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Abstract

This paper analyzes the issue of the interiority of the optimal population growth rate in a two-period
overlapping generations model with endogenous fertility. Using Cobb-Douglas utility and production
functions, we show that the introduction of a cost of raising children allows for the possibility of the
existence of an interior global maximum in the planner’s problem, contrary to the exogenous fertility

case.
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Resumen

Este articulo analiza el problema de la interioridad de la tasa de crecimiento 6ptima de la poblacion en
un modelo de generaciones solapadas de dos periodos con fecundidad endbgena. Usando funciones de
utilidad y de produccién de tipo Cobb-Douglas, se muestra que la introduccién de un coste de tener
hijos permite la posibilidad de que exista un méximo global interior en el problema planificador,

contrariamente a lo que sucede en el caso con fecundidad ex6gena.



1 Introduction

Samuelson (1975) analyzed the question of the optimal growth rate for pop-
ulation in the classical model of two overlapping generations (OLG) a la
Diamond. This analysis resulted in the so-called ‘Serendipity Theorem’, ac-
cording to which only if population happened to grow at its optimal rate
in the decentralized economy, its steady state equilibrium would reach the
golden rule. Samuelson’s analysis was followed by a criticism —Deardorff
(1976)— concerning the interiority of the optimal solution in the planner’s
problem. In particular, Deardorff showed that if both the utility and the
production function were of the typical Cobb-Douglas type, there would be
no interior rate of population growth that maximized the utility of the rep-
resentative agent at the steady state; and the same would happen for several
other specifications of preferences and technology. A few years later, Michel
and Pestieau (1993) analyzed this issue considering more general utility and
production functions, of the CES type. They concluded that the planner’s
choice of the population growth rate would be interior only if either the two
types of consumption or the two production factors were complements. All
these papers consider the agents’ fertility decision as being exogenous.
While some papers have developed models with endogenous fertility in
which the optimal rate of population growth was analyzed!, none of these
has focused its attention on the issue of the interiority of the first best solu-
tion. As an exception, Schweizer (1996) deals with this problem. This author
compares the optimal allocation of OLG models that consider optimal popu-
lation growth with the optimal allocation of local public goods models. The
main point of the paper is to insist on the fact that the planner’s first order

conditions are not sufficient to guarantee the existence of an interior global

!See, for example, Eckstein and Wolpin (1985) and Bental (1989).



maximum.

This paper investigates in what cases the optimal population growth rate
is interior when fertility is endogenous in Samuelson’s model. For simplicity,
we restrict our analysis to the case of a Cobb-Douglas specification of utility
and technology. We find that the possibility of an interior optimal solution
exists and try to understand the driving forces behind this result.

In Section 2 we revise the issue of the optimum growth rate for population
in an exogenous fertility framework, as analyzed by Samuelson in 1975. Using
specific utility and production functions, we analyze whether the planner’s
choice of population growth is interior. Section 3 applies the same analysis
in a framework with endogenous fertility —by introducing both a cost and a
taste for children— and compares the results with those previously obtained.
Our results show that, while the taste for children does not play any role
in avoiding a corner solution, the introduction of a cost of children makes
it possible to have an interior global maximum of utility. We conclude with

some final remarks in Section 4.

2 Samuelson’s Model and the Problem of the
Interiority of the Optimal Solution

Samuelson (1975) derives the optimal population growth rate in the basic
two-period overlapping generations model & la Diamond (1965). Individuals
in this model live for two periods: in the first, they work; in the second,
they are retired. The size of the generation born in period t is given by N;.
An individual born in ¢ consumes an amount ¢; when young and an amount
diy1 when old. Preferences are given by the utility function U(c;, dyy 1), with
derivatives U.(ct, diy1) = %ﬁt“) > 0 and Uy(ey, diyq) = %"ﬁ“) > 0.

Samuelson assumes U(+) to be quasi-concave.



The economy produces a single good using two factors of production:
capital and labor. At time ¢, there are NN, workers supplying N, units of
labor. Population grows at an exogenous constant rate n — 1, so that®:

Nt-l—l

= vt
N, "
The production function, given by:
}/:‘, — F(Kt7 Nt)

exhibits constant returns to scale. Thus it can be expressed as y, = f(k;),
with k; the capital-labor ratio. Moreover, it is increasing and concave, so
that f'(k;) > 0 and f”(k;) < 0. Capital depreciates at a rate § € [0,1]
each period. At the end of the period, non-depreciated capital can be either
consumed or invested.

