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ABSTRACT 

 

In many fields of economic analysis the order of integration of some 

economic magnitudes is of particular interest. Among other aspects, the order of 

integration determines the degree of persistence of that magnitude. 

The rate of inflation is a very interesting example because many 

contradictory empirical results on the persistence of inflation rates can be found 

in the literature. Moreless, the persistence of inflation rates is of particular interest 

as much for the macro economy as for the taking of political decisions. Recently, 

Hassler and Wolters (1995) argue that these contradictions may be due to the 

fact that either process I(0) or I(1) are considered. 

In this paper we assume inflation rates in European Union countries may in 

fact be fractionally integrated. Given this assumption, we obtain estimations of 

the order of integration by means a method based on wavelets coefficients. 

Finally, results obtained allow reject the unit root hypothesis on inflation rates. It 

means that a random shock on the rate of inflation in these countries has 

transitory effects that gradually diminish with the passage of time, that this, said 

shock hasn’t a permanent effect on future values of inflation rates.  
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1. Introduction 

 

In many fields of economic analysis the order of the integration of the 

analysed magnitudes is of particular interest, insofar as it determines some of its 

most important characteristics. Therefore, among other aspects, the degree of 

integration of an economic variable determines the degree of persistence of that 

variable, when persistence is taken to mean to what extent the future values of 

this variable depend on the shocks that may have impinged upon it in the past. 

A good example of an economic magnitude, for which it is of particular 

interest to know its degree of persistence, is the inflation rate as much for the 

macro economy as for the taking of political decisions. Therefore, what could 

happen is that a random shock on the inflation rate has transitory effects that 

gradually diminish with the passage of time or alternatively that this said shock 

has a permanent effect on future values. 

Intuitively, we think inflation rates may be mean-reverting (perhaps slowly 

mean-reverting) because any economic theory allows permanent effects of 

inflation rates shocks. Nevertheless, and despite this said interest, in the 

specialised literature abundant number of contradictory results can be found 

regarding the degree of persistence of the inflation rate in different countries. 

Recently, Hassler and Wolters  (1995) argue that the contradictions 

obtained in relation to the order of integration of the inflation rates – and other 

variables – may be due to the fact that either process I (0) or I (1) is considered, 

removing the possibility of intermediate situations.  To solve this limitation, 

Hassler and Wolters (1995) have proposed the use of more flexible models, 

autoregressive, fractionally integrated and moving average models (ARFIMA) to 

analyse the degree of integration without imposing the restriction that the said 

order of integration must be a natural number. 
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Moreover, the knowledge regarding the said degree of persistence has 

lately acquired a special importance due to the process of monetary integration 

which has taken place in the European Union (EU). Furthermore, and related to 

the said degree of persistence, the possible existence of relationships between the 

inflation rates in different countries is of considerable interest given that it has 

important implications for the interdependence of national politics, the validity of 

the hypothesis of the parity of purchasing power. 

In the work presented here, the aim is a contribution to the investigation in 

both respects, through the use of a much more flexible and general modelisation 

than is usual in this type of analysis. To be specific, an analysis of the order of 

fractional integration is proposed in these countries and the differentials of 

inflation among them is proposed without the necessity of assuming a specific 

generating process of data for said rates. As far as the main difficulty that this 

process presents, the use of the estimator proposed recently by Jensen (1999) 

based on the theory of wavelets is proposed.                   

In order to achieve said objectives, the article is organised in the following 

way: in the first place, the concept of (fractional) integration and the concept of 

persistence are briefly synthesised, then in section 3 an estimation of the order of 

fractional integration through the use of wavelets is presented. In section 4, this 

method of estimation is used to obtain clear evidence aginst of the presence of 

unit roots in the inflation rates in European Union. In section 5 we analyse aparent 

contradiction with results obtained with interannual inflation rates. The final 

section concludes. 
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2. Relationship between fractional integration and persistence. 

 

To formulate the concept of persistence in relation to a time series tX , it is 

supposed that a shock is produced of the magnitude δ  that leads to a variation in 

the said variable at the moment t in such a way that δ+=′
tt

XX . This results in a 

variation of the said variable in the moment t+n: δ
nntnt

mXX +=′
++ . 

Given these assumptions, the way in which the shocks are transmitted to 

the future values of 
t

X  are characterised by a succession of coefficients 
n

m , in 

such a way that a good measurement of the degree of persistence in the long term 

is n
n

mm
∞→∞ = lim . Therefore, in what follows, the concept of persistence is 

associated with the coefficient ∞m . 

 In addition, in the analyses of persistence, it is customary to assume that 

the series accepting differences allows a representation of Wold in a way that 

 
ttt

LbLbLbLbXL εµεµ ...)1()()1( 3

3

2

21
++++=+=−  (1) 

where the innovations εt are white noise. Note that said formulation allows the 

series to contain not only a determinist tendency (in the customary notation for 

the series - TS, trend stationary) but also a stochastic process (in the customary 

notation of the series DS, difference stationary) 

 Naturally, the degree of persistence of the series 
t

X  depends on the 

succession of coefficients of the polinomio )(Lb .  Therefore, if we assume that 

t
XL)1( −  is an ARMA process with polonomios φ(L) and θ(L), 

t
X  is TS if and 

only if the polinomio θ(L) contains a unit root because in this case, 

tt
LatX εµ )(+=  with )1)(()( LLbLa −= . On the other hand, when θ(L) does 

not have a unitary root, then X t  is DS. Therefore, if 0)1( =b  then 0=∞m , and if 

0)1( ≠b  this means that the polinomio )(Lb  contains a unitary root and, 
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therefore, ∑
∞

=
∞ =

0j
j

bm  that, in general is different from zero. Therefore, if 
t

X  is a 

random walk 1=∞m  is realised. 

