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Are Spectral Estimators

Useful for Implementing

Long-Run Restrictions in SVARs?

Abstract

No, not really. Responding to lingering concerns about the reliability of SVARs,

Christiano et al (NBER Macro Annual, 2006, “CEV”) propose to combine OLS

estimates of a VAR with a spectral estimate of long-run variance. In principle, this

could help alleviate specification problems of SVARs in identifying long-run shocks.

But in practice, spectral estimators suffer from small sample biases similar to

those from VARs. Moreover, the spectral estimates contain information about serial

correlation in VAR residuals and the VAR dynamics must be adjusted accordingly.

Otherwise, a naive application of the CEV procedure would misrepresent the data’s

variance.

JEL Classification: C32, E17

Keywords: Structural VAR, Long-Run Identification, Non-parametric Estimation, Factorization
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1 Introduction

VARs have been criticized for failures in estimating the responses to long-run shocks. A

crucial element for long run identification is the spectral density at zero-frequency, also

known as “long-run variance”. OLS estimates of VAR coefficients are concerned with

minimizing forecast error variance, not estimating the long run variance. This has recently

motivated Christiano, Eichenbaum, and Vigfusson (2006a, 2006b), henceforth “CEV”, to

propose a new way of estimating structural VARs using a combination of OLS and a

nonparametric estimator. They argue that their estimator virtually eliminates the bias

associated with the standard OLS estimator. This paper investigates their procedure in

more detail.

Conceptually, there are some pitfalls in combining VAR coefficients with non-parametric

estimates of the spectral density. The spectral estimates (correctly) allow for non-iid

residuals in the finite-order VAR when the underlying model is of infinite order. In what

may be called “mixing and matching”, the CEV approach plugs this estimate into the

standard VAR formula alongside with coefficients from the finite-order VAR. This way, the

extra information on omitted lags is used to compute the long-run responses of variables to

shocks – but not when mapping these back into impact responses. That would however be

necessary to retain the consistency of the data’s SVAR representation. Otherwise, the total

variance of the data is misrepresented. This inconsistency is shown to be quantitatively

relevant. Moreover, the inconsistency makes it impossible to obtain meaningful estimates

of the shocks themselves. When the relationship between forecast errors and structural

shocks is inverted with the CEV coefficients, one obtains a time series which is identical to

the OLS estimates up to a scale factor. These issues show up directly when decomposing the

variance of historical data – exercises which the original CEV analysis was not concerned

with. Their focus was on impulse responses. But the data’s variance is just a convolution
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of impulse response. If the former is misrepresented, the latter needs rethinking, too. All

in all, this is of interest to any researcher wanting to adopt the CEV strategy.

The CEV framework is amended here by recognizing that the non-parametric esti-

mate contains information about omitted lags in the VAR. This misspecification has been

stressed by Chari, Kehoe, and McGrattan (2005, henceforth “CKM”), Erceg, Guerrieri,

and Gust (2005), Ravenna (2007) and Cooley and Dywer (1998). The adjusted procedure

retains the OLS estimates and fills up the omitted lags with a spectral factorization of the

spectral density’s non-parametric estimate. By construction, this adjusted SVAR – in fact

an SVARMA – matches the sample variance of the data just as OLS does.

Empirically, the various procedures are applied to data simulated from the same model

economy as in CKM and CEV – but over a wider set of calibrations as in CEV. Four key

results emerge:

1. Non-parametric estimates of long-run variance are not much better than OLS. Using

the CEV specification for the spectral estimators bandwidth1, they are even consid-

erably worse.

2. The variance misrepresentation of CEV is substantial – particularly when using their

(2006b) estimator.

3. Taking their procedure at face value, it is no panacea at all. Depending on the true

process, OLS can have both smaller bias and smaller sampling uncertainty.

4. The spectral factorization proposed here performs almost uniformly better than OLS

in terms of bias, however the gains are fairly small and sampling uncertainty is large.

But overall the bias is still large and sampling uncertainty is considerable. This is no

surprise since it inherits the considerable small sample issues of the spectral density

estimates. A major issue for all procedures are the effects of small sample bias, not

only misspecification bias.
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Conceptually, the amended CEV procedure yields a consistent representation of the

data and gets around the truncation issue of a finite-order VAR. But what matters for

the empirical performance is that spectral estimates are as much subject to small sample

biases as OLS estimates of a VAR. Estimation of the spectral density at zero-frequency

is particularly prone to small sample biases, since these are strongest when the data is

persistent and the zero-frequency spectrum looks at the most persistent part of the data.2

The remainder of this paper is structured as follows: Section 2 compares the standard

OLS procedure for long-run identification against the spectral method by CEV. Section 3

points to some conceptual shortcomings in this setup. As a remedy, Section 4 proposes a

spectral factorization procedure. Section 5 describes the model economy used to simulate

the performance of the various estimation routines. Section 6 presents the Monte Carlo

results and Section 7 concludes the paper. Additional results are presented in a separate

appendix which is available at the author’s website.3

2 Long-Run Identification in VARs

An economic model is supposed to specify a VAR representation for a stationary vector of

observable variables4 Xt:

Xt = B(L)Xt−1 + et (1)

where B(L) is a polynomial in the lag-operator L

B(L) =
∞∑

k=1

BkL
k−1

whose roots lie all outside the unit circle and the innovations are iid, et ∼ iid(0, Ωe).

Note that the model prescribes an infinite order VAR. When Bk = 0 for k > p this is a
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finite order VAR. But as noted by Cooley and Dywer (1998), many interesting models have

only infinite order VAR representations. In the remainder the true VAR representation is

always assumed to be of infinite order.

For the identification of structural shocks, there has to be an invertible one-to-one

mapping from innovations et to the structural shocks εt driving the underlying model –

such as technology, monetary policy errors, exogenous government spending etc.:

et =A0 εt (2)

where A0 is square and |A0| 6= 0. Fernàndez-Villaverde et al. (2007) derive conditions

when a (linear) dynamic model economy will have an invertible VAR representation (see

also Appendix B). This paper considers only cases where these conditions are satisfied,

though possibly only in an infinite order VAR representation. The same applies to the

situations studied by CKM, CEV as well as Erceg, Guerrieri, and Gust (2005). Fernandez-

Villaverde, Rubio-Ramirez, and Sargent (2005) give examples of interesting models where

the conditions are satisfied and where not. By excluding the complications arising from

non-invertibilities we want to focus on problems stemming solely from finite order approx-

imations of the VAR.5

It will be handy to introduce the notation

C(L) ≡ (I −B(L)L)−1 =
∞∑

k=0

CkL
k where C0 = I (3)

for the non-structural moving average (VMA) coefficients of Xt = C(L)et. The structural

moving average representation for Xt is then

Xt = A(L)εt with A(L) = C(L)A0 (4)
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Long-Run Restriction

In the spirit of CEV and CKM, we will only be concerned with identifying one of the

structural shocks. For concreteness, let it be the first one, denoted εz
t , and call it “technol-

ogy shock”. Think of the first element of Xt as being a growth rate (a difference in logs),

like the change in labor-productivity (Gali 1999) or output growth (Blanchard and Quah

1989). The identifying assumption is then that only the technology shock has a permanent

effect on the level of the first element of Xt. This restricts the following matrix of long-run

coefficients, A(1) =
∑∞

i=0 Ai:

