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The assignment game: core bounds for mixed–pair coali-
tions

Abstract: In the assignment game framework, we try to identify those assign-
ment matrices in which no entry can be increased without changing the core
of the game. These games will be called buyer–seller exact games and satisfy
the condition that each mixed–pair coalition attains the corresponding matrix
entry in the core of the game. For a given assignment game, a unique buyer–
seller exact assignment game with the same core is proved to exist. In order
to identify this matrix and to provide a characterization of those assignment
games which are buyer–seller exact in terms of the assignment matrix, attain-
able upper and lower core bounds for the mixed–pair coalitions are found. As
a consequence, an open question posed in Quint (1991) regarding a canonical
representation of a “45o–lattice” by means of the core of an assignment game
can now be answered.
Key words: Assignment games, core, exact games.
JEL: C71, C78

Resum: Aquest treball tracta de determinar aquells jocs d’assignació la ma-
triu associada dels quals té la propietat que cap de les seves entrades pot ser in-
crementada sense modificar el core del joc. Els anomenarem jocs d’assignació
“buyer–seller” exactes ja que tota coalició comprador–venedor assoleix el paga-
ment indicat por la seva corresponent entrada de la matriu en una distribución
del core. Donat qualsevol joc d’assignació, provem l’existència d’un únic joc
d’assignació amb el seu mateix core i amb la propietat de ser “buyer–seller”
exacte. Per tal de trobar la matriu d’aquest nou joc i de caracteritzar, en
termes de la matriu, els jocs d’assignació que són “buyer-seller” exactes, fites
assolibles per al pagament de les coalicions comprador–venedor dins del core
han estat calculades. Com a conseqüència podem tancar una qüestió oberta
per Quint (1991) referent a la representació canònica dels reticles de 45o per
mitjà del core d’un joc d’assignació.



1 Introduction

Assignment games associated to different assignment matrices may have the
same core (no examples will be found in 2×2 matrices). Nevertheless, among
all the matrices leading to the same core, only one has a property we will call
buyer–seller exactness. We will be able to determine which this matrix is.
This representation result (the core of an assignment game can be represented
by means of a buyer–seller exact assignment game) will be one of the aims of
this paper.

Roughly speaking, an assignment game is buyer–seller exact when all ma-
trix entries are necessary to determine the core of the game. In other words,
for each two–person mixed–pair coalition (a coalition formed by a buyer and
a seller), there exists a core allocation which is tight at the corresponding
core constraint, that is to say, the addition of both players’ payoff in this core
allocation coincides with the corresponding matrix entry.

The following example, taken from Shapley and Shubik (1971), will help
us to illustrate the above idea. Take the assignment game with set of buyers
M = {1, 2, 3} , set of sellers M ′ = {4, 5, 6} , and defined by matrix

4 5 6
1
2
3





5 ©8 2
7 9 ©6
©2 3 0





This matrix has only one optimal matching which is µ = {(1, 5), (2, 6), (3, 4)}
and the core of the game is the convex hull of the following extreme core
allocations: (3,5,0;2,5,1), (5,6,1;1,3,0), (3,6,0;2,5,0), (4,6,1;1,4,0), (5,6,0;2,3,0)
and (4,5,0;2,4,1).

It is well known that every optimally matched pair achieves the correspond-
ing matrix entry in each core allocation, but what happens in the case of the
remaining matrix entries? Take the pair (1,4), with matrix entry a14 = 5 ,
and notice that this worth is achieved in three of the extreme core allocations.
But for pair (1,6) the worth a16 = 2 is never achieved, as the minimum core
payoff for this coalition, which is attained in the third extreme core payoff, is
3. A quick inspection shows that all remaining matrix entries are attained in
some extreme core allocation.

This lower core bound for the pair (1,6) could also have been obtained
from the matrix entries, without making use of the extreme core allocations.
If x is a core allocation, then x1 + x6 ≥ a16 = 2 , but also, as x3 + x4 = 2 ,

(x1 + x6) + (x3 + x4) = (x1 + x4) + (x3 + x6) ≥ a14 + a36 = 5 + 0
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which leads to x1 + x6 ≥ 3 and shows that a16 = 2 will never be reached in
the core.

The raising of a16 from 2 to 3 does not change the core. In fact, there is
a parametric family of assignment matrices leading to the same core as the
original matrix and, in this case, the matrices of this family are the only ones
with this property. We can describe this family by

3 4 5
1
2
3





5 8 α
7 9 6
2 3 0





where 0 ≤ α ≤ 3 . However, only one of these matrices, the one in which α =
3 , satisfies the condition that every entry is attained by some core allocation.
This will be said to be buyer–seller exact.

As might be expected, when the number of players becomes larger, more
inequalities have to be taken into account to determine the minimum core
payoff of a mixed–pair coalition; nevertheless, a procedure similar to that
used in the example will still be applicable.

The main goal of this paper is to characterize the minimum joint payoff
(and also the maximum one) that an arbitrary pair of agents of different sides
of the market can achieve in the core of an assignment game. After section
2, which is devoted to definitions and preliminaries, two approaches will be
carried out, which will turn out to be connected. The first one (section 3)
will make use of a recent characterization of the extreme core allocations of
the assignment game (Núñez and Rafels, 2001) while the second one (section
4) works with the matrix entries. The result will be that for any assignment
game there exists a unique buyer–seller exact assignment matrix which is a
“good” representation of the game from the viewpoint of the core.