 Nonetheless, the )0(I  and )1(I  models represent very extreme situations as 

far as its properties are concerned and for that reason, the literature related to an 

analysis of temporal series has shown great interest in fractionally integrated 

models given that these allow modelization of intermediate situations. 

 A good part of this recent interest is due to the development of 

autoregressive moving average and fractionally integrated models (ARFIMA). 

This models allows, in a relatively simply way, the modelization of intermediate 

situations between the ARMA models (stationary and with little persistence) and 

the ARIMA models (integrated and, therefore, with infinite persistence). To be 

more specific, it is said that a stochastic process 
t

X  follows a process ARFIMA 

if 

 
tt

d LXLL εθφ )()1)(( =−  (2) 

where the polinomios from (2) are defined by  

 p

p
LLL φφφ −−−= ...1)(

1
 (3) 

 q

q
LLL θθθ −−−= ...1)(

1
 (4) 

 ...)1(
!2

1)1( 2Ld
d

dLL d −−−=−  (5) 

and εt is a white noise process. If the polinomios (3) and (4) that describe the 

behaviour in the short term have all there roots outside the unit circle and the 

parameter d is found in the interval ( , )−1 2 1 2  then the process is stationary and 

invertible but when 21≥d , the process is not stationary. 

 In relation to the concept of persistence, said models are of great use given 

that they include, in addition to the traditional processes I(0) o I(1), processes 
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that exhibit intermediary properties. In this sense, on ARFIMA processes with 

210 << d  in spite of being stationary, it is to be expected that the shocks have a 

much more prolonged effect than if 0=d . 

 On the other hand, when 21≥d  the process is not stationary and the 

shocks have an even more prolonged effect. In this case, it is important to 

determine in what conditions the effect of the shocks continue to be transitory 

and when they are permanent. To be more specific, and in relation to the 

coefficient ∞m , if we assume an ARFIMA model for the time series with 

differences 

 
tt

d LXLL εθµφ )()()1)(( * =−∆−  (6) 

With the generic formulation presented in (1) and the previous analysis it 

can be deduced that the degree of persistence is directly related to the value )1(b . 

In this case, the polinomio )(Lb  is equal to )()()1( 1* LLL d −−− φθ  and, to evaluate 

the coefficient )1(b , )()();1,1*,()( 1 LLLdFLb −= φθ  can be used where F(a,b,c;x) 

is the hypergeometric function. In fact in Gradszteyn and Ryshnik (1980, pag 

1039-1042) it is demonstrated that 0)1;1,1*,( =dF  if d*<0 and, therefore, 

0)1( ==∞ bm  if d*< 0. Bearing in mind that the differentiated time series is 

fractionally integrated of the order d*, when the non-differentiated time series is 

of the order d=d*+1, it has been shown that integration order inferior to the unit 

are associated with purely transitory shocks given that, in this case 0=∞m . 

Furthermore, it is also possible to define the concept of fractional 

integration in a more general context although this is less popular in the economic 

literature than theARFIMA models. Thus, if 
t

X  is a stationary series with a 

spectral density )(ωf , it is said that 
t

X  has order of integration )5.0,5.0(−∈d , 

i.e. )(dIX
t

∼ , if 
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 { } )(*)2/(sin4)( 2 ωωω ff
d−

=  (7) 

where )(* ωf  is an even function, positive and continued in the interval [ ]ππ ,−  

and bounded. 

The generalisation of the said definition to order of integration 5.0>d  is 

the first thing using the operator )1( L− .  In particular, note how the ARFIMA 

models are no more than a particular case of the model (7) and that the previous 

arguments concerning the relationship between the order of fractional) integration 

and persistence continue being valid for any process )(dI . 

 In short, whether the effect of the shocks is transitory or permanent 

depends on the order of fractional integration on the stationarity or the non-

stationarity of the process. In addition, the striking fact is that for any series with 

the order of integration fulfilling 10 << d , although the shocks have a much 

more lasting effect in the future, the said effect is purely transitory. By way of 

summing up, in Table 1 some of the characteristics associated with different 

orders of integration (fractional) are presented. 

  

Table 1. Summary of fractional integration values 

 Mean Variance Shock duration 

0=d  Short-run mean-reversion Finite variance Short time 

5.00 << d  Long-run mean-reversion Finite variance Long time 

15.0 <≤ d  Long-run mean-reversion Finite variance Long time 

d = 1 No mean-reversion Infinite variance Infinite which effects decreases 

d > 1 No mean-reversion Infinite variance Infinite which effects increases 

 

3. Estimation of the order of fractional integration using wavelets 
 

The most common method in the analysis of economic variables for the 

estimation of the order of fractional integration1 proposed by Geweke and 

Porter-Hudak (1983) and commonly denominated as a GPH estimator is based 
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on the spectral representation of stationary stochastic processes. Therefore, the 

whole stochastic process 
t

X  is associated with a function )(ωf  called spectral 

density that fulfils the following property: 

 ∫−=
π

π
ωω dfX

t
)()var(  (8) 

If we assume that the data available ),...,(
1 T

XX  have been obtained from a 

stochastic process )(dI  its spectral density fulfils 

 { } )()2/(sin4)( 2 ωωω
Y

d

X
ff

−
=  (9) 

where )(ω
Y

f  is the spectral density of 
t

d

t
XLY )1( −= . On taking logarithms in 

the previous expression and evaluate it in harmonic frequencies, Tj
j

πω 2=  it is 

found 

 { }
)0(

)(
log)2/(sin4)0(log)(log 2

Y

jY

jYjX f

f
dff

ω
ωω +−=  (10) 

which can be written, using the periodogram as 

 { }
)0(

)(
log

)(

)(
log)2/(sin4)0(log)(log 2

Y

jY

jX

j

jYj f

f

f

I
dfI

ω
ω

ω
ωω ++−=  (11) 

