t. One clearly sees from this equation that

the conditional variance matrix of r[t+1:t+h] is composed of the (conditional) variances and

covariances of the one-period returns rt+i for i = 1, . . . , h. We thus see from equation (1)

that for calculating var(r[t+1:t+h]|It) it is necessary to derive the MSE predictors of rt+i for

i = 1, . . . , h and the corresponding conditional variances and covariances. In the context of

GARCH models it is important to note that the predictions of the conditional covariances of

rt+i in general differ from the predictions of the conditional variances of the residuals εt+i for

i > 1.

The general formula for computing the required multistep predictions of the conditional

variances of rt+i from multivariate ARMA(p,q)-GARCH(k,l) models is presented below. This

result is a generalization of the analogue multistep prediction for univariate GARCH models

discussed in Baillie and Bollerslev (1992).5 In the discussion we abstain from deriving also

the multistep prediction formula for the conditional variance of the innovations εt. Obtaining

these is a standard prediction problem in GARCH models. Note that these predictions

depend upon the precise formulation of the variance equation, but are easily available if

the variance equation is specified. Also note that multistep predictions of the conditional

variances of the innovations εt are directly available in various software packages, whereas the

conditional variances and covariances of multistep predictions of the returns themselves are

to our knowledge not implemented in software packages.

Note that the limits for h→∞ of the derived results for the minimum MSE predictor of

the mean and variance are finite only for stationary processes. Furthermore the derivations

presented below do not apply to ARCH-in-Mean models, where by construction the prediction

of the conditional means is coupled with the prediction of the conditional covariances.

4This follows directly from the definition of the 1-period returns, calculated as the logarithmic difference of
asset prices.

5Alternatively, the temporal aggregation results of Drost and Nijman (1993), derived for a specific class of
univariate GARCH models, can be used to obtain multistep predictions.
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Let rt be an n-dimensional ARMA(p, q), p, q ∈ N, process with GARCH errors

rt = c+

p
∑

i=1

Airt−i + εt +

q
∑

i=1

Biεt−i (2)

distribution? where c ∈ R
n, εt ∼WN(0,Σt), with Σt = var(εt|It−1) andA1, . . . , Ap, B1, . . . , Bq ∈

R
n×n. For the derivation of the minimum MSE predictors of rt+i and their conditional co-

variances it is convenient to express the model (2) in the following companion format:

















rt

rt−1
...

rt−p+1

εt

εt−1
...

εt−q+1

















︸ ︷︷ ︸

Rt

=

















c

0
...
0
0
0
...
0

















︸ ︷︷ ︸

E1c

+

















A1 . . . Ap B1 . . . Bq

I 0 . . . 0 0 . . . 0
... . . .

...
... . . .

...
0 . . . I 0 0 . . . 0
0 . . . 0 0 . . . 0
0 . . . 0 I . . . 0
... . . .

...
... . . .

...
0 . . . 0 0 . . . I 0

















︸ ︷︷ ︸

Φ

















rt−1

rt−2
...

rt−p

εt−1

εt−2
...

εt−q

















︸ ︷︷ ︸

Rt−1

+

















εt

0
...
0
εt

0
...
0

















︸ ︷︷ ︸

Eεt

(3)

or more compactly as

Rt = E1c+ΦRt−1 + Eεt (4)

where I ∈ R
n×n is the identity matrix. The matrices Ej , j = 1, . . . , p+ q denote (p+ q)n× n

matrices of 0n×n sub-matrices except for the j-th sub-matrix which equals I. Furthermore,

E = E1 + Ep+1, Rt ∈ R
(p+q)n and Φ ∈ R

(p+q)n×(p+q)n.

From (3) or equivalently (4) it follows that

cov(rt+i, rt+j |It) = E′1cov(Rt+i, Rt+j |It)E1 (5)

Iterating equation (4) (i− 1)-times leads to

Rt =
i−1∑

j=0

ΦjE1c+ΦiRt−i +
i−1∑

j=0

ΦjEεt−j (6)

where i = 1, . . . , t− 1. For the sake of brevity we introduce the following notation for i, j ∈ N

ΣR
t+i,t = var(Rt+i|It)

ΣR
t+i,t+j,t = cov(Rt+i, Rt+j |It)

where ΣR
t+i,t and ΣR

t+i,t+j,t ∈ R
(p+q)n×(p+q)n. Note that by definition ΣR

t+i,t = ΣR
t+i,t+i,t holds.
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From the definition of Rt it directly follows that

Rt =

p−1
∑

i=0

Ei+1rt−i +

q−1
∑

i=0

Ei+p+1εt−i (7)

It then follows from E = E1 + Ep+1, (6) and (7) that

rt+h =
h−1∑

i=0

E′1Φ
iE1c+

p−1
∑

i=0

(E′1Φ
hEi+1)rt−i +

q−1
∑

i=0

(E′1Φ
hEi+p+1)εt−i +

h−1∑

i=0

(E′1Φ
iE)εt+h−i

(8)

Result 1 (Minimum MSE h-step ahead predictor for rt)

Applying conditional expectations to equation (8), the minimum MSE h-step ahead predictor

for rt+h is found to be

E(rt+h|It) =
h−1∑

i=0

E′1Φ
iE1c+

p−1
∑

i=0

(E′1Φ
hEi+1)rt−i +

q−1
∑

i=0

(E′1Φ
hEi+p+1)εt−i (9)

Furthermore, (8) and (9) imply that the forecast error for the h−step ahead predictor in

(9) is given by

et,h =

h−1∑

j=0

(E′1Φ
jE)εt+h−j (10)

Result 2 (Conditional variance of minimum MSE predictor)

The above equation (10) leads to the conditional variance given by

var(rt+h|It) = E(et,he
′
t,h|It) = E′1

h−1∑

j=0

ΦjE Σt+h−j,t(Φ
jE)′E1 (11)

In expression (11) the conditional covariances Σt+i,t for i = 0, . . . , h show up. For an

evaluation, respectively estimation, of this expression therefore i-step ahead predictions of

the conditional covariances of the innovations εt have to be computed. These, obviously,

depend upon the precise specification of the variance equation of the GARCH model.

