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Abstract: 

A sequential weakly efficient two-auction game with entry costs, interdependence 

between objects, two potential bidders and IPV assumption is presented here in order to 

give some theoretical predictions on the effects of geographical scale economies on 

local service privatization performance. It is shown that the first object seller takes 

profit of this interdependence. The interdependence externality rises effective 

competition for the first object, expressed as the probability of having more than one 

final bidder. Besides, if there is more than one final bidder in the first auction, seller 

extracts the entire bidder’s expected future surplus differential between having won the 

first auction and having lost. Consequences for second object seller are less clear, 

reflecting the contradictory nature of the two main effects of object interdependence. On 

the one hand, first auction winner becomes “stronger”, so that expected payments rise in 

a competitive environment. On the other hand, first auction loser becomes relatively 

“weaker”, hence (probably) reducing effective competition for the second object. 

Additionally, some contributions to static auction theory with entry cost and asymmetric 

bidders are presented in the appendix. 



Resumen: 

Un juego secuencial formado por dos subastas débilmente eficientes, donde las 

valoraciones de los objetos son interdependientes, con dos posibles compradores bajo el 

supuesto de Valoración Privada Independiente (IPV), se presenta en este trabajo para 

dar algunas predicciones teóricas sobre los efectos de las economías de escala de tipo 

geográfico sobre el nivel de éxito en las privatizaciones de servicios de provisión 

pública local. Se demuestra que el vendedor del primer objeto se beneficia netamente de 

la interdependencia entre objetos. Esta interdependencia alienta la competencia efectiva 

por el primer objeto, expresada en términos de probabilidad de tener más de un 

comprador ex post.  Además, si hay más de un comprador en la primera subasta, el 

vendedor consigue extraer enteramente el diferencial de excedente neto esperado futuro 

entre el hecho de haber ganado la primera subasta y el de haberla perdido. Las 

consecuencias para el vendedor del objeto que se subasta en segundo lugar son menos 

claras, lo cual refleja la naturaleza contradictoria de los efectos principales de la 

interdependencia entre objetos. Por un lado, el ganador de la primera subasta se hace 

“fuerte”, al valorar más el segundo objeto, y por lo tanto los pagos esperados aumentan 

si la competencia es suficiente. Por otro lado, el perdedor de la primera subasta se 

“debilita” con respecto al ganador, con lo cual probablemente se reduce el nivel de 

competencia por el segundo objeto, en términos de probabilidad de participación de 

ambos compradores. En el apéndice a este trabajo, adicionalmente, se presentan avances 

teóricos relacionados relativos a la teoría de subastas con costes de entrada y 

compradores asimétricos. 

 



1. Introduction 

Since classical papers like Chadwick (1859) and Demsetz (1968), it is said that 

natural monopolies such as public utilities need not be owned or regulated by public 

organizations anymore. Demsetz’s idea was that, instead of regulating utility 

performance, proceeding to periodically auctioning off the right to supply the service 

would yield good efficiency results while saving information costs necessarily linked to 

service regulation. 

The debate on privatization of local services has evolved from the earlier 70’s 

through nowadays. During the 80’s, there was a wide consensus on the goodness of 

service privatization, understood as periodically auctioning it off to private firms. Cost 

savings were reflected into better service conditions for citizens or better fiscal balances 

for municipalities. 

In the nineties, some economists as Lopez-de-Silanes, Schleifer and Vishny (1996) 

tried to find out why privatization was not rapidly spreading over all municipalities and 

services despite its apparently clear advantages. Meanwhile, other economists started 

reconsidering the possibility that privatizing a public service could not be that beneficial 

for municipalities (Sclar, 2000). Competition issues were thought to be affecting 

privatization results. There is a trend towards progressive market concentration in the 

procurement and contracting-out sectors. Consequences of this process are definitely 

not good for municipalities and citizens. Here are two tables showing some data 

collected and summarized about a sample of Spanish municipalities’ privatized local 

services. 
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Table 1: Market concentration in the privatized refuse collection and treatment 

service in Spanish municipalities, 2000. 

Firm’s 

contracts 

Name Total 
number of 
contracts 

Contracts 
market 
share (%) 

Total anual 
treated waste 
(Tn) 

Treated waste 
per contract 
(Tn) 

Treated waste 
market share 
(%) 

46 FCC 46 29.68 1,069,516.37 23,250.36 46.86 

18 CESPA 18 11.61 371,923.36 20,662.41 16.30 

8 Vicens Orts 8 5.16 52,025.43 6,503.18 2.28 

7 BF-Iacsa 7 4.52 65,779.01 9,397.00 2.88 

4 Urbaser 4 2.58 201,879.53 50,469.88 8.85 

4 Ferran Vila 4 2.58 13,538.30 3,384.58 0.60 

3 3 firms 9 5.81 42,729.86 4,747.76 1.87 

2 10 firms 20 12.90 153,160.03 7,658.00 6.71 

1 39 firms 39 25.16 311,766.46 7,994.01 13.66 

 Total sample 155 100.00 2,282,318.34 14,724.63 100.00 

Source: Bel and Miralles (2004). 

 

Table 2: Market concentration in the privatized water supply service in Spanish 

municipalities, 2000. 

 Firms 

Contracts 
market 

share (%) 

Population 
served 

market share 
(%) 

Domestic 
consump. 

