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Abstract. We consider a discrete time, pure exchange infinite horizon economy
with n ≥ 2 consumers and� ≥ 1 consumption goods per period. Within the
framework of decentralized mechanisms, we show that for any given consump-
tion trade at any period of time, say at time one, the consumers will need in
general an infinite dimensional (informational) space to identify such a trade as
an intertemporal Walrasian one. However, we show a set of environments where
the Walrasian trades at each period of time can be achieved as the equilibrium
trades of a sequence of decentralized competitive mechanisms, using only both
current prices and quantities to coordinate decisions.

JEL classification: D51, D91

Key words: Walrasian allocation, informational decentralization, mechanism
design

1 Introduction

In this paper we consider the question concerning the information that is needed
by agents to identify an intertemporal Walrasian trade allocation at a given period
of time . The question is answered within the theoretical framework of decen-
tralized resource allocation mechanisms (or processes), following the pioneering
work of Hurwicz (1960), and Mount and Reiter (1974).

The economy is a discrete time infinite horizon pure exchange economy, with
n ≥ 2 consumer agents, and� ≥ 1 consumption goods at each period of time.
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Each agent is characterized by a positive infinite sequence of initial endowments,
and a utility function (i.e. the discounted sum of the one period utility function)
which is defined on the set of all uniformly bounded infinite sequences of non-
negative� − tuplesof real numbers (i.e. the consumption space)

For an economy with only two agents and one good at each time, we take as
a social goal the Walrasian correspondence at time one, which assigns the Wal-
rasian trade that the two agents make at time one. This means that the allocation
space is just the Cartesian plane. For this set of simple economies we show that
any informationally decentralized resource allocation process that realizes such
a correspondence (i.e. identifies Walrasian trades at time one) must have at least
a message space as large as (i.e. with dimension equivalent to ) the set of all
sequences taking values in the interval [0, 1], which is an infinite dimensional
space. This result is formally stated in Theorem 4.3 and it can be interpreted in
the following way. Suppose that we observe two agents engaged in trading at a
period of time, and suppose that each of them only knows his own characteristics
(i.e. his endowment sequence and utility function), which is the basic assumption
of informational decentralization. The previous result implies that, from a theo-
retical point of view, to verify whether or not such a trade is an intertemporal
Walrasian trade, we need to have a model, together with an equilibrium concept,
which requires a transmission of information between each agent which involves
an infinite number of linearly independent variables. Another way to interpret
that result, within the framework of the traditional intertemporal Arrow-Debreu
paradigm, is that at the starting date of the economy all present and future mar-
kets must neccesarily be open for all commodities in order to reach the agents
an equilibrium trade for any given particular period of time. In other words, all
agents need to know all equilibrium trades and prices for all periods of time to
be sure that they reach an equilibrium trade at some particular time.

When the social goal is the Pareto efficient correspondence, a similar result
is obtained by Hurwicz and Weinberger (1990), where it is considered a Cass-
Koopmans-Ramsey economy with one consumer, one producer and one produced
good per period. There, it is shown that to identify, at time one, Pareto efficient
allocations it is needed a non-finite dimensional informational space. We should
notice, that in the Cass-Koopmans-Ramsey economies considered by Hurwicz
and Weinberger there is a unique Pareto optimal allocation which coincides with
the Walrasian one. Therefore, the Hurwicz and Weinberger result holds, equiva-
lently, both for the intertemporal Walrasian and the Pareto efficient social goal at
time one. Hence, we may also consider our result as an extension of the Hurwicz
and Weinberger’s to pure exchange economies for the Walrasian correspondence
case. However, such results are no longer true for the Pareto correspondence
case, for pure exchange economies, as it is shown in Manresa (1995). In effect,
to verify whether or not a trade allocation is intertemporal Pareto efficient at
some period of time, agents only need to transmit a finite number of variables
at that time, that is prices and quantities, which in general do not constitute an
intertemporal Walrasian equilibrium.
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Although the previous results hold for convex standard environments, here we
can show and characterize a particular class of environments where a sequence
of informationally decentralized competitive mechanisms, defined on the corre-
sponding current period environments, and acting at each time by using current
prices and quantities, yields equilibrium outcomes which are fully intertemporal
Walrasian trades. Such a result allows us to identify those economies for which
a lifetime budget constraint for any consumer offers the same restriction as a
sequence of those constraints, each for a period of time. The result can be found
in Theorem 4.4 and its Corollary, and it is similar in spirit to that obtained by
Bala et al. (1991) for aggregate intertemporal production economies, with one
consumer living forever and one firm at each period of time. In that paper, a
sequence of mechanisms, which constitute what is called an evolutionary one,
yields at each time productive efficient allocations of consumption and stocks
of capital which maximizes the long run average of one period utilities from
consumption, but not the discounted sum of utilities, which is the social goal of
the present and Hurwicz and Weinrberger’s paper.