Some direct consequences will be deduced. First, an open question posed
by Quint (1991) searching for a canonical representation of a “ 45o–lattice” by
means of the core of an assignment game can now be answered. The second
consequence is a characterization of those assignment matrices such that there
is no other one leading to a game with the same core.

2 Definitions and preliminaries

A transferable utility cooperative game is a pair (N, v), where the set N =
{1, 2, . . . , n} is its finite player set and v : 2N −→ R its characteristic function
satisfying v(∅) = 0 . A payoff vector will be x ∈ Rn and, for every coalition
S ⊆ N we shall write x(S) :=

∑

i∈S xi the payoff to coalition S (where
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x(∅) = 0 ). The core of the game (N, v) consists of those payoff vectors
which allocate the worth of the grand coalition in such a way that every other
coalition receives at least its worth by the characteristic function: C(v) =
{x ∈ Rn | x(N) = v(N) and x(S) ≥ v(S) for all S ⊂ N } . The core is a
bounded convex polyhedron and thus has a finite number of extreme points,
Ext(C(v)) .

The marginal contribution of player i ∈ N in the game v , bv
i = v(N) −

v(N \ {i}) is an upper bound for player i’s payoff in the core of the game. In
general this upper bound may not be attained. However, there are balanced
games with the property that all players can attain their marginal contribution
in the core. This is the case of assignment games.

The reduction of a game is a well known concept in the general framework
of cooperative TU games. Let v be an arbitrary cooperative game with
player set N and suppose that some subset of players, T ⊆ N , is given.
For a fixed vector x ∈ RN\T , members of coalition T can reconsider their
cooperative situation by means of a new game with player set T where the
worth of coalitions in T is reevaluated taking into account the worth they
could achieve by joining players outside T and paying them according to x .
We will consider the special case where T = N \ {i} , for some player i ∈ N
and xi = bv

i = v(N) − v(N \ {i}) , and the reduction of the game is à la
Davis and Maschler (1965). This is what we will call the i–marginal game;
we denote it by vi (Núñez and Rafels, 1998)

Given a cooperative game (N, v) and a player i ∈ N its i–marginal game
is (N \ {i}, vi) where vi(∅) = 0 and for all ∅ 6= S ⊆ N \ {i} ,

vi(S) = max{v(S ∪ {i})− bv
i , v(S)} ,

The game vin···ik+1ik is the ik–marginal game of vin···ik+1 .
Then, reduced marginal worth vectors are inspired by the marginal worth

vectors. For each ordering θ = (i1, i2, . . . , in−1, in) , the reduced marginal
worth vector rmv

θ is a vector in Rn where each player receives her marginal
contribution to her set of predecessors, and a reduction of the game is per-
formed in each step (Núñez and Rafels, 1998): (rmv

θ)in = bv
in and, for all

1 ≤ k < n , (rmv
θ)ik = bvinin−1···ik+1

ik . These vectors will play an important role
in the core of the assignment game.

Assignment games were introduced by Shapley and Shubik (1971) as a
model for a two–sided market with transferable utility. The player set consists
of the union of two finite disjoint sets M ∪M ′ , where M is the set of buyers
and M ′ is the set of sellers. We will denote by n the cardinality of M ∪M ′ ,
n = m + m′ , where m and m′ are, respectively, the cardinalities of M and
M ′ . The worth of any two–player coalition formed by a buyer i ∈ M and
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a seller j ∈ M ′ is w(i, j) = aij ≥ 0 . These real numbers can be arranged
in a matrix A and determine the worth of any other coalition S ∪ T , where
S ⊆ M and T ⊆ M ′ , in the following way: w(S ∪ T ) = max{

∑

(i,j)∈µ aij |
µ ∈ M(S, T )} , M(S, T ) being the set of matchings between S and T . We
will sometimes denote the game as (M∪M ′, wA) . A matching (or assignment)
between S and T is a subset µ of S × T such that each player belongs at
most to one pair in µ . It will be assumed as usual that a coalition formed
only by sellers or only by buyers has worth zero. We say a matching µ is
optimal if for all µ′ ∈M(M,M ′) ,

∑

(i,j)∈µ aij ≥
∑

(i,j)∈µ′ aij and will denote
by M∗(A) the set of optimal matchings for the grand coalition. Moreover,
we say a buyer i ∈ M is not assigned by µ if (i, j) 6∈ µ for all j ∈ M ′ (and
similarly for sellers).

Shapley and Shubik proved that the core of the assignment game (M ∪
M ′, w) is nonempty and can be represented in terms of an optimal matching
in M ∪M ′ . Let µ be one such optimal matching, then

C(w) =























ui ≥ 0, for all i ∈ M ; vj ≥ 0, for all j ∈ M ′

ui + vj = aij if (i, j) ∈ µ
(u, v) ∈ RM×M ′

ui + vj ≥ aij if (i, j) 6∈ µ
ui = 0 if i not assigned by µ
vj = 0 if j not assigned by µ .























(1)
Moreover, the core has a lattice structure with two special extreme core alloca-
tions: the buyers–optimal core allocation, (u, v) , where each buyer attains his
maximum core payoff, and the sellers–optimal core allocation, (u, v) , where
each seller does. Notice that when agents on one side of the market obtain
their maximum core payoff, the agents on the opposite side obtain their min-
imum core payoff, as the joint payoff of an optimally matched pair is fixed:
ui + vj = aij for all (u, v) ∈ C(w) if (i, j) ∈ µ .