Market share 
(%) 

Industrial 
consump. 

Market share 
(%) 

Households 
served market 

share (%) 

Industrial 
consumers 

market share 
(%) 

AGBAR 75.00 95.49 94.84 93.57 95.28 96.86 

Prodaisa 6.25 0.13 0.18 0.10 0.16 0.07 

Seragua-FCC 3.13 1.02 1.32 2.04 1.22 1.32 

CASSA 3.13 0.79 0.72 0.92 0.70 0.48 

ABSA 3.13 0.58 0.58 0.34 0.55 0.62 

SOGESUR 1.56 0.75 0.88 0.11 0.74 0.00 

Aigües Vilanova 1.56 0.36 0.28 0.27 0.33 0.33 

ATCA 1.56 0.06 0.12 0.46 0.04 0.02 

Aigües de Vilassar 1.56 0.52 0.61 0.12 0.63 0.13 

Aigües de Catalunya 1.56 0.05 0.06 0.02 0.04 0.02 

AICSA 1.56 0.24 0.42 2.06 0.30 0.14 

Total sample 
64 

(contracts) 
3,241,563 
(citizens) 

166,132,498 
(m3) 

82,675,301 
(m3) 

1,347,434 
(users) 

167,517 
(users) 

HH index 0.5708 0.9122 0.8999 0.8766 0.9083 0.9384 

Source: Bel and Miralles (2004). 
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Market concentration in these sectors becomes higher as time goes by. 

Municipalities that had not yet privatized some public service could then be afraid that 

this loss of effective competition would harm potential gains arising from privatization. 

On the other hand, once a firm is effectively established in some little region, it is true 

that municipalities there that had not yet privatized could take profit of fixed costs 

savings through contracting this firm. But these fixed cost savings represent a clear 

advantage for the firm already established against firms that could compete for entering 

the region, thus explaining the trend towards a lesser degree of competition. 

Auction theory is one of the Economics fields that could address the issue of the 

trade-off between geographic economies of scale and successive competition for 

contracts among firms. In this paper, I construct a simple auction game that tries to get 

some light to the issue, being applicable to cases like the following one. 

Imagine that there is a little region with two municipalities that have some public 

service owned and managed by their own. There are two ex ante identical firms that 

would like to manage the service, because both are more efficient than the public 

providers are. Municipality 1 decides to privatize the service, putting it into contest. The 

two firms are potential contestants, but they have to choose carefully whether to enter 

the contest process or not, because doing so is costly. Firm 1 wins the contest and 

therefore the contract. Years later, municipality 2 privatizes the service, hence 

auctioning it off. Firm 1 could provide the service cheaply, since it is already installed 

in the region. These are good news for municipality 2. The bad news are that firm 2 may 

decide not to enter the auctioning process given its cost disadvantage, so that firm 1 

could both win the contract and enjoy almost the whole efficiency gain generated by the 

privatization. What will the aggregated effect be for municipality 2? Will it be better off 

if municipality 1 had not previously privatized the service? Does municipality 1 obtain 

good contract conditions thanks to the fact that there is a second municipality in the 

region that has not privatized the service? 

Some answers derived in this paper and applied to the questions above are 

summarized as follows. First, municipality 1 takes great profit of the fact that 

municipality 2 is going to privatize later. In fact, if both firm 1 and firm 2 participate in 

the first contest, municipality 1 fully extracts the expected future surplus differential 

between being already installed in the region and having to enter the region lately. 

Second, the aggregated effect for municipality 2 is not so clear, hence reflecting the 
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contradictory nature of the consequences of municipality 1’s privatization process. In 

some cases it could have been better for municipality 2 if municipality 1 had not 

previously privatized the service, while in other cases the opposite happens. 

The model is an independent private-values second-price sealed-bid sequential 

auction game with separate entry costs. More details are further explained. Other 

possible setups and assumptions could have been applied here, as common-values, first-

price, … The model chosen here has the advantage of being mathematically handy. The 

private-values assumption manages to give importance to the firm’s cost advantage fact, 

which is the central issue in this paper. The second-price sealed-bid auction is 

guaranteed to be efficient among the potential bidders that finally take part in the 

auction1, while this efficiency is not guaranteed in a first-price setup when bidders are 

not ex ante identical. Entry is assumed to be costly, as it is usual in this kind of 

contracting processes. 

The paper is organized as follows. Next section presents a short overview of auction 

theory with entry costs and of sequential auctions. Third section presents the model and 

derives several results. Section four analyses some implications of these results. Final 

section concludes. An appendix is included in order to make some points clearer. 

 

2. Auction theory with entry costs and sequential auctions 

Typically, the number of bidders that take part in an auction has been taken as 

exogenously fixed by a major part of the literature on auction theory. General results 

given this assumption are found and summarized in Milgrom (1989) and McAfee and 

McMillan (1987a). 

Nevertheless, there is a recent but growing literature that analyses bidders’ entry cost 

and its consequences on the entry decision (McAfee and McMillan, 1987b; 

Engelbrecht-Wiggans, 1993; Levin and Smith, 1994; Menezes and Monteiro, 1994; 

Stegeman, 1996; Campbell, 1998; Menezes and Monteiro, 2000; Lixin, 2002; Kaplan 

and Sela, 2002; Gal, Landsberger and Nemirovski, 2002; Tan and Yilankaya, 2003; 

Pevnitskaya, 2003; Landsberger and Tsirelon, 2003). Key contributions are Levin and 

                                                           
1 This is the concept of weak efficiency, as explained in Armstrong (2000). Any other auction mechanism 
that is weakly efficient in this sense could have been used here instead of the second-price sealed-bid one, 
due to the Revenue Equivalence Theorem. 
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Smith (1996) and Menezes and Monteiro (2000), since they develop the basis of 

auctions with entry that is currently in use. 