Using (5) and (6) we obtain

cov(rt+i, rt+j |It) = E′1Σ
R
t+i,t+j,tE1

= E′1cov(Φ
iRt +

i−1∑

k=0

ΦkEεt+i−k,Φ
jRt +

j−1
∑

l=0

ΦlEεt+j−l|It)E1

= E′1

i−1∑

k=max{0,i−j}

ΦkE Σt+i−k,t(Φ
j−i+kE)′E1 (12)
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An estimate of quantity (12) is, of course, obtained by inserting estimates for the matrices

Σt+i,t in this expression.

Result 3 (Conditional variance of cumulative returns)

From (1) and (12) we now obtain the result for the conditional covariance matrix of the

aggregated h-period returns:

var(r[t+1:t+h]|It) = var(rt+1 + · · ·+ rt+h|It)

= E′1

h∑

i=1

[
i−1∑

k=0

ΦkE Σt+i−k,t(Φ
kE)′

]

E1

+E′1

h∑

i,j=1,i6=j





i−1∑

k=max{0,i−j}

ΦkE Σt+i−k,t(Φ
j−i+kE)′



E1

(13)

In (13) we see again that the expression for var(r[t+1:t+h]|It) depends upon the mean

equation and the conditional covariances of the innovations. An estimate of expression (13)

is given by substituting all parameters with estimates and by inserting the predictions of the

conditional variances of εt+i.

When rewriting the ARMA mean equation in companion form (4) caution has to be taken

in the definition of the quantities Rt, Φ and E, when either the autoregressive order p or the

moving average order q are equal to 0. See the following remark:

Remark 1 In case of an AR(p) mean equation it is more convenient to use (4) with Rt, Φ

and E defined by

Rt = (r′t, . . . , r
′
t−p+1)

′

Φ =








A1 . . . Ap

I 0 . . . 0
... . . .

...
0 . . . I 0








and E = E1.

In case of an MA(q) mean equation it is more convenient to use representation (4) with

the following quantities:

Rt = (r′t, ε
′
t, . . . , ε

′
t−q+1)

′
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Φ =










0 B1 . . . Bq

0 0 . . . 0
0 I . . . 0
...

... . . .
...

0 0 . . . I 0










and E = E1 + E2.

For an actual implementations of the above results concerning the predictions of the

conditional variances and covariances a recursive formulation is convenient. A recursion is

first derived in equations (14) to (16) for the multistep prediction of the conditional variances

and covariances of rt. Consider the case i = j first, then (4) implies

ΣR
t+i,t = var(Rt+i|It) = var(ΦRt+i−1 + Eεt+i|It)

= ΦΣR
t+i−1,tΦ

′ + EΣt+i,tE
′ (14)

as cov(Eεt+i, Rt+i−1|It) = 0. Consider next the case i > j, then (6) implies

ΣR
t+i,t+j,t = cov(Rt+i, Rt+j |It) = cov(Φi−jRt+j +

i−j−1
∑

k=0

ΦkEεt+i−k, Rt+j |It)

= Φi−jΣR
t+j,t (15)

as cov(Eεt+i−k, Rt+j |It) = 0 for k = 0, . . . , i − j − 1. Finally, let i < j. Then using (4) we

obtain

ΣR
t+i,t+j,t = cov(Rt+i, Rt+j |It) = cov(Rt+i,Φ

j−iRt+i +

j−i−1
∑

k=0

ΦkEεt+j−k|It)

= ΣR
t+i,t(Φ

j−i)′ (16)

as cov(Rt+i, Eεt+j−k|It) = 0 for k = 0, . . . , j − i− 1.

Result 4 (Recursion for the conditional variance)

Equations (14)−(16) in combination with (1), (5) and the definition of ΣR
t+i,t+j,t lead to the

following recursion for the conditional variance of the cumulative returns.

var(r[t+1:t+h]|It) = E′1





h∑

i=1

ΣR
t+i,t +

h∑

i=2

i−1∑

j=1

Φi−jΣR
t+j,t



E1 +

+ E′1





h−1∑

i=1

h∑

j=i+1

ΣR
t+i,t(Φ

j−i)′



E1 (17)

where the conditional covariance matrices ΣR
t+i,t are calculated according to the recursion (14)

for i = 1, . . . , h.
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2.2 Example: 3-step Ahead Predictions for ARMA(1,1) Mean Equation

In this subsection we derive explicitly the solution for the special case of the above result that

we need for the empirical investigations in this paper. We consider 3-month aggregation of

returns, which requires 3-step ahead predictions from models for monthly data. The mean

equations implemented in our empirical study are AR(1), MA(1) and ARMA(1,1). We thus

derive here the solution for the ARMA(1,1) mean equation.

Hence, set h = 3 and p = q = 1. Then the matrices Rt, Φ and E equal

Rt = (r′t, ε
′
t)
′

Φ =

[
A B

0 0

]

E =

[
I

I

]

where for notational simplicity we use A = A1, B = B1, Rt ∈ R
2n, Φ ∈ R

2n×2n and E ∈ R
2n×n.