From Demange (1982) and Leonard (1983) we know the expression of the
maximum and the minimum core payoffs in terms of the characteristic func-
tion:

ui = w(N)− w(N \ {i}) and vj = w(N \ {i})− w(N \ {i, j}) if (i, j) ∈ µ .

Similarly, ui = w(N \ {j})− w(N \ {i, j}) and vj = w(N)− w(N \ {j}) .
The two extreme core allocations mentioned of the assignment game are

not, in general, the only ones. In Núñez and Rafels (2001) the extreme core
allocations of the assignment game are proved to coincide with the set of
reduced marginal worth vectors.
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3 Buyer–seller exactness

A balanced cooperative TU game (N, v) is exact (Schmeidler, 1972) if for each
coalition S ⊂ N there exists a core allocation x such that x(S) = v(S) . In
other words, the core of the game makes use of all information provided by
the characteristic function, and whenever the worth of a coalition is increased
the core changes.

On the other hand, given (N, v) , a non exact balanced game, a unique
game (N, v′) can be found such that C(v) = C(v′) and v′ is exact. Schmei-
dler (1972) proves this result for arbitrary games but for games with a finite
player set, as in our case, it is enough to define v′(S) = minz∈Ext(C(v)) z(S) .

Assignment games are not exact in general. The example given by Shapley
and Shubik (1971), analyzed in the introduction, is an example of a non exact
game. Recently, Solymosi and Raghavan (2001) have given a characterization
of exact assignment games in terms of the assignment matrix. Moreover, when
exactifying an assignment game the resulting game may not be an assignment
game. For instance, when computing v′ for the example in the introduction
of this paper, v′(1) = 3 6= 0 .

But the relevant coalitions for the core of an assignment game are the
mixed–pair coalitions: in the example in the introduction, one matrix entry
could be increased without modifying the core of the assignment game. We
will now define when the assignment matrix determines the core of the game,
in the sense that any increase of any matrix entry will change the core.

Definition 1 An assignment game (M ∪M ′, wA) is buyer–seller exact if for
all i ∈ M and all j ∈ M ′ , there exists (u, v) ∈ C(wA) such that ui+vj = aij .

It is easy to find examples of assignment games which are buyer–seller
exact but not exact, as we will show later in this paper.

The following property will be useful to show that some assignment games
are not buyer–seller exact, by means of the minimum core payoffs.

Proposition 2 If (M ∪ M ′, wA) is a buyer–seller exact assignment game,
then ui + vj ≤ aij for all i ∈ M and all j ∈ M ′ .

Proof: From buyer–seller exactness, for all i ∈ M and j ∈ M ′ there exists
(u, v) ∈ C(wA) such that aij = ui + vj ≥ ui + vj . 2

When applying this condition to Shapley and Shubik’s game, u1 = 3 and
v6 = 0 , but u1 + v6 = 3 > a16 = 2 .

However the condition in proposition 2 is necessary but not sufficient for an
assignment game to be buyer–seller exact. Take the assignment game defined
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by the following matrix A

4 5 6
1
2
3





1 1 0
1 1 1
0 1 1





and notice that, as ui = 0 for all i ∈ {1, 2, 3} and vj = 0 , for all j ∈ {3, 4, 5}
the condition of proposition 2 holds. But u3 + v4 > a34 = 0 for all (u, v) ∈
C(wA) , as C(wA) = convex{(1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)} .

Now, a new assignment game (with the same player set), which will be
buyer–seller exact, will be canonically associated to any given assignment
game.

Theorem 3 For all (M ∪ M ′, wA) there exists a unique assignment game
(M ∪M ′, wAr) such that

1. C(wA) = C(wAr) and

2. (M ∪M ′, wAr) is buyer–seller exact.

Moreover, M∗(A) ⊆M∗(Ar) and A ≤ Ar .

Proof: Define Ar = (ar
ij)(i,j)∈M×M ′ by

ar
ij = min

(u,v)∈C(wA)
ui + vj = min

(u,v)∈Ext(C(wA))
ui + vj = min

θ∈Sn
rmwA

θ (i) + rmwA
θ (j) ,

where rmwA
θ is the reduced marginal worth vector related to permutation

θ and Sn is the set of all possible orderings in the player set. Notice that
ar

ij = aij if (i, j) ∈ µ , where µ ∈ M∗(A) , and ar
ij ≥ aij otherwise, which

leads to A ≤ Ar .
Take µ ∈M∗(A) and µ′ ∈M∗(Ar) , then, for any (u, v) ∈ Ext(C(wA)) ,

∑

(i,j)∈µ′

ar
ij ≤

∑

(i,j)∈M×M ′

ui + vj = w(M ∪M ′) =
∑

(i,j)∈µ

aij =
∑

(i,j)∈µ

ar
ij

and thus µ ∈M∗(Ar) . We leave to the reader the proof of C(wA) = C(wAr)
and of the buyer–seller exactness of wAr .

From the definition follows easily that two buyer–seller assignment matri-
ces defining assignment games with the same core, must be the same. 2

Notice first that the inclusion M∗(A) ⊆ M∗(Ar) cannot be improved.