Levin and Smith (1994) paper constitutes in part a critique against Engelbrecht-

Wiggans setup. In the latter, participation decision is a pure strategy. This leads in many 

cases to asymmetric equilibria even if potential participants are ex ante identical, which 

sounds unintuitive. Levin and Smith (1994) conceive participation decision as a mixed 

strategy. In their setup, one single indivisible object is to be sold by an auctioneer to one 

out of N potential bidders. Every potential buyer i has the same distribution function F 

with support on [0,v*], which reflects other bidder’s beliefs about ith-bidder’s possible 

valuation (or signal). Each final participant has to pay a constant positive cost c, which 

is common knowledge. Participation decision is taken before having knowledge of the 

own valuation (or signal). The auction mechanism, the number of potential entrants, and 

the number of final bidders become common knowledge as well. There is no reservation 

price. In this setup, they find interesting results, as an extension of the revenue 

equivalence to endogenous entry cases. They also find that market thickness (a high 

number of potential participants) may not be profitable for the seller. 

Menezes and Monteiro (2000) present a very similar model, but in this case 

participation decision is to be taken after having had knowledge of the own valuation 

(or signal). In this case, it is shown that bidders play so-called cut-off strategies or 

threshold strategies in the equilibrium. Each one bids obviously only if he participates, 

and he participates if his known valuation is higher than some own threshold value. 

Menezes and Monteiro find similar results to the ones of Levin and Smith, that is, 

revenue equivalencies and the fact that market thickness may not be good for the seller. 

In this paper, I use the Menezes and Monteiro’s setup, because it seems more 

appealing for the cases I analyze. I focus on cost features that are firm specific, so that 

they are private and previously known by the firm before engaging into the contest 

process. It is precisely contest participation what entails participation costs. Hence, 

valuations are typically known before taking the participation decision. 

Stegeman (1996) and Lixin (2002) study optimal auctions under participation costs. 

Campbell (1998) insights, among other things, into the possibility of having asymmetric 

equilibria even with symmetric players, in the Menezes-Monteiro setup. This possibility 

is deeply analyzed in Tan and Yilankaya (2003), who also analyze asymmetric bidders 

in the Menezes-Monteiro setup with second-price sealed-bid auctions. Kaplan and Sela 
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(2002) introduce an interesting variation in which valuations are common knowledge 

but entry costs are private uncorrelated information. Pevnitskaya (2003) focuses on 

first-price sealed-bid auctions with entry costs and risk-aversion variability among 

potential bidders. Gal, Landsberger and Nemirovski (2002) investigate to which extent 

partial participation cost rebating could be beneficial for the seller. Landsberger and 

Tsileron (2003), finally, contribute to the study of auctions with entry when valuations 

(signals) are correlated among potential bidders. They arrive to the conclusion that 

threshold equilibrium concept should be revisited when signals are correlated. In this 

paper, I get rid of the correlation assumption, hence avoiding tedious and difficult 

calculation. As noted above, the central issue of this paper is the effect of firm’s costs 

advantages on competition and contract conditions. Common features of each contract 

that is to be auctioned off are assumed to be non-random common knowledge. 

Another point of the model I present is that auctions with entry costs are sequentially 

undertaken. Menezes and Monteiro (1994) have presented a similar model to the one of 

this paper. The difference with my assumptions is that the former assumes that once a 

bidder wins the first object, he is not interested in the second one, while my model 

imposes no limit on the number of objects a bidder could obtain. Bremzen (2003) also 

studies sequential auctions and associated entry deterrence strategies, in two sequential 

auctions for identical objects where there is a potential new entrant in the second 

auction. 

Finally, I shall quote the work of Gandal (1997), which is an empirical paper that 

deals with the issue I try to explain. The paper studies sequential cable television license 

sales taken at Israel. The winner of the auction for a region had a cost advantage in 

further auctions to be done in bordering regions. The paper assesses this cost reduction 

and concludes that in the case under study, the cost-reduction effect has outweighed the 

loss-of-competition effect. Gandal observes that there is no theory trying to explain this 

issue. Here it is. 

 

3. The model 

Consider the following sequential auction game, which will be called the 

ORIGINAL GAME in what follows. There are two risk-neutral bidders competing for 

obtaining either one or both of two objects. Objects are sold sequentially and separately 

in second-price sealed-bid auctions with no reservation prices. For the first one, ex ante 
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valuations are believed by bidders to follow a distribution F over the support [0,v*]. 

Valuations are always independent between bidders. Bidders’ beliefs in the second stage 

depend on the outcome of the first stage: 

a) If bidder 1 wins the first auction, his valuation will follow a distribution function 

G over the previous support, while bidder 2 will maintain the same distribution 

function F. G first order stochastically dominates F. 

b) If bidder 2 wins the first auction, the converse will happen. 

c) If none of the bidders enter the first auction, then both bidders will have the 

same distribution function F again. 