Note that E1 =
[
I 0

]′
∈ R

2n×n and thus the following holds

E′E1 = I (18)

ΦE =

[
A+B

0

]

(19)

Φ2E =

[
A(A+B)

0

]

(20)

Using (11) and (18)−(20) we obtain

var(rt+3|It) = E′1EΣt+3,tE
′E1 + E′1ΦEΣt+2,tE

′Φ′E1 + E′1Φ
2EΣt+1,tE

′(Φ2)′E1

= Σt+3,t +
[
I 0

]
[
A+B

0

]

Σt+2,t [ (A+B) ]′, 0 ]

[
I

0

]

+
[
I 0

]
[
A(A+B)

0

]

Σt+1,t [ (A+B)′A′, 0 ]

[
I

0

]

= Σt+3,t + (A+B)Σt+2,t (A+B)′ + [A (A+B) ]Σt+1,t [A (A+B) ]′

(21)

Similarly it can be shown that

var(rt+1|It) = Σt+1,t (22)

var(rt+2|It) = (A+B)Σt+1,t (A+B)′ +Σt+2,t (23)

10



Equations (12), (18)−(20) imply

cov(rt+3, rt+2|It) = E′1ΦEΣt+2,tE
′E1 + E′1Φ

2EΣt+1,t(ΦE)′E1

=
[
I 0

]
[
A+B

0

]

Σt+2,t

+
[
I 0

]
[
A(A+B)

0

]

Σt+1,t [ (A+B)′, 0 ]

[
I

0

]

= (A+B)Σt+2,t +A (A+B)Σt+1,t (A+B)′ (24)

Along the same lines it also directly follows that

cov(rt+2, rt+1|It) = (A+B)Σt+1,t (25)

cov(rt+3, rt+1|It) = A (A+B)Σt+1,t (26)

and cov(rt+1, rt+2|It) = cov(rt+2, rt+1|It)
′, cov(rt+1, rt+3|It) = cov(rt+3, rt+1|It)

′, cov(rt+2, rt+3|It)

= cov(rt+3, rt+2|It)
′. Thus, from (1), (21)−(26) after some algebraic modifications we find the

following result:

var(r[t+1:t+3]|It)

= [I + (I +A) (A+B) ]Σt+1,t [I + (I +A)(A+B)]′

+ (I +A+B)Σt+2,t (I +A+B)′ +Σt+3,t (27)

The required predictions for Σt+1,t,Σt+2,t and Σt+3,t and the estimates for A and B are in

our application for all implemented models directly obtained from the Finmetrics Module in

S-Plus, see the discussion below. In the AR(1) case the above result holds with B = 0 and

for the MA(1) case A = 0 has to be inserted.

3 An Empirical Application in Portfolio Management

In the previous section we have shown how multistep predictions are obtained for GARCH

models. These become useful for portfolio management if the data frequency is higher than

the rebalancing frequency. This situation is often faced by portfolio managers in practice

and is also the original motivation for this paper. In this section we assess the practical

implications of this result for portfolio selection by comparing the portfolio performance with

higher rebalancing frequency (1-month) to lower rebalancing frequency (3-month) using higher

11



frequency (1-month) data. Consequently, the former portfolio selection has to be based on

1-step predictions and the latter on predictions up to three steps ahead. The quantitative

importance of correct multistep predictions is evaluated by computing several performance

measures of portfolios rebalanced at a 3-month frequency but incorrectly based on 1-step

predictions. Note, however, that the interesting exercise of finding an ‘optimal’ rebalancing

interval is beyond the scope of this paper. In the course of this procedure a large number

of multivariate GARCH models are implemented, see Table 3 in the appendix for the list of

48 implemented models. This also allows to identify the sets of models leading to the best

portfolio performance, according to optimality criteria such as lowest risk, highest return or

highest Sharpe ratio.

3.1 Portfolio Optimization

The empirical application is performed within the framework of mean-variance (MV) portfolio

analysis (Markowitz, 1952 and 1956). MV analysis assumes that the investor’s decisions and

hence the optimal portfolio only depend on the expected return and the conditional variance

of the portfolio return, the latter measuring risk. Considering n risky assets and an investment

horizon of one period the investor faces the following decision problem at time t:

Min
xt

σ2pt+1 =
n∑

i,j=1

xitxjtcov(rit+1, rjt+1|It)

s.t. E(rpt+1|It) =
n∑

i=1

xitE(rit+1|It) = r,

n∑

i=1

xit = 1, xit ≥ 0

where rpt+1 and σ2pt+1 denote the portfolio return and portfolio variance, respectively.6 Given

a fixed value of the expected return, E(rpt+1|It) = r, the fractions, xit, of wealth invested in

an individual asset i, are chosen to minimize the risk of the portfolio return. In addition, we

assume nonnegative xit, i.e. short sales are prohibited.7 E(rit+1|It) and cov(rit+1, rjt+1|It)

are approximated by predictions (e.g. from GARCH models) of individual asset returns and

6Mean-variance portfolio optimization is based on discrete returns, which implies that the portfolio return
is a weighted average of individual asset returns, as seen in the above equation. The predictions from the
multivariate GARCH models are, however, based on continuous (log) returns for the following reason: the
cumulative returns over multiple periods are linear in the individual period returns when using continuous
returns but non-linear (and thus not analytically tractable) for discrete returns. We pursue the following
pragmatic strategy: we predict continuous returns using the multivariate GARCH models. We then - as is
common in the literature, compare e.g. Ledoit, Santa-Clara and Wolf (2003) - use these predictions in the
mean-variance optimization to get the optimal portfolio weights. In order to provide a realistic assessment of
the portfolio performance, in the evaluation we calculate the discrete returns of the portfolios.