Take for instance the assignment matrix A =





1 0 1
1 1 1
1 1 1



 , which has four
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optimal matchings and notice that C(wA) = convex{(1, 1, 1, 0, 0, 0), (0, 0, 0, 1, 1, 1)} .
Then its buyer–seller exact associated assigned matrix Ar corresponds to the

classical glove market, Ar =





1 1 1
1 1 1
1 1 1



 , which has two more optimal

matchings.
The proof of theorem 3 shows that what determines matrix Ar are the

lower core bounds for the mixed–pair coalitions. These lower core bounds will
be analyzed in the next section.

The corollary below states that all matrices between A and Ar (with the
usual order: A ≤ B if and only if aij ≤ bij for all (i, j) ∈ M ×M ′ ) have the
same core and at least one optimal matching in common. As a consequence
(and this will be useful later on in this paper) if a matrix A is not buyer–
seller exact, then there is an infinity of assignment matrices such that the
corresponding assignment games have the same core as wA . The proof of this
corollary follows easily from theorem 3 and is left to the reader.

Corollary 4 Given a nonnegative matrix A = (aij)(i,j)∈M×M ′ , for all B =
(bij)(i,j)∈M×M ′ such that A ≤ B ≤ Ar it holds that they have at least one
optimal matching in common and the same core. In fact M∗(A) ⊆M∗(B) ⊆
M∗(Ar) .

Another immediate consequence of theorem 3 is that two assignment games
(M ∪ M ′, wA) and (M ∪ M ′, wB) have the same core if and only if Ar =
Br , that is to say, the corresponding buyer–seller exact matrices coincide.
Moreover, for a fixed assignment game (M ∪M ′, wA) , the set of assignment
matrices B defining assignment games wB with the same core as wA is closed
by taking the maximum, with maximal element Ar . It is easy to see that the
same class is not closed by taking the minimum.

Corollary 5 Let (M ∪M ′, wA) and (M ∪M ′, wB) be two assignment games
such that C(wA) = C(wB) and take the game (M∪M ′, wA∨B) where A∨B =
(max{aij, bij})(i,j)∈M×M ′ . Then,

1. C(wA∨B) = C(wA) = C(wB) and

2. M∗(A) ∪M∗(B) ⊆M∗(A ∨B) .

Although, by the characterization of the extreme core allocations of the
assignment game mentioned in the introduction of this paper, the matrix Ar

can be computed from the reduced marginal worth vectors of the assignment
game (M∪M ′, wA) , a direct computation in terms of the matrix entries would
be desirable. It will be provided in next section.
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4 Core bounds for mixed–pair coalitions

In this section a characterization of those assignment games which are buyer–
seller exact, in terms of a property of the assignment matrix, will be given.
This property, which will provide a practical method to compute the buyer–
seller exact matrix Ar related to the assignment game (M ∪ M ′, wA) , will
turn out to be a generalization of another property introduced by Solymosi
and Raghavan (2001) and known as doubly dominant diagonal.

From now on the following notation will be used. By adding dummy
players (that is to say, zero rows or columns in the assignment matrix) we
can assume without loss of generality that the number of sellers equals the
number of buyers and thus the assignment matrix is square. We will now
denote M = {1, 2, . . . , m} and M ′ = {1′, 2′, . . . , m′} to distinguish the j–th
seller j′ from the j–th buyer j . Moreover, we will assume that rows and
columns in the matrix are arranged in such a way that µ = {(i, i′) | i ∈ M}
is an optimal matching.

As we want to find out which assignment games are buyer–seller exact, we
first need to know the lower bound for any mixed–pair coalition payoff in the
core. In fact, these lower bounds can be obtained from the upper ones, which
are easier to determine.

Given any assignment game (M ∪M ′, wA) , for all i ∈ M and j′ ∈ M ′ ,
we define

Kij′ = max
(u,v)∈C(wA)

ui + vj′ and

kij′ = min
(u,v)∈C(wA)

ui + vj′ .
(2)

Theorem 6 Let (M ∪M ′, wA) be an assignment game. Then

Kij′ = wA(M ∪M ′)− wA(M ∪M ′ \ {i, j′}) and
kij′ = aii′ + ajj′ + wA(M ∪M ′ \ {j, i′})− wA(M ∪M ′) . (3)

Proof: We will first prove that the expressions (3) are bounds for the core
payoff of a mixed pair coalition and we will then show that these bounds ara
attainable.

Take i ∈ M and j′ ∈ M ′ . If j′ = i′ , then from (1) we have that,
for any (u, v) ∈ C(wA) , ui + vj′ = ui + vi′ = aii′ . Notice that, on one side,
wA(M∪M ′)−wA(M∪M ′\{i, j′}) = wA(M∪M ′)−wA(M∪M ′\{i, i′}) = aii′

and, on the other side, aii′ + ajj′ + wA(M ∪ M ′ \ {j, i′}) − wA(M ∪ M ′) =
aii′ + aii′ + wA(M ∪M ′ \ {i, i′})− wA(M ∪M ′) = aii′ .

Assume now that j′ 6= i′ , then, as (u, v) ∈ C(wA) ,

u(M \ {i}) + v(M ′ \ {j′}) ≥ wA(M ∪M ′ \ {i, j′}) ,
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which leads to

ui + vj′ ≤ wA(M ∪M ′)− wA(M ∪M ′ \ {i, j′}) = Kij′ .