The resource constraint of the economy can be expressed as:
F(Kt, Nt) + (]_ — (S)Kt = CtNt + dtNt—l + Kt+1

Resources available in period ¢, given by the left-hand side of the expression,
are devoted to consumption of the two generations alive in ¢ and to invest-
ment in future capital. Dividing everything by N;, we obtain the resource

constraint in per capita terms of the present working generation:
dy
flhe) + (1= 0k = ¢, + o + nki

To derive the social optimum, Samuelson assumes that the planner max-
imizes the utility function of the representative individual subject to the

resource constraint at the steady state, with respect to ¢, d, k and n:

d
e d

2Some authors, including Samuelson, consider N&—T = 1+ n, so that n is the rate of
population growth. Using our notation, n is the number of children of the representative
individual. This latter approach is used in most papers with endogenous fertility.
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subject to:

f(k)+(1—6)k:c+%+nk (1)

An interior solution is characterized by the following first order conditions:

Ueer,d*)
U, d) " )
d* .
oy " @)
F)+1—6=n" (4)

The first condition gives the optimal allocation between consumption of
the young and consumption of the old. Equation (3) determines the optimal
population growth rate by equalizing the marginal benefit of additional pop-
ulation growth to its marginal cost. The first one is given by the left-hand
side of the expression, and has been called the intergenerational transfer ef-
fect. Tt captures the fact that, when the population grows, there are more
working individuals to support each retired person. On the other hand, the
marginal cost of higher population growth, given by the right-hand side of
the equation, has been called the capital dilution effect. According to this
effect, when the population grows, the stock of capital must be expanded in
order for the same capital-labor ratio to be maintained. Finally, equation (4)
determines the optimal level of capital per capita, which is defined by the
golden rule.

If the optimal solution is interior, these three equations together with
the resource constraint of the economy (1) determine the optimal values of
consumption, the capital-labor ratio and the population growth rate, c¢*, d*,
k* and n* — 1.

A year after Samuelson published his article on the optimal growth rate

for population, Deardorff (1976) published a comment on the former in the



same review. Deardorff’s article argued that, for a wide range of utility and
production functions, Samuelson’s problem did not have an interior global
maximum. For instance, for the typical double Cobb-Douglas case, the op-
timal population growth rate turned out to be either zero or infinite. In the
following, we analyze this specific case and try to clarify what underlies the
results.

Consider the following log-linear utility function and Cobb-Douglas pro-
duction function:

Ul(c,dir) = log e, + Blogdyy
fky) = Akg?

where 5 € [0, 1] is the subjective discount factor, A is a technological param-
eter and a € [0,1] is a parameter that represents the share of income that
goes to capital earnings. Although the utility function is concave in each
of its arguments, the planner’s objective is not necessarily globally concave.

Using these functions, equations (1)-(4) can be rewritten as:

/e
Bja- " (5)
d
Aak®* ' +1-6=n (7)
Ak“+(1—6)k:c+g+kn (8)

The solution is slightly different if one assumes 6 =1 or § < 1.

2.1 Total Depreciation of Capital

Let’s start by assuming that capital totally depreciates in the production

process. In such a case, we can isolate k in (7) as:

- (2)"
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and d in (5) as:
d = fBen (10)

Substituting these two expressions in (8) and isolating ¢ we obtain:

c I 1-a <@> l_an (11)

:1—1—5 « n

Equation (6) can then be expressed only as a function of n:

B 1—a (Ax ﬁ_ Aa\ T
raa (o) = (%) &

where the term (%)

1
== cancels out.
Hence the previous set of equations will only be satisfied simultaneously

if the following condition on parameters holds by chance:

8
1+ 283

(13)

Otherwise, the first order conditions of the planner’s problem have no
solution. Note also that, if (13) holds, the set of first order conditions is
satisfied for any value of ¢, d, k and n.