7Jagannathan and Ma (2003) show that imposing short-sale constraints can improve portfolio performance
due to avoiding extreme positions resulting from imprecise covariance estimation.
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their covariances over the period from t to t+1, given It, the information set at t. The above

optimization problem leads, by varying r̄, to the well-known efficient frontier. The optimal

portfolio choice from the set of mean-variance efficient portfolios depends on the investor’s

preferences and also on the consideration of a potential risk free asset. Omitting the constraint

E(rpt+1|It) = r leads to the minimum variance portfolio, which is independent of expected

returns.

It is well-known that MV optimization is very sensitive to errors in the estimated E(rpt+1|It)

and cov(rit+1, rjt+1|It), see Chopra, Hensel and Turner (1993) or Best and Grauer (1991).

Chopra and Ziemba (1997) point out that the asset allocations of efficient portfolios are more

sensitive to uncertainty in the expected returns than to uncertainty in their conditional co-

variances. By focusing in our empirical application on the minimum variance portfolio only,

we eliminate thus the impact of the imprecision in the prediction of the returns.

3.2 Return and Risk Predictions from GARCH Models

The required predictions for both the returns and the conditional covariances of the returns

are derived in our study from multivariate GARCH models. We implement a large number of

GARCH models. The nesting formulation of the mean equations considered in the empirical

application is given by the ARMA(1,1) equation:

rt = c+Art−1 + εt +Bεt−1

Preliminary model selection shows that for our application no higher lags are required. Even

in the equations with only one lag many of the coefficients are insignificant. Therefore, we

also investigate more parsimonious specifications, where the autoregressive coefficient matrix

A, the moving average coefficient matrix B or both are restricted to be diagonal or zero. Note

that the significance of coefficients in A or B in the mean equation is a violation of strong

market efficiency. Two distributions for εt are considered: Normally distributed innovations

and t-distributed innovations, where in the latter case the degree of freedom of the innovation

distribution is estimated itself. The latter possibility is included in order to allow for stronger

leptokurtic behavior. See the upper block of Table 1 for a description of all implemented mean

equations. The implemented variance equations are described in detail in the appendix. We

consider eight different specifications of orders (1,1), see the lower block of Table 1.

As a benchmark portfolio we consider the naive portfolio, where both the return and

covariance predictions are given by the sample mean and the sample covariance, respectively,

13



Table 1: Specifications of implemented GARCH models

Specification of mean equation: rt = c+Art−1 + εt +Bεt−1

model A B εt

AR(1) diag n diagonal 0 N(0,Σt)
MA(1) diag n 0 diagonal N(0,Σt)
AR(1) full n unrestr. 0 N(0,Σt)
AR(1) diag t diagonal 0 t-distr.
MA(1) diag t 0 diagonal t-distr.
ARMA(1,1) full t unrestr. unrestr. t-distr.

Specification of variance equation, details in the appendix
model description

BEKK(1,1)
Vector Diag(1,1) vector diagonal model
Diag GARCH(1,1) pure diagonal GARCH model
Diag EGARCH(1,1) pure diagonal exponential GARCH model
Diag PGARCH(1,1) pure diagonal power GARCH model
CCC GARCH(1,1) constant conditional correlation GARCH model
CCC EGARCH(1,1) constant conditional correlation exponential GARCH model
CCC PGARCH(1,1) constant conditional correlation power GARCH model

over the estimation period. Thus, we need to clarify how we derive multistep predictions for

the naive portfolio strategy, which is based on sample means and covariances. Since in the

quarterly rebalancing the investor is interested in the prediction of the 3-month returns and

their covariances, we base our naive predictions for the 3-month return on the sample mean

and covariance matrix of the monthly return series aggregated to 3-month returns.8

3.3 Portfolio Evaluation

We track internationally diversified portfolios denominated in Swiss francs over the period

1992 to 2003. The portfolio wealth is invested in six world regions. The Morgan Stan-

ley Capital International (MSCI) indices for the United States, Switzerland, Great Britain,

Japan, Europe (excluding Great Britain) and Pacific (excluding Japan) are the investment

instruments.9 We use monthly return data from February 1972 to December 2003 for the six

indices.

The evaluation with quarterly (respectively monthly) rebalancing proceeds in the following

8This seems to be more natural than to simply use the empirical mean and covariance matrix of the returns
series at the monthly frequency. The latter are used as incorrect forecasts for the quarterly rebalancing of the
naive portfolio.

9Note that we do not include a risk free asset in order to focus on the effect of GARCH predicted correlation
structures on portfolio performance.

14



time

rebalancing interval: 3 months

last investment decision: 10/2003

2nd investment decision: 4/1992

1st investment decision: 1/1992

1st estimation period

2nd estimation period

sample: 2/1971 – 12/2003

evaluation: 1/1992 – 12/2003

Figure 1: Timing of the evaluation (quarterly rebalancing).

steps (see the timing illustrated in Figure 1):

(1) The monthly return data from February 1972 up to the date of the investment decision

are used to predict the covariances of the six regional indices. 49 different predictions

are computed: From 48 GARCH models and the naive predictions.

(2) The corresponding minimum variance portfolios are calculated.

(3) The 3- and 1-month returns are calculated.

(4) The investment decision is repeated every 3 (1) months from January 1, 1992 to October

1, (December 1) 2003 and the portfolios are rebalanced accordingly.

3.4 Results

Table 2 exhibits a summary of the results presented in detail in Table 3 in the appendix.

The latter table shows the detailed results from the evaluation and juxtaposes the results

from monthly rebalancing and quarterly rebalancing for both the correct 3-step prediction

and the incorrect 1-step prediction method. In Table 3 we report risk, return as well as the

Sharpe ratio of the portfolios based on 48 GARCH models.10 For comparison, the results

obtained from the naive portfolio, based on sample means and covariances are displayed too.