By applying the above result to the mixed–pair coalition {j, i′} we obtain
uj + vi′ ≤ wA(M ∪ M ′) − wA(M ∪ M ′ \ {j, i′}) . As uj = ajj′ − vj′ and
vi′ = aii′ − ui , the above inequality leads to aii′ + ajj′ − ui − vj′ ≤ wA(M ∪
M ′)− wA(M ∪M ′ \ {j, i′}) or equivalently

kij′ = aii′ + ajj′ + wA(M ∪M ′ \ {j, i′})− wA(M ∪M ′) ≤ ui + vj′ .

Let us now prove that these lower and upper bounds, kij′ and Kij′ , are
always attainable by the mixed pair coalition {i, j′} in the core of the assign-
ment game.

If j′ = i′ , then we have already pointed out that ui + vj′ = aii′ = kij′ =
Kij′ .

Assume then j′ 6= i′ and take the reduced marginal worth vector related
to any ordering θ = (k1, k2, . . . , kn) such that kn = i and kn−1 = j′ . Then,
i being the last player in θ , rmwA

θ (i) = wA(M ∪M ′) − wA(M ∪M ′ \ {i}) .
Let us compute rmwA

θ (j′) = wi
A(M ∪M ′ \ {i})−wi

A(M ∪M ′ \ {i, j′}) . From
the definition of i–marginal game, wi

A(M ∪M ′ \ {i}) = wA(M ∪ M ′ \ {i})
and

wi
A(M ∪M ′ \ {i, j′}) = max{wA(M ∪M ′ \ {j′})− bwA

i , wA(M ∪M ′ \ {i, j′})} ,

where bwA
i = wA(M ∪M ′)−wA(M ∪M ′ \ {i}) . But as players i and j′ are

from different sides of the market, we know from Shapley (1962) that

wA(M ∪M ′ \{j′})−wA(M ∪M ′ \{i, j′}) ≤ wA(M ∪M ′)−wA(M ∪M ′ \{i}) ,

and thus wi
A(M ∪ M ′ \ {i, j′}) = wA(M ∪ M ′ \ {i, j′}) and rmwA

θ (j′) =
wA(M ∪M ′ \ {i})− wA(M ∪M ′ \ {i, j′}) .

Then,

rmwA
θ (i) + rmwA

θ (j′) = wA(M ∪M ′)− wA(M ∪M ′ \ {i, j′}) = Kij′ ,

and thus Kij′ is attained in C(wA) .
Applying the above reasoning to the ordering θ′ of M ∪ M ′ such that

kn = i′ and kn−1 = j we obtain

rmwA
θ′ (i′) + rmwA

θ′ (j) = wA(M ∪M ′)− wA(M ∪M ′ \ {j, i′}) (4)

and from rmwA
θ′ ∈ C(wA) it follows that rmwA

θ′ (i) + rmwA
θ′ (i′) + rmwA

θ′ (j) +
rmwA

θ′ (j′) = aii′ + ajj′ and from equation (4),

rmwA
θ′ (i) + rmwA

θ′ (j′) = aii′ + ajj′ + wA(M ∪M ′ \ {j, i′})− wA(M ∪M ′) ,
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and kij′ is attained in C(wA) . 2
Once the lower bound for a mixed–pair coalition payoff in the core is

determined,

kij′ = aii′ + bjj′ + wA(M ∪M ′ \ {j, i′})− wA(M ∪M ′) ,

we would like to express it in terms of the matrix. To this end, we will compute
the worth of wA(M ∪M ′ \ {j, i′}) .

Proposition 7 Let (M ∪M ′, wA) be an assignment game, i ∈ M and j′ ∈
M ′ such that j′ 6= i′ . Then

wA(M ∪M ′ \ {j, i′}) = max



aij′ +
∑

t∈M\{i,j}

att′ ,

max
k1,...,kr∈M\{i,j}

different







aik′1 + ak1k′2 + · · ·+ akrj′ +
∑

t∈M\{i,j,k1,...,kr}

att′











(5)

Proof: Let µ∗ be an optimal assignment for coalition M ∪M ′ \ {j, i′} =
{i, j′, k1, . . . , km−2, k′1, . . . , k

′
m−2} .

If (i, j′) ∈ µ∗ , as, by the notation we have fixed, the diagonal determines an
optimal matching for matrix A , we have (kt, k′t) ∈ µ∗ for all t ∈ {1, 2, . . . ,m−
2} . Otherwise, if players in M \ {i, j} and M ′ \ {i′, j′} could be matched in
a better way, by adding to this matching the pairs (i, i′) and (j, j′) we would
contradict that {(t, t′) | t ∈ M } is an optimal matching for M ∪M ′ . Thus
the worth achieved by µ∗ is

aij′ +
∑

t∈M\{i,j}

att′ . (6)

If (i, k′s1
) ∈ µ∗ , where k′s1

∈ M ′ \ {i′, j′} , two cases are possible:
Case 1: (ks1 , j

′) ∈ µ∗ .
By the same reasoning as above, (t, t′) ∈ µ∗ for all t ∈ M \ {i, j, ks1} and

the worth achieved by this matching is

aik′s1
+ aks1j′ +

∑

t∈M\{i,j,ks1}

att′ . (7)

Case 2: (ks1 , k
′
s2

) ∈ µ∗ and k′s2
6= j′ .