A(1) = C(1)A0

=




ā11 0 . . . 0

# # . . . #


 and ā11 > 0 (5)

A key object for implementing this constraint is the spectral density of Xt. The spectral

density at frequency ω is defined as

SX(ω) ≡
∞∑

k=−∞
E(XtX

T
t−k)e

−iωk = C(e−iω) Ω C(e−iω)T (6)

where i is the imaginary unit and the transpose is complex conjugate. A(1) factors the

spectral density of Xt at frequency zero:

A(1)A(1)T = C(1) Ω C(1)T = SX(0) (7)

One way to compute the first column of A0 is by recovering A(1) from the Cholesky

decomposition of SX(0). (This is the unique lower triangular factorization of a positive
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definite matrix.6):

A(1) = chol {SX(0)}

CEV show that the restriction in (5) uniquely pins down the first column of A0 and

the Cholesky factorization is one possible implementation. Its orthogonalization of the

remaining columns of A(1) is arbitrary.7

The long-run coefficients can then be mapped into the matrix of impact responses using

the VAR dynamics encoded in the polynomial of lag coefficients B(L):

A0 = (I −B(1)) A(1) (8)

2.1 OLS: Implementation with Finite-Order VAR

Since the VAR innovations in (1) are assumed to be white noise, they satisfy the OLS nor-

mal equations EXt−ke
T
t = 0 (∀ k). And in principle, the coefficients Bk could be estimated

from least squares projections of Xt on its infinite past. An empirical implementation how-

ever can only work with a finite lag length. Henceforth B(L)OLS denotes a lag polynomial

of finite order p < ∞:

B(L)OLS ≡
p∑

k=1

BOLS
k Lk

and vOLS
t ≡ Xt −B(L)OLS Xt−1 (9)

ΩOLS
v ≡ E [vOLS

t (vOLS
t )T ]
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where the normal equations are imposed for all lags k ≤ p

EXt−k(v
OLS
t )T = 0 (10)

The associated VMA is C(L)OLS ≡ (I −B(L)OLS L)−1. Only stable VARs are considered,

formally this requires all roots of C(L)OLS to be outside the unit-circle.

It is standard procedure to assume white noise residuals, vOLS
t . Following Blanchard

and Quah (1989), the long run restriction (5) is then implemented based on an estimate

of the spectral density at frequency zero constructed from the OLS estimates. Impact

coefficients are then computed by plugging these estimates into (8):

SX(0)OLS = C(1)OLS ΩOLS
v C(1)OLS T

AOLS
0 =

(
I −B(1)OLS

)
chol

{
SX(0)OLS

}

This implementation has been criticized for instance by Cooley and Dywer (1998) and

CKM on the grounds of interesting models having only infinite order VAR representations

and finite order approximations being insufficient. The assumption that the vOLS
t are

serially uncorrelated is a good example of what Cooley and Dywer called an “auxiliary”

(but not innocuous) assumption.

2.2 CEV: Combination with Spectral Estimate

CEV propose an alternative estimator for the matrix of impact coefficients. This new

estimator uses a mixture of the OLS estimates of B(1) and a nonparametric estimator for

SX(0). The procedure is motivated by the following observation: The OLS projections

construct B(L)OLS such as to minimize the forecast error variance ΩOLS
v . As shown by
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Sims (1972), this can be expressed in the frequency domain as8

min
BOLS

1 ,...,BOLS
p

ΩOLS
v = Ωv+

∫ π

−π

(
B(e−iω)−B(e−iω)OLS

)
SX(ω)

(
B(e−iω)−B(e−iω)OLS

)′
dω (11)

Written this way, it is evident that OLS coefficients are constructed in order to minimize

the average distance between themselves and the true B(e−iω), weighted by the spectral

density of Xt, which may or may not be large at zero frequency: Based on this objective,

SX(0)OLS need not be the best possible estimate for the spectral density at frequency zero.

OLS will try to set B(1)OLS close to B(1) only if the data’s spectrum is high at the zero

frequency.

Instead, CEV construct A(1) from a spectral estimator of SX(0). In Christiano, Eichen-

baum, and Vigfusson (2006a), they consider two estimators, one based on Newey and West

(1987) and the other on Andrews and Monahan (1992). Both are based on truncated sums

of autocovariance matrices. To ensure positive definiteness, these are weighted by a Bartlett

kernel. Where Newey-West uses the (sample) autocovariances of Xt, Andrews-Monahan

uses first the VAR to prewhiten the data and then takes the residual autocovariances:

SX(0)AM = C(1)OLS SNW
v (0)

(
C(1)OLS

)T
(12)

where Sv(0)NW =
b∑

k=−b

(
1− |k|

b + 1

)
E

[
vOLS

t (vOLS
t−k )T

]
(13)

where b is a truncation parameter, also known as “bandwidth” to be chosen by the

researcher. The Newey-West estimator applies (13) to Xt directly. As elsewhere in

this section, I have expressed the estimators above in terms of population moments,

E
[
vOLS

t (vOLS
t−k )T

]
. In empirical applications, the population moments are replaced by sam-

ple moments9.
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In general, other weighting schemes than the Bartlett weights can be used, but as shown

by Newey and West (1994), this is of secondary importance compared to the bandwidth

choice. For a consistent estimator, b can grow with the sample size but at a smaller rate.

Andrews (1991) and Newey and West (1994) propose data dependent schemes of optimal

bandwidth selection whereas CEV use a fixed and fairly large value of b = 150 in a sample

of 180 observations.10 I will return to this issue in the lab simulations of Section 6, where

both automatic selection and fixed bandwidth schemes are evaluated.

The prewhitening of Andrews-Monahan is theoretically appealing since it removes

spikes from the spectral density of Xt which make spectral estimation difficult (Priestley

1981, Chapter 7). It is not meant to necessarily eliminate all of the data’s serial dependence.

Both Andrews and Monahan (1992) and Newey and West (1994) find the pre-whitening

to fair better in Monte Carlo studies than the original Newey-West estimator. Christiano,

Eichenbaum, and Vigfusson (2006a) find no clearly superior choice between the two and

proceed to use only the Newey-West estimator in Christiano, Eichenbaum, and Vigfusson

(2006b). For ease of exposition, I will focus my presentation on the Andrews-Monahan

estimator. Amongst others, this is appealing since it nests the OLS estimator by setting

b = 0. (Section 6 presents results for both.)

The new CEV estimator computes the long-run coefficients from the non-parametric

density estimate

A(1)AM = chol
{
SX(0)AM

}
(14)

and combines this with the OLS lag coefficients to obtain the impact coefficients

ACEV
0 =

(
I −B(1)OLS

)
A(1)AM (15)

9



The impulse responses of CEV are then

A(L)CEV = C(L)OLS ACEV
0 (16)

Analogous formulas hold when using the Newey-West estimator.

3 Problems with the CEV Procedure

The CEV procedure is motivated by dissatisfaction with B(1)OLS , which is needed to

construct the long run responses A(1). But when transforming long-run responses into

impact coefficients, B(1)OLS is used again. This leads to some serious problems which

are stated here in the form of three remarks. A fourth remark motivates my corrected

procedure, presented at the end of this section.