The Sharpe ratio is defined as excess return (i.e. net return minus riskfree rate)11 divided by

10More detailed tables including further risk adjusted performance measures such as Jensen’s alpha, Treynor’s
measure as well as shortfall are available from the authors upon request.

11The 3-month (respectively 1-month) deposit rate is used as riskfree rate. Before December 1996 the deposit
rate is approximated by the LIBOR minus five basis points.
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Table 2: Main Results of Performance Comparison

Risk Return Sharpe
Average across GARCH portfolios
- monthly rebalancing 39.00 7.99 0.133
- quarterly rebalancing with 3-step prediction 39.72 8.35 0.135
- quarterly rebalancing with 1-step prediction 39.99 7.89 0.123
Best of GARCH portfolios
- monthly rebalancing 37.39 9.08 0.167
- quarterly rebalancing with 3-step (correct) prediction 38.47 9.33 0.159
- quarterly rebalancing with 1-step (incorrect) prediction 38.64 9.09 0.156
Naive prediction
- monthly rebalancing 41.03 7.77 0.120
- quarterly rebalancing with 3-step (correct) prediction 41.38 8.05 0.122
- quarterly rebalancing with 1-step (incorrect) prediction 41.13 7.82 0.117
Number of GARCH models 48 48 48
Comparison of GARCH models
- quarterly rebal.: correct better than incorrect GARCH prediction 33 48 48
- quarterly (correct prediction) better than monthly rebalancing 1 47 27
Comparison of GARCH models with naive prediction
- monthly rebal.: GARCH better than 1-step naive prediction 48 36 39
- quarterly rebal.: correct GARCH better than naive prediction 48 40 43
- quarterly rebal.: incorrect GARCH better than naive prediction 48 32 32
This table summarizes the results presented in Table 3 in the appendix. All results apply to
quarterly returns. Return denotes the mean annualized return of the portfolio. Risk denotes the
standard deviation of annualized quarterly returns. Sharpe ratio is given by excess quarterly return
(i.e. return minus riskfree rate) divided by its standard deviation. correct means that 3-step
predictions for the conditional covariances are used. incorrect means that 1-step predictions for
the conditional means and covariances are used. better (best) means lower risk, higher return and
higher Sharpe ratio, respectively.

the standard deviation of the excess return. For comparability of portfolio performance with

different rebalancing intervals, the following discussion reports risk and Sharpe ratio based

on annualized quarterly returns only.

Let us start by discussing the performance of GARCH predictions used for monthly ad-

justed portfolios, which requires only 1-step predictions. The portfolio with the lowest risk

(3-month standard deviation of 37.39%) is the ARMA(1,1)-CCC-EGARCH(1,1) portfolio.

This portfolio also shows above average return (8.78%). However, several portfolios perform

better in terms of return, the best being the ARMA(1,1)-CCC-GARCH portfolio with a re-

turn of 9.08% per annum. Using the Sharpe ratio as a simple measure for the return risk trade

off, the latter also shows the best performance with a Sharpe ratio of 0.167. Note that all

GARCH portfolios exhibit lower risk than the naive portfolio. This forcefully demonstrates

the substantial value of GARCH modelling. Both, the average across the GARCH portfolios

as well as the majority of GARCH portfolios also show higher return (36 out of 48) and Sharpe
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Figure 2: Asset allocations of one GARCH and the naive quarterly rebalanced portfolios.

ratio (39 out of 48) than the naive portfolio. While the average return (7.99%) across all 48

GARCH portfolios is 22 basis points higher than the return of the naive portfolio, the best

GARCH portfolio results in a return that is 131 basis points higher than the naive portfolio’s

return.

Let us now turn to quarterly portfolio rebalancing. The MA(1)-CCC-GARCH(1,1) yields

the lowest risk (38.47%). The best portfolio in terms of return (9.33%) and Sharpe ratio

(0.159) is the AR(1)-full-BEKK(1,1) portfolio. This compares to the corresponding naive

portfolio’s risk of 41.38%, a return of 8.05% and Sharpe ratio equal to 0.122. For illustration,

the asset allocations corresponding to these two portfolio strategies are displayed in Figure 2.

This figure displays clearly a very typical feature of GARCH based portfolios, namely the

much larger amount of asset reallocations compared to e.g. the naive portfolio. Again, all

GARCH portfolios show lower risk and a majority show higher return (40 of 48) and higher

Sharpe ratio (43 of 48) than the naive portfolio. The average return across all GARCH

portfolios (8.35%) is now 30 basis points above the naive portfolios return. Thus, the value

of GARCH based portfolio selection appears to be substantial at both frequencies.

One might expect that the risks of quarterly rebalanced portfolios are higher and their

returns lower than for monthly rebalanced portfolios. This, since with monthly rebalancing

new information is incorporated faster. Surprisingly, this relationship is only observed for

risk: all but one quarterly rebalanced portfolio result in higher risk than the corresponding

monthly rebalanced portfolio. However, 47 out of 48 quarterly rebalanced portfolios exhibit
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higher returns than the corresponding monthly rebalanced portfolio. On average, the risk of

quarterly rebalanced portfolios is 72 basis points and the return 36 basis points higher than

that of monthly rebalanced portfolios. Consequently an ambiguous picture emerges when

taking the Sharpe ratio as performance measure: the Sharpe ratio of quarterly and monthly

rebalanced portfolios are on average as well as for the individual models almost identical.12

Let us finally turn to the assessment of the value of correct multistep predictions by com-

paring the portfolio performance obtained from quarterly rebalancing based on the incorrect

1-step predictions on the one hand and on the correct multistep predictions on the other hand.