Again two possibilities appear. Either (ks2 , j
′) ∈ µ∗ which implies (t, t′) ∈

µ∗ for all t ∈ M \ {i, j, ks1 , ks2} and the worth achieved by this matching is

aik′s1
+ aks1k′s2

+ aks2j′ +
∑

t∈M\{i,j,ks1 ,ks2}

att′ . (8)
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or else (ks2 , j
′) 6∈ µ∗ and by repeating the same procedure, in a finite number

of steps we obtain

µ∗ = {(i, k′s1
), (ks1 , k

′
s2

), . . . , (ksr , j
′)} ∪ {(t, t′)}t∈M\{i,j,ks1 ,...,ksr}

while the worth achieved by this matching is

aik′s1
+ aks1k′s2

+ · · ·+ aksr j′ +
∑

t∈M\{i,j,ks1 ,...,ksr}

att′ . (9)

Now, identity (5) follows from equations (6) to (9). 2
Recall that Solymosi and Raghavan (2001) define a square matrix A to

be doubly dominant diagonal whenever for all i, j, k ∈ M and different, aij +
akk ≥ aik + akj , and this property is a necessary, but not sufficient, condition
for the game wA to be exact.

A new property will now be defined.

Definition 8 Let A be a square matrix with rows M = {1, 2, . . . , m} and
columns M ′ = {1′, 2′, . . . , m′} and such that µ = {(i, i′) | i ∈ M} ∈ M∗(A) .
A is strongly dominant diagonal if and only if for all i ∈ M and j′ ∈ M ′ ,

aij′ + ak1k′1 + · · ·+ akrk′r ≥ aik′1 + ak1k′2 + · · ·+ akrj′

for all k1, k2, . . . , kr ∈ M \ {i, j} , all of them different.

For instance, the introductory example has not a strongly dominant diag-
onal matrix. After reordering the player set so that the diagonal is an optimal
matching, the assignment matrix A is

1′ 2′ 3′

1
2
3





©8 2 5
9 ©6 7
3 0 ©2





. (10)

Notice that a12′ + a33′ < a13′ + a32′ .
Definition 8 can be read as follows: let Aji′ be the submatrix obtained by

deleting row j and column i′ , with i′ 6= j′ , from matrix A . If A is strongly
dominant diagonal, then all pairs (t, t′) with t 6= i, j will still be optimally
paired in Aji′ and thus, from proposition 7,

wA(M ∪M ′ \ {j, i′}) = aij′ +
∑

t∈M\{i,j}

att′ = aij′ + wA(M \ {i, j},M ′ \ {i′, j′}) .
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Moreover, if A is a strongly dominant diagonal matrix, any submatrix
obtained by deleting some optimally matched pairs will also be strongly dom-
inant diagonal and thus, for all S ⊆ M \ {i, j} and taking S′ = {t′ ∈ M ′ |
t ∈ S} , we obtain wA(S ∪ S ′ ∪ {i, j′}) = aij′ +

∑

t∈S att′ = aij′ + wA(S ∪ S′) .
This means that given any coalition S ∪ S ′ formed by a set of optimally

matched pairs and one additional mixed pair {i, j′} , all optimally matched
pairs will also be matched in an optimal assignment for coalition S∪S ′∪{i, j′} .
In fact this property characterizes the strongly dominant diagonal matrices in
terms of the characteristic function of the assignment game.

Proposition 9 Let A be a square matrix with rows M = {1, 2, . . . , m} and
columns M ′ = {1′, 2′, . . . , m′} and assume µ = {(t, t′) | t ∈ M} is an optimal
matching for A , then the following statements are equivalent:

1. A is strongly dominant diagonal

2. For all i ∈ M and j′ ∈ M ′ such that i′ 6= j′ and all S ⊆ M \ {i, j},

wA(S ∪ S ′ ∪ {i, j′}) = aij′ + wA(S ∪ S′) ,

where S′ = {t′ ∈ M ′ | t ∈ S} .

Proof: It follows easily from definition 8 and the above considerations. 2
Notice that a strongly dominant diagonal matrix is always doubly domi-

nant diagonal (just take r = 1 ). The property of being strongly dominant
diagonal will characterize those matrices which are buyer–seller exact.

Theorem 10 Let (M∪M ′, wA) be an assignment game. The following state-
ments are equivalent:

1. wA is buyer–seller exact

2. A is strongly dominant diagonal

Proof: 1 ⇒ 2) Take i, j, k1, . . . , kr ∈ M , all of them different. As wA is
a buyer–seller exact game, there exists (u, v) ∈ C(wA) such that ui + vj′ =
aij′ . Moreover, from the expression of the core of an assignment game in (1),
ukl + v′kl

= aklk′l
holds for all l ∈ {1, 2, . . . , r} while ukl + vk′l+1

≥ aklk′l+1
for

all l ∈ {1, 2, . . . , r − 1} , ui + vk′1 ≥ aik′1 and ukr + vj′ ≥ akrj′ . Then,

ui + vj′ + uk1 + vk′1 + · · ·+ ukr + vk′r = aij′ + ak1k′1 + · · ·+ akrk′r

while on the other hand

ui + vj′ + uk1 + vk′1 + · · ·+ ukr + vk′r ≥ aik′1 + ak1k′2 + · · ·+ akrj′

12



and thus A is strongly dominant diagonal.
2 ⇒ 1) If A is strongly dominant diagonal, then we deduce, from proposition
7, that for all i ∈ M and j′ ∈ M ′ , wA(M∪M ′\{j, i′}) = aij′+

∑

t∈M\{i,j} att′

and
kij′ = aii′ + ajj′ + aij′ +

∑

t∈M\{i,j}

att′ −
∑

t∈M

att′ = aij′ .