The paper is organized as follows. In the next section we describe the econ-
omy, and we introduce basic definitions an assumptions. In Sect. 3 we present
some standard concepts and results from the theory of decentralized mechanisms,
while Sect. 4 contains the main results of the paper (Theorems 4.3, 4.4 and, 4.6).
An Appendix gathers the proof of the results.

2 The economy, pareto optimal, individually rational,
and Walrasian allocations

We consider an infinite horizon pure exchange economy starting att = 1, with
� ≥ 1 non-storable consumption goods at each period of time,xt ∈ R�

+. There
aren agents,i = 1, 2, ..., n, each of them characterized by an initial endowment
sequencewi = (wi

1, w
i
2, ..., w

i
t , ...), wi

t ∈ R�
+ and by a utility function

V i (xi ) =
∞∑
t=1

ai
t ui (xi

t ), i = 1, 2, ..., n

wherexi = (xi
1, xi

2, ..., xi
t , ...) is a non-negative sequence of consumption goods

for the i th agent,ai = (ai
1, ai

2, ..., ai
t , ...) is a positive summable sequence of real

numbers, called discount factors, andui : R�
+ → R is his time period utility or

felicity function.
The commodity space is the set of all sequences of�-tuples of real numbers,

denoted byR�w, and the consumption space is the set of all non-negative elements
of R�w, denoted byR�w

+ . Both spaces are endowed with the product topology,
inherited from the usual Euclidean topology onR�. Thus, each agent can be
identified with the triple of characteristics,

ei = (ai , ui , wi ) ∈ Ei , i = 1, 2, ..., n
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and Ei is considered the set of all possible characteristics fori . The set of
all possible economies isE = E1 × ... × En, and an economy is denoted by
e = (e1, e2, ..., en) ∈ E. With each economye we associate theset of all feasible
trade allocationsfor e,

F (e) = {z = (z1, ..., zn) ∈ R�w × · · · × R�w : z1 + ... + zn = 0̃, and zi =
xi − wi , for some xi ∈ R�w

+ , i = 1, 2, ..., n}
wherezi = (zi

1, zi
2, ..., zi

t , ...) is an infinite sequence of trades for thei − th agent,
and0̃ = (̃01, 0̃2, ..., 0̃t , ...), denotes the infinite zero sequence1. We will denote by
F (E) the set of all possible feasible net trades for some economye ∈ E. The
Pareto interior correspondence, denoted byP+ : E → F (E), is defined, as usual,
as:

P+(e) = {z ∈ F (e) : V i (zi + wi ) ≥ V i (zi + wi ), i = 1, 2, ..., n, and
with strict inequality for somei , imply z = (z1, ..., zn) /∈ F (e); and
zi + wi 	 0̃}.

A trade allocationẑ = (ẑ1, ..., ẑn) ∈ F (e) is called individually rational
whenever

V i (ẑi + wi ) ≥ V i (wi ), i = 1, 2, ..., n.

We make the following assumptions on the environments:

(A.1)We writew1
t + ... + wn

t = wt , t = 1, 2, ..., and we assume that for
eachi , a <

∣∣wi
t

∣∣ < b, where 0< a < b < ∞, t = 1, 2, ....

(A.2) For eachi , ui is a continuous utility function onR�
+, twice con-

tinuously differentiable inR�
++, and strictly concave. Moreover, we as-

sume that its partial derivatives2 are strictly positive (i.e. forx ∈ R�
++,

Dkui (x) > 0), Dkui (xt ) → ∞ asxtk → 0, and
�∑

k=1
Dkui (x)xk < c, for xk

∈ (0, d), c, d < +∞ .

Without changing notation we still letE be the set of economies satisfying
(A.1) and (A.2). Under this assumptions it is known (see Kehoe and Levine 1985)
thatz = (z1, ..., zn) ∈ P+(e) if and only if there exist some real numbersαi > 0,
i = 1, 2, ..., n such that{z1 + w1, ..., zn + wn} solves the program:

Max{α1V 1(z1 + w1) + ... + αnV n(zn + wn)}
s.t . (i ) zi

t + wi
t ≥ 0, i = 1, 2, ...n; t = 1, 2, ...,

(ii ) z1
t + ... + zn

t = 0̃t , t = 1, 2, ......

1 Given x, x′ ∈ R�w, we define as ussual,x′′ = x + x′ if and only if x′′
t = xt + x′

t for all t . We
also define the following inequalities:x ≥ x′ ⇔ xt ≥ x′

t for all t ,
x > x′ ⇔ xt ≥ x′

t andx /= x′.
x � x′ ⇔ xt > x′

t all t .
2 The partial derivative ofu(·) at x with respect to thek − variable is denoted byDku(x), while

the vector of partial derivatives ofu(·) at x is denoted byDu(x).