These results are again contained in Table 3 in the appendix and summarized in Table 2. For

the majority (33 of 48) of GARCH portfolios using the correct predictions results in lower

portfolio risk. The correct predictions reduce the risk by on average 17 basis points. Note

also that for all 48 GARCH portfolios the return is higher with the correct multistep method.

The mean difference being 46 basis points. Thus, the correct computation of the predictions

is indeed resulting in superior portfolio performance.

4 Summary and Conclusions

In this paper we have derived the closed form solution for multistep predictions of the con-

ditional means and covariances for multivariate GARCH models and have illustrated their

value for portfolio management. Multistep predictions of the conditional means and covari-

ances are e.g. needed for mean-variance portfolio analysis when the rebalancing frequency is

lower than the data frequency. In order to deal with this problem we have also derived the

explicit formula for the conditional covariance matrix of the corresponding cumulative higher

frequency returns. The closed form solution for the general ARMA(p,q)-GARCH(k,l) case is

provided in section 2 along with a convenient recursive representation.

The practical relevance of the theoretical results is assessed empirically with an applica-

tion to six regional MSCI indices using a large variety of GARCH models. Based on monthly

data, the portfolio performance of monthly and quarterly rebalanced portfolios is investigated.

The quarterly rebalancing decision is based on either the (model consistent) correct 3-step

predictions or is incorrectly based on 1-step predictions. The evaluation period is January

1992 to December 2003. Several observations emerge: The first observation is that basing

12Note that the higher return achieved with lower frequency rebalanced portfolios implies that the results
are robust with respect to the consideration of transaction costs.
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the quarterly rebalancing decision on correct multistep predictions is advisable for almost

all portfolios. For the majority of GARCH models the risk is reduced by using the correct

multistep predictions. Furthermore, for all GARCH models the return of the corresponding

portfolio is higher when the rebalancing decision is based on the correct multistep predictions.

The second main observation is the fact that quarterly rebalanced portfolios based on multi-

step predictions lead to higher returns than monthly adjusted portfolios, but also increase the

risk. This is a surprising result, as a priori one expects that monthly rebalanced portfolios

outperform quarterly adjusted portfolios. This conjecture, which is based on the argument

that monthly adjusted portfolios incorporate new information faster, is not validated for the

returns in our empirical study. The third observation is that by basing the portfolio decision

on predictions from GARCH models one can substantially outperform the naive portfolio, a

result also found for daily data by Fleming et al. (2001).

An important theoretical question that is left open for future research is the derivation

of multistep predictions for multivariate GARCH-in-Mean models. See Karanasos (2001) or

Nilsson (2002) for some results concerning prediction for this model class. An important

empirical issue that requires further exploration is to assess the value of multistep predictions

at higher data frequencies, e.g. to explore the performance of weekly portfolio allocation based

on daily data. This might lead to interesting results as the volatility effects are stronger at

higher frequencies, which should increase the value of correct conditional multistep predictions

of conditional covariances. Exploring the link of these issues to the literature on realized

volatility, see e.g. Andersen et al. (2003), is left open for further research.
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Appendix: Implemented GARCH(1,1) Variance Equations

in this appendix we first describe briefly the implemented specifications for the variance

equations and then present detailed results of the evaluation in Table 3.

In the estimation of multivariate GARCH models two aspects have to be considered.

Firstly, positive semi-definiteness and symmetry of the estimated conditional covariance ma-

trices has to be guaranteed. Secondly, the number of parameters to be estimated grows

rapidly with the number of assets. For circumventing the first problem the literature pro-

poses a variety of multivariate GARCH models that guarantee positive semi-definiteness and

symmetry of the estimate of Σt. We discuss some of them below. The discussion is in terms

of the implemented GARCH(1,1) models only.

The unrestricted GARCH or diagonal-vecmodel (Bollerslev, Engle andWooldridge (1988))

constitutes the natural starting point for the discussion and is therefore described first. The

variance equation of the diagonal-vec(1,1) model is given by:

Σt = P0 + P1 ¯ (εt−1ε
′
t−1) +Q1 ¯ Σt−1

where ¯ denotes the Hadamard (i.e. element-wise) product and P0 ∈ R
n×n, P1 ∈ R

n×n and

Q1 ∈ R
n×n for an application with n assets. Taking the symmetry restriction into account,

the diagonal-vec model leads to 63 parameters to be estimated in our application with six

index returns series. However, in this formulation it also has to be ensured that the resulting

estimated Σt is positive semi-definite, which complicates the likelihood optimization problem.

For this reason we focus on the estimation of alternative formulations of GARCH(1,1) models

that incorporate the restrictions that the estimated Σt has to be positive (semi-)definite and

symmetric and do not consider the diagnonal-vec model further.

One popular formulation in the empirical literature is known as BEKK model (see Engle

and Kroner, 1995). The BEKK(1,1) model’s variance equation is

Σt = P0P
′
0 + P1(εt−1ε

′
t−1)P

′
1 +Q1Σt−1Q

′
1

with P0, P1, Q1 given as above. The BEKK model results in more parameters than the

diagonal-vec model, however its formulation incorporates symmetry and positive semi-definite-

ness of Σt and its estimate.

The second implemented version of GARCH(1,1) models is the vector-diagonal model

Σt = P0P
′
0 + p1p

′
1 ¯ (εt−1ε

′
t−1) + q1q

′
1 ¯ Σt−1

with vectors p1, q1 ∈ R
n and P0 as above. It is obvious that this formulation reduces the

number of estimated parameters while symmetry and positive semi-definiteness of Σt remain

ensured.

An alternative strategy for parameter reduction consists of transforming the multivariate

problem into a set of (essentially) univariate problems. This means that after appropriate
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transformations the components of the conditional variance series are modelled with standard

univariate GARCH type models. We have implemented two variance equations following this

strategy: the constant conditional correlation (CCC) and the pure diagonal models.