By theorem 6, the lower bound kij′ is attained by the mixed–pair coalition
{i, j′} in the core of the assignment game wA , and consequently wA is buyer–
seller exact. 2

As a by–product of theorem 10, we have a method to compute the buyer–
seller exact matrix Ar associated to A . Define ar

ij′ = max{aij′ , ãij′} , where

ãij′ = max
k1, k2,...,kr∈M\{i,j}

different

{

aik′1 + ak1k′2 + · · ·+ akrj′ − (ak1k′1 + · · ·+ akrk′r)
}

.

This means that each mixed–pair coalition {i, j′} evaluates what it could
achieve by cooperating with some optimal matched pairs out of {i, j, i′, j′} ,
let us say pairs (k1, k′1), (k2, k′2), . . . , (kr, k′r) , on the basis that these pairs will
be paid what they obtain in the fixed optimal matching, and then takes the
maximum between this worth and aij′ .

Let us now compute the matrix Ar related to matrix (10). Notice that
ar

23′ = max{a23′ , a21′ + a13′ − a11′} = max{7, 6} = 7 = a23′ while ar
12′ =

max{a12′ , a13′ + a32′ − a33′} = max{2, 3} = 3 > a12′ = 2 . Proceeding in the
same way we will get ar

ij′ = aij′ for any other (i, j′) ∈ M ×M ′ .

There is still another consequence of theorem 10 regarding those assign-
ment games wA such that there is no other assignment game with the same
core. In other words, we are interested in those assignment games such that
any change in a matrix entry would produce a change in the core of the game.
Of course the original game must be buyer–seller exact, otherwise wAr and,
from corollary 4 also all wB with A ≤ B ≤ Ar , will have the same core.
However this condition is not sufficient, as the assignment game defined by

matrix





1 1 1
1 1 1
1 1 1



, which is buyer–seller exact, has the same core as the

one defined by matrix





1 0 1
1 1 1
1 1 1



 .

Next corollary provides a necessary and sufficient condition for an assign-
ment game to be the only one with its same core.
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Corollary 11 The game (M ∪ M ′, wA) is the only assignment game with
core C(wA) if and only if for all i ∈ M and j′ ∈ M ′ , i′ 6= j′ ,

aij′ + ak1k′1 + · · ·+ akrk′r > aik′1 + ak1k′2 + · · ·+ akrj′

for all k1, k2, . . . , kr ∈ M \ {i, j} , all of them different.

Proof: If there exists ai∗j′∗ , with i′∗ 6= j′∗ , such that ai∗j′∗ + ak1k′1 + · · · +
akrk′r ≤ ai∗k′1 + ak1k′2 + · · ·+ akrj′∗ for some k1, k2, . . . , kr ∈ M \ {i∗, j∗} , all of
them different, then by taking matrix B such that bi∗j′∗ = 0 and bij′ = aij′

otherwise, we get Ar = Br and thus C(wA) = C(wB) .
On the other side, if aij′ + ak1k′1 + · · · + akrk′r > aik′1 + ak1k′2 + · · · + akrj′

for all (i, j′) ∈ M × M ′ such that i′ 6= j′ , then A is buyer–seller exact.
Assume there exists another matrix B such that C(wB) = C(wA) . From the
uniqueness in theorem 3, A = Br . Then, from corollary 4, all matrices C
such that B ≤ C ≤ Br = A will define games wC with the same core as wA .
But, from the assumption on A it is possible to define a matrix C in these
conditions and it will be buyer–seller exact. Take a pair (i∗, j′∗) ∈ M ×M ′

such that bi∗j′∗ < ci∗j′∗ < ai∗j′∗ , cij′ = aij′ otherwise and ci∗j′∗ + ak1k′1 + · · · +
akrk′r > aik′1 + ak1k′2 + · · · + akrj′ . As C is buyer–seller exact and C ≤ A ,
C(wC) 6= C(wA) , which involves a contradiction. 2

To close this section, let us point out what happens with 2×2 assignment
games.

Corollary 12 Let (M ∪M ′, wA) be a 2× 2 assignment game. Then

1. (M ∪M ′, wA) is buyer–seller exact and

2. there is no other assignment game (M ∪M ′, wB) such that C(wA) =
C(wB) .