Taking part in each auction has a known cost c ( *0 vc << ) for each participant, so 

that participation decisions in any, none or both auctions become endogenous. Before 

each bidder  decides whether to participate in the second auction or not, he gets 

knowledge of his own real valuation . Before each bidder i decides on participation 

in the first auction, he gets knowledge of his valuation for the first object , but not for 

the second ( ). There is a common unity discount factor between auctions. 

}2,1{∈i
2
iv

1
iv

2
iv

The game is readily solved by backward induction. Hence, I shall start by 

considering stage 2, the auction of the second object, in any of the cases a, b and c. 

Case a. Bidder 1 has won the first auction, and we proceed to the second one: 

In this kind of auctions with entry, with no consequences on the future, it is well 

known that bidder’s strategy involves two actions: a bidding function (given 

participation) and a participation function, which depend on bidder’s valuation. Given 

participation, a weakly dominating bidding function consists of revealing the true 

valuation. This is standard in Vickrey auctions and is not explained here. From this 

optimal bidding, an expected profit function given participation is derived. This helps us 

find the participation function. Expected profits are increasing in the own valuation. 

Valuations below or equal to some threshold point iθ ( *)vc i ≤≤θ suggest bidder i deter 

from participating, as expected profits of doing so are non-positive. Above this 

threshold, participating is the right decision, as expected profits are positive. Hence, this 

sequence of actions is usually called threshold strategy, which typically depends on the 

other bidder’s threshold strategy (take into account that the other bidder’s threshold 

value positively affects expected profits given participation). Optimal responses are 
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represented by the optimal threshold function , as the bidding function is already 

known. Threshold equilibrium or cut-off equilibrium 

)(#
ji θθ

*)*,( ji θθ  is reached where Nash 

equilibrium conditions hold, that is, at some point where each threshold strategy is 

optimal for any bidder. 

In case a, bidder 1’s expected profits when participating, given some bidder 2’s 

threshold strategy 2θ  and bidder 1’s known valuation  av1
2, is 

[ ] ( )

cdxxmaxF

cdxxfxvvIvF

cvvvmaxEFvF

a

a

v

v aaa

aaaa

−=

=−−>+=

=−>−−+

∫

∫
1

1

2

0 2

12112

2221212

}),{(

)()(}{)(

},0{)(1)(

θ

θθ

θθθ

θ
 

Here, is bidder 2’s valuation, unknown by bidder 1, and I{} is an index function 

defined as usual. I have skipped some steps but arriving to these results is not extremely 

difficult. Last equality is reached by means of integration by parts. Bidder 1’s optimal 

threshold strategy is the valuation that makes expected profits given participation equal 

zero 

av2

cdxxmaxF
a

=∫
)(

0 2
2

#
1 }),{(

θθ
θ  

whenever this optimal strategy is lower than v*. The optimal threshold would be 

equal to v* if and only if3

cdxxmaxF
v

≤∫
*

0 2 }),{( θ  

Notice that it always happens that , as bidder i knows for sure that the 

other bidder is almost never going to take part in the auction. 

cvi =*)(#θ

Bidder 2’s expected profits under similar conditions become 

cdxxmaxG
av

−∫
2

0 1 }),{( θ  

and optimal threshold strategy is derived analogously. A cut-off equilibrium for case 

a is a pair such that . There could be [ ]221 *,*)*,( vcaa ∈θθ **)(*;*)( 21
#
212

#
1

aaaaaa θθθθθθ ==

                                                           
2 The superscript refers to case a, and both valuation and threshold value refer to the second auction. 
3 Notice that I restrict attention to threshold strategies defined on the compact interval [0,v*] (in practice, 
they become restricted to [c,v*]). While this is not necessary, it makes further calculations clearer. 
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multiple equilibria. Existence has already been proved (see Miralles, 2002). We can also 

state (see Lemma 1) in this case that there will exist an equilibrium  such that 

. As G dominates F, 

*)*,( 21
aa θθ

** 21
aa θθ ≤ [ ]*,0)()( vxxFxG ∈∀≤ , and, supposing that both 

bidders play the same threshold strategy, bidder 2’s expected profits given participation 

are lower or equal than bidder 1’s ones. Hence, playing the same strategies may seldom 

be threshold equilibrium, and a possible “natural” readjustment suggests that the 

weakest bidder should rise threshold strategy in the equilibrium, while the strongest one 

should lower it. 

 

Lemma 1:4

Consider a two-neutral-bidder, independent private-values, second-price sealed-bid 

auction with common and known entry cost c ( *0 vc << ), where each bidder knows his 

own valuation before taking a decision about participating in the auction. Bidder 1’s 

valuation is an observation from a random variable with distribution function G with 

support on [0,v*]. Bidder 2’s valuation is extracted from a distribution function F with 

identical support. G first order stochastically dominates F, and both are common 

knowledge. 

Then, this auction game has at least one cut-off equilibrium 

[ ] [ ]*,,*)*,( 21 vc GF θθθθ ×∈ , where *vc GF <≤< θθ and thetas are defined as the unique 

solutions for 

cG
cF

GG

FF

=
=

θθ
θθ

)(
)(

 

Proof: 

By the definition of expected profits with participation given above, it can be seen 

that , . First order domination implies FF θθθ =)(#
1 GG θθθ =)(#

2 [ ]*,0)()( vxxFxG ∈∀≤ , 

which consequentially implies GF θθ ≤ . These fixed points exist as  and 

exist, are continuos and their dominia and codominia are both [0,v*]. 