To understand the intuition behind this result, we will analyze how the
marginal benefit and the marginal cost of higher population growth behave.
As explained in the previous section, the marginal benefit of n is given by
the intergenerational transfer effect (d/n?), while the marginal cost is given
by the capital dilution effect (k). Using the specific functions defined above,

we can express these two effects as a function of n as:

1

d b 1—a (Aa) -«
=2 - _2_ s
n? 14+8 « ( )

n
KD:k:(ﬂ) B
n



where I'T refers to the intergenerational transfer effect and K D to the capital
dilution effect. By taking the first and second derivatives, we conclude that

both effects are always decreasing and convex as a function of n:

orTr e 1 —24a
o0 T aeg T S0 W0
821T 5(2 — a) 1 =342
— A l—«a l—a
o3 a(l—l—ﬁ)(l—a)( a)T-an >0 Yn>0
KD 1 1 —24a
aan — —1_a(Aa)1—an e <0 Y >0
62KD (2 — a) _1  =342a
W — m(Aa) I—amn 1-a > 0 \V/TL > 0

Moreover, by subtracting one effect from the other, we obtain:

@)ﬁ B—a(l+28)
n a(l+5)

the sign of which does not depend on the size of n. Depending on the

IT—KD:<

sign of the expression f — a1l + 253), one of the two effects will always
dominate the other, Vn > 0. In particular, if this expression is positive, the
intergenerational transfer effect dominates, implying that the optimal n is

infinite; if it is negative, the capital dilution effect dominates, implying that

B

YL the expression is zero and the

the optimal n is zero. In the case a =
two effects cancel out.

These results are illustrated graphically in Figure 1. For the intergen-
erational transfer effect to dominate the capital dilution, we need « to be
low enough and 3 to be high enough; in other words, we need labor to be
important enough in the production process, and we need individuals not
to discount the value of future consumption too much. Then the marginal
benefit of higher population growth will always be higher than its marginal

cost, as shown in panel (a). On the other hand, if labor is not very important

in production and future consumption is discounted considerably, population



growth will be less valued and the marginal cost will dominate the marginal
benefit, as depicted in panel (b). Panel (c¢) shows the case in which the
marginal cost exactly compensates the marginal benefit of higher population

growth.

Figure 1: The capital dilution and intergenerational transfer effects for 6 = 1

IT(n), KD(n) IT(n), KD(n) (), KD(n)
I KD IT
KD IT KD
(a) @ < 153 (b) @ > () a=fs

In terms of utility, when the intergenerational transfer effect dominates,
the marginal benefit of n is greater than its marginal cost, so utility increases
in n. The opposite is true when the capital dilution effect dominates, so
utility decreases. Finally, when the two effects cancel each other out, utility
does not change as we vary n. To complement the analysis on the shape of
the utility function, we shall study the limit cases. Substituting (10) and (11)
in the utility function, we obtain the indirect utility function as a function
of n:

Ule(n),dn)) = V(n) = log (ﬁ (%)_ n> +

The limits of this function can be easily obtained by grouping terms



together:

_ l -« 5(1_04)ﬁ £ 1424148
V(n) = log (a(l—l—ﬁ) [a(1+ﬁ)] (Aa) 1o 't ) (14)

then
—00 if B —a(l4+24

: -~ ) >0
lim Viin) = { 1+28) <0
)>0

(
n—0 +00 if 5 — a(
) oo if 8 —a(l+203
im Vin) = {—oo if B— a(l1428) <0

In the case 8 — a(1 4 23) =0, V(n) is constant at the following value:

V(n) = log (56 {ﬁ] v (Aaﬁ*ﬁ)

Taking the derivative of (14) and rearranging:

Vi(n) = = {5 - f(_l . 23)]

n

which has the following limits:

too  ifB—a(l+28)>0
—00  ifB—a(l+28)<0

n—0

lim V'(n) = 0

n—0o0

lim V'(n) = {

The shape of the indirect utility function is depicted in Figure 2 for the
three cases differentiated above.

Thus, in this case, with = 1, there is no interior solution to the planner’s
problem. Depending on the values of @ and /3, the optimal rate of population

growth that maximizes utility can be co, 0 or any n > 0.

