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Abstract

The purpose of this paper is to derive a Rao’s e¢cient score statistic for

testing for heteroscedasticity in an error components model with only indi-

vidual e¤ects. We assume that the individual e¤ect exists and therefore do

not test for it. In addition, we assume that the individual e¤ects, and not

the white noise term may be heteroscedastic. Finally, we assume that the

error components are normally distributed.

We …rst establish, under a speci…c set of assumptions, the asymptotic

distribution of the Score under contiguous alternatives. We then derive the

expression for the Score test statistic for individual heteroscedasticity. Fi-

nally, we discuss the asymptotic local power of this Score test statistic.

Key words :Panel data, Error components model, Score test, Individual

heteroscedasticity, Contiguous alternatives, Asymptotic local power.

JEL classi…cation : C23, C12
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1 Introduction

In the analysis of error-components models it is custumary to assume that

the individual e¤ects are homoscedastic. In some situations, however, it

may be appropriate to generalize the error components model context to

the heteroscedastic case, as …rst suggested by Mazodier and Trognon (1978).

Misspeci…cation errors in presence of heteroscedasticity can produce mis-

leading results. However, if no heteroscedasticity exists, standard estima-

tion and speci…cation test procedures can be applied straightforwardly. It

would therefore simplify the analysis considerably if one were to test for het-

eroscedasticity before implementing more elaborate inference procedures to

deal with the possible heteroscedasticity situation.

To this testing purpose, a natural procedure consists in using Rao’s e¢-

cient score statistic [Rao (1948)], or it’s Lagrange Multipier (LM) interpreta-

tion provided by Silvey (1959), as its computation is based on the usual error

components model in the homoscedastic case. In another setting, Breusch

and Pagan (1980) have considered the standard linear regression model with

non–spherical disturbances and took the error-components model of Balestra

and Nerlove (1966) as an example. They presented an LM test for the null

hypothesis that the individual e¤ect is missing. Gourieroux, Holly and Mon-

fort (1982) derived the asymptotic distribution of the LM test of Breusch and

Pagan (1980) by taking into account the fact that the parameter de…ning the

null hypothesis is on the boundary of the parameter set. They showed that

the standard asymptotic distribution theory does not apply in this case and

derived the appropiate nonstandard results.1

In a recent paper, Lejeune (1998) developed a pseudo-LM test procedure

for jointly testing the null hypothesis of no individual e¤ects and homoscedas-

ticity against the alternative of random individual e¤ects and heteroscedas-

1See also Baltagi, Chang and Li (1992) for an analysis of the behavior of one–sided LM

tests.
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ticity in the white noise error term.2 The pseudo-LM test derived by Lejeune

(1998) is distribution-free in the sense that it does not rely on any distribu-

tion assumption such as normality. In this paper we consider a di¤erent

setting than in Lejeune (1998). Firstly, we assume that the individual e¤ect

exists and therefore do not test for it. Secondly, we assume that the individ-

ual e¤ects, and not the white noise term may be heteroscedastic. Thirdly,

we assume that the error components are normally distributed. In addition,

not only the speci…cation considered in this paper di¤ers from that of Leje-

une (1998) but also the method of derivation of the main results, which we

believe to be useful in other contexts as well.

The paper is organized as follows. The speci…cation of the model as well

as some preliminary assumptions are presented in Section 2. The derivation

of the asymptotic distribution of the Score under contiguous alternatives is

contained in Section 3. The expression of the heteroscedaticity test statistic

is derived in Section 4 and its asymptotic local power is discussed in Section

5.