)(#
1 xθ

)(#
2 xθ

                                                           
4 This is a refinement on a special case of Tan and Yilankaya (2003) proposition 4. I also generalize their 
proposition in the appendix. 
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For any bidder i, is strictly decreasing on x whenever . This can be 

readily understood: increasing the other bidder’s threshold value increases own 

expected profits given participation for any possible valuation, making the own optimal 

threshold strategy decrease. 

)(# xiθ *)(# vxi <θ

As optimal threshold functions are decreasing, continuos and defined over the 

compact set [0,v*]2, and  imply that is closed under FF θθθ =)(#
1 GG θθθ =)(#

2 )(#
1 xθ

[ ] [ *,, vc FF ]θθ ×  (recall ) and that  is closed under cv =*)(#
1θ )(#

2 xθ [ ] [ *,, vc GG ]θθ × . 

Hence, both functions are closed under the compact intersection set [ ] [ ]*,, vc GF θθ × . By 

Brower’s fixed-point theorem, this implies that an intersection between both optimal 

threshold functions, i.e. a cut-off equilibrium, must be in this set. QED 

 

An important generalization of this lemma can be found in the appendix. Lemma 1 

has proven that, in our case a, there will exist at least one equilibrium  such 

that . Of course, there could be many such equilibria. There could be, though 

not necessarily, “not natural” equilibrium ,'( 1
a θθ that '' 21

aa θθ >  ( ncretely 

in the set {

*)*,( 21
aa θθ

** 21
aa θθ ≤

)'2
a  such more co

[ ] [ ]FG
aa θθ )','( 11 ∈ r practical purposes, a more formal 

definition of what is considered  “natural” equilibrium follows below: 

cv θθ ,*, × })  5. Fo

Definition 1: A “natural” cut-off equilibrium of a second-price sealed-bid entry-

cost Menezes-Monteiro auction with two bidders where: 

- bidder 1’s valuation follows a distribution function G() over [0,v*] 

- bidder 2’s valuation follow a distribution function F() over [0,v*] 

- G first order stochastically dominates F 

 is the one and unique that comes as a result of iterated best responses when original 

threshold coordinates are either ),( FF θθ  or ),( GG θθ , where  

cG
cF

GG

FF

=
=

θθ
θθ

)(
)(

 

, regardless the identity of the bidder who first reacts to these original coordinates. 

We denote this “natural” equilibrium by the pair ),( HL θθ . 
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The logic of this definition is straightforward and appealing. Imagine that there is a 

“first primitive” auction game where both players have the same distribution F. This 

game has one symmetric threshold equilibrium ),( FF θθ , so we start from this point. 

Suppose that bidder 1 changes its original distribution function by G, which dominates 

the previous one. ),( FF θθ  is then no longer an eq m (only bidder 1 would be in 

an optimal position), so departing from it bidder 2 reacts optimally by choosing 

FF θθθ ≥)(#
2 . Bidder 1 counter-reacts by choosing FF θθθθ ≤))(( #

2
#

1 . Bidder 2 reacts 

again by means of )()))((( #
2

#
2

#
1

#
2 FF θθθθθθ ≥ , and so on. The process ends in the limit 

uilibrium ),( HL

uilibriu

when the eq θθ is reached. Notice that  

[ ] [ ] }))))(,(:,{(,{(),( #
2

#
2 Ecmaxmax FHL ∈∈= θθθθθθθθ  

E

}))(,(:, #
2 Ec F ∈∈ θθθθθ

, where  is the set of cut-off equilibria of this game. Now, imagine instead that we 

start from a “second primitive” game were both bidders’ valuations are extractions rom 

an 

 f

identical distribution function G. ),( GG θθ  is the induced symmetric cut-off 

equilibrium in this case. By analogous reasoning, if we now change bidder 2’s valuation 

distribution function by F, we would arrive again to ),( HL θθ . As a corollary, observe 

that the “natural” cut-off equilibrium when both players have identical distribution 

functions (they weakly dominate each other) is the symmetric equilibrium. I assume 

from now on that the “natural” equilibrium ),( HL θθ  is going to be played in case a. 

Expected profits for bidder 1 at the equilibrium becomes 

⎞⎛ ava 1

⎟
⎠⎝ 0

⎜ −> ∫ cdxxmaxFvI HL1 }),{(}{ θθ  

It is useful, concerning stage 1, to calculate bidder 1’s expected profits before he 

knows his own valuation, 

⎝ 0

For bidder 2, equilibrium expected profits are 

⎞
⎜
⎛ −> ∫ cdxxmaxGvI

ava 2 }),{(}{ θθ  

                                                                                                                                                                         

∫ ∫ ⎟⎞⎜⎛ −>==
*

01 }),{(}{)(
v x

HLwin
a dxcdzzmaxFxIxg θθππ  

⎠

⎟
⎠⎝ LH 02

 
5 Tan and Yilankaya’s (2003) show some conditions for the impossibility of having these cases. 
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Notice that 

∈∀⎟
⎠
⎞⎜

⎝
⎛ −>≤⎟

⎠
⎞⎜⎛ −> ∫ θθθθ  

Bidder 2’s expected profits before learning his valuation is 

⎛ −>==
*v xa θθππ

It is easy to check that 

[ ]*,0}),{(}{}),{(}{
00

vvcdxxmaxFvIcdxxmaxGvI
v

HL

v

LH ⎝ ∫

∫ ∫ ⎟
⎠⎝0 02 }),{(}{)( LHlos dxcdzzmaxGxIxf  ⎞⎜

loswin ππ ≥ . 