Remark 1 (CEV Shocks are just a rescaling of OLS). Given vOLS
t and ACEV

0 a researcher

might want to re-construct the structural shocks based on (2) εCEV
t =

(
ACEV

0

)−1
vOLS

t

and compare them against εOLS
t =

(
AOLS

0

)−1
vOLS

t . She will be troubled noticing that the

estimated technology shocks are perfectly correlated:

(εz
t )

CEV =
āOLS

11

āCEV
11

· (εz
t )

OLS

(Recall from (5) that ā11 is the top element of A(1).) This holds both for population and

sample moments. Actually, it holds for any pair of matrices A1
0 and A2

0 constructed from

(8) using B(1)OLS and a A(1) satisfying the zero restrictions (5).

Proof. Both CEV and OLS use B(1)OLS in computing A−1
0 = A(1)−1 (I −B(1))−1 and

except for the top left element, the first row of A(1)−1 is full of zeros. This follows from

the long run restriction (5) which places the same zero restrictions on A(1)−1 as it does on
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A(1) and applies both to A(1)CEV and A(1)OLS . Finally, the top left element of A(1)−1

equals 1/ā11.
11

The point of the previous remark is that the top rows of
(
A(1)OLS

)−1
and

(
A(1)CEV

)−1

are identical up to a scaling. Since CEV were only concerned with impulses-responses and

A0, the problem does not show up in their analysis. The construction of estimated shocks

is however often used by researchers, for instance in order to plot historical decompositions

or when identifying several shocks (see for example Altig et al. (2004)). Of course, if

something is wrong about A−1
0 , this applies also to A0. Looking at A0 the problem shows

up more subtly.

Remark 2 (Mismatch with OLS Forecast Error Variance). The CEV procedure is mo-

tivated by a dissatisfaction with SX(0)OLS . A researcher adopting their strategy wants

SX(0)AM 6= SX(0)OLS and thus Sv(0)NW 6= ΩOLS .12 This immediately implies

ACEV
0 (ACEV

0 )T 6= ΩOLS
v (17)

Implicitly, CEV attribute any difference between spectra estimated from OLS and the

non-parametric methods to the VAR’s forecast error variance, and not to a misspecification

of the dynamics. However, the accuracy of estimating ΩOLS
v has never been doubted. In

fact, getting a good estimate for forecast error variance is precisely the objective of OLS

projections. This objective is doubted by CEV only when it comes to the zero-frequency

spectral density. It is also noteworthy that with (17), their procedure also deviates from

the previous literature where identification is defined as a search over the space of matrices

A0 satisfying A0A
T
0 = ΩOLS

v (Faust 1998; Canova and de Nicolo 2003; Uhlig 2005).

Remark 3 (Total Variance not matched either). Given (17), the CEV SVAR cannot match
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the variance of Xt. Their impulse-responses (16) imply the following variance measure

Var Xt
CEV =

∞∑

k=0

COLS
k ACEV

0 (ACEV
0 )T (COLS

k )T (18)

6=
∞∑

k=0

COLS
k ΩOLS

v (COLS
k )T (19)

= Var Xt

Proof. CEV model the data as XCEV
t = C(L)OLS ACEV

0 εt. The second step follows directly

from Remark 2 and the third step holds because of the normal equations (10) and the

definition of the VAR(p) in (9), regardless of whether vOLS
t is iid or not. (See Appendix B.)

These remarks hold both for population moments as well as for sample moments13.

They are unsettling and raise issues about the applicability of the CEV procedure for

variance decompositions. To understand what is amiss in the CEV procedure, it is useful

to recognize that the OLS residuals vOLS
t are not iid and that this is embedded in the

long-run coefficients of CEV.

Remark 4 (CEV are concerned about serially-correlated VAR residuals). The Andrews-

Monahan estimator is constructed from autocovariances of the VAR residuals vOLS
t . Re-

writing (13) and considering also non-zero-frequencies we have

Sv(ω)NW = ΣOLS
v +

b∑

k=1

κ(k)
(
Γke

−iωk + ΓT
k eiωk

)
(20)

where Γk ≡ E
[
vOLS

t (vOLS
t−k )T

]
(21)

and κ(k) = 1− |k|
b + 1

Obviously, b > 0 expresses a concern about serially correlated residuals. Implicitly, the
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Newey-West estimator of SX(ω) also embodies concerns about serially correlated VAR

residuals since it implies the following spectrum for vOLS
t , which is generally not constant

across frequencies

(I −B(e−iω)OLS )SX(ω)NW (I −B(e−iω)OLS )T

(As before SX(ω)NW is (20) applied to the autocovariances of Xt.)

The CEV procedure is clearly concerned about misspecified dynamics of the VAR(p)

when constructing A(1) but not when mapping this back to the short run responses A0.

As argued in the next section, this is the source of the problems listed in Remarks 1, 2 and

3 above.

4 Correct Identification via Spectral Factorization

We need to reconsider the consequences of approximating the infinite order model (1) with

a VAR(p). In particular, once we start modeling the serial correlation in vOLS
t , it needs to

be done consistently.

OLS projections are still well defined in the sense of satisfying the projection equations

(10) for k ≤ p, but the residuals vOLS
t are not iid. In general, they follow a moving average

representation:

vOLS
t = D(L)A0εt

D(L) = (I −B(L)OLS )C(L) (22)

= I +
∞∑

k=1

DkL
k
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with spectral density

Sv(ω) = D(e−ω)ΩeD(e−ω)T (23)

The results of CKM and CEV on a truncation bias which is hard to detect based on VAR

lag-length selection procedures can be read as finding

Di ≈ 0 but D(1) 6= I

(This will be confirmed also in the lab economy of Section 5, see Figure 1 there.) For our

purposes, an important property of D(L) is its invertibility:

Proposition 1 (Invertibility of D(L)). When the underlying model has a fundamental

VAR representation as in (1), and the OLS-VAR is stable, the moving average polynomial

D(L) defined in (22) has all its roots outside the unit-circle.

Proof. The proof is straightforward since (I − B(L))−1 = C(L) = (I − B(L)OLS )−1D(L)

has all roots outside the unit circle and the same has been assumed for the VMA of the

VAR(p), C(L)OLS = (I −B(L)OLS L)−1.

Via (23), the spectral estimates of Sv(ω) contain information on the Di coefficients. For

the time being, I want to abstract from estimation issues such as bandwidth selection and

weighting schemes and consider the case where an econometrician is given the population

values of B(L)OLS and Sv(ω). It is then straightforward to recover D(L) by performing a

spectral factorization of Sv(ω). The “canonical spectral factorization” is a classic theorem

in linear quadratic control and assures us of existence and uniqueness of an invertible14

D(L) and a positive definite Ωe consistent with (23). Below I adapt its statement from

Hannan (1970), see also Whittle (1996, Chapter 13) and Li (2005). For a reference in the

context of economics see Hansen and Sargent (2007, 2005).
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Theorem 1 (Spectral Factorization, (Hannan 1970)). Given a spectral density

Sv(ω) ≡
q∑

k=−q

Γke
−ikω ∀ ω ∈ [−π, π]

which is non-singular at each frequency (|Sv(ω)| 6= 0 ∀ω) and where Γk = (Γ−k)
T are

autocovariance matrices as in (21), there is a factorization of Sv(ω) into

Sv(ω) = D(e−ikω) Ωe D(e−ikω)T

This factorization is unique and Ωe is positive definite. D(z) is a q’th order polynomial

D(z) = I +

q∑

k=1

Dkz
k

which has all its roots on or outside the unit circle. (The transposes are complex conjugate).