2.2 Partial Depreciation of Capital

Let’s now turn to the case in which the depreciation rate is strictly smaller

than 13. In such a case, there is a solution to the planner’s set of first order

3This is the case considered by Deardorff (1976).
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Figure 2: Shape of the indirect utility function V(n) for 6 =1
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conditions:
l—a)(l1—=9
B —a(l+20)
Note that this solution is valid as long as a < ﬁ, which guarantees that n

is positive and finite.

The intergenerational transfer and the capital dilution effects are given

by:
IT:i: f 1-a A« o m+4+6—1
n? 1+5 « n+d—1 n

Aa \ e
KD=k=|—17—
<n+6—1>

which, as before, are decreasing and convex in n. Subtracting the two effects,

we obtain:

Aa ) [ —a(l+20))n =50 —a)(1=8)

[T_KD:<n+5—1 na(l+ 5)
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The indirect utility function is in this case:

Vi(n) = log (atl_fﬁ) (n +A5a_ 1) - (n+6— 1)) +

B(l—a) ( Aa \T=
+Blog(a(1+ﬁ) <n+5—1) (n+5—1)n>

and its derivative:

oy B—al+28)]n - B(1—a)(1—9)
Vi) = a1l —a)(n o1

with the following limit values®:

lim V(n) = +4o0

n—1-4

oo iff—a(l+28) <0

lim Vi(n) = +oo S —all+28)>0
e I if B—a(l1+28)=0
lim V'(n) = —o0

n—1-4§
. ! _
Y () =0

where [ is the following constant:

148
I =log [(ﬁlga(/la)ﬁ> ﬁﬁ]

Hence there are two possibilities:

o If > ﬁ, (16) is always negative; thus the capital dilution effect
always dominates the intergenerational transfer. Moreover, (15) is not
a finite non-negative number, so there is no critical point that satisfies
the set of first order conditions. This case is depicted in panel (a) of

Figures 3 and 4.

“Note that in this case the lower bound for n is 1 — 8, since n > 1 — § is required to
have a positive capital-labor ratio.
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Figure 3: The capital dilution and intergenerational transfer effects for 6 < 1
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o [fa< ﬁ, the effect that dominates depends on the size of n: for n <
7, the capital dilution effect dominates; for n > 7, the intergenerational
transfer effect dominates; finally, if n = 7, both effects cancel each other
out. In the first case, utility is decreasing in n since the marginal cost
is greater than the marginal benefit, while the opposite is true in the
second case. Thus the indirect utility function is U-shaped, as can be

seen in panel (b) of Figure 4, and the solution to the planner’s first

order conditions is in fact a minimum.

Therefore, with 0 < 1, as in the case of total depreciation of capital, there
is never an interior maximum for n. However, there exists the possibility of
having an interior minimum, which reminds us of the importance of checking
the second order conditions of the planner’s problem. Compared with the
previous case of total depreciation, when capital is not fully depreciated in
the production process the capital dilution effect is relatively stronger than
before, so that, even if labor is very important in production and future
consumption is not discounted much, for very low n the marginal cost will

dominate and utility will decrease in n.
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Figure 4: Shape of the indirect utility function V(n) for 6 < 1
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Deardorff generalized his results and showed that, with standard prefer-
ences®, there would be no interior solution to the planner’s problem when-
ever the production function was unbounded, in the sense that output could
be made infinitely large by greatly increasing the capital-labor ratio®. This
happens in the Cobb-Douglas case as well as in the constant elasticity of sub-
stitution (CES) production function with substitutability between factors of
production. Michel and Pestieau (1993) analyze, in the case § = 1, the shape
of the indirect utility function when the utility and production functions are
of the CES type. They conclude that, in order to have an interior global
maximum, there must be complementarity between labor and capital in pro-
duction, as in Deardorft’s analysis. Alternatively, if the production function
is Cobb-Douglas, complementarity between first and second period consump-
tion in preferences is required. In all other cases, the optimum population

growth rate is a corner solution.

°In the sense that utility increases monotonically in both of its arguments.
6The reason is that utility can always increase by reducing n, since this raises k¥ and
thus consumption.
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3 Optimal Population Growth with Endoge-
nous Fertility

We will now extend the previous model to allow for the number of children
to be chosen by individuals —endogenizing population growth— and see how
the results change. We will focus on the double Cobb-Douglas case and will
consider only the case of total depreciation of capital.