Case b. Bidder 2 has won the first auction, and we proceed to the second one:  

This case is just the opposite of case a. By inverse argumentation, it is seen that 

there is a natural equilibrium ),( LH θθ which is assumed to be played. Hence: 

los
b ππ =1  and win

b ππ =2 . 

Case c. None of bidders participate in the first auction, and we proceed to the second 

one: 

Is this case, it is readily seen that symmetric cut-off equilibrium ),( FF θθ  exists, 

where cF FF =θθ )( . Notice that HGFL θθθθ ≤≤≤ . This symmetric  is also 

a “

luations are 

⎝0 0 FF

It can be readily checked that 

 equilibrium

natural” equilibrium, so it is assumed to be played. Expected profits before knowing 

own va

⎞⎜⎛ −>===
*

21 }),{(}{)(
v x

dra
cc dxcdzzmaxFxIxf θθπππ  ∫ ∫ ⎟

⎠

losdrawin πππ ≥≥ . 

Stage 1. The first object is auctioned: 

Now that we have seen all the possibilities in the second stage, we turn to the first 

one  have consequences on the former, these 

con

idder i’s expected profit after knowing his own valuation vi for object 1 and 

dec

. As the result of the latter will

sequences must be taken into account by bidders when maximizing their payoff 

functions. 

Players are symmetric in this phase of the game, and therefore payoff functions are 

identical. B

iding to participate in the first auction, where j is the other bidder and bi( ), bj( ) are 

the bidding functions, is 
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[ ] ( )
[ ]

[ ]
[ ] [ ]))()(,)(())()(()(1

)(1))((

}))()((1

))()(,)(())()(({)(1

))(( vF

jjiijjjjloswinijjjjiij

losjwinij

losjjjjii

jjiijjjjwinijjjjiij

winiji

vbvbvvbEvvvbvbPF

cFvF

cvvbvbP

vbvbvvbEvvvbvbPF

>>−−+>>⋅−+

+−⋅−++=

=−⋅>≥−+

+>>−+>>⋅−+

++=Π

θππθθ

πθπθ

πθ

θπθθ

πθ

 

Symmetry implies that we can assume symmetric bidding functions. By an argument 

that is typical of Vickrey auctions, it can be shown that optimal bidding is as follows: 

loswinji vvbvb ππ −+== )()( 6

This is due by the fact that real valuation for object 1 takes into account the different 

consequences that winning or loosing will have in the next auction. The effect is the 

same as the one of shifting the distribution function F and bidders’ valuations to the 

right. Hence, a typical Vickrey auction argument follows, and our bid is equal to this 

real valuation. 

Given that the optimal bidding strategy bi(vi) meets 0
)(
=

∂
Π∂

ii

i

vb
, by the Envelope 

Theorem 

[ ] ))()(()(1)( jjjjiijj
i

i

i

i vvbvbPFF
vdv

d
θθθ >>⋅−+=

∂
Π∂

=
Π

 

As 
)(1

)()))(((
}))(({))()((

1
1

j

jiij
jiijjjjjii F

FvbbF
vbbIvvbvbP

θ
θ

θθ
−

−
>=>>

−
−

i

 and 

, the latter due to symmetry, iij vvbb =− ))((1

}),{())()(}({)( ijjijij
i

i vmaxFFvFvIF
dv
d

θθθθ =−>+=
Π

 

                                                           
6 We could also take into account a more general case where there is a common discount factor 10 ≤≤δ  

by an ex ante and some uncertainty about whether there is going to be a second auction or not, expressed 
probability  of having the second auction. It can be seen that in this general case 10 ≤≤ p

)()()( loswinji pvvbvb ππδ −⋅⋅+== . 
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When bidder i has the minimum possible valuation for object 1, that is, zero, given 

participation he can expect to lose the first auction with probability one if the other 

bidder also takes part in it, so that  

( ) losjwinji FFc πθπθ ⋅−+⋅+−=Π )(1)()0(  

From this starting point, we can integrate previous differential equation and obtain 

( ) ∫+⋅−+⋅+−=Π iv

jlosjwinji dxxmaxFFFc
0

}),{()(1)( θπθπθ  

If bidder i does not take part in the first auction, given any own known valuation vi 

we can express his expected profits as 

( ) losjdraji FF πθπθ ⋅−+⋅=Π )(1)(  

Thus, an optimal threshold strategy is given by 

( )
( )

drawinjj =−+∫ ))((}),{
0

ππθθ

qual inequality. 