Can we identify Walrasian allocations? 61

Furthermore, a set of necessary and sufficient conditions satisfied by any
interior solution to the previous program is:

(P.1) αi ai
t Dui (zi

t + wi
t ) = qt , for someqt > 0, t = 1, 2, ..; i = 1, ..., n;

and
(P.2) (i ) and (ii ).

Given e ∈ E, we define aninterior Walrasian Competitive Equilibrium with
perfect foresightfor e as the pair of prices and net trade allocations (p, z), where
p = (p1, p2, ..., pt , ...) > 0̃, andz = (z1, ..., zn), such that:

[D .1] For eachi = 1, 2, ...n, zi + wi solves the following program:

max V i (zi + wi )
s.t .

∑∞
t=1 pt (z

i
t + wi

t ) =
∑∞

t=1 ptw
i
t

zi
t + wi

t ≥ 0, t = 1, 2, ...,

[D .2] Feasibility condition:

n∑
i =1

zi
t = 0̃t , t = 1, 2, ...,

Alternatively, we may say that (p, z) constitutes an interior Walrasian Com-
petitive Equilibrium with perfect foresight for e wheneverz ∈ P+(e), and

(P.3)
∑∞

t=1 pt z
i
t = 0 i = 1, ..., n.

Notice that if we identifyqt = pt , conditions (P.1) and (P.3) are the usual
first order conditions derived from the maximization of thei − th consumer
utility function under his budget constraint, and 1/αi is the Lagrange multiplier
of such a maximization program. Conditions (i ) and (ii ) are respectively the
non-negativity condition for consumption allocations and market clearing at each
time. We denote by

W : E → F (E)

the Walrasian correspondence, which associates to each economye the set of
Walrasian trade allocations fore, W(e) ⊆ F (e). Furthermore, we denote by

Wt : E → Ft (E)

the Walrasian trade allocations at timet = 1, 2, ..., whereFt (E) ⊆ R� is the set
of all feasible allocations at timet = 1, 2, ..., for some economye ∈ E.
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3 Informationally decentralized mechanisms

In this section we state, for the case of two agents3, some well known definitions
and results from the classical theory of decentralization (see Hurwicz, 1986, or
Aizpurua and Manresa, 1993, for a proof of the Theorem 3.2 and Lemma 3.1
stated in this section).

Following the Mount and Reiter 1984 framework, we define amechanism,
or a process, on E as a tripleπ =< M , µ, h > where M is the message set,
µ : E → M is the equilibrium correspondence, and h : M → F (E) is the
outcome function.

The property of informational decentralization for a mechanism is a very im-
portant one for this theory. It says that every agent only knowsa priori her/his
own characteristics. So, agents should make decisions based only on the infor-
mation transmitted by other agents, through the message set, and the knowledge
they have about their own characteristics. A formalization of this property is
given by the following definition.

We say thatπ is an informationally decentralized mechanismif there exist
some individual equilibrium correspondences,µi : Ei → M , such that

µ(e) = µ1(e1) ∩ µ2(e2) for all e ∈ E.

Let H : E → F (E) be a performance correspondence. We say that the
mechanismπ realizes H over E wheneverφ /= h(µ(e)) ⊆ H (e) for all e ∈ E,
whereφ is the empty set.

Given a performance standard, a traditional question that this theory has been
asking is to determine the minimal informational size of the message set of any
decentralized mechanism that realizes such a performance correspondence.

The theory defines a partial order among all possible message sets of a mecha-
nism, as a relative measure of their informational size, by adopting the concept of
the Fréchet orderingfor topological spaces (defined below), which corresponds
to the dimensionality of the space, when such dimension exists. Theorem 3.1
gives us a general statement in order to find a lower bound for the size of the
message set of a mechanism that realizes a given performance. It turns out that a
critical step to apply such a Theorem to a particular case consist, first in finding
a certain subset of the set of economies (calledwith the uniqueness property),
where the performance function behaves in some particular way, and then use
the result called thesingle valuedness lemma. In what follows we give precise
statements for our previous informal discussion of the theory.

We say thatE∗ ⊆ E has the uniqueness propertywith respect toH , whenever
e, ẽ ∈ E∗,

H (e) ∩ H (e1, ẽ2) ∩ H (ẽ1, e2) ∩ H (ẽ) /= φ, imply e = ẽ.

Lemma 3.1. (The single-valuedness lemma).

3 For the case ofn agents, see Hurwicz(1986).
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Let π =< M , µ, h > be an informationally decentralized mechanism, which
realizesH overE. Let E∗ ⊆ E have the uniqueness property with respect toH .
Then, the restriction ofµ to E∗, that isµ|E∗ , is aninjective correspondence(i.e.
µ|E∗ (e) ∩ µ|E∗ (ẽ) = φ for all e /= ẽ, ẽ,e ∈ E∗).