In the constant conditional correlation (CCC) model (Bollerslev (1990)), the conditional

covariance matrix is modelled as

Σt = DtRDt

where R ∈ R
n×n is the constant conditional correlation matrix and Dt = diag(σ1t, . . . , σnt)

denotes the diagonal matrix of the conditional standard deviations of the individual returns

series. The series σit are then modelled in our application with univariate GARCH, EGARCH

or PGARCH models (see the description below).

Assuming that the returns are conditionally uncorrelated, i.e. that Σt is diagonal for

all t, one can directly model the individual volatility series with univariate GARCH models.

This approach is often termed pure diagonal GARCH model. However, one should note

that the residuals used in this univariate modelling of the volatilities are derived from the

multivariate specification of the mean equation. Hence, the results differ from a completely

univariate GARCH analysis, where the mean equations are specified for each of the return

series separately.

Let us finally turn to a brief description of the underlying univariate GARCH models

used. Hence, from now on we deal only with one volatility series σit and one residual or

innovation series εit. The basic model is the GARCH model of Bollerslev (1986), which in its

GARCH(1,1) form is given by

σ2it = pi + pi1ε
2
it−1 + qi1σ

2
it−1

with pi, pi1, qi1 ∈ R. Here, the condition pi1+qi1 < 1 is necessary for covariance stationarity of

the underlying return series. In order to be able to model asymmetric behavior of volatility in

response to positive or negative shocks, the standard GARCH specification has been extended

in various ways. Two of these extensions have been used in this study, the exponentialGARCH

(EGARCH) model introduced by Nelson (1991) and the power GARCH (PGARCH) model,

see e.g. Ding, Engle and Granger (1993). The univariate EGARCH(1,1) model has the

following variance equation

lnσ2it = pi + pi1
|εit−1|+ γiεit−1

σit−1
+ qi1 lnσ

2
it−1

Finally the variance equation of the PGARCH(1,1) model is given by

σd
it = pi + pi1 (|εit−1|+ γiεit−1)

di + qi1σ
di

it−1

with γi, pi, pi1, qi1 ∈ R and where the parameter di ∈ R can be estimated as well. Appropriate

restrictions to ensure stationarity have to be taken into account.
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Table 3: Risk and Return over Evaluation Period 1992/1 to 2003/12

Estimated model monthly rebalancing quarterly rebalancing

Mean Variance 1-step prediction 3-step prediction (correct) 1-step prediction (“incorrect”)

equation equation Risk Risk Return Sharpe Risk Return Sharpe Risk Return Sharpe

1-month 3-month 3-month 3-month 3-month 3-month 3-month

AR(1) diag n BEKK(1,1) 57.66 39.01 8.76 0.152 40.64 9.01 0.148 40.37 8.74 0.142

MA(1) diag n BEKK(1,1) 57.21 38.73 8.67 0.151 40.16 8.87 0.147 40.15 8.57 0.139

AR(1) full n BEKK(1,1) 57.28 38.90 8.80 0.154 39.95 9.33 0.159 39.87 8.83 0.147

AR(1) diag t BEKK(1,1) 56.76 38.10 8.87 0.159 39.57 9.18 0.157 39.26 9.09 0.156

MA(1) diag t BEKK(1,1) 56.81 38.23 8.57 0.150 39.47 8.90 0.150 39.41 8.70 0.145

ARMA(1,1) full t BEKK(1,1) 56.89 38.13 8.15 0.140 39.16 8.98 0.153 39.21 8.12 0.131

AR(1) diag n Vector Diag(1,1) 57.23 38.62 7.32 0.117 39.26 7.93 0.126 39.55 7.53 0.115

MA(1) diag n Vector Diag(1,1) 57.25 38.53 7.29 0.116 39.13 7.91 0.126 39.34 7.50 0.115

AR(1) full n Vector Diag(1,1) 57.23 38.48 7.45 0.120 39.41 8.19 0.132 39.37 7.84 0.124

AR(1) diag t Vector Diag(1,1) 56.22 38.03 8.02 0.137 39.07 8.39 0.138 39.24 8.07 0.130

MA(1) diag t Vector Diag(1,1) 56.09 38.14 7.95 0.134 39.08 8.41 0.139 39.22 8.12 0.131

ARMA(1,1) full t Vector Diag(1,1) 56.37 37.68 7.88 0.134 39.02 8.72 0.147 38.97 8.37 0.138

AR(1) diag n Diag GARCH(1,1) 59.04 40.11 8.19 0.134 40.28 8.35 0.133 40.41 8.21 0.129

MA(1) diag n Diag GARCH(1,1) 59.09 40.15 8.21 0.134 40.35 8.35 0.133 40.45 8.20 0.129

AR(1) full n Diag GARCH(1,1) 59.16 40.10 8.26 0.136 40.69 8.44 0.134 40.48 8.23 0.130

AR(1) diag t Diag GARCH(1,1) 58.76 40.18 8.24 0.135 40.52 8.32 0.132 40.65 8.17 0.128

MA(1) diag t Diag GARCH(1,1) 58.76 40.17 8.23 0.134 40.53 8.30 0.131 40.65 8.15 0.127

ARMA(1,1) full t Diag GARCH(1,1) 58.83 40.10 8.23 0.135 41.23 8.48 0.133 40.71 8.26 0.130

AR(1) diag n Diag PGARCH(1,1) 59.67 40.65 7.61 0.118 40.83 7.71 0.116 40.81 7.62 0.114

MA(1) diag n Diag PGARCH(1,1) 59.62 40.56 7.49 0.115 40.89 7.74 0.116 40.88 7.68 0.115