Strategies are symmetric for both players, so we can find a symmetric, “natural” cut-

off equilibrium

cFdxxmaxF

FF

dxxmaxFFFc

losjdraj

jlosjwinj

ji

ji

⇔

⇔⋅−+⋅=

=+⋅−+⋅+− ∫

(

)(1)(

}),{()(1)(

)(

)(

0

#

#

πθπθ

θπθπθ

θθ

θθ

 

whenever this threshold strategy is lower than v*. Otherwise, the equation becomes 

a lower-or-e

, which meets  *)*,( θθ

cF drawin =−+ )**)(( ππθθ  

Notice that HF θθθ ≤≤* 7

r

. The former equation has close relation to the symmetric 

cut-off equilib  which both bidders’ valuations follow the 

distribution function 

ium of an isolated auction in

[ ]drawindrawindrawin vxxFxH ππππππ −+−∈−−= *,)),(()( . The 

effect of the interdependence between objects on first auction consists of a shift of 

bidders’ valuations to the right. It is as if valuations increased by the difference between 

ex ante expected pay-off in the second auction for the buyer of the first object and the 

same ex ante expected pay-off if no interdependence existed. 

                                                           
7 This result still holds when taking into consideration the more general case of footnote 5. In the general 
case, the symmetric equilibrium will accomplish with the condition cpF drawin =−⋅⋅+ ))(**)(( ππδθθ . 
Symmetric equ  will not exist if discount factor differs between bidders, but in this paper I am ilibrium
assuming that bidders are symmetric ex ante. 
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4. Some implications 

Having seen a typical Bayesian “natural” equilibrium path of the complete game, we 

can get some implications that sequential auctioning described above has on the 

com n 

interdependencies among objects are present. A first result states that the first seller is 

always non-worse-off in a sequential auction than in an isolated-auctions benchmark. 

in which winning or losing in the first auction 

would not have any consequences on second auction distributions, and where 

symmetric strategies are played. Then, the probability that both bidders participate in 

the med equilibrium is higher or equal 

than the probability that both bidders take part in the first auction of the benchmark 

game. Besides, first auction seller is ex ante (non-strictly) better off in the original game 

than in the benchmark game. 

Proof: 

se c of the second stage in the original game. It is easy to 

see

petition level and on the expected profits that sellers can obtain, whe

Result 1: 

Consider a BENCHMARK GAME 

 first auction of the original game with the assu

In the benchmark game, both the first and the second auctions are identical to the 

auction that takes place in ca

 that [ ]2*)(1 θF− , the probability that both bidders take part in the first auction of the 

original game, is higher or equal than [ ]2)(1 FF θ− , the probability that both bidders take 

part in the f tion of the ark game. This is due to irst auc benchm *θθ ≥F . 

Besides, bidding function in the first auction of the original game is 

loswin
O vvb ππ −+=)( , while the bidding function in the first auction of the benchmark 

game is vvbB =)( . Re n with 

no reservation price is zero unless more than one bidder takes part in it. Given that both 

participate, seller’s profits equal the minimum of the two bids, a variable that has the 

following distribution and density functions: 

[ ]

call that seller’s profits in a second-price sealed-bid auctio

[ ]2 −=−−= )(1)(2)(;)(11)( xFxfxhxFxH  

Hence, first auction seller’s ex ante expected profits in the original game are 
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[ ]
[ ]

[ ]

[ ] ( )

xdxxFxf
F

vvvvminEvvP
v

loswinloswin
O

=⎟
⎟
⎞

⎜
⋅−

+−−=

=>>−+−+⋅>>=

∫
*

*

2121210

)(1)(2
*)(1

)**,},{(*)*,(

θππθ

θθππππθθ

 

[ ] xdxxFxfF

F

v

loswin

loswin

⋅−+−−=

⎟
⎠

⎜
⎝

−

∫
*

*

2

2

)(1)(2*)(1

*)(1

θ
ππθ

θ

whereas first auction seller’s ex ante expected profits in the benchmark game are 

Π

⎜
⎛

2

[ ] xdxxFxfvvvvminEvvP
vB ⋅−=>>⋅>>=Π
*

)(1)(2),},{(),( θθθθ  FFFF
F
∫2121210 θ

It is clear that the first auction seller obtains higher profits when there are 

interdependencies among objects. However, it is not so clear that the second auction 

sell

mpetition 

e first auct

g a 

result in which the probability of having zero profit for the second seller is higher in the 

orig

can be found in Mi

 more 

Consider the benchmark case of Result 1. Then, assuming

It is clear that 00 Π≥Π . QED 

 

So the first auction seller takes profit of being the first one when it is expected that 

the result of the auction is going to have effects on future valuation distributions. Notice 

that when both bidders take part in the auction, seller extracts the whole bidder’s future 

ex ante surplus difference between having won this first auction and not having done so. 

BO

er in the original game is going to be better off than in the case where the two 

auctions are not interrelated. In the original game, the second seller faces a probably 

lesser co level from the loser of the first auction, but a probably higher 

competition level from the winner of th ion. There is a trade-off between these 

two forces. I have developed some sufficient (not necessary) conditions for yieldin

inal game than in the benchmark game. Two of them come from a proposition that 

ralles (2002) (see Proposition 2 in the appendix). Next one is 

somehow complicated. Finally, I have depicted in a last result sufficient 

conditions for the opposite to hold, that is, making the probability of having zero profit 

for the second seller be lower in the original game than in the benchmark game. 

Result 2: 

GF θθ < ,  if 

( )
)(1 eG−

* cvevvEG
−

=> for some ce ≥ , and 
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( )
)(

)/(
)(

1

1

θ
θ

θ
θθθ

Gc

ccGc

cGvvEG

−

−
>≤≤

−

− for any ),( Ge θθ ∈  

second-object seller’s ex ante expected profits in the original game will be 

necessarily lower than or equal to the ones in the benchmark game. 