Let E andM be topological spaces. Amechanismπ is called regularif µ : E′

→ M is a spot threaded correspondence(i.e. there is some open setE′ ⊆ E and
some continuous functionf : E′ → M such thatf (e) ∈ µ(e) for all e ∈ E′).

A topological space Tis said to have theweak local similarity propertyat
an open subsetU of T whenever there exist someV ⊆ U which, in the relative
topology, is homeomorphic toT. We say thatT has thestrong local similarity
property at U whenever every open subsetU ′ ⊆ U has a subsetV ′ ⊆ U ′ which,
in the relative topology, is homeomorphic toT.

Let M1 and M2 be two topological spaces. We say thatM1 has as much
information as M2 whenever there exists a subspaceM ′

1 of M1 which is homeo-
morphic toM2. This definition corresponds to the so calledFréchet orderingfor
topological spaces, writtenM1 ≥F M2.

Theorem 3.2. Let E and M be topological spaces, and letπ = < M , µ, h >
be an informationally decentralized mechanism realizing H: E → A over E.Let
E∗ ⊆ E be a subspace of E having the uniqueness property with respect to H .
Let µ be spot-threaded with spot domain at the open subset U⊆ E∗. Then M
≥F E∗ if either of the following two conditions is satisfied:

(a) M and E∗ are Hausdorff spaces, E∗ is locally compact and has the
strong local similarity property at U .
(b) [µ|E∗ ]−1 is continuous onµ(U ) and E∗ has the weak local similarity
property at U .

4 Results

In this section we present the results of the paper. We consider first a particular
class of economies satisfying (A.1) and (A.2), with two agents and one consumer
good at each period. We investigate some properties of the Walrasian correspon-
dence, the Pareto efficient, and the individually rational correspondences at time
one. That is the allocation that each agent receives at the first period of time.
This means that we restrict the allocation space of those correspondences to the
plane. Formally, we let4

W1 : E1 × E2 → F1(E)

denote the Walrasian correspondence at period one, whereW1(e) is the Walrasian
allocation for e at time one, andF1(E) denotes the set of all feasible trade
allocations at time one.

4 See definition ofFt andWt on p. 61.
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The particular class of economies that we consider are those satisfying (A.1)
and (A.2), where

ui (x) = ln x, i = 1, 2; andw1
t + w2

t = 1, t = 1, 2, ...

This means that each agenti = 1, 2 is now characterized only by the pair
ei = (ai , wi ).We now define a class of environments for which the unique Pareto
optimal and individually rational allocation is the no trade allocation sequence,
that isz = (0̃, 0̃).

Let α1 > 0, andα2 > 0 be given, and for eache1 = (a1, w1) ∈ E1 consider
the mapping

Λ : E1 → E2 defined by

Λ(e1) =

{
α1

α2
(1−w1

t )
w1

t
a1

t = a2
t , t = 1, 2, ...

1 − w1
t = w2

t , t = 1, 2, ...

We defineE = E
1 × E

2
= {(e1, e2) ∈ E1 × E2 : e2 = Λ(e1)}.

Lemma 4.1. The unique allocation that is Pareto optimal and individually ratio-
nal for each e∈ E is the zero net trade.

Proof. (See Appendix).

We now define a subclass of environments which has the uniqueness property
with respect toW1. Let a∗ be a given sequence of discount factors (i.e.,a∗

t > 0,
and

∑
a∗

t < +∞ ), and letw ∈ R+ be such that 0< w < 1. Let E∗ be defined
as :

E∗ =
{

(e1, e2) ∈ E : a1
t = a∗

t , t = 1, 2, ..., andw1
t = w for t = 1

}
.

Hence, we are taking those economies inE where the first agent has a fixed
sequence of discount factors, and a fixed endowment only at timet = 1. It is
very easy to see thatE∗ can be taken as the set of all sequences with values in
the interval [a, b], with their first element being the constantw.

Lemma 4.2. The set E∗ has the uniqueness property with respect to the perfor-
mance correspondence W1.

Proof. (See Appendix).

We now state the first result of this paper, Theorem 4.3, which can be in-
terpreted in the following way. Consider a pure exchange economy with two
agents living forever and one good per period. Suppose that at some period of
time, sayt = 1, they make some exchanges. What our next result shows is that
to identify such a trade as an intertemporal Walrasian trade, for the two agents,
the information that they will have to transmit involves an infinite number of
linearly independent variables, provided that a priori each agent only knows his
own characteristics.
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Theorem 4.3. Let π =< M , µ, h > be a regular informationally decentralized
mechanism, which realizes W1 : E1 × E2 → F1(E). If µ has spot domain at an
open subset U⊆ E∗, and either:(a) M is a Hausdorff space, or(b) [µ|E∗ ]−1 is
a continuous function onµ[U ], then M ≥F [a, b]z+, ([a, b]z+ is the space of all
real sequences taking values in[a, b], with the product topology).