To endogenize fertility in Diamond’s model of overlapping generations,
two new features will be introduced in the basic model. First, we will sup-
pose individuals derive utility from having descendants —that will be the
benefit of having children; and second, we will assume children are costly.

Consequently, the number of children per individual, n; = NH L

, will now be

a decision variable and hence will no longer be constant over time.
Concerning the first new aspect of the model, we will assume, from now

on, that individual preferences can be represented by the following utility

function:

Ur(n, €1, diyr) = ylog(ng) + (1 — ) [log(e) + flog(diyn)]  (17)

where v € [0,1] is a parameter reflecting the taste for children. The first
derivatives of the utility function with respect to each argument are thus
positive. We assume absence of altruism, in the sense that agents do not
value the utility of their children. Observe that, if v = 0, individuals do not
like children. In that case, they would only have descendants if there was an
investment motive for having them, for instance if children supported their

parents when old’, or if pension benefits were linked somehow to the number

See for example Wigger (1999), who derives a model in which gifts are given by children
to their parents due to the existence of backward altruism; similarly, Cigno (1993) and
Rosati (1996) assume children support their parents because this is a family rule that
everyone obeys.

15



of children®.

The cost of children can be introduced in several ways. We will include
both a fixed monetary cost e per child and a time cost z per child; by making
one of these two parameters equal to zero, the model is left with only one
type of cost of children. The inclusion of a time cost of children implies the
endogeneity of the labor supply, because it introduces a trade-off between
working in the labor market and raising children. Let’s call L, the amount
of labor supplied to the firms by all individuals in period ¢. Each individual
devotes a share zn; of their time to raising children and a share (1 — zn;) to
working in the market. Assuming each agent has an endowment of 1 unit of

time, the production function can now be written as’:

F(Ky, Ly) = F(Ky, (1 = 2n) Ny)
With the Cobb-Douglas specification and in per-capita terms:
f(kt, lt) — Ak?l%ia (18)

where [; = 1 — zn, is the labor supply per individual, and k; is no longer
the capital-labor ratio but the stock of capital per capita. Note that the
production function depends now on two arguments: capital and labor; the

latter depends negatively on the number of children per individual.

3.1 The Planner

As in Samuelson (1975), optimality is defined here as the allocation that
maximizes the steady state utility of the representative individual subject to

the resource constraint:

max U(n, c,d) = vlog(n) + (1 — 7) [log(c) + Blog(d)] (19)

c,d,n,k

8 As proposed in Bental (1989), Sinn (1997) and Abio and Patxot (2001).
9With exogenous labor supply, L; = N;.

16



subject to

AR = ¢+ d +en +nk (20)
n

with [ =1 — zn.

The first order conditions for an interior solution are:

=n* (21)

d* v, B\

I* -«
Ao (;7) - (23)

As could be expected, the equation that determines the optimal num-

ber of children, (22), is different than before. The marginal benefit of chil-
dren now includes two terms: the intergenerational transfer effect and the
marginal utility of children, expressed in terms of first-period consumption.
The marginal cost, on the other hand, is the sum of three terms: the capital
dilution effect, the monetary cost per child and the loss in production due to
the time cost of children.

An interior optimal solution at the steady state is a vector of variables
(c*,d*,n*, k*, [*) satisfying equations (20)-(23) that maximizes the utility

function in (19) subject to the resource constraint (20).

3.2 1Is There an Interior Optimal Solution?

To obtain clear results, the analysis is undertaken assuming the existence of

only one type of cost of children.

3.2.1 A Monetary Cost of Children

Let’s first assume e > 0 and z = 0, so there is only a fixed monetary cost per

child. As in the previous section, we can obtain the marginal benefit and the

17



marginal cost of children in terms of n:

v+ B(1—7)
(1=y)(1+5)

MB =

1—a<Aa>1—la ]
— —e
a n

MC =e+ <@> h
n

where M B refers to the marginal benefit and M C' to the marginal cost; and
verify that both are decreasing and convex in n. To know which of them

dominates, we subtract them and obtain:

VB_yo - 8=y —al+250 — )] (A2) 75 — ea [l +28(1 — )]