Given the assumption that for frequencies close enough to zero frequency, 

the last adding up of (11) can be rejected in comparison with the others, the 

following approximation is obtained 

 { }
)(

)(
log)/(sin4)0(log)(log 2

jX

j

Yj f

I
TjdfI

ω
ω

πω +−∼  (12) 

So that to obtain an estimation of the parameter d  the authors propose 

specifying the following model of regression 

                                                                                                                                                         
1 See, for example, Diebold and Rudebusch (1989) or Porter-Hudak (1990). 
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jjj

eRI ++= βαω )(log  (13) 

where mj ,...,1= , the regressing )(log
j

I ω  is the logarithm of the periodogram in 

the frequency Tj
j

πω 2=  with T the number of observations.The constant α is 

the logarithm of the spectrum of zero of  
tt

d uXL =− )1( . As regressor 

{ })2(sin4log 2

jj
R ω=  must be used and the perturbation term is 

{ })()(log
jXjj

fIe ωω= . 

Naturally, the properties of the estimator of the parameter d  depend on the 

stochastic characteristics of this last term et. In this way if the process 
t

Y  is white 

noise, then its spectrum )(
jY

f ω  is constant. When the ordinates of the 

peridogram are independent2, the ordinates of the normalised periodogram 

)()(
jXj

fI ωω  are independent and the pertubations { })()(log
jXjj

fIe ωω=  are 

independent too. In this way, it is guaranteed that if 
t

Y  is white noise, the OLS 

method provides good estimations of the parameter d . In addition, to the extent 

that 
t

Y  is white noise, the term { })0()(log
YjY

ff ω  will be constant. 

 On the other hand, when 
t

Y  is not white noise, the spectral density does 

not need to be constant nor the hypothesis of independence among the residues 

is true. To be specific, it is to be expected that the presence of autoregressive 

models or moving average can generate distortions in the GPH estimator to the 

extent that this method doesn’t allow all the parameters of the model to be 

estimated simultaneously. 

In this sense, in Agiaklogou et al (1993) it has been shown, by means of a 

simulation exercise, that the GPH estimator can present an important bias when 

the model includes autoregressive parameters or moving average of high value. 

                                                 
2 Only in harmonic frequencies, who are the usually used. 
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This means that the contrasts that can be attained by using this estimator are 

incorrect. 

More recently, in Hurvich et al (1998) an analysis of the asymptotic bias of 

the GPH estimator shows how, although a high number of observations are made 

use of, the fact that the term { })0()(log
YjY

ff ω  is not constant means that the 

bias could be very important.  

The most recent alternative to said problems consist in using the theory of 

wavelets to obtain an estimation of the said order of integration. In this way, 

while the GPH estimator is based on the representation of the dominion of the 

frequencies, the alternative proposal by Jensen (1999) is based on the 

decomposition of the temporal series in different stages. 

More specifically, a wavelet is any function ψ  so that the group of the 

dilations and translations 

 )2(2 2 kxjj −ψ  (14) 

for different values { }...2,1,0, ±±∈kj  form a basis in the space of all square-

integrable functions. Using these dilations and translations, any temporal series 

can be broken down into a linear combination of a group of functions with 

different scales and different weightings. 

Therefore, if we note as )2(2 jυ  the variance of the wavelet of scale j2 , the 

property equivalent to the (8) one, when a wavelets decomposition is used, is  

 ∑
∞

=

=
0

2 )2()var(
j

j

t
X υ  (15) 

The simplest example of wavelet is based on the Haar function 

 [ ) [ )1,2121,0
)( IIx −=ψ  (16) 
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Although said function does not have good qualities and in practice the 

wavelets defined in Daubechies (1988) are used more frequently. 

As is well known, in the spectral analysis, the spectral density is obtained 

through Fourier`s transform. But its equivalent in the wavelets decomposition is a 

succession of coefficients jkc  associated with each dilation j and transition k. 

Said coefficients can be interpreted as the volume of the information gained (or 

lost) if the series 
t

X  is sampled with greater or lesser frequency. 

 Moreover, the coefficients jkc , can be calculated from the following inner 

product 

 ∫ −=〉〈= dtkttxxc j

jkjk
)2)((,ψ  (17) 

In fact, when a discreet temporal series is available, these techniques can 

be applied on the simple supposition that the discreet values have been obtained 

from the sample of a continuous temporal series. In this case, the wavelet 

transform only requires a simple matrix multiplication. 

Once the main concepts of wavelets representation has been introduced in 

a synthetic form, it is of special interest is to know how to take advantage of said 

theory for the estimation of the order of fractional integration. 

  To do this, it is supposed that )(tx  is a continuous stochastic process, 

which is fractionally integrated in the way that 

 )()()1( ttxL d ε=−  (18) 

where ),0(~ )( 2

εσε Nt   and 2121 <<− d . 

Jensen (1999) demonstrates that, for a process )(dI  with 21<d  the 

wavelet coefficients jkc  are distributed according to the distribution 

)2,0( 22 jdN −σ . If )( jR  is defined as the variance of the wavelet coefficients on 

the scale j, that’s to say jdjR 22 2)( −= σ , one can take advantage of the fact that 
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this variance is independent of the translations. This is precisely the property that 

can be taken advantage of to obtain an estimation of the parameter d . 

In the first place, the denominated discrete wavelet transform (DWT) 3 

allows one to calculate starting from values ),...,(
1 T

XX  the coefficients jkc  using 

Tj
2

log,...,2,1=  and 1,...,1,0 −= jk . To do this, it is enough to apply in a 

combined way a low-pass filter and a high-pass filter.4 

Once the coefficients jkc  are available, estimations of the variance can be 

calculated )( jR  using the following expression 

 ∑
−

=

=
12

0

2

2
1

)(
j

k
jkj

cjR  (19) 

for the values Tj
2

log,...,2,1= . Subsequently, taking advantage of the 

relationship 

 jdjR 22 2loglog)(log −= σ  (20) 

an estimation of the parameter d can be obtained from a simple regression, for 

example, by means of a ordinary least squares method, an estimator that we call a 

wavelet ordinary least squares one (WOLS). 