The theorem factors a spectrum constructed from a finite number of autocovariances

into a finite-order MA. As will be seen below, a finite q has of course to be chosen for

an empirical application. But when applying the spectral factorization to the population

objects of the true model (1), we need to consider that in general the true D(L) is an

MA(∞). However, since the processes for Xt and vOLS
t are stationary, their autocovariances

and MA-coefficients vanish for large lags15. A spectral factorization with an arbitrarily

large but finite q can arbitrarily well approximate the true spectrum and true D(L). (This

is analogous to Sims (1972).) Alternatively we can think of the true D(L) being the limit

of applying Theorem 1 to an ever increasing sequence of q’s.

Correct Identification

Of course, knowing B(L)OLS and D(L) is equivalent to knowing the fundamental VMA

C(L). Expressed in terms of the former the correct impact coefficients from (8) can be
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rewritten as

A(1) = chol {(I −B(1)OLS )−1Sv(0)(I −B(1)OLS )−T} (24)

A0 = D(1)−1 (I −B(1)OLS )A(1)︸ ︷︷ ︸
ACEV

0

(25)

CEV construct A(1)AM by plugging into (24) a spectral estimator for Sv(0) (see (13)). But

residual dynamics are ignored when mapping A(1)AM back into the impact coefficients.

Such a practice errs in treating D(1) = I for a given A(1). The point of Remarks 2 and 4

is however, that A(1)AM includes an estimate of D(1) which is not identical to the identity

matrix. This is the source of the variance misrepresentation noted in Remark 3.

Many moving averages are observationally equivalent with a given spectrum, but only

one of them is invertible. Proposition 1 tells us to look exactly for this fundamental

representation of the data. Theorem 1 tells us that the spectral factorization gives us

exactly the right D(L) for that purpose.

Implementation

Theorem 1 can also be implemented empirically based on a spectral estimate like Sv(ω)NW

in (20), which is constructed as the truncated sum of b autocovariances. The factoriza-

tion will then yield a unique and invertible MA(b), denoted D(L)LSF , and an innovations

variance matrix ΩLSF
e . The superscript “LSF” indicates that these are calculated from

a spectral factorization of sample moments from the least-squares residuals. Sayed and

Kailath (2001) survey a number of different algorithms. I use a reliable and efficient algo-

rithm from Li (2005), which is based on a state space representation of the moving average

process of vOLS
t . Details are given in Appendix A. Based on the spectral factorization, I

propose the following procedure:
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1. Estimate a VAR(p) to capture the main dynamics of the data. (Lag-length selection

is chosen as usual, for example based on information criteria.)

2. Construct a spectral estimate Sv(ω)NW from the sample autocovariances of the VAR

residuals (Bandwidth q can either be fixed or data dependent.)

3. Construct long run coefficients as in (14):

A(1)AM = chol {C(1)OLS Sv(0)NW C(1)OLS T}

4. Factorize this spectral estimate into a MA(b) denoted D(L)LSF with innovation vari-

ance ΩLSF
v .

5. Short run coefficients are then

ALSF
0 =

(
D(1)LSF

)−1
(I −B(1)OLS )A(1)AM

=
(
D(1)LSF

)−1
ACEV

0

The first three steps are identical to the CEV procedure, which is correct in its construction

of A(1)AM . The spectral factorization is needed to obtain an estimate of D(1) which

corrects their impact coefficients and impulse responses. In addition to the VAR’s lag

length, the bandwidth b is a free parameter here. The lab simulations reported in Section 6

use both fixed bandwidth schemes, as CEV do, and the optimal, data-dependent selection

scheme of Newey and West (1994).

Using population values of B(L)OLS and Sv(ω), the spectral factorization correctly

represents the true VMA and thus also the variance of Xt. The latter also applies to

the sample variance of Xt when using sample estimates of the VAR and a spectrum like

Sv(ω)NW constructed as a weighted and truncated sum of sample autocovariances:

17



Proposition 2 (OLS and Spectral Factorization correctly represent Variance of Data).

Estimates of ALSF
0 and D(L)LSF are consistent with the sample variance of the VAR resid-

uals

Ω̂OLS
v ≡ 1

T

T∑
t=1

vOLS
t (vOLS

t )T

=

∫ π

−π

Ŝv(ω)NW dω (26)

and thus consistent with the VAR’s sample variance

V̂ar Xt

OLS
=

∞∑

k=0

ĈOLS
k Ω̂OLS

v (ĈOLS
l )T (27)

Despite the serial correlation of vOLS
t , this is the correct variance measure because of the

normal equations which are enforced by OLS in sample.16

Proof. (26) follows from the construction of the Newey-West estimate which is (20) evalu-

ated at sample autocovariances Γ̂k = 1
T

∑T
t=k vOLS

t (vOLS
t−k )T and since

∫ π

−π
e−iωkdω = 0. (27)

is the sample analogue to (19).

5 Lab Economy

The previous section described various procedures for implementing long-run identifications

in a VAR. The next section will assess their effectiveness with data simulated from a model

economy, where the true coefficients are known. This model economy is described here. It

is identical to the two-shock model used by CKM and CEV.

The model is a common one-sector RBC model driven by two shocks: First, a unit root

shock to technology. This is the permanent shock to be estimated by the VAR. Second,

a transitory shock which drives a wedge between private household’s labor-consumption
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decision.

The representative household maximizes his lifetime utility over (per-capita) consump-

tion, ct, and labor services, lt:

max
{c,l}∞t=0

E0

∞∑
t=0

(β(1 + γ))tu(ct, lt)

and faces the budget constraint

ct + (1 + γ)kt+1 − (1− δ)kt = (1− τlt)wtlt + rtkt + Tt

where kt is the per-capita stock of capital, wt the wage rate, rt the rental rate of capital, Tt

are lump sum taxes, γ is the growth rate of population, δ the depreciation rate of capital

(γ > 0, 0 ≤ δ ≤ 1 and β < 1).

τlt is an exogenous labor tax. As discussed by CKM, it need not be literally interpreted

as a tax levy, but stands in for the effects of a variety of non-technology shocks introduced

into second-generation RBC models. Mechanically, it distorts the first-order condition for

consumption and labor. It works similar to a stochastic preference shock to the Frisch

elasticity of labor supply. Chari, Kehoe, and McGrattan (2006) show how this labor

“wedge” can be understood more generally as the reduced form process for more elaborate

distortions, such as sticky wages.

The production function F (kt, Ztlt) is constant returns to scale, where Zt is labor-

augmenting technological progress. Firms are static and maximize profits

F (kt, Ztlt)− wtlt − rtkt

Per-capita output equals production, yt = F (kt, Ztlt), and the economy’s resource con-
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straint is

yt = ct + (1 + γ)kt+1 − (1− δ)kt

The exogenous drivers follow linear stochastic processes:

log Zt = µz + log Zt−1 + σzε
Z
t (28)

log τl,t+1 = (1− ρl)τ̄l + ρl log τl,t−1 + σlε
l
t (29)

where εZ
t and εl

t are iid standard-normal random variables. They are the technology shock,

respectively labor shock. ρl measures the persistence of the transitory labor tax. The scale

factors σz and σl determine their relative importance in the model. (µz is the drift in

log-technology and τ̄t is the average tax rate.)