]
a(l =7)(1+p)
(24)

the sign of which depends on n, a, 5 and . Define a as:
~_7+B(1-9)
a=———=>
1+28(1 =)
e If @ > «, (24) is always negative no matter the value of n, thus the
marginal cost of children is always greater than their marginal benefit
and utility is always decreasing in n. This case is depicted in panel (b)

of Figures 5 and 6.

e If o < @, the expression in (24) can be positive, negative, or zero. Let
n be the value of n that makes it equal to zero:

Y+ B8(1—7) —a[l+281—-7)]]"°

Aa ea[l+268(1— )]

n

which is also the value that solves the set of first order conditions.
Then, when n < 7, (24) will be positive. When n > 7, (24) will
become negative. In the first case, the marginal benefit will dominate
the marginal cost of children and utility will be increasing in n, while

the opposite happens in the second case. When n = 7, the marginal

18



benefit of children equals their marginal cost and utility achieves a
maximum. This case is represented graphically in panel (a) of the

same figures.

Figure 5: Marginal benefit and marginal cost of children for z =0 or e =0

MB(n), MC(n) MB(n), MC(n)

MC

Figure 6: Shape of V(n) for z=0o0re =0

V(n)
an) \
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The limit values of V(n) and V'(n) are':

—00 ifa<a
limV(n) = +00 if > a
n—0 . ~
I ifa=a«a
lim V(n) = —oo
n—nmax
+00 ifa<a
lim V'(n) = —00 ifa>a
n—0 . ~
0 ifa=a«a
lim V'(n) = —o0
n—nmax

where [ is the following constant:

I =log | gPO-7 Al+2601-7) (1 = ) IHAE= [y 4 (1 — )T
[1428(1 — )]0

max <l_a>1_a ey
nmr = A o
e

So, in this case, there is the possibility of having an interior global maxi-

and

mum, under the conditions that the share of capital in income is low enough,
the subjective discount factor is high enough, and the taste for children is
high enough. Note that, if there were no taste for children (y = 0), these
results would not be altered; there would still be an interior global maximum

of utility for low values of o and high values of 3.

3.2.2 A Time Cost of Children

Let’s now assume children are costly only in terms of time, so e = 0 and

z > 0. After verifying that both the marginal cost and marginal benefit are

10T this case, the existence of a cost of children imposes an upper limit on the maximum
feasible amount of descendants of an individual. Since more children imply less resources
available for present consumption, this limit is determined by making consumption in the
first period —and hence in the second— equal to zero. We denote this maximum number of
descendants by n™2*.
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decreasing and convex as a function of n, we obtain the difference between

the two as: 1
Aa\ T ['—Ozn
MB-MC =22 25
() i >
where
F'=y+p8(1-79) —all+28(1—17)]
and

O=1+28(1-7)—a[l+28(1—7)+ (1 —-7)(1+p)]

It is easy to prove that I' < ©. The sign of (25) crucially depends, as
before, on the size of « relative to those of 5 and v, as well as on the value

of n. We can define the following critical values of a:

T I+28(0-9)
1+26(1 —7)

aQE

1+28(1 =)+ (1 —7)(1+p)

with a; < asg, and the value of n that solves the first order conditions:

7+ B(1—7) —all +258(1 —v)]
214281 —7) —a[l+28(1 —7)+ (1 —7)(1+B)]

This time there are three possible cases:

n=

e For a sufficiently small share of capital in income (o < ay), both T’
and © are positive; hence the marginal benefit of children exceeds their
marginal cost for n < 7, while the opposite is the case for n > n. This

case corresponds to panel (a) of the previous Figures 5 and 6.

e For moderate values of a (a; < o < @), O is positive but I' is negative;
thus the marginal cost always dominates the marginal benefit, as can

be seen in panel (b) of the same figures.
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e If « is high enough (v > ), both I" and © are negative; so again the
sign of the expression in (25) seems to depend on n; however, since
[' < © and zn < 1, the expression will always be negative, as in the
previous case. Note that as > 1/2, so under the typical assumption
that the share of capital in income is lower than one half this case is

automatically ruled out.