In Jensen (1999) it is shown how the mean squared error (MSE) of the 

WOLS estimator is very inferior to the mean squared error of the GPH estimator 

when the data generator process is a fractionally integrated white noise, that is to 

say, when 
tt

d XL ε=− )1(  and 
t

ε  is white noise. However the properties of the 

WOLS estimator in more general conditions have been studied in little detail up 

to now. 

 

                                                 
3 For those interested in an introduction to discrete wavelet transform see, for example, Heil and Walnut 
(1989). 
4 See Press et al. (1992). 
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4. The order of integration of the inflation rates in the EU. 

 

One of the economic magnitudes, which are of particular interest as far as 

the persistence of the variable is concerned, is the rate of inflation. In addition, as 

has been mentioned already, it is possibly to find in the econometric literature an 

important controversy in relation to the possibility that inflation rates contain a 

unit root. 

 The relevance of the controversy proceeds from the acceptance that the 

hypothesis has important implications for economic policy. The presence of a 

unit root in the growth of prices implies that, in this case, the shocks that affect 

the inflation rate in the present must have a permanent effect on the future rates of 

inflation. 

In addition, the process of a single currency that the EU countries are 

adopting has created greater interest, if that is possible, in the degree of 

persistence of inflation rates registered in these countries and their possible 

relationship. With the aim of bringing additional empirical evidence to bear on 

this question, the inflation of the fifteen countries has been used that the 

European Union conforms to at present. They have been calculated from the 

Retail Price Index (RPI) and taken from the CD-ROM from the Organisation for 

Cooperation and Economic Development (OCDE). The sample period analysed 

corresponds to everything included from March 1961 to October 2000, the 

widest possible sample given the availability of data at the moment at which this 

study commenced. 

To prevent the presence of variations of a seasonal nature distorting the 

results obtained, the interannual rates of inflation have been used. Therefore, 

being 
kt

I  the indicators of consumer prices in each one of the countries for the 

period analysed, the analysis of the monthly rates of inflation calculated as 

ktkt
ILX log)1( −=  has been taken as the aim of the analysis. 
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In first place, with the aim of examining the degree of integration being the 

standard econometric methodology, non-parametric contrasts of unit roots have 

been used. These have been proposed by Philips and Perron (1988) (PP) and 

generated the specification of a generator of data process, abandoned the 

supposed simplification of perturbations identically and independently 

distributed, underlying the classical tests of Dickey and Fuller (1981) and 

imposing more general conditions of perturbation. In Table 2 the result of 

contrast are presented if the series 
kt

X  presents a unit root through the estimation 

of first: a model without a constant or tendency, (statistic )(τZ ); secondly a 

model with a constant and without tendency (statistic )( µτZ ); and thirdly a 

model with a constant and with a tendency (statistic )( ττZ ). The statistic in bold 

is that must be used for each one of the countries according to the constant 

and/or tendency for each model that is significant. 

 
Table 2. Results on Phillips and Perron (1988) test 

 Country Z( )τ  Z( )τµ  Z( )ττ  

AUS Austria -1.29 -1.90 -3.16 
BEL Belgium -1.04 -5.78 -2.22 
DEN Denmark -1.29 -5.24 -3.25 
FIN Finlandia -1.10 -5.00 -2.40 
FRA France -0.79 -8.45 -1.70 
GER Germany -1.06 -3.89 -2.32 
GRE Greece -1.09 -5.74 -1.57 
IRE Ireland -0.98 -11.75 -1.82 
ITA Italy -0.92 -11.14 -1.68 
LUX Luxembourg -1.06 -3.90 -2.20 
NET The Netherlands -1.20 -2.07 -3.56* 
POR Portugal -1.29 -2.19 -2.30 
SPA Spain -0.96 -4.87 -2.32 
SWE Sweden -1.16 -3.45 -2.35 
UNK United Kingdom -1.19 -10.58 -2.09 

 Critical values depending on:    

 5% -1.95 -2.88 -3.43 
 1% -2.58 -3.46 -3.99 

Notes: 
a) The statistic in bold is that must be used to test unit root hypothesis. 
b) (*) indicates unit root hypothesis is rejected at 5% significance level. In any 

case unit root hypothesis is rejected at 1% significance level. 
c)  The critical values are taken from Fuller (1976). 
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Only for some of the countries can a constant or a tendency be obtained 

(Austria, Denmark, France, Italy and Netherlands) but only in the case of 

Netherlands the presence of a unit root can be rejected. As far as the rest of the 

countries are concerned in the sense that neither the constant nor the linear 

tendency is significant, in none of the cases the unit root rejected is rejected. 

Nonetheless, at the moment of evaluating results, what Sowell (1990) 

demonstrated must be taken into account. When fractional values of d are 

allowed, the results of the contrast proposed by Dickey and Fuller (1981) or 

posterior extensions as proposed by Philips and Perron (1998) must be used 

with great caution.     

Therefore, to complete these results, the methodology based on wavelets 

has been used. It is presented in the previous section to obtain direct estimations 

of the order of integration in a context that allows orders of fractional integration. 

In this sense, the use of wavelets has been proposed for the estimation of the 

order of fractional integration. This assumes that this order is found in the interval 

)5.0,5.0(− , i.e., the series analysed is stationary. For that reason, it has been 

decided to apply the theory of wavelets to both inflation data (
kt

X ) and the 

differentiated inflation data. In this way, assuming that )(
kkt

dIX ∼ , 

)()1( **

kktkt
dIXLX ∼−=  is fulfilled where 1* +=

kk
dd . Furthermore, it seems 

reasonable to assume that )5.0,5.0(* −∈
k

d  or )5.0,5.0(* −∈
k

d . 