The calibration is identical to the baseline model of CKM and CEV, which uses pa-

rameter values familiar from the business cycle literature. Utility is specified as u(c, l) =

log c+ψ log (1− l) (consistent with balanced growth) and the production function is Cobb-

Douglas F (k, l) = kθl1−θ with a capital share of θ = 0.33. The labor preference parameter

is set to ψ = 2.5. On an annualized basis, the calibration sets the depreciation rate to 6%,

the rate of time preferences to 2% and population growth to 1%.17

The model economy is calibrated over different ratios in the variance of transitory to

permanent shocks, σ2
l /σ

2
z .

18 As a benchmark, note that the maximum-likelihood estimates

of CEV imply a variance ratio of 0.345.19 Following CEV, the transitory shock is calibrated

as an AR(1) with persistence ρl = 0.986. For σ2
l /σ

2
z = 0, this is a one-shock RBC model

and CKM show how our bivariate VAR will recover the correct impact coefficients in this

case20

Appendix B shows how the linearized solution of the model can generally be represented

by an infinite order VAR21 In this VAR representation of the model, the technology shock

satisfies the identifying assumptions made in (5) above.
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Following CEV and CKM, the analysis looks at bivariate VARs in the growth rate of

labor productivity and hours worked.22

Xt =




∆yt −∆lt

lt




and the matrix of impact coefficients is now 2× 2

A0 =




a11 a12

a21 a22


 (30)

The impact responses of hours are thus

el
t = a21ε

Z
t + a22ε

l
t (31)

where a21 is the immediate response of hours in response to a current shock in technology.

Mimicking the empirical literature, a small lag length is specified. Lag length, sample

size and Newey-West truncation are as follows (identical to CEV and CKM)23:

p = 4 T = 180 b = 150

For each calibration, 10,000 samples are simulated.

[Figure 1 about here.]

As discussed in Section 4 above, it is a salient feature of the VAR(p) approximation

that Di ≈ 0 (∀i > 0) whereas D(1) 6= I. This holds also for our VAR(4) in this economy

as can be seen in Figure 1. For the “CEV calibration” with σ2
l /σ

2
z = 0.345, it plots the

population values of the cumulated sums
∑K

k=0 Dk. At each lag, the increments are small

and close to zero24, but summing over many lags we clearly have D(1) 6= I.
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6 Performance in Simulated Economies

This section presents results from applying the various estimation procedures discussed in

Section 2 to data simulated from the lab economy described in Section 5. The following

questions are addressed:

1. Are the non-parametric estimates of the zero-frequency spectrum really better than

OLS? What are the effects of bandwidth selection?

2. Is the misrepresentation of sample variance by CEV stated in Remark 3 quantitatively

important?

3. How do OLS, CEV and LSF compare in terms of bias and sampling uncertainty of

impact coefficients A0?

4. Finally, the accuracy of variance decompositions is compared.

[Figure 2 about here.]

Goodness of Spectral Estimates

CEV’s initial motivation is that the non-parametric estimates of Newey and West (1987)

and Andrews and Monahan (1992) should yield better estimates of the spectral density

at zero frequency than OLS. Two things are known from this literature, when it comes

to the spectra of persistent data: First, estimation is improved by prewhitening with a

VAR as with the Andrews-Monahan formula. Second, there are substantial small sample

biases when persistence is high (Newey and West 1994; Andrews 1991). These results are

confirmed by my simulations.

Figure 2 shows the median percentage errors for each element of the two-by-two matrix
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SX(0). Percentage errors are defined as

ŜX(0)− SX(0)

SX(0)
· 100%

where the division is elementwise. ŜX(0) is the median of simulated estimates for a given

estimator and SX(0) is the true spectrum from the model’s population values, see Ap-

pendix B for details on computing population values. Since the spectrum is symmetric,

the top right panel reports trace(ŜX(0) (SX(0))−1)/2 as a joint measure of closeness. If the

estimates were equal to the true vales, this would be equal to one.

First, biases are large in an absolute sense with estimates being off by about 100%.

Comparing their relative performance, the Andrews-Monahan is generally doing better

than Newey-West. This confirms the results of Newey and West (1994). What is strik-

ing, is that with an optimal bandwidth selection, the Andrews-Monahan spectrum is not

substantially different from OLS. The bandwidths chosen for Sv(ω)NW vary between b = 1

and b = 3 and are not picking up any substantial serial dependence amongst estimated

vOLS
t .25 Actually, this is no wonder, since the VAR’s lag length has been chosen to whiten

vOLS
t as good as possible already. Using CEV’s fixed and large bandwidth of b = 150, both

Andrews-Monahan and Newey-West are doing substantially worse than OLS. Overall, OLS

appears to yield amongst the best estimates of the zero-frequency spectrum. A similar pic-

ture emerges when looking at the corresponding percentage errors of A(1) = chol {SX(0)}.
These results are not encouraging for including spectral estimates in SVAR analysis.

The optimal bandwidth procedures are very close to OLS also in terms of A(1) and A0.

Henceforth, results will only be reported for CEV’s fixed bandwidth selection of b = 150.
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Variance Measures

Figure 3 reports measures for the variance of hours, Var (lt) derived from the various

procedures both in population and in sample. CEV variances are computed from (18) and

OLS variance from (19), respectively from their sample analogues.26 The population values

are calculated from applying the estimation formulas to population moments. (Please recall

that in population, OLS variance equals the true value by construction.) In particular,

the spectral estimates are still calculated from the truncated and weighted summation of

equation (20) with b = 150. The thought experiment is to isolate specification bias from

small sample bias, not to consider what a researcher would see if he had an infinite amount

of data. For the sample measures, medians are reported over 10,000 Monte Carlo draws.

In sample, the deviation of CEV from sample variance (OLS) is substantial. Both

the ACEV
0 constructed from Andrews-Monahan and Newey-West understate total variance

by at least half of the OLS variance, which again is approximately equal to the sample

moments, (see Proposition 2). In population, Andrews-Monahan is quite close to the true

value since the residual autocovariances are close to zero27

Another striking effect is visible in Figure 3: There is a large bias in the sample esti-

mates when compared against the population. This is due to small sample bias (Hurwicz

1950) which is very active in these calibrations with ρl = 0.986. It is well known that

autoregressive parameters are downward biased when the true process is close to unit root.

Forecast error variance is however estimated quite well. As a corollary, the sample variance

is understated as well.28

[Figure 3 about here.]

24



Bias and Uncertainty in Hours Impact

CEV claim that ACEV
0 “virtually eliminates bias” in estimated impact coefficients. Follow-

ing CEV and CKM, I focus on the impact of technology on hours29. Median percentage

errors are computed as

â21 − a21

a21

· 100%

where â21 is the median over 10,000 simulated estimations for a given estimator. The

median errors are shown in Figure 4.

Ignoring the preceding discussions and taking ACEV
0 at face value, it is not even a

panacea for estimating impact coefficients. The Newey-West version reported in Chris-

tiano, Eichenbaum, and Vigfusson (2006b) has actually larger biases than OLS for low to

intermediate ratios between the variances of transitory and permanent shocks, σ2
l /σ

2
z . This

includes the preferred calibration of CEV.30

As can be anticipated from the preceding discussions, the Andrews-Monahan estimator

for ACEV
0 is much closer to OLS. It has an almost uniformly lower bias than OLS, though.