The limit values of the indirect utility function and its derivative are:

—00 if o <oy
limV(n) = +00 if >y
0 I if = &1
v =
+00 if o <oy
liH[l] Vi(n) = —00 if o > oy
" —2(1+B8)(1—v) ifa=ao
lim V'(n) = —o0
n—nmax

where [ is the following constant:

I =log | gPO-7 Al+2601-7) (1 = )W [y 4 B(1 — )P0
[1+28(1 — 4))-0)

This time n™a*

is given by 1/z, which is the value that makes present
consumption equal to zero.

Observe that, again, the interior global maximum exists if a is low enough,
f and « high enough. If v = 0, it still exists as long as the conditions on «

and S are satisfied.

3.2.3 The Role of the Cost and the Taste for Children

In the two cases above, we have seen that the possibility of an interior global
maximum would still exist if individuals did not like children. So it seems

that it is the cost of children, be it monetary or in terms of time, that is
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crucial in determining whether there is an interior solution in the planner’s
problem. If there were no cost of children (e = z = 0), the only difference
with Samuelson’s model would be the taste for children, v > 0. In such a
case, it is easy to demonstrate that there will never be an interior solution
to the planner’s problem, since:

@)ﬁ 7+ 81 =) ~ 1 +26(1 )]
n a(l =7)(1+5)

the sign of which does not depend on n. The reason is the following: the

MB—MC':<

marginal utility of children, with log-linear preferences, depends on n in the
same proportion as the intergenerational transfer and the capital dilution
effects do. So, depending on the parameter values, either the marginal benefit
or the marginal cost will dominate independently of the value of n, as was
the case when there was no taste for children.

With a cost of children, the condition for having an interior solution is the
same as the one for having the intergenerational transfer effect dominate the
capital dilution in Samuelson’s model: labor must be sufficiently important
in the production process (« sufficiently low), and future consumption must
not be discounted too much by individuals (f sufficiently high). Yet, the
question remains as to why the utility function eventually decreases under
the presence of a cost of children. Recall that both the intergenerational
transfer and the capital dilution effects are decreasing in n. When a cost
per child is introduced, this cost does not decrease in n as much as the
other effects, because we assume that the first child costs the same as the

1

second, and so on'!. In this way the marginal cost of children eventually

dominates for a sufficiently high fertility rate. Thus in the case where the

1Tn the case of a time cost of children, the marginal cost of a child in terms of loss in
production is decreasing in n due to general equilibrium effects, since this cost is propor-
tional to the per-capita capital stock. However, it is not so decreasing in n as the capital
dilution effect.
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intergenerational transfer effect dominates the capital dilution and hence
utility is increasing in n —at least for low values of n— at some point the
cost of children will dominate and utility will start decreasing. Introducing
a constant cost per child is therefore a way of introducing an upper bound
for the choice of n, avoiding the potential repugnant solution of having an

infinite rate of population growth as the optimal solution for the economy.

4 Final Remarks

We have seen that the endogenization of fertility, and in particular the intro-
duction of a cost of children, can eliminate the problem of the non-existence
of an interior global maximum in Samuelson’s problem of finding the opti-
mal population growth rate for an overlapping generations economy. If the
cost of children was endogenous —i.e. chosen by the parents— the optimum
would again be a corner solution, as parents would choose to have an infi-
nite amount of descendants and to invest a minimum amount of resources on
each of them. However, this problem disappears once we consider the human
capital that is accumulated when investing in a child’s education, with its
positive effects on productivity growth!2.

It should not be concluded, from this theoretical analysis, that there exists
an optimal population growth rate that each society must try to attain. As
Samuelson (1976) claims, “An important purpose of the original analysis
was not so much to enable society to identify n* and normatively to move
to it, as to learn what is implied for society’s net welfare potentialities by
the post-1957 drop in birth rates”. After identifying the problem of the non-
interiority of the optimal solution, one of his conclusions was that society

should “reduce the fears that declining population growth makes old-age

12Gee, for example, Peters (1995).
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security more difficult”. Indeed, if n* were equal to 0, utility would increase
as fertility falls, until an infinite level of utility was attained when population
tends to disappear. Our analysis with endogenous fertility shows that this
result might no longer be true and confirms the conclusion of many other
studies developed in the last decades: the demographic transition challenges
the future finances of the social security system, and by making the provision
of old age consumption more difficult, it may well have negative welfare effects

on society.
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