Throughout this paper, we tried to adhere to widely accepted set of no-

tation in the context of Panel Data models. In particular, the unit vector

(all elements = 1) of size T £ 1 is denoted by ¶T and the unit matrix (all

elements = 1) of size T £ T is denoted by JT (= ¶T ¶0T ). For a review of the

main matrices used in this paper as well as their properties, see Crépon and

Mairesse [(1996), Appendix].3

The notation D and AD are used throughout to mean the distribution

and asymptotic distribution, respectively, of a random variable or a random

vector. The noncentral chi–square distribution with p degrees of freedom and

noncentrality parameter ±2 is de…ned as the distribution of the scalar product

of a random p–variate normal vector with covariance equal to the identity

2We would like to thank B. Lejeune for making his unpublihed manuscripts available

to us.
3Appendix based on an unpublished manuscript by Alain Trognon (1984).
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matrix and mean vector having a norm of ±, and is denoted by Â2p(±
2).

2 Speci…cation of the model and preliminary assump-

tions

We consider the one-way error components linear regression model

ynt = x
0
nt¯

0 + u0nt n = 1; : : : ;N ; t = 1; : : : ; T

where ynt is the (scalar) observation of the dependent variable, xnt a K £ 1
vector of nonstochastic explanatory variables, and u0nt the unobservable error

term which is decomposed as

u0nt = ¹
0
n + v

0
nt;

where ¹0n is the unobservable random variable of individual e¤ects and v0nt
the usual unobservable error term.

We assume that

Assumption 1 ¹0n and v0nt are independent for all n and t; the v0nt are inde-

pendent identically distributed asN (0; ¾02v ) and the ¹0n are independent and

distributed as N
¡
0; ¾02¹ h

¡
z0nµ

0
¢¢

where zn is a p £ 1 vector of explanatory

variables such that z0nµ
0 does not contain a constant term; h : R ! R is a

strictly positive twice di¤erentiable function satisfying h(0) = 1 , h(s)(0) 6= 0
for s = 1 , 2 where h(s) denotes the derivative of order s of h.

Let

±0 = (¯00; ¾02v ; ¾
02
¹ )

0

Assumption 2 ±0 2 ¢ where ¢ is a compact subset of RK £ R+£R+ and

µ0 2 £ where £ is a compact subset of Rp.
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Assumption 3 (±0; µ0) is an interior point of ¢££.

It is important to observe that we assume that ¾02¹ is strictly positive

- in other words, that ¾02¹ is not on the boundary of the parameter set £.

Therefore, we shall not question the existence of individual e¤ects. Instead,

we shall test for heteroscedasticity of the individual e¤ects by testing H0 :

µ0 = 0 against Ha : µ0 6= 0:
The T observations for individual n can be expressed in the following

matrix form:

yn = Xn¯
0 + u0n;

where yn is the T £ 1 vector of the ynt, Xn is the T £K matrix whose n-th

row is x0nt and u0n is the T £ 1 vector of the u0nt.

In this paper we deal with the so-called semi-asymptotic case where T is

…xed and N goes to in…nity.

Assumption 4 The empiric distribution of (Xn; zn), denoted by Fn, con-

verges completely to a nondegenerate distribution function F (X; z). The

marginal (limiting) distribution of z will be denoted by Fz.

More assumptions will be introduced in the following section.

Stacking the individuals one after the other, we have:

0
BBBBBBB@

y1
...

yn
...

yN

1
CCCCCCCA
=

0
BBBBBBB@

X1
...

Xn
...

XN

1
CCCCCCCA
¯0 +

0
BBBBBBB@

u01
...

u0n
...

u0N

1
CCCCCCCA

or more compactly:
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y = X¯0 + u0

where

D(u) = N
¡
0;0

¢

and

0 = ¾02v INT + ¾
02
¹ diag(h

¡
z0nµ

0
¢
) JT

which may be conveniently written as

0 = ¾02v Wn + diag[¾
02
v + T¾

02
¹ h

¡
z0nµ

0
¢
] JT

T

where

Wn = IN 
µ
IT ¡ JT

T

¶

3 Asymptotic distribution of the Score under contigu-

ous alternatives

The log–likelihood function is:

L = constant¡1
2
ln det()¡ 1

2
u0-1u

where

¡1 =
1

¾2v
Wn + diag

µ
1

¾2v + T¾
2
¹h (z

0
nµ)