Proof. (See Appendix).

Consider the subset of economiesÊ ⊆ E where each agenti = 1, 2, ..., n,
has characteristicŝe = (âi , ûi , ŵi ) ∈ Êi with the following properties:

(A.3) ûi : R�
+ → R satisfies that for eachx ∈ R�

++ we have
�∑

k=1
Dkûi (x) · xk = ci for someci > 0.

(A.4) Given any bounded sequence of total endowments for the econ-
omy, ŵ = (ŵ1, ŵ2, ..., ŵt , ...) with ŵt ∈ R�

++, we assume that for each
t = 1, 2, ..., agents’ endowments satisfies:

ŵi
t = si wt , with 0 < si < 1 and

n∑
i =1

si = 1 .

(A.5) Discount factors are normalized so that
∞∑
t=1

âi
t = 1.

The last assumption, (A.5), is really innocuous, since it does not change
agents’ preferences at all. The assumption (A.4) says that every agent has a
constant share of the total endowment of the economy at every period of time.
Condition (A.3) is satisfied in general by the following family of utility functions:

ûi (x) = ci ln x1 + Ψ i (ln
x1

x2
, ln

x1

x3
, ..., ln

x1

x�
) + const.

whereΨ i : R�−1
+ → R is an arbitrary twice continuously differentiable function.

It should be noted that when there is only one good at each period of time, the
unique, up to a constant, utility function that satisfies condition (A.3) is the ln
function. As we will see at the end of this section, both (A.3) and (A.4) are key
conditions for the next Theorem 4.4 be true.

For the set of economies, called̂E, that we have just described, we can state
the following result.

Theorem 4.4. Let ê = (ê1, ..., ên) ∈ Ê1 × · · · × Ên be an economy satisfying
(A.1) − (A.5). Suppose that for each t= 1, 2, ..., we have that(pt , zt ), pt ∈ R�

++

andzt = (z1
t , ..., zn

t ) ∈ R�n satisfies the following conditions:

[Dt .1] for eachi ,(zi
t + ŵi

t ) ≥ 0 solves the program:

max âi
t ûi (xi

t )
s.t . pt x

i
t = âi

t si

xi
t ≥ 0, t = 1, 2, ...,
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[D .2] Feasibility condition:

n∑
i =1

zi
t = 0, t = 1, 2, ...,

Then (pt , zt )∞t=1 ≡ (p, z) constitutes aWalrasian Competitive Equilibrium with
perfect foresightfor the economŷe.

Proof. (See Appendix).

The previous result tells us that it is possible to achieve aWalrasian Compet-
itive Equilibrium with perfect foresightby means of period by period competitive
equilibrium as long as we restrict our environment to the subsetÊ of economies.
Within these economies now every agent can identify a Walrasian trade alloca-
tion at each timet , sayzt,by looking at the feasibility condition [D .2], and by
checking if hist consumption allocation, (zi

t + ŵi
t ), solves his utility maximiza-

tion problem att , that is condition [Dt .1]. Such a condition says that agenti
chooses hist−consumption bundle at timet by maximizing hist−utility func-
tion, ât ui (xi

t ), subject to his budget constraint at timet .The income that thei th

agent spent at each time is a fraction (by assumption (A.5)), âi
t ,of the total in-

come that the agents has along his entire life, which is, by assumption (A.4),

si ,since prices are normalized so that
∞∑
t=1

pt ŵt = 1.

It should also be pointed out that the consumers problem att only depends
upon each agents characteristics at timet . Hence, we may say that the period
by period competitive price mechanism, just described, realizes the Walrasian
correspondence. We can formalize this statement within the mechanism design
framework by using some definitions.

For eacht , let πt = < Mt , µt , ht > be thet− period competitive mechanism,
defined as follows.

The message space is:

Mt = {((z1
t , z2

t , ..., zn
t ), pt ) ∈ R�n × R�

++ :
n∑

i =1
zi

t = 0}, and so messages are

mt = (zt , pt ) ∈ Mt .

Let theequilibrium correspondenceµt : Et → Mt beµt (e) =
n⋂

i =1
µi

t (e
i
t ), where:

µi
t (e

i
t ) = {mt ∈ Mt : (zi

t +wi
t ) is a solution to thei − th consumer problem

[Dt .1] at pricespt}.

For eachm ∈ µt (e), which is an equilibrium message for the mechanism, we
let ht (m) = zt .

Once we have definedπt we state without proving the following result, which
is a corollary to the previous theorem.
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Corollary 4.5. The informationally decentralized mechanismπt =< Mt , µt , ht >
, t = 1, 2, ..., realizes the Walrasian correspondence at each time t:

Wt : E → Ft (E)

on the environments E= Ê. In other words, for eacĥe ∈ Ê,

ht (µt (êt )) ∈ Wt (ê), t = 1, 2, ...,

Our next result tell us how important are our assumptions(A.3) and (A.4) in
Theorem 4.4.