The LSF estimator behaves similarly, and has a somewhat smaller absolute bias for most

calibrations. Again, a key difference between the LSF estimator and ACEV
0 is also that it

is fully consistent with the OLS sample variance, whereas ACEV
0 is not.

[Figure 4 about here.]

The simulated distributions of these impact errors are shown in Figure 5. The spread in

simulated estimates is huge – swamping even the considerable size of the biases. Even the

68% confidence intervals regularly span errors exceeding minus 100%, which means that

they include estimates of a21 having the wrong sign. This is the case for OLS as well as the

various spectral methods. The Newey-West ACEV
0 has a considerably tighter distribution

of errors. Based on the preceding discussion, this estimator however appears to be the
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least useful. However, even this finding is not robust to changes in the model’s calibration.

For a model with less persistence – ρl = 0.5 – OLS errors are more tightly distributed than

CEV. This is shown in Figure 1 of the webappendix.

[Figure 5 about here.]

As discussed before in the context of Figure 2, OLS spectra have almost uniformly

better bias properties than the spectral estimators. So how is it possible that for some

of these calibrations, ACEV
0 has a lower bias than OLS? Figure 6 decomposes the biases

in AOLS
0 and ACEV

0 into effects from small sample and misspecification issues. Across

calibrations of σ2
l /σ

2
z , the small sample bias in ACEV

0 is almost constant at around −10%

and variations in the performance of ACEV
0 are caused by variations in its truncation bias

which is steadily rising.31

[Figure 6 about here.]

Variance Decompositions

Apart from impulse response analysis, an important application of SVARs are variance de-

compositions. They ask “What share of total variance is explained by technology shocks?”

For the innovation in hours (31), the share of variance explained by technology equals

a2
21

(a2
21 + a2

22)

[Figure 7 about here.]

The distributions of OLS, CEV and LSF for this measure are shown in Figure 7. The

figure also displays the population estimates as well as the true variance share. A pertinent

feature of the underlying model is that hours do not respond much to permanent shocks32
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So apart from calibrations where technology is almost the only driving force, the true

variance rapidly drops to values below 10%.

The results are sobering again: All procedures overstate the variance share by 10 to

20 percentage points (medians) and the 68% confidence intervals easily span values be-

tween 10% and 60% (or wider). If anything, OLS is doing a better job than the spectral

estimates – both in terms of a somewhat lower bias and tighter confidence bands. Again,

the CEV procedure is not a panacea. And neither is LSF when looking at variance de-

compositions. The high persistence of the underlying model makes estimation generally

harder. For example, when ρl = 0.5 OLS performs much better than CEV as is shown in

the webappendix.

7 Conclusions

Using non-parametric estimators to learn about dynamics missed by a VAR sounds ap-

pealing. But when combining these two estimations, we need a consistent account of the

fluctuations in the data. When a VAR(p) is used to approximate what is truly a VAR(∞),

then its residuals will be serially correlated vOLS
t = D(L)et. However, OLS computes spec-

tra and and short run responses as if they were iid. But even a misspecified VAR will

correctly represent the total variance of the data. Combining the VAR with spectral esti-

mates requires an adjustment in order to retain this property and to compute the correct

impact coefficients. This can be achieved in sample with a spectral factorization of the

non-parametric estimates.

The long-run responses of CEV allow for non-zero moving average terms in vOLS
t which

have permanent effects, D(1) 6= I. Once long run responses are constructed from the

non-parametric estimates, these permanent effectsare disregarded by the CEV procedure
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when computing the short-run responses ACEV
0 . The correct responses are however

A0 = D(1)−1ACEV
0 (32)

Using simulations from the lab economy used by CEV and CKM, I demonstrate that the

total variance is seriously misrepresented by treating D(1) = I above. This is particularly

so when using the Newey-West spectrum as in Christiano, Eichenbaum, and Vigfusson

(2006b). The Andrews-Monahan estimates used in Christiano, Eichenbaum, and Vigfusson

(2006a) inherit a lot more structure from the VAR and thus the problem is less prevalent.

Related to this inconsistency is that the estimated time series of shocks will be a mere

rescaling of the OLS estimates (see Remark 1), even though impulse responses are not.

This is of practical importance to researchers interested in adopting their strategy. These

issues are resolved with the spectral factorization presented in this paper.

A deeper question is whether and how spectral estimates can actually help to over-

come the biases associated with OLS. After all they are calculated from sample moments

of the data, just as the VAR and its lag-length selection criteria. Erceg, Guerrieri, and

Gust (2005) and Chari, Kehoe, and McGrattan (2005) have already highlighted that there

are two kinds of biases: The truncation bias arising from a misspecified VAR and the

Hurwicz-type bias in coefficients estimated from small samples of data with high persis-

tence (Hurwicz 1950). Whilst the spectral estimates may offer a way around the VAR’s

misspecification, they are subject to similar small sample biases. Indeed my simulation

results paint a sobering picture:

• Based on optimal bandwidth selection procedures, the spectral estimates do not

deviate much from OLS. This is simply because the VAR’s lag-length has already

been chosen to whiten the residuals as good as possible. OLS estimates of the spectra

are generally much better, having mostly smaller biases, than the high-bandwidth
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spectral estimates used by CEV.

• Looking at the impact coefficients A0, the large and fixed bandwidth advocated by

CEV (b = 150 in a sample of T = 180) can improve on OLS, but it is no panacea

either. Depending on the true process it can have larger biases and larger sampling

uncertainty. The spectral factorization almost uniformly improves upon OLS while

providing a correct account of total variation – the gains appear to be small however.

• When CEV sometimes outperforms OLS, it is not because of better spectral esti-

mates, but because of canceling biases in coefficients from OLS and non-parametric

estimates and the “freedom” to deviate from correctly modeling the data’s variance

in the sample.

The corrected procedure yields a VARMA representation of the data where the MA-

process is orthogonal to the lagged variables in the VAR. My results complement other

studies looking at the performance of conventional VARMA specifications, notably Mc-

Grattan (2006) and Kascha and Mertens (2006) (not related to me). Their specifications

enjoy the benefit of being chosen to match exactly the underlying model, whereas my pro-

cedure is fairly agnostic in its specification of lags in the VAR and MA component. All

in all, their results as well as mine point to small sample biases and not just specification

issues being a key factor in the estimation of permanent shocks and their effects on the

business cycle. One way to handle this small sample bias is to compare the estimated

small sample moments with those simulated from a model economy as done by Cogley and

Nason (1995) and advocated by Kehoe (2006a) and Dupaigne, Feve, and Matheron (2007)

in the context of the SVAR discussion.
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Appendix

A Spectral Factorization Method

Spectral factorization has a long tradition for instance in linear quadratic control, robust

estimation and control, see for example Whittle (1996). For a reference in the context of

economics see Hansen and Sargent (2007, 2005). Theorem 1 above is adapted from Hannan

(1970, p. 66). A similar version is also stated by Li (2005). It assures us of the existence

and uniqueness of an MA(q) polynomial D(L), based on an autocovariance function with

q elements. Invertibility of the MA(q) follows immediately when excluding the case of zero

power of the spectral density at zero-frequency:

Corollary. Suppose that S(0) 6= 0. Since Ω is positive definite, it follows that D(1) 6= 0.

All roots of D(z) are thus outside the unit circle and D(L) is an invertible MA(q).