¶
 JT
T

(1)
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Let

° =
¡
¯; ¾2v; ¾

2
¹; µ

¢0
(2)

and consider contiguous alternatives of the form :

°aN = °
0 +N¡1=2°a (3)

where, since we consider contiguous alternatives only for the heteroscedas-

ticity coe¢cients,

°a =
³
0; 0; 0; µ0a

´0
(4)

The purpose of this section is to show that under speci…c regularity as-

sumptions, N¡1=2@L(°aN )=@° is asymptotically normaly distributed. This is

the key result for the asymptotic distribution of the heteroscedasticity test

to be derived in the following section.

The …rst di¤erential of L is:

dL = ¡1
2
tr

¡
-1
d

¢
¡ u0-1

du+
1

2
u0-1

d
-1u (5)

where

du = ¡X d ¯

d = INT d¾
2
v + T

µ
diag (h (z0nµ))

JT
T

¶
d¾

2
¹

+ T¾2¹

µ
diag (h0 (z0nµ) z

0
n d µ)

JT
T

¶

By using the properties of the matrices Wn and JT , it is not di¢cult to

show that dL may be written as
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dL =@L
@¯
(°)d¯+

@L
@¾2v

(°)d¾2v +
@L
@¾2¹

(°)d¾2¹ +
@L
@µ
(°)dµ

where

@L
@¯
(°) = X 0¡1u; (6)

@L
@¾2v

(°) =
1

2

(
¡N(T ¡ 1)

¾2v
¡

NX

n=1

Ã
1£

¾2v + T¾
2
¹h (z

0
nµ)

¤
!
+
1

¾4v
u0Wnu (7)

+u0
"
diag

Ã
1£

¾2v + T¾
2
¹h (z

0
nµ)

¤2

!
 JT
T

#
u

)
;

@L
@¾2¹

(°) =
T

2

(
¡

NX

n=1

µ
h (z0nµ)

¾2v + T¾
2
¹h (z

0
nµ)

¶
(8)

+u0
"
diag

Ã
h (z0nµ)£

¾2v + T¾
2
¹h (z

0
nµ)

¤2

!
 JT
T

#
u

)

@L
@µ
(°) =

1

2

NX

n=1

(
T¾2¹h

(1) (z0nµ) zn£
¾2v + T¾

2
¹h (z

0
nµ)

¤+ (9)

+
1

2
u0

"
diag

Ã
T¾2¹h

(1) (z0nµ) zn£
¾2v + T¾

2
¹h (z

0
nµ)

¤2

!
 JT
T

#
u

)

In order to derive the asymptotic distribution of N¡1=2@L(°aN)=@°, it is

necessary to evaluate the second di¤erential of L.

Using the fact that the second di¤erential of u is equal to zero, the second

di¤erential of L is equal to:
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d
2L = 1

2
tr

¡
¡1 d¡1 d

¢
¡ 1

2
tr

¡
¡1 d2 

¢

¡ u0¡1 d¡1 d¡1u+ 1
2
u0¡1 d2 ¡1u (10)

+ 2u0¡1 d¡1 du¡ du0¡1 du

By taking the expectation of d2L, we obtain after obvious simpli…cation,

that:

E
¡
¡d2L

¢
=
1

2
tr

¡
¡1 d¡1 d

¢
+ d ¯

0X 0¡1X d ¯ (11)

It is not di¢cult to show that

tr
¡
¡1 d¡1 d

¢
= d¾

2
v

Ã
N(T ¡ 1)

¾4v
+

NX

n=1

1
£
¾2v + T¾

2
¹h (z

0
nµ)

¤2

!
d ¾

2
v

+ d ¾
2
v

Ã
2T

NX

n=1

h (z0nµ)£
¾2v + T¾

2
¹h (z

0
nµ)

¤2

!
d¾

2
¹

+ d ¾
2
v

Ã
2T¾2¹

NX

n=1

h(1) (z0nµ)£
¾2v + T¾

2
¹h (z

0
nµ)