Theorem 4.6. Let ê = (ê1, ê2, ..., ên) ∈ E1 × E2 × ... × En be an economy,
satisfying(A.2) and (A.5),and let(pt , zt )∞t=1be an interior Walrasian Competitive
Equilibrium with perfect foresight for e.

Then, we have that for eachi = 1, 2, ..., n andt = 1, 2, ..., xi
t = (zi

t +wi
t ) ≥

0 is a solution to the program [Dt.1] :

Max âi
t ûi (xi

t )

s.t . pt x
i
t = I

i
t

xi
t ≥ 0, t = 1, 2, ...,

where (A.4′) I
i
t = âi

t si andsi = (
∞∑
t=1

ptw
i
t )/(

∞∑
t=1

ptwt ),

if and only if:

(A.3′)
�∑

k=1
Dkûi (xi

t ) · xi
t = ci for all t = 1, 2, 3, ...and someci > 0.

Proof. (See Appendix).

The “only if ” part of the Theorem 4.6 says that if any given Walrasian
Competitive Equilibrium for a given economy can be achieved through a period
by period consumers maximization program like [Dt.1] in Theorem 4.4, then
it has to be in economies where (A.3) is satisfied at equilibrium, that is what
condition (A.3′) in Theorem 4.6 says. We should say thatci may vary from one
equilibrium to another in economies with more than one. From this point of view
we say that (A.3) characterizes the economies where Theorem 4.4 holds.

The “if ” part of the result can be seen as the converse of Theorem 4.4, and
it says that any Walrasian Competitive Equilibrium for an economy satisfying
(A.3′) must necessarily solve a period by period consumer program like [Dt.1].
We should point out thatsi ,in Theorem 4.6, is the total amount of income that
agenti receives at the Walrasian Competitive Equilibrium, once we normalize
to one unit the equilibrium value of the total income of the economy. We should
here stress the fact that in general any consumeri will need to know the entire
infinite sequence of equilibrium prices in order to know the value ofsi . However
in economic environments, where (A.4) is satisfied, the value ofsi is always
known at any period of time and it is independent of the Walrasian equilibrium
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prices for the economy. This is why assumption (A.4) is important for Theorem
4.4.

It is also important to note that the class of economies that we consider
in Theorem 4.2 satisfy (A.3) but they don’t satisfy (A.4) when we consider the
“cross-economies” (e, ẽ).This also illustrates the importance of assumption (A.4).

5 Conclusions

In this paper we have shown, under the hypothesis of informational decentraliza-
tion, that for infinite horizon pure exchange economies it is not possible, except
for certain sets of economies that we characterize, to identify a walrasian equilib-
rium trade at a given period of time unless the agents have an infinite dimensional
information set.

The interpretation of this result, in the classical intertemporal framework of an
Arrow-Debreu economy, is that all agents need to know that all future markets
are at equilibrium, or equivalently they must have perfect foresight about all
equilibrium prices, in order to be sure that any particular present trading is an
equilibrium trade.

An implication of this informational result is just to point out the lack of
realism of such an equilibrium concept from the positive point of view of a
theory that aims at explaining some stylized facts. In fact this and other kind of
criticisms of that concept (see for instance Starr 1987) is what justifies, among
others reasons, the importance of other types of equilibrium notions such as, for
instance, that of Temporary equilibrium, developed by Grandmont and, from a
more dynamic perspective, the Radner equilibrium. Such equilibrium concepts
lower the information requirements of agents, at any point in time, to a finite
set of variables but from a normative point of view it is difficult to recommend
those concepts. One way to proceed from this situation is, as we do here, by
setting a performance standard social welfare correspondence and look for a de-
centralized mechanism which realizes such an objective in a set of environments
and with a finite number of variables at each equilibrium point of time. That
is the kind of result that we obtain in Theorems 4.4 and 4.6, where we show a
set of environments and a decentralized mechanism which realizes intertemporal
Walrasian outcomes by means of a sequence of equilibria corresponding to a
sequence of economies and where agents only use a finite number of variables.
I believe that this approach can give us some method and discipline to evaluate
dynamic equilibrium notions both from a normative point of view and also from
a positive one.