Given that we need a number of observations that have a power of 2 for 

the wavelets decomposition, a serie with 512 (=29) observations have been 

selected (adding enough zeros). Using these, the coefficients jkc  associated with 

the Daubechies wavelets have been calculated of the 20th order (see Daubechies, 

1988). The method of estimation presented in the former section has been used 

to obtain estimations of the parameters *

k
d  and 

k
d . 
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In order to prevent the results obtained being sensitive to some of the 

wavelet coefficients used (especially the first ones), three estimations of each of 

the parameters *

k
d  have been carried out, using the coefficients jkc  for 

Tmj
2

log,...,2,=  with 3,2,1=m . 

 
Table 3. Results of estimation from monthly inflation rates on EU countries 

 dk  estimations *
kd  estimations 

 1=m  2=m  3=m  1=m  2=m  3=m  
AUS 0.20 0.33 0.29 -0.44 -0.41 -0.48 
BEL 0.16 0.20 0.12 -0.68 -0.63 -0.55 
DEN 0.33 0.45 0.37 -0.55 -0.47 -0.47 
FIN 0.29 0.33 0.23 -0.77 -0.60 -0.56 
FRA 0.24 0.42 0.33 -0.40 -0.53 -0.52 
GER 0.35 0.42 0.33 -0.49 -0.49 -0.50 
GRE 0.31 0.57 0.46 -0.40 -0.56 -0.65 
IRE 0.32 0.25 0.16 -0.44 -0.42 -0.41 
ITA 0.41 0.58 0.49 -0.44 -0.33 -0.32 
LUX 0.44 0.57 0.49 -0.47 -0.57 -0.50 
NET 0.20 0.39 0.31 -0.52 -0.42 -0.50 
POR 0.24 0.23 0.14 -0.41 -0.37 -0.28 
SPA 0.27 0.33 0.18 -0.35 -0.48 -0.48 
SWE 0.28 0.43 0.34 -0.40 -0.42 -0.39 
UNK 0.16 0.35 0.27 -0.60 -0.67 -0.56 

Standard error 0.150 0.110 0.096 0.150 0.110 0.096 
Notes: 
a) In all cases unit root hypothesis is rejected at 1% significance level. 
b) Standard errors have been obtained over 10000 ARFIMA(0,1,0) series of 512 
observations. Results obtained from ARFIMA(1,d,1) models with different 
autoregressive, moving average parameters are very close to those obtained from 
ARFIMA(0,1,0) models.  

 

For all countries we find estimates significantly different from 1 as well as 

from 0. So from the results in Table 3, it is deduced that all estimations lead one 

to reject the null hypothesis that 0* =
k

d , that is, we reject the unit root hypotesis 

in inflation rates. Then we conclude the shocks on the inflation rates have only 

temporal effects that gradually diminish.  
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5. The order of  integration of the interanual inflation rates. 

 

Some of previous work about persistence of inflation are based on 

inteannual inflation rates, not in monthly inflation rates. The purpose of this 

section is to estimate the orders of integration of interannual inflation rates on EU 

countries and to compare with results obtained in previous section about monthly 

inflation rates.  

We have calculated interannual inflation rates as 
ktkt

ILY log)1( 12−=  and we 

have used the same method as in previous section to obtain results presented in 

Table 4. From these results it is deduced that the immense majority of 

estimations lead one to not reject the null hypothesis that 0* =
k

d , that is to say, 

the rates of inflation
kt

X  are )1(I . 

 
Table 4. Results of estimation from interannual inflation rates on EU countries 

 dk  estimations *
kd  estimations 

 1=m  2=m  3=m  1=m  2=m  3=m  
AUS 0.93 1.00 0.76 -0.17 0.05 0.12 
BEL 0.83 0.88 0.81 0.01 0.01 -0.11 
DEN 1.00 1.03 0.87 -0.12 -0.12 -0.03 
FIN 0.87 0.84 0.81 -0.27 -0.09 0.06 
FRA 0.97 0.99 0.76 0.06 0.16 0.22 
GER 0.98 0.99 0.91 -0.10 0.07 0.04 
GRE 1.09 1.08 0.81 0.03 0.08 0.13 
IRE 0.91 0.92 0.90 0.09 0.18 0.22* 
ITA 1.05 1.05 0.96 0.11 0.18 0.27* 
LUX 1.05 1.08 0.98 -0.08 0.09 -0.05 
NET 0.98 1.01 0.73 0.00 -0.03 0.14 
POR 0.88 0.88 0.80 -0.22 -0.18 -0.01 
SPA 0.86 0.82 0.75 0.04 -0.05 0.04 
SWE 1.00 1.03 0.89 -0.28 -0.18 0.09 
UNK 0.98 0.97 0.94 -0.12 0.12 0.21* 

Standard error 0.150 0.110 0.096 0.150 0.110 0.096 
Notes: 
a) (*) indicates unit root hypothesis is rejected at 5% significance level. In any 
case that hypothesis is rejected at 1% significance level. 
b) Standard errors have been obtained over 10000 ARFIMA(0,1,0) series of 512 
observations. Results obtained from ARFIMA(1,d,1) models with different 
autoregressive, moving average parameters are very close to those obtained from 
ARFIMA(0,1,0) models.  
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Only in the case of Ireland, Italy and the United Kingdom and only using 

3=m , are estimations obtained that suggest that said rates of inflation can be 

integrated in an order slightly superior to the unit. Nevertheless, the fact that with 

1=m  and with 2=m , )1(IX
kt

∼  can be rejected. 

These seems a hard contradiction with previous results, but we think not. 