¤2z0n

!
d µ

+ d ¾
2
¹

Ã
T 2

NX

n=1

[h (z0nµ)]
2

£
¾2v + T¾

2
¹h (z

0
nµ)

¤2

!
d ¾

2
¹

+ d¾
2
¹

Ã
2T 2¾2¹

NX

n=1

h (z0nµ)h
(1) (z0nµ)£

¾2v + T¾
2
¹h (z

0
nµ)

¤2z0n

!
d µ
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+ d µ
0
Ã
T 2¾4¹

NX

n=1

£
h(1) (z0nµ)

¤2
£
¾2v + T¾

2
¹h (z

0
nµ)

¤2znz0n

!
d µ

We shall …rst prove the following result:

Lemma 1 The loglikelihood L is regular with respect to its …rst and second

derivatives, i.e.

E
¡
¡d2L

¢
= E (dL)2

Proof. 4

From (??) we have

(dL)2 = 1

4

£
u0-1

d
-1u¡ E(u0-1

d
-1u)

¤2
+ du

0¡1uu0¡1 du

¡
£
u0-1 d-1u¡ E(u0-1 d-1u)

¤
u0¡1 du

The expectation of the third term of the right-hand side is equal to zero.

Thus,

E (dL)2 = 1

4
V (u0-1

d
-1u) + du

0¡1 du

=
1

2
tr

¡
¡1 d¡1 d

¢
+ du

0¡1 du

= E
¡
¡d2L

¢

as stated.

Let zj be the j¡th component of z, j = 1; : : : ; p. We introduce the

following additional assumptions.

Assumption 5
R

jh(1)(z0µ)
h(z0µ) zjj dFz(z) <1 for every j = 1; : : : ; p.

4This result holds in a more general situation than the speci…c one considered in this

paper. The proof we provide is simpler than the corresponding proof in Magnus (1978).
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Assumption 6
R

jh(2)(z0µ)
h(z0µ) zjzkj dFz(z) <1 for every j; k = 1; : : : ; p.

Assumption 7
R h(1)2(z0µ)

h2(z0µ) jzjzkjdFz(z) < 1 for every j; k = 1; : : : ; p.

Proposition 1 Let Assumptions 1 through ?? hold. Then

a) E [¡(1=N)@2L(°)=@°@°0] converges uniformly on ¡ to the asymptotic in-

formation matrix I(°);
b) ¡(1=N)@2L(°)=@°@°0converges almost surely and uniformly on ¡ to I(°).

Proof. Let e0 = 0¡1=2u0 and suppose that Assumptions 1 through

?? hold. Then, by inspection, one may easily verify that all the elements

of ¡(1=N)@2L(°)=@°@°0 which, to save space, are not reproduced here, are

of the form (1=N)
PN

n=1 f(Xn; zn; e
0
n; °) where the functions f(X; z; e0; °) are

either uniformly bounded or dominated by a function independent of ° which

is integrable with respect to the product measure

º(A) =

Z Z
1IA(X; z; e

0) dF (X; z) d©(e
0)

where ©(e0) is the N (0; 1) distribution, and 1IA(X; z; e0) = 1 if (X; z; e0) 2 A,

0 otherwise.

The assertion of the proposition follows from the version of the Uniform

strong law of large numbers proved in Gallant [(1987), Theorem 1, p. 159–

162].

Note that the asymptotic information matrix I(°) is of the form

I(°) =

0
BBBB@

I¯¯(°) 0 0 0

0 I¾2v¾2v(°) I¾2v¾2¹(°) I¾2vµ(°)
0 I¾2¹¾2v(°) I¾2¹¾2¹(°) I¾2¹µ(°)
0 Iµ¾2v(°) Iµ¾2¹(°) Iµµ(°)

1
CCCCA

where, when evaluated at °0,

I¯¯(°0) = lim
N!1

1

N
X 00¡1X;
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I¾2v¾2v(°0) =
1

2

"
(T ¡ 1)
¾04v

+
1¡

¾02v + T¾
02
¹

¢2

#
;

I¾2v¾2¹(°0) = I¾2¹¾2v(°0) =
T

2
¡
¾02v + T¾

02
¹

¢2

I¾2vµ(°0) = I 0µ¾2v(°
0) =

T¾02¹ h
(1)(0)