Appendix

Proof of Lemma 4.1.Let e ∈ E be given. Let̂z = (ẑ1, ẑ2) ∈ P+(e) and individ-
ually rational. Hence, it follows from condition (P.1) that
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α̂1a1
t

w1
t + ẑ1

t
=

α̂2a2
t

w2
t + ẑ2

t
, t = 1, 2, 3, ... (1)

for someα̂1, α̂2 > 0. Let β > 0 be such that̂α = α̂2/α̂1 = α·β, whereα = α2/α1

is the ratio ofα1 > 0, andα2 > 0,which we used in the definition ofE.Then (1)
becomes:

a1
t

w1
t + ẑ1

t

a2
t

w2
t + ẑ2

t

= α · β = β ·
a1

t

w1
t

a2
t

w2
t

,

therefore, we obtain:
w2

t + ẑ2
t

w1
t + ẑ1

t
= β

w2
t

w1
t
,

and substitutinĝz2
t = −ẑ1

t in the last expression, we obtain that

ẑ1
t =

w2
t · w1

t (1 − β)
(βw2

t + w1
t )

. (2)

If β < 1, we have from (2) that̂z1
t > 0 for all t = 1, 2, ...., and the individually

rational condition is violated. Similarly, ifβ > 1, thenẑ1
t < 0, leading condition

(1) to a contradiction. Therefore,β = 1, which implies that̂z1
t = ẑ2

t = 0 for all t .
Clearly, ẑ = (0̃, 0̃) is individually rational, and it is a Pareto Optimal allocation
for e, since we may take

qt =
α1a1

t

w1
t

=
α2a2

t

w2
t

��
Proof of Lemma 4.2.Let e = (e1, e2) ∈ E∗, and letẽ = (ẽ1, ẽ2) ∈ E∗. Assume
that there exists somez1 = (z1

1 , z2
1 ) such that

z1 ∈ W1(e1, e2) (3)

z1 ∈ W1(ẽ1, ẽ2) (4)

z1 ∈ W1(e1, ẽ2) (5)

z1 ∈ W1(ẽ1, e2) . (6)

We have to show that̃e = e. Since every walrasian allocation is Pareto
Optimal and individually rational, by Lemma 4.1 we have thatz1 = (0, 0), since
ẽ, e ∈ E.

For any given economye ∈ E, the walrasian allocation for eacht is given
by the following expressions

z1
t =

 1

1 +
α2a2

t

α1a1
t

 − w1
t (7)
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z2
t =

 1

1 +
α2a1

t

α1a2
t

 − w2
t (8)

whereα2/α1 =
∑

t w1
t a2

t /
∑

t w2
t a1

t .
In particular, we consider (7) att = 1, and for the particular economies we

are dealing with, and taking into account thatz1 = (0, 0), we obtain the following
expressions from (3) through (6) respectively,

a1
1

w1
1

=

[∑
t w2

t a1
t∑

t w1
t a2

t

]
· a2

1

w2
1

(9)

ã1
1

w̃1
1

=

[∑
t w̃2

t ã1
t∑

t w̃1
t ã2

t

]
· ã2

1

w̃2
1

(10)

a1
1

w̃1
1

=

[∑
t w̃2

t a1
t∑

t w1
t ã2

t

]
· ã2

1

w̃2
1

(11)

a1
1

w1
1

=

[∑
t w̃2

t a1
t∑

t w1
t ã2

t

]
· ã2

1

w̃2
1

. (12)

Sinceα = α2/α1 is fixed and given by the definition ofE∗, and a1
1 = a∗

1 ,
andw1

1 = w,we have that̃a2
1 = a2

1, and w̃2
1 = w2

1. Therefore, from (9) and (10)
we obtain: ∑

t w2
t a1

t∑
t w1

t a2
t

=

∑
t w̃2

t ã1
t∑

t w̃1
t ã2

t
, (13)

and from (9) and (11) we obtain:∑
t w2

t a1
t∑

t w1
t a2

t

=

∑
t w̃2

t a1
t∑

t w1
t ã2

t
, (14)

and from (10) and (11) we obtain:∑
t w̃2

t ã1
t∑

t w̃1
t ã2

t
=

∑
t w2

t ã1
t∑

t w̃1
t a2

t

. (15)

Taking into account thata1
t = ã1

t = a∗
t for all t = 1, 2, ..., it follows from (13)

and (14) that ∑
t

w1
t ã2

t =
∑

t

w̃1
t ã2

t , (16)

and combining (13) and (15) we also obtain:∑
t

w1
t a2

t =
∑

t

w̃1
t a2

t . (17)

From (16) and (17) we can derive:∑
t

w1
t (ã2

t − a2
t ) =

∑
t

w̃1
t (ã2

t − a2
t )
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from which we can obtain∑
t

(w1
t − w̃1

t )(ã2
t − a2

t ) = 0 . (18)

Since,
ã2

t = 1/α · (w̃2
t /w̃1

t )a∗
t , and (19)

a2
t = 1/α · (w2

t /w1
t )a∗

t , (20)

we compute

ã2
t − a2

t =
1
α

1

w̃1
t w

1
t

(w1
t − w̃1

t )a∗
t

which can be substituted into (18) to obtain:∑
t

[w1
t − w̃1

t ]2 · a∗
t

αw̃1
t w

1
t

= 0

which impliesw1
t = w̃1

t for all t , and consequentlyw2
t = w̃2

t . From (13) and (14)
we conclude thata2

t = ã2
t for all t . ��

Proof of Theorem 4.3.We apply Theorem 3.1. SinceE
∗

has the uniqueness
property with respectW1 andπ is informationally decentralized and realizesW1,
we have by thesingle valuedness lemmathat µ|E∗ : E