To understand that, it’s important to note that 

ktktktkt
XLSXLLLILY )()...1(log)1( 11212 =++++=−=  

so interannual inflation rates can be shown as a filtered output of inflation rates,  

tt
XLSY )(= , where )...1()( 112 LLLLS +++= . Note the )(LS  filter have gain 

function 

21
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with zeros at Fourier frequencies 
12
2 j

j

π
ω =  where s=1,..,6 (see Graph 1). Then 

)(LS  is a non-invertible filter.  

  

Graph 1. Gain function of S L( )  filter. 
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It’s well known that time domain unit root tests mustn’t be applied to non-

invertible series because this tests are hardly biased5. So it’s important to analyse 

what is the effect of )(LS  filter in estimators of fractional integration parameter.  

To explore the behavior of WOLS estimator of fractional difference 

parameter when series are obtained using )(LS  filter, we generated series of 100 

observations from an ARFIMA(1,d,0) model, 
tt

d XLL εφ =−− )1()1(  and we 

used the WOLS method to calculate estimations of d based on both 
t

X  and 

tt
XLSY )(= . 

All the results presented in Annex 1 show we can’t use WOLS estimator 

with noninvertible series because it’s hardly biased. In other simulation results we 

have seen this problems are shared with other fractional integration parameter 

estimators as the Geweke and Porter-Hudak (1983) one. The most important 

conclussion of this results is persistence in inflation rates mustn’t be analysed 

using interannual inflation rates data. 

 

6. Conclusions 

 

As has been commented in the introduction, in spite of its importance not 

only for macroeconomic theory as for taking decisions for the political economy, 

there exists considerable controversy concerning the level of persistence of the 

rates of inflation. We understand by the term persistence to what extent future 

inflation is affected by the shocks that could have occurred in the former 

evolution of said variable. 

In this paper the level of persistence of the rates of inflation in the EU has 

been analysed by using an extremely general and flexible model that allows the 

existence of fractional integration. Starting with said model, and through the use 

                                                 
5 See Ghysels and Perron (1993). 
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of the theory of wavelets to obtain estimations of the order of integration, it has 

been confirmed that the empirical evidence allows reject the hypothesis that the 

rates of inflation in the EU countries have a unit root. Therefore, the shocks that 

can affect said rates of inflation for the present can’t be transmitted in a 

permanent way to future values of said inflation. Moreover, it’s shown that 

interannual inflatio rates data musn’t be used to analyse persistence due to the 

effect of non-invertible filters on inference about fractional integration parameter. 
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Annex 1. Monte Carlo results. 

 

To explore the behavior of the WOLS estimator of fractional difference 

parameter when filter )(LS  is applied, we generated series of 100 observations 

from an ARFIMA(1,d,0) model, 
tt

d XLL εφ =−− )1()1( , and we used the WOLS 

method to calculate estimations of d on 
t

X  and 
tt

XLSY )(= . The data are 

generated according to Hoskink (1984) and we have computed mean, standard 

deviation and mean squared error of WOLS estimations for different values of 

d and φ. Simulations are reported for two sample sizes, the first containing 256 

observations and the second 512. Most important results are presented in 

following tables. 

 

Table A1. Mean of estimations of fractional integration parameter when φ= 0  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 -0.46 -0.40 -0.36 0.13 0.30 0.44 
-0.35 -0.41 -0.34 -0.29 0.23 0.38 0.52 
-0.25 -0.33 -0.27 -0.22 0.30 0.47 0.61 
-0.15 -0.23 -0.20 -0.16 0.38 0.54 0.68 
-0.05 -0.13 -0.10 -0.08 0.46 0.62 0.76 
0.05 -0.02 0.01 0.03 0.53 0.70 0.83 
0.15 0.09 0.12 0.13 0.61 0.76 0.90 
0.25 0.19 0.22 0.24 0.67 0.84 0.97 
0.35 0.30 0.32 0.33 0.76 0.90 1.03 
0.45 0.42 0.43 0.44 0.83 0.97 1.10 
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Table A2. Mean of estimations of fractional integration parameter when φ= 0  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 -0.46 -0.39 -0.35 0.08 0.22 0.35 
-0.35 -0.39 -0.33 -0.29 0.15 0.29 0.43 
-0.25 -0.32 -0.27 -0.23 0.23 0.37 0.51 
-0.15 -0.24 -0.18 -0.15 0.30 0.45 0.58 
-0.05 -0.14 -0.10 -0.08 0.37 0.51 0.66 
0.05 -0.06 -0.01 0.01 0.46 0.60 0.74 
0.15 0.04 0.10 0.12 0.54 0.67 0.81 
0.25 0.14 0.21 0.23 0.62 0.75 0.87 
0.35 0.24 0.31 0.34 0.70 0.82 0.94 
0.45 0.35 0.42 0.44 0.77 0.89 1.00 

 
Table A3. Mean of estimations of fractional integration parameter when φ= 0 5.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 -0.27 -0.17 -0.09 0.31 0.51 0.71 
-0.35 -0.20 -0.10 -0.01 0.37 0.57 0.77 
-0.25 -0.12 -0.02 0.07 0.45 0.64 0.93 
-0.15 -0.06 0.05 0.14 0.52 0.72 0.89 
-0.05 0.03 0.13 0.22 0.57 0.78 0.96 
0.05 0.11 0.21 0.30 0.64 0.83 1.01 
0.15 0.19 0.30 0.38 0.71 0.88 1.05 
0.25 0.30 0.39 0.47 0.75 0.93 1.10 
0.35 0.38 0.47 0.54 0.83 0.99 1.14 
0.45 0.49 0.57 0.63 0.89 1.04 1.19 