2
¡
¾02v + T¾

02
¹

¢2 limN!1

1

N
¶0NZ

I¾2¹¾2¹(°0) =
T 2

2
¡
¾02v + T¾

02
¹

¢2

I¾2¹µ(°0) = I 0µ¾2¹(°
0) =

T 2¾02¹ h
(1)(0)

2
¡
¾02v + T¾

02
¹

¢2 limN!1

1

N
¶0NZ

Iµµ(°0) =
T 2¾04¹

£
h(1)(0)

¤2

2
¡
¾02v + T¾

02
¹

¢2 limN!1

1

N
Z 0Z

Let

Z =

µ
IN ¡ JN

N

¶
Z (12)

be the matrix obtained by centering each column of Z.

We introduce the following additional assumptions:

Assumption 8 limN!1
1
N
X 00¡1X is nonsingular

Assumption 9 limN!1
1
N
Z 0Z is nonsingular

Lemma 2 Under Assumptions ?? and ??, I(°0) is nonsingular
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Proof. We may write I(°0) as

I(°0) =
Ã

I±±(°0) I±µ(°0)
Iµ±(°0) Iµµ(°0)

!

It is easy to verify that if Assumption ?? is satis…ed, then I±±(°0) is nonsingu-

lar. Therefore, I(°0) is nonsingular if and only if I±±(°0)¡I±µ(°0)Iµµ(°0)¡1£
Iµ±(°0) is nonsingular. In turn, this property is implied by Assumption ??

Proposition 2 Under Assumptions 1 through ??

AD[N¡1=2@L(°aN )=@°] = N (0;I(°0))

Proof. If Assumptions 1 through ?? hold, then one can verify that, with-

out additional assumptions, the Central limit theorem for contiguous alter-

natives proved in Gallant and Holly (1980) applies. Hence, N¡1=2@L(°aN)=@°
converges in distribution to the stated normal distribution.

4 The heteroscedasticity Score test statistic

The necessary …rst–order conditions system for the maximization of the log–

likelihood function subject to the constraint µ = 0 boils down to the familiar

estimating equation for the homoscedastic one–way error components model;

that is:

ē(c) =
³
X 0e(c)-1X

´-1 ³
X e0(c)-1y

´

e¾2(c)v =
eu(c)0Wneu(c)
N (T ¡ 1)

e¾2(c)¹ =
eu(c)0Bneu(c)
N (T ¡ 1) ¡ eu(c)0eu(c)

NT (T ¡ 1)
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where

eu(c) = y ¡X ē(c)

Bn = IN  JT
T

It is useful to note that

e¾2(c)v + Te¾2(c)¹ =
eu(c)0Bneu(c)

N
(13)

Let

e°(c) =
³
ē(c); e¾2(c)v ; e¾2(c)¹ ; 0

´0

All the components of the score vector @L(°)=@° evaluated at the constrained

estimator e°(c) are equal to zero, except @L(e°(c))=@µ which is equal to:

@L
@µ
(e°(c)) = T

2

e¾2(c)¹ h(1) (0)
³
e¾2(c)v + Te¾2(c)¹

´2 £

£
"
NX

n=1

µ
u(c)0n

JT
T
u(c)n

¶
zn ¡

³
e¾2(c)v + Te¾2(c)¹

´ NX

n=1

zn

#
(14)

It is convenient to write @L(e°(c))=@° more compactly in matrix nota-

tion. To this purpose, let es(c) be the N £ 1 vector of the es(c)n where es(c)n =

eu(c)0n (JT=T )eu(c)n :
Using (??), it is easy to verify that e¾2(c)v + Te¾2(c)¹ is the mean of the es(c)n .