∗ → M is an injective
correspondence, and hence, [µ|E∗ ]−1 : µ(E

∗
) → E

∗
is a function. By Proposition

1, in Aizpurua and Manresa 1993, we have that [a, b]z+ , that is the set of all
infinite sequences taking values in [a, b], is aHausdorff space,is locally compact
and it has the similarity property. A simple application of Theorem 3.1, allows
us to conclude the proof of this one. ��
Proof of Theorem 4.4.For any giveni = 1, 2, ..., n, and for eacht = 1, 2, 3, ...
let xi

t = zi
t + ŵi

t be a solution to the program [Dt .1]:

max âi
t ûi (xi

t )
s.t . pt x

i
t = si âi

t t = 1, 2, ...,
xi

t ≥ 0

we only have to show that{xi
t}∞

t=1 is a solution to the program [D .1]:

max
∞∑
t=1

âi
t ûi (xi

t )

s.t .
∞∑
t=1

pt x
i
t =

∞∑
t=1

pt s
i wt

xi
t ≥ 0 t = 1, 2, ...,

First we notice, using (A.5) that from program [Dt .1]:
∞∑
t=1

pt x
i
t = si

∞∑
t=1

âi
t = si

and so,
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n∑
i =1

(
∞∑
t=1

pt x
i
t ) =

n∑
i =1

si = 1.

Therefore,
∞∑
t=1

pt ŵt =
∞∑
t=1

pt (
n∑

i =1
xi

t ) = 1.

Hence, if {xi
t}∞

t=1 satisfies the constraint of program [Dt .1] for every t =
1, 2, ..., it also satisfies the constraint of program [D .1]. From the first order
necessary conditions for program [Dt .1] we have that:

âi
t Dû(xi

t ) = λi
t pt for someλi

t ≥ 0, t = 1, 2, 3, ...

But, by (A.3) ∑
k

Dkû(xi
t ) · xi

k = ci ,for someci > 0,

and we have thatλi
t = ci

si > 0 for all t = 1, 2, ..., . Therefore, lettingλi = ci

si we
have thatxi

t satisfies:

âi
t Dû(xi

t ) = λi pt for all t .

Hence by the of concavitŷui (·), {xi
t}∞

t=1 is a solution to program [D .1]. ��
Proof of Theorem 4.6.Let (pt , zt ) be an interior Walrasian Competitive Equilib-
rium satisfying the assumptions of the statement. Then without loss of generality

we may assume that
∞∑
t=1

ptwt = 1. Hence for eachi , (xi
t ) is a solution to the

program:

Max
∑∞

t=1 âi
t ûi (xi

t )
s.t .

∑∞
t=1 pt x

i
t = si

xi
t ≥ 0, t = 1, 2, ...

And, by the first order conditions, there exists someλi ≥ 0 such that:

âi
t Dûi (xi

t ) = λi pt ∀t = 1, 2, ..., (21)

and by (A.2) follows thatλi > 0.
Now, let xi

t be a solution to the program [Dt .1]. By the first order conditions
there exists someλi

t ≥ 0 such that:

âi
t Dûi (xi

t ) = λi
t pt ∀t = 1, 2, ..., (22)

Hence, combining (21) and (22), it follows thatλi
t = λi > 0 for all t = 1, 2, ...,

By post multiplying both sides of the equality (22) byxi
t , and using the

constraint of program [Dt .1] we have that:

âi
t Dûi (xi

t ) · xi
t = λi pt x

i
t = λi âi

t si

which implies that:
ci ≡ Dûi (xi

t ) · xi
t = λi si
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for all t = 1, 2, ..., which shows the ”if ” part of the result.
Let’s assume now that (A.3′) holds. Then, we takeλi

t = λi > 0 for all t , and
so the condition (22)is satisfied.

Now, put Î i
t ≡ pt xt for t = 1, 2, ..., . Then it follows that:

âi
t Dûi (xi

t ) · xi
t = λi pt x

i
t = λi Î i

t (23)

adding the previous expression with respect tot up to infinity:

∞∑
t=1

âi
t Dûi (xi

t ) · xi
t = λi

∞∑
t=1

pt x
i
t = λi

∞∑
t=1

Î i
t

and by (A.5), (A.3′),and since
∞∑
t=1

Î i
t = si ,we obtain:

ĉi = λi si > 0.

Taking this expression into account, and (A.3′), it follows from (23) that:

âi
t si λi = λi Î i

t ,

which implies that̂I i
t = I

i
t = âi

t si for all t = 1, 2, ...,and all i = 1, 2, ..., n. ��
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