In the context of this paper, Sv(ω) will be the spectral density of vOLS
t = D(L)et

where Eete
′
t = Ω = A0A

′
0. We will be using non-parametric estimates of Sv(ω) based on

weighted sums of the sample autocovariance function as described in Section 2.2. The

sample autocovariances are however not to be confused with the Γ(z) above. In the above

theorem Γ(z) is the inverse Fourier transform of the spectral density, and thus a smoothed

version of the sample autocovariance.

Theorem 1 requires Sv(ω) to be non-singular. This can be understood as requiring

that the autocovariances need to decay sufficiently fast in relation to the number of MA

lags. For example, in the scalar case and with q = 1, the first-order autocorrelation to be

matched with a MA(1) cannot be larger than 0.5 in absolute value.33

Algorithms for implementing the factorization have also a long tradition, see for example

Whittle (1963) or Sayed and Kailath (2001) for a recent survey. I use the implementation of
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Li (2005) which is based on a state space representation of vt and performs very reliably in

my simulations. The algorithm of Li (2005) is described in the remainder of this appendix.

Suppose vt follows an MA(q) as above. To represent it in a state space system, define

the state vector

xt = E

{[
vt vt+1 . . . vt+q−1

]′ ∣∣∣∣vt−1

}
(33)

where vt−1 is the entire history of realizations of the vt process up to time t − 1. Li then

constructs the following state space system

xt+1 = Axt + Bet (34)

vt = Cxt + et (35)

whose system matrices are equal to

A =




0m Im 0m . . . 0m

0m 0m Im 0m . . . 0m

...
. . .

...

0m . . . 0m Im

0m . . . 0m 0m




(36)

C =

[
Im 0m . . . 0m

]
(37)
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D =




D1

D2

...

Dq




(38)

where Im and 0m are the m×m identity matrix, respectively the n× n zero matrix.

We need a mapping from autocovariances Γk to the state space objects. Our objects of

interest are the matrix D containing the stacked MA coefficients Di as well as the variance

Ωe of the innovations process. For this mapping, stack the autocovariances into the matrix

M =




Γ1

Γ2

...

Γq




Li (2005, Theorem 2) shows that variance matrix of the states

Ψ ≡ Extx
′
t

solves the following Riccati equation

Ψ = AΨA′ + (M − AΨC ′)(Γ0 − CΨC ′)−1(M − AΨC ′)′ (39)

which allows the following mapping to our MA(q) coefficients:

Ωe = Γ0 − CΨC ′

D = (M − AΨC ′)(Γ0 − CΨC ′)−1
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This yields coefficients D such that D(L) has all roots outside or on the unit circle.

The above Riccati equation can be solved using standard routines. Li shows that it can

also be solved recursively starting from Ψ(0) = 0 and iterating over

Ψ(n+1) = AΨ(n)A′ + (M − AΨ(n)C ′)(Γ0 − CΨ(n)C ′)−1(M − AΨ(n)C ′)′

where Ψ(n+1) ≥ Ψ(n) and Ψ = limn→∞ Ψ(n).34

At the end of each factorization, I check that the factorization produces an invertible

MA(q) polynomial and that it matches the original spectral density. In all simulations,

this holds up to machine accuracy.

The paper of Li also shows how to reduce the number of iterations by stacking the

MA(q) into first order form, however this comes at the cost of iterating over inverting

larger matrices in the Riccati iterations which I found to yield numerically less stable

solutions.

B VAR’s Implied by Lab Economy

This section outlines how to derive the following:

1. The true values of A0, A(1), B(1), and the autocovariances of Xt in the lab economy

2. Population coefficients of finite-order VAR’s implied by the lab economy

For this specific two-shock economy, details of these derivations can be found in McGrattan

(2005). For general state space models details can be found in Fernandez-Villaverde, Rubio-

Ramirez, and Sargent (2005). To simplify the VAR notation, Xt has been demeaned prior

to the analysis.

The linearized solution to the lab economy described in Section 5 yields a state space

model for labor productivity growth and hours
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Xt =




∆yt −∆lt

lt


 (40)

= CZt

= CAZt−1 + CBεt

Zt = AZt−1 + Bεt (41)

State vector and shock vector are:

Zt =




k̂t

εz
t

τ z
l,t

k̂t−1

εz
t−1

τ z
l,t−1




εt =




εz
t

εl
t


 (42)

where k̂t is the log-deviation of detrended capital from its stead state state, τl,t and εz
t are

the labor wedge and the growth rate in technology. (Zt includes also lagged variables due

to the presence of labor productivity growth in Xt.)

The computation of the matrices A, B and C is straightforward, please see CKM for a

detailed presentation.

True VAR objects

The decomposition in section 6 uses the following objects of the true process: A0, A(1),

B(1) as well as the autocovariances of Xt. Their computation from the state space is
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straightforward. True impulse responses and spectrum of Xt are given by

A(L) = C (I −AL)−1 B

SX(ω) = A(e−iω)A(e−iω)T

From (41), it is apparent how the structural shocks are linearly related to the forecast

errors of Xt:

CBεt = et

⇒ CB = A0

In order to map forecast errors into structural shocks, A0 must obviously be square and

invertible. Furthermore, Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005) show

that invertibility requires the eigenvalues of A− B(CB)−1CA to be strictly less than one

in modulus, which is satisfied for all calibrations considered here.

Recall from equation (2) that this also ties down the covariance matrix of the forecast

errors Ω = CBBCT . Applying (4), the non-structural moving average representation is then

simply

Xt = A(L)A−1
0 et = C(L)et

⇒ B(1) = I − C(1)−1

The autocovariances EXtX
T
t−k can be directly computed from the state space model,

see for instance the textbook of Sargent and Ljungqvist (2004). The covariance matrix of
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the states EZtZ
T
t ≡ Ω is obtained as the solution to a discrete Lyapunov equation:

Ω = AΩ AT + BBT

The autocovariances of Xt are then

EXtX
T
t−k = CAkΩ CT

VAR(p) coefficients in population

Chari, Kehoe, and McGrattan (2005, Proposition 1) show that the VAR representation

of Xt in the model is of infinite order. Still, finite-order VAR(p) can be computed as

projections of Xt on a finite number of its past values, Xt−1 . . . Xt−p. Their residuals

will however not be martingales. In line with the notation of the main text, population

coefficients of a VAR(p) are denoted with a superscript “OLS”.

Xt = B(L)OLS Xt−1 + vOLS
t

The coefficients of the lag polynomial B(L)OLS =
∑p−1

i=0 BOLS
i Li solve the OLS normal

equations

E

(
Xt −

p−1∑
i=0

BOLS
i Xt−1−i

)

︸ ︷︷ ︸
=vOLS

t

XT
t−j = 0 ∀ j = 1 . . . p

which are evaluated using the autocovariance matrices of Xt whose computations are de-

scribed in the preceding paragraph. For instance if p = 1, BOLS
1 =

(
EXtX

T
t−1

) (
EXtX

T
t

)−1
.