AR(1) full n Diag PGARCH(1,1) 59.31 40.36 7.51 0.116 40.85 7.97 0.122 40.56 7.66 0.115

AR(1) diag t Diag PGARCH(1,1) 59.37 40.56 7.88 0.125 40.67 8.13 0.126 40.68 7.99 0.123

MA(1) diag t Diag PGARCH(1,1) 59.34 40.52 7.92 0.126 40.60 8.12 0.127 40.74 7.94 0.122

ARMA(1,1) full t Diag PGARCH(1,1) 59.67 40.53 7.81 0.123 41.14 8.26 0.128 40.70 7.88 0.120

AR(1) diag n Diag EGARCH(1,1) 59.17 40.24 8.09 0.131 40.44 8.29 0.131 40.51 8.22 0.129

MA(1) diag n Diag EGARCH(1,1) 59.17 40.24 8.10 0.131 40.45 8.28 0.131 40.51 8.22 0.129

AR(1) full n Diag EGARCH(1,1) 59.26 40.29 8.11 0.131 40.76 8.46 0.134 40.59 8.28 0.130

AR(1) diag t Diag EGARCH(1,1) 59.01 40.28 8.06 0.130 40.60 8.23 0.129 40.70 8.07 0.125

MA(1) diag t Diag EGARCH(1,1) 59.03 40.27 8.05 0.130 40.60 8.21 0.129 40.68 8.05 0.125

ARMA(1,1) full t Diag EGARCH(1,1) 59.19 40.20 8.12 0.132 41.31 8.52 0.134 40.76 8.23 0.129
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Table 3 (continued): Risk and Return over Evaluation Period 1992/1 to 2003/12

Estimated model monthly rebalancing quarterly rebalancing

Mean Variance 1-step prediction 3-step prediction (correct) 1-step prediction (“incorrect”)

equation equation Risk Risk Return Sharpe Risk Return Sharpe Risk Return Sharpe

1-month 3-month 3-month 3-month 3-month 3-month 3-month

AR(1) diag n CCC GARCH(1,1) 55.92 37.50 7.64 0.128 38.58 7.97 0.129 39.97 6.97 0.100

MA(1) diag n CCC GARCH(1,1) 56.13 37.56 7.86 0.134 38.47 8.30 0.138 39.88 7.23 0.107

AR(1) full n CCC GARCH(1,1) 56.23 37.75 7.30 0.119 38.76 8.21 0.135 39.79 6.91 0.099

AR(1) diag t CCC GARCH(1,1) 55.22 37.72 8.46 0.149 38.96 8.81 0.150 39.87 8.16 0.130

MA(1) diag t CCC GARCH(1,1) 55.13 37.64 8.32 0.146 38.78 8.84 0.151 39.69 8.10 0.129

ARMA(1,1) full t CCC GARCH(1,1) 55.48 37.47 9.08 0.167 38.50 9.10 0.159 39.02 8.76 0.148

AR(1) diag n CCC PGARCH(1,1) 58.01 39.96 6.45 0.091 39.60 6.91 0.099 39.96 6.36 0.085

MA(1) diag n CCC PGARCH(1,1) 57.96 39.20 6.58 0.096 39.70 6.52 0.089 40.07 5.90 0.073

AR(1) full n CCC PGARCH(1,1) 57.42 38.47 7.18 0.114 38.59 8.26 0.137 38.64 7.44 0.116

AR(1) diag t CCC PGARCH(1,1) 56.34 38.47 8.02 0.135 38.88 8.14 0.133 39.22 7.46 0.114

MA(1) diag t CCC PGARCH(1,1) 56.21 38.16 8.03 0.136 38.86 8.11 0.132 39.46 7.27 0.109

ARMA(1,1) full t CCC PGARCH(1,1) 56.92 37.99 8.09 0.139 38.60 8.53 0.144 38.66 8.00 0.130

AR(1) diag n CCC EGARCH(1,1) 57.32 38.36 7.78 0.129 39.02 8.34 0.138 40.36 7.24 0.106

MA(1) diag n CCC EGARCH(1,1) 57.33 38.42 7.80 0.130 38.94 8.35 0.138 40.33 7.23 0.106

AR(1) full n CCC EGARCH(1,1) 57.30 38.15 7.46 0.121 39.11 8.35 0.137 39.96 7.08 0.103

AR(1) diag t CCC EGARCH(1,1) 56.27 37.77 8.42 0.148 38.82 8.65 0.146 39.65 7.99 0.126

MA(1) diag t CCC EGARCH(1,1) 56.31 37.81 8.37 0.147 38.83 8.64 0.146 39.69 7.90 0.124

ARMA(1,1) full t CCC EGARCH(1,1) 56.66 37.39 8.78 0.159 38.87 8.86 0.151 40.02 8.13 0.129

Riskfree 2.11 2.11 2.79 2.15 2.95 2.15 2.95

Naive 59.57 41.03 7.77 0.120 41.38 8.05 0.122 41.13 7.82 0.117

Remarks:

The return and covariance predictions used in the mean-variance optimization are based on monthly data.

The portfolio composition is adjusted every 3 months/1 month from January 1992 to October/December 2003.

The results reported correspond to the evaluation of minimum variance portfolios.

Estimated model specifies the mean equation and the variance equation of the estimated GARCH model.

Risk 1-month/3-month denotes the standard deviation of annualized monthly/quarterly returns.

Return denotes the mean annualized return of the portfolio.

Sharpe ratio is given by excess quarterly return (i.e. return minus riskfree rate) divided by its standard deviation.

3-step prediction means that 3-step predictions for the conditional means and covariances are used.

1-step prediction means that 1-step predictions for the conditional means and covariances are used.
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