We may thus write,

NX

n=1

"
eu(c)0n

JT
T

eu(c)n

Ã
zn ¡ 1

N

NX

n=1

zn

!#
= Z 0es(c)

We may thus write @L(e°(c))=@° more compactly as:
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@L
@°
(e°(c)) =

µ
0; 0; 0;

@L
@µ
(e°(c))

¶0
(15)

where

@L
@µ
(e°(c)) = 1

2

Te¾2(c)¹ h(1) (0)
³
e¾2(c)v + Te¾2(c)¹

´2Z 0es(c) (16)

As usual, the information matrix evaluated at ° is de…ned as

IN(°) = ¡E
½
@2L(°)
@°@°0

¾

We may write I¡1N (°) as

I¡1N (°) =
Ã

I±±N (°) I±µN (°)
Iµ±N (°) IµµN (°)

!
(17)

By using (??) and (??), we easily verify that

IµµN (e°(c)) =
2
³
e¾2(c)v + Te¾2(c)¹

´2

T 2e¾4(c)¹ [h(1)(0)]
2 (Z 0Z)

¡1 (18)

We are now in position to derive the expression for the Score test statistic

»S given by:

»S =
@L
@°

³
e°(c)

´0
I¡1N (e°(c))

@L
@°

³
e°(c)

´
(19)

Straightforward computation shows, by using (??), (??) and (??), that

»S =
1

2(e¾2(c)v + Te¾2(c)¹ )2
es(c)0Z (Z 0Z)¡1 Z 0es(c) (20)
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Alternatively, by using the fact that e¾2(c)v +Te¾2(c)¹ is the mean of the es(c)n ,

we may write the expression for the Score test statistic »S as follows,

»S =
1

2

µes(c)
s

¡ ¶N
¶0
Z (Z 0Z)

¡1
Z 0

µes(c)
s

¡ ¶N
¶

(21)

where s is the mean of es(c).
The Score test statistic »S is thus one half of the explained sum of squares

of the OLS regression of es(c)=s¡1 against Z as in Breusch and Pagan (1979).5

5 Asymptotic local power

Since, according to Proposition ??, AD[N¡1=2@L(°aN)=@°] = N (0; I(°0)),
one can show that, under contiguous alternatives, the distribution of the

Score test statistic »S converges to the noncentral chi–square distribution

with p degrees of freedom and noncentrality parameter °a0A°a, that is,

AD
¡
»S

¢
= Â2p (°

a0A°a)

where

A =

0
BBBB@

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Iµµ(°0)

1
CCCCA

For a proof see, for example, Holly (1987).

The asymptotic power of the test is given by the noncentrality parameter

°a0A°a. Its expression is given by:
5Notice also the di¤erence and similarity with the particular expression of the Pseudo-

LM test in Lejeune (1998) when the normality assumption is assumed to hold.
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°a0A°a = lim
N!1

1

2

T 2¾4¹
¡
h(1)(0)

¢2
¡
¾2v + T¾

2
¹

¢2 µa
0
(Z 0Z=N)µa

The asymptotic power is in‡uenced by three factors. Firstly, not surpris-

ingly, the power is in‡uenced by µa , the test is more powerful to detect alter-

natives which are away from the null hypothesis: Secondly, although the Score

test statistic itself does not depend on h(0) or h(1)(0), the asymptotic power

is an increasing function of
¡
h(1)(0)

¢2
for any given alternative. Thirdly, the

power increases with T , as the multiplicative constant T¾2¹=
¡
¾2v + T¾

2
¹

¢
con-

verges to 1 when T goes to in…nity. This last e¤ect shows that the test is

improved when the number of observations for each individual sample in-

creases. One could also note that the local power of the test tends to zero

when ¾2¹ tends to zero and will tend to be small if T¾2¹ is small compared to

¾2v. Thus, as one should expect, the test will be powerful in situations where

the individual heteroscedasticity is high.
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