Proof: As k12′ = a12′ and k21′ = a21′ , the game is buyer–seller exact. Any
other 2×2 assignment game (M∪M ′, wB) will then also be buyer–seller exact
and if B 6= A they must differ in terms of some matrix entry. If aii′ 6= bii′ for
some i ∈ {1, 2} , then their cores cannot coincide. If the two matrices differ in
terms of another entry, say for instance a12 < b12 then, as A is buyer–seller
exact, there exists x ∈ C(wA) such that x1 + x2′ = a12′ < b12′ and thus the
cores will also be different. 2

From the above corollary, the remark made after definition 1 can now be
improved. Take a 2×2 assignment game which is not dominant diagonal (see
definition in subsection 5.2 below). From Solymosi and Raghavan (2001) it
will not be exact, but from corollary 12 it will be buyer–seller exact.
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5 Concluding remarks

5.1 45o–lattices

We are now in a position to answer a question posed by Quint (1991). Notice
first that the core of an assignment game (M ∪ M ′, wA) can be expressed
just in terms of the payoffs to one side of the market (let us take the buyers
without loss of generality) by using the constraints ui+vj′ = aij′ if (i, j′) ∈ µ ,
where µ is an optimal matching. This is what is called the u–space core of
wA , Cu(wA) = {u ∈ Rm | ∃v ∈ Rm′ and (u, v) ∈ C(wA)} and it has a very
particular shape: it is a 45o–lattice in Rm , that is to say, there exist real
numbers dik for all i, k ∈ {1, . . . , m} , and non negative real numbers bi and
ei , for all i ∈ {1, 2, . . . , m} , such that

Cu(wA) =
{

u ∈ Rm

∣

∣

∣

∣

ui − uk ≥ dik for all i, k ∈ {1, . . . , m}, i 6= k
bi ≤ ui ≤ ei for all i ∈ {1, 2, . . . ,m}

}

.

Quint (1991) gives a characterization of the cores of an assignment game
by proving that for any 45o–lattice, that is to say, a non empty set L such
that

L =
{

u ∈ Rm

∣

∣

∣

∣

ui − uk ≥ dik for all i, k ∈ {1, . . . , m}, i 6= k
bi ≤ ui ≤ ei for all i ∈ {1, 2, . . . , m}

}

,

there exists an assignment game (M ∪M ′, wL) such that Cu(wL) = L .
Taking M ′ = M ∪ {m + 1} , the game wL is defined by the assignment

matrix AL :

aii′ = ei for all i ∈ {1, 2, . . . ,m}
aij′ = max{ej + dij, 0} for all i, j ∈ {1, 2, . . . , m}, i 6= j
ai,m+1 = bi for all i ∈ {1, 2, . . . , m} ,

and µ = {(i, i′)}i∈M is an optimal matching for the grand coalition.
This game wL is not the unique one with u–space core coinciding with

L . As Quint points out, on one hand, more sellers could be added by suitably
choosing the entries in their columns, without changing the optimal matching
and the core. However, an assignment game with minimal number of sellers
can be defined such that Cu(wL) = L . This minimal number of sellers will be
m + 1 if 0 6∈ L and m otherwise. Secondly, rearranging the columns of AL ,
the optimal matching may change, but not the core. Finally, the definition of
AL above may produce aij for which ui + vj > aij for every (u, v) ∈ C(w) .
Then we could lift aij slightly without changing the core.

At that point, Quint (1991, page 419) makes the following conjecture which
can now be proved.
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Theorem 13 For a given 45o–lattice L ⊆ Rm , there exists a unique assign-
ment game (M ∪ M ′, wL) , defined by matrix A′

L = (a′ij′)(i,j′)∈M×M ′ , such
that:

1. C(wL) = L ,

2. wL contains m + 1 sellers if 0 6∈ L (or m sellers if 0 ∈ L ),

3. µ is an optimal matching for A′
L , where (i, i′) ∈ µ for all i ∈ {1, 2, . . . , m} ,

4. the a′ij′ , for i 6= j , are “as high as possible”.

Proof: By Quint’s method, given a 45o–lattice L ⊆ Rm we know the
existence of at least a matrix AL such that Cu(wAL) = L . Now take matrix
A′

L to be the (unique) buyer–seller exactification of AL , that is to say, A′
L =

Ar
L . By theorem 3, C(wAr

L
) = C(wAL) and thus Cu(wAr

L
) = L . If B is

another matrix, with the same dimensions as AL , such that Cu(wB) = L ,
then, since C(wB) = C(wAL) , again by theorem 3 we obtain that Br = Ar

L
and thus B ≤ Br = Ar

L which proves that Ar
L is “as high as possible”. 2

5.2 About the exactification we
A

At the beginning of section 3 we remarked that when exactifying an assignment
game wA the resulting game we

A , we
A(S) = minz∈Ext(C(wA)) z(S) , may not be

an assignment game, although in some cases it is. We can now characterize
when this does happen.

For this purpose, recall that a square matrix A is dominant diagonal
(Solymosi and Raghavan, 2001) when aii′ ≥ aij′ for all j′ ∈ M ′ and aii′ ≥ aji′

for all j ∈ M , that is to say, each diagonal element is the largest one in its
row and column. Solymosi and Raghavan also prove that an assignment game
is exact if and only its assignment matrix is dominant diagonal and doubly
dominant diagonal.

Now, it is easy to see that the game we
A is an assignment game if and only

if Ar is dominant diagonal.

Corollary 14 Given an arbitrary assignment game (M ∪ M ′, wA) , the fol-
lowing statements are equivalent:

1. we
A is an assignment game

2. we
A = wAr

3. Ar is a dominant diagonal matrix
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Proof: On one side, if Ar is dominant diagonal, as it is also doubly
dominant diagonal, from Solymosi and Raghavan (2001) wAr is an exact
game and thus it coincides with we

A , which is the only exact game with the
same core as wA . On the other hand, if we

A is an exact assignment game,
as it has the same core as wA , then it is also buyer–seller exact and from
theorem 3 must coincide with wAr . But then Ar is dominant diagonal. 2
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