(Detailed formulas for higher VAR’s can be found in Fernandez-Villaverde, Rubio-Ramirez,

and Sargent (2005).)
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Notice that by construction, the projection residuals vOLS
t are orthogonal to Xt−1, . . . ,

Xt−p, but they are not orthogonal to the entire history of Xt, because of the truncation bias

in the VAR(p). Their moving average representation vOLS
t = D(L)et is easily constructed

using

D(L) =
(
I −B(L)OLS

)
(I −B(L))−1 (43)

Variance equation

Even though the VAR(p) residuals vOLS
t are not iid, the usual variance equation is still

applicable. For notational convenience, take p = 1: Xt = BOLS
1 Xt−1 + vOLS

t . The normal

equations imply

Var Xt = BOLS
1 (Var Xt) (BOLS

1 )T + ΩOLS
v (44)

=
∞∑

k=0

(BOLS
1 )k ΩOLS

v ((BOLS
1 )k)T

=
∞∑

k=0

COLS
k ΩOLS

v (COLS
k )T

To see that the last line holds for general VAR(p), rewrite the VAR in companion form

and derive its variance analogously to (44).

Notes

1. Comparable to lag length in a time series model, bandwidth is a key parameter in

spectral estimation. See Section 2.2 for details.

2. For a demonstration, see the web-appendix of this paper at http://www.elmarmertens.

ch.
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3. http://www.elmarmertens.ch

4. For notational convenience, but without loss of generality, Xt represents the demeaned

variables. As an application of the Frisch-Waugh-Lowell Theorem, this is both theoretically

and numerically equivalent to including a constant in a VAR using the original data.

5. See for example Giannone and Reichlin (2006) on the non-invertibility problem.

6. The spectral density SX(0) = C(1)ΩC(1)T is strictly positive definite when the forecast

errors et are linearly independent, which implies that their variance covariance matrix

Ω is nonsingular. SX(0) inherits positive definiteness from Ω since C(1) is nonsingular.

I −B(1) = C(1)−1 exists because of the assumed stationarity of the VAR process.

7. In general, A(1) is described by

A(1) = chol {SX(0)}




1 0

0 W


 where WW T = I

In the lab economy described later, the VAR will be bivariate and the forecast errors et

are a linear combination of only two shocks. Knowing the technology shock will then also

identify the second shock up to its sign, |W | = 1.

8. To derive this apply the definition of spectral density (6) to vOLS
t and recall that the

variance equals the integral under the associated spectral density. Finally note that we

can write B(L)OLS = B(L) + (B(L)OLS −B(L)).

9. For some variable Zt, the sample moment is ET Zt ≡ 1/T
∑T

t=1 Zt.

10. The discussion of CEV suggests this practice to be compatible with consistency. Watson

(2006) regards it as a practically untruncated and inconsistent estimator.

11. This is a standard result for inverting partitioned matrices, see for example Magnus

and Neudecker (1988, p. 11).

38

http://www.elmarmertens.ch


12. Likewise she wants SX(0)NW 6= SX(0)OLS and thus

(I −B(1)OLS )SX(0)NW (I −B(1)OLS )T 6= ΩOLS

13. See Proposition 2 below for details.

14. The theorem assures us of a D(L) which has no roots inside the unit circle. Excluding

zero spectra, all roots have to be outside the unit circle.

15. See for example Hamilton (1994, Chapter 3.A) or Hayashi (2000, Chapter 6).

16. Up to the treatment of initial observations this is also identical to the sample variance

V̂ar Xt

OLS ≈ 1

T

T∑
t=1

XtX
T
t

Take a first order VAR and index the data from −(p− 1), . . . , 0, . . . T . The approximation

holds to the extent that (
1

T

T∑
t=1

X2
t

)
≈

(
1

T

T−p∑
t=−p+1

X2
t

)

The exact relationship enforced by the OLS normal equations is

VarT Xt ≡ 1

T

T∑
t=1

X2
t = BOLS

1

(
1

T

T−p∑
t=−p+1

X2
t

)
(BOLS

1 )T +
1

T

T∑
t=1

(
vOLS

t

)2

(Please recall that the data is demeaned.)

17. The drift in technology is set to 0.4% and the average “labor tax” is set to 24.2% per

quarter.

18. CKM extensively document how different ratios in the variance of transitory to per-

manent shocks, σ2
l /σ

2
z , affect the performance of standard VARs both in population and

in small sample. McGrattan (2005) shows that (only) in the limit, σl/σz → 0, a finite

39



order VAR (even a p = 1) recovers the true responses – though the true system is not a

finite-order VAR. The OLS error thus shrinks to zero with the variance ratio. This can

also be seen in the results below.

19. CEV estimate σl = 0.00562, σz = 0.00953.

20. An important aspect of this result is that there are more observables than shocks in

this case.

21. For all calibrations, the model satisfies the condition of Fernandez-Villaverde, Rubio-

Ramirez, and Sargent (2005) for an invertible mapping from structural shocks to forecast

errors.

22. In addition to this “LSVAR” specification, CKM run also VARs with quasi-differenced

hours. This replaces the second VAR element lt with (1 − αL) lt (α ∈ {0; 0.999}). De-

pending on α, this captures popular (but also contested) specifications: On the one hand

the “LSVAR” with hours in levels and α = 0 and on the other hand the “QDSVAR” with

α = 0.999, which approximates a VAR with differenced hours without introducing a unit

MA root. Sensitivity and sensibility of results to these choices are discussed amongst oth-

ers by Gali and Rabanal (2004) and Christiano, Eichenbaum, and Vigfusson (2003). The

quasi-differencing is discussed in more detail by CKM.

23. Instead of a fixing the lag length, it could also be chosen for each simulation based an

information criteria. But for the simulations considered here, this does not affect results

substantially.

24. They would only be barely visible on the graph.

25. Bandwidths selected for SX(ω)NW vary between b = 6 and b = 10.

26. The variance of hours is the bottom left element of those matrices.

27. This is a corollary of Di ≈ 0 as documented in Figure 1.
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28. For example, consider a simple AR(1), xt = ρxt−1 + σeεt, whose variance is decreasing

in ρ: Var xt = σ2
e/(1 − ρ2). A numerical demonstration for this example can be found at

http://www.elmarmertens.ch.

29. Cursory inspections suggest that results are qualitatively similar for the impact of

output.

30. Curiously, previous versions of CKM were calibrated to higher values of this ratio where

ACEV
0 fairs better.

31. The webappendix shows that constancy of the small sample bias is the effect of can-

celing biases in B(1)OLS and A(1)AM (respectively A(1)NW ), see Figure 5 there. The

performance of ACEV
0 is not (solely) determined by the quality of the A(1) estimates, but

by the interaction of various biases arising from truncation and small effects, as well as

canceling effects from B(1)OLS and the spectral estimate.

32. This is a direct consequence of the log-log preferences with canceling substitution and

income effects. See also Kehoe (2006b)’s discussion in this context.

33. Given a covariance γ0 and first-order autocovariance γ1, the spectrum equals s(ω) =

γ0 · (1 + 2γ1 cos (ω)). And |s(ω)| 6= 0 requires |γ1/γ0| < 0.5.

34. Alternatively, a standard Riccati solver such as Matlab’s dare could be used. I found

both routines to operate numerically equally well. The relative performance of the alter-

natives routines can differ substantially but it also depends on the size of the problem and

the underlying operating system. A clearly superior choice did not emerge.
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Figure 1: D(1) 6= I

Note: Each panel shows an element of the cumulated sum
∑K

k=0 Dk, which is a two-by-two matrix, for the
bivariate VAR in the lab economy of Section 5. “CEV calibration” with ρl = 0.986 and σ2

l /σ2
z = 0.345.

Lags K on the x-axis.
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