 
Table A4. Mean of estimations of fractional integration parameter when φ= 0 5.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 -0.29 -0.20 -0.13 0.20 0.38 0.55 
-0.35 -0.22 -0.13 -0.06 0.28 0.45 0.62 
-0.25 -0.14 -0.06 0.02 0.34 0.51 0.69 
-0.15 -0.06 0.02 0.10 0.41 0.58 0.75 
-0.05 0.02 0.11 0.17 0.48 0.64 0.81 
0.05 0.11 0.19 0.25 0.55 0.71 0.87 
0.15 0.20 0.27 0.34 0.62 0.76 0.92 
0.25 0.30 0.37 0.43 0.69 0.83 0.98 
0.35 0.39 0.45 0.51 0.75 0.89 1.03 
0.45 0.50 0.56 0.60 0.82 0.95 1.07 
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Table A5. Mean of estimations of fractional integration parameter when φ= 0 9.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.14 0.26 0.33 0.64 0.87 1.05 
-0.35 0.22 0.34 0.41 0.71 0.92 1.10 
-0.25 0.30 0.42 0.50 0.73 0.95 1.13 
-0.15 0.37 0.49 0.57 0.79 1.00 1.18 
-0.05 0.45 0.58 0.66 0.83 1.03 1.20 
0.05 0.53 0.66 0.74 0.88 1.07 1.22 
0.15 0.60 0.73 0.81 0.91 1.11 1.26 
0.25 0.70 0.81 0.91 0.94 1.13 1.28 
0.35 0.76 0.89 0.98 1.01 1.17 1.30 
0.45 0.84 0.96 1.05 1.06 1.19 1.32 

 
Table A6. Mean of estimations of fractional integration parameter when φ= 0 9.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.08 0.20 0.30 0.51 0.71 0.90 
-0.35 0.16 0.28 0.37 0.56 0.76 0.94 
-0.25 0.25 0.37 0.46 0.62 0.81 1.00 
-0.15 0.32 0.45 0.54 0.66 0.86 1.03 
-0.05 0.41 0.52 0.62 0.72 0.91 1.07 
0.05 0.49 0.60 0.70 0.78 0.95 1.11 
0.15 0.57 0.68 0.78 0.83 0.99 1.14 
0.25 0.67 0.77 0.86 0.89 1.03 1.18 
0.35 0.73 0.84 0.94 0.93 1.08 1.21 
0.45 0.83 0.93 1.01 0.99 1.12 1.24 

 
Table A7. Standard deviation when φ= 0  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.180 0.151 0.130 0.201 0.147 0.132 
-0.35 0.191 0.148 0.125 0.191 0.142 0.123 
-0.25 0.194 0.153 0.126 0.185 0.139 0.124 
-0.15 0.190 0.153 0.126 0.186 0.143 0.126 
-0.05 0.189 0.153 0.129 0.178 0.149 0.119 
0.05 0.186 0.159 0.128 0.185 0.143 0.130 
0.15 0.197 0.147 0.128 0.183 0.142 0.124 
0.25 0.182 0.143 0.129 0.194 0.140 0.122 
0.35 0.188 0.146 0.124 0.184 0.146 0.125 
0.45 0.180 0.141 0.123 0.187 0.138 0.116 
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Table A8. Standard deviation when φ= 0  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.154 0.115 0.090 0.141 0.109 0.093 
-0.35 0.153 0.112 0.088 0.143 0.111 0.091 
-0.25 0.152 0.111 0.090 0.145 0.112 0.090 
-0.15 0.151 0.112 0.092 0.152 0.108 0.089 
-0.05 0.147 0.115 0.093 0.151 0.115 0.092 
0.05 0.146 0.110 0.090 0.149 0.111 0.092 
0.15 0.145 0.110 0.091 0.152 0.105 0.091 
0.25 0.144 0.109 0.093 0.147 0.111 0.087 
0.35 0.142 0.109 0.096 0.156 0.110 0.089 
0.45 0.140 0.106 0.090 0.154 0.114 0.090 

 
Table A9. Standard deviation when φ= 0 5.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.190 0.141 0.126 0.193 0.145 0.117 
-0.35 0.180 0.143 0.124 0.192 0.147 0.117 
-0.25 0.182 0.147 0.123 0.183 0.140 0.121 
-0.15 0.194 0.156 0.125 0.188 0.133 0.119 
-0.05 0.195 0.154 0.126 0.187 0.134 0.114 
0.05 0.190 0.151 0.126 0.183 0.138 0.112 
0.15 0.188 0.144 0.128 0.192 0.145 0.109 
0.25 0.179 0.142 0.127 0.199 0.146 0.110 
0.35 0.186 0.143 0.124 0.181 0.135 0.112 
0.45 0.183 0.140 0.123 0.186 0.138 0.105 

 
Table A10. Standard deviation when φ= 0 5.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.155 0.111 0.093 0.154 0.110 0.096 
-0.35 0.152 0.109 0.088 0.147 0.112 0.087 
-0.25 0.154 0.115 0.087 0.149 0.110 0.087 
-0.15 0.147 0.112 0.090 0.148 0.113 0.089 
-0.05 0.154 0.111 0.092 0.139 0.109 0.091 
0.05 0.150 0.111 0.092 0.153 0.111 0.086 
0.15 0.144 0.110 0.092 0.152 0.113 0.087 
0.25 0.151 0.109 0.089 0.150 0.110 0.088 
0.35 0.144 0.114 0.094 0.150 0.115 0.091 
0.45 0.145 0.109 0.091 0.159 0.118 0.092 
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Table A11. Standard deviation when φ= 0 9.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.126 0.138 0.124 0.186 0.135 0.111 
-0.35 0.124 0.140 0.126 0.179 0.145 0.110 
-0.25 0.123 0.143 0.129 0.189 0.130 0.112 
-0.15 0.125 0.146 0.132 0.180 0.134 0.101 
-0.05 0.126 0.148 0.127 0.185 0.142 0.108 
0.05 0.124 0.143 0.129 0.182 0.133 0.105 
0.15 0.128 0.146 0.133 0.199 0.135 0.106 
0.25 0.130 0.141 0.123 0.195 0.137 0.102 
0.35 0.120 0.142 0.123 0.179 0.128 0.109 
0.45 0.128 0.144 0.123 0.177 0.133 0.102 

 
Table A12. Standard deviation when φ= 0 9.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.145 0.109 0.093 0.151 0.108 0.086 
-0.35 0.144 0.118 0.089 0.146 0.109 0.087 
-0.25 0.144 0.109 0.086 0.150 0.111 0.089 
-0.15 0.144 0.105 0.093 0.151 0.112 0.083 
-0.05 0.142 0.111 0.089 0.147 0.106 0.085 
0.05 0.153 0.107 0.092 0.151 0.106 0.081 
0.15 0.141 0.110 0.095 0.149 0.110 0.082 
0.25 0.146 0.107 0.090 0.142 0.110 0.084 
0.35 0.152 0.110 0.094 0.148 0.107 0.086 
0.45 0.144 0.111 0.092 0.144 0.108 0.082 

 
Table A13. Mean squared error when φ= 0  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.032 0.025 0.025 0.377 0.581 0.808 
-0.35 0.040 0.022 0.019 0.375 0.557 0.777 
-0.25 0.044 0.024 0.016 0.340 0.541 0.750 
-0.15 0.043 0.026 0.016 0.312 0.500 0.700 
-0.05 0.042 0.026 0.018 0.291 0.466 0.675 
0.05 0.040 0.027 0.017 0.266 0.438 0.620 
0.15 0.043 0.022 0.017 0.247 0.391 0.584 
0.25 0.037 0.021 0.017 0.211 0.364 0.532 
0.35 0.038 0.022 0.016 0.200 0.326 0.473 
0.45 0.033 0.021 0.015 0.182 0.288 0.432 
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Table A14. Mean squared error when φ= 0  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.024 0.017 0.018 0.296 0.462 0.646 
-0.35 0.025 0.013 0.011 0.269 0.423 0.611 
-0.25 0.028 0.013 0.008 0.247 0.393 0.580 
-0.15 0.031 0.014 0.008 0.225 0.372 0.542 
-0.05 0.031 0.016 0.009 0.196 0.328 0.507 
0.05 0.032 0.016 0.010 0.194 0.319 0.479 
0.15 0.033 0.015 0.009 0.176 0.285 0.437 
0.25 0.032 0.013 0.009 0.162 0.262 0.397 
0.35 0.033 0.014 0.009 0.143 0.238 0.356 
0.45 0.029 0.012 0.008 0.129 0.204 0.311 

 
Table A15. Mean squared error when φ= 0 5.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.069 0.100 0.148 0.611 0.950 1.361 
-0.35 0.055 0.082 0.134 0.553 0.867 1.271 
-0.25 0.051 0.075 0.118 0.528 0.818 1.189 
-0.15 0.046 0.063 0.101 0.486 0.773 1.102 
-0.05 0.044 0.057 0.090 0.425 0.700 1.025 
0.05 0.040 0.050 0.080 0.385 0.625 0.933 
0.15 0.037 0.043 0.067 0.346 0.552 0.828 
0.25 0.035 0.039 0.063 0.285 0.484 0.730 
0.35 0.036 0.036 0.052 0.261 0.432 0.638 
0.45 0.035 0.033 0.047 0.229 0.365 0.552 

 
Table A16. Mean squared error when φ= 0 5.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.048 0.074 0.112 0.450 0.706 1.012 
-0.35 0.039 0.061 0.094 0.419 0.647 0.949 
-0.25 0.036 0.050 0.080 0.376 0.597 0.897 
-0.15 0.029 0.043 0.071 0.338 0.547 0.825 
-0.05 0.029 0.036 0.057 0.298 0.489 0.742 
0.05 0.027 0.032 0.049 0.277 0.446 0.679 
0.15 0.023 0.028 0.046 0.243 0.389 0.597 
0.25 0.026 0.025 0.040 0.218 0.351 0.533 
0.35 0.022 0.024 0.035 0.185 0.309 0.466 
0.45 0.023 0.024 0.031 0.163 0.260 0.392 
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Table A17. Mean squared error when φ= 0 9.  and T=256. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.368 0.528 0.617 1.233 1.749 2.260 
-0.35 0.344 0.494 0.595 1.148 1.626 2.102 
-0.25 0.319 0.468 0.580 1.004 1.466 1.930 
-0.15 0.288 0.436 0.539 0.913 1.339 1.766 
-0.05 0.269 0.416 0.520 0.802 1.189 1.569 
0.05 0.249 0.391 0.491 0.729 1.052 1.385 
0.15 0.220 0.361 0.459 0.622 0.937 1.238 
0.25 0.216 0.339 0.448 0.520 0.785 1.072 
0.35 0.182 0.312 0.411 0.472 0.685 0.910 
0.45 0.167 0.284 0.381 0.404 0.572 0.761 

 
Table A18. Mean squared error when φ= 0 9.  and T=512. 

 Estimation from X t  Estimation from Yt  

d m=1 m=2 m=3 m=1 m=2 m=3 
-0.45 0.307 0.438 0.564 0.940 1.356 1.818 
-0.35 0.279 0.411 0.532 0.857 1.248 1.684 
-0.25 0.267 0.390 0.511 0.773 1.144 1.562 
-0.15 0.241 0.366 0.488 0.683 1.028 1.409 
-0.05 0.232 0.341 0.455 0.614 0.926 1.268 
0.05 0.216 0.319 0.430 0.553 0.818 1.126 
0.15 0.197 0.295 0.406 0.482 0.716 0.987 
0.25 0.195 0.279 0.380 0.430 0.627 0.872 
0.35 0.170 0.256 0.353 0.360 0.539 0.740 
0.45 0.163 0.243 0.323 0.310 0.463 0.629 

 
   