Miralles (2002) proposition 1 (see Proposition 2 in the appendix) can be used to 

state that if the first conditon holds, there is a cut-off equilibrium in which the loser of 

the first auction is for sure not going to participate in the second auction. It remains to 

see if (c,v*) (or alternatively (v*,c) ) is the “natural” equilibrium of the second auction 

whenever th

the original gam

Proof: 

ere has been a loser and a winner in the first auction. This is what the 

second condition guarantees for any possible distribution function F that is first order 

stochastically dominated by G. 

Without loss of generality, call “bidder 1” to the bidder that won the first auction in 

e, and “bidder 2” to the other bidder who lost. Concerning the second 

auction, we have to check that there is no intersection between )(#
2 θθ and )(1#

1 θθ − in the 

interval ( ]Fe θθ ,∈  ( ),( Ge θ⊂  given our initial assumption). Given that 

)()( 1#
1

#
2 FFGF θθθθθθ −

=>> , the latter curve must be strictly under the former one on 

the entire interval considered here. Given that )()( 1#
2

1#
1 θθθθ −−

≤ always holds, it suffices 

to check that 

( ]FecG θθθθθθθ ,),/()()( 11#
2

#
2 ∈∀=> −−  

As Gθθθθθθθθ <∀>>
− ,)(,)( 1#

2
#
2 , the former condition could be expressed as 

∫
−

<+
)/(1

)()(
θ

θ
θθ

cG
cdxxGG  

Integrating by parts, we get 

∫
−

<−− )/(1
1

)()/(
θc

∫
−

<−− )/(1
1

)()/(
θ

θθ
θ

cG
cdxxxgcG , i.e 

θθ
θ

cG
dxxxgccGc  

Applying the definition of conditional expectation, we obtain 

 17



( )
)(

)/(

)(

)(
)(

1)/(

1

1

θ
θ

θ
θ

θ
θ

θθ

θ

θ

G

ccGc

Gc
dxxxg

cGvvE

cG

G

−

−

−
=≤≤

−

− ∫
−

as desired. 

f the first one will 

never take part in the second, due to implied “natural” second-auction equilibrium. In 

case of having had a draw in the first auction, in the sense that none of the bidders took 

part on it, second auction seller faces an auc

c> , 

Hence, if the conditions hold, whenever there is a winner in the first auction, 

second-auction seller will obtain zero profits for sure as the loser o

tion that is equivalent to the one of the 

benchmark game, thus yielding same profits. QED 

 

The idea of this result is very easy. If conditions guaranteeing *vH =θ  hold, then 

the second-auction seller would be in serious trouble compared to a benchmark case in 

which bidders continue being symmetric. These sufficient conditions have to do with 

the

ction omplis

same result. 

Result 3: 

Consider the benchmark case of Result 1. Then, assuming

 strength of the first-auction winner’s distribution. 

However, conditions stated in Result 2 could be thought as rather uninformative, as 

it does not give a precise idea of which kind of distribution fun s acc h with 

them. Therefore, I have developed some “easier” sufficient conditions leading to the 

GF θθ < ,  if 

( )
)(1

*
eG
cvevvEG −

−
=> for some , and 

F is strictly convex but 

ce ≥

2

)(
)(3

)(
)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

xG
xg

dx
xG
xgd

 for any [ ]*,vx Gθ∈  

second-object seller’s ex ante expected profits in the original game will be 

necessarily lower than or equal to the ones in the benchmark game. 

Proof: 

second conditions are 

met, 

As in the previous Result, we just need to show that when 

*vH =θ  is the high “natural” equilibrium threshold value. Take a two-player 
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auction with the same rules but equal distribution functions G. There are at least two 

equilibria: ),( GG θθ (by symmetry) and (c,v*) (by the first con  result). If we 

show that this game has no equilibrium in 

dition of this

( ) ( )*,, vc GG θθ × , then we are done. Recall the 

argument of Result 3: the inverse of the optimal threshold strategy is always higher 

when a bidder faces a “strong” competitor than when facing a “weak” one. Thus, if the 

game with “symmetric strong bidders” has no equilibrium in the area under 

consideration, neither does the game with “strong” and “weak” bidders. 

Define y and x as *vxyG ≤≤≤θ  and 
)(xG

cy = , and define 

cdxxG
xGxG xG⎠⎝ )()()(

If 0)()( ≤=x

cGcx
x

c −+⎟⎟
⎞

⎜⎜
⎛

= ∫ )()(π  

π , then (y,x) is a cut-off equilibrium (inequality only applies when 

x=v*). Notice that both Gx θ= and x=v* meet this result. We need to show that 

*),(0)( vxx Gθπ ∈∀< . Then, differentiate the function to obtain 

)(
)(

)(
)(

)(
)(

)(
1)('

2
2

xG
xH

xG
cgxg

xG
cxG

xG
x ≡

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=π  

It can be seen that this is strictly negative when Gx θ=  due to convexity of G (see 

Tan and Yilankaya, 2003). Hence, 0,0,0)( →><+ εεεθπ G and 0*)( ≤vπ . In order to 

see *),(0)( vxx Gθπ ∈∀< , it is only sufficient to show that, worsin the t case, that is, 

whenever there is a point where 0)(' =xπ , this point is not a maximum. Denote it as x*, 

so that . Assume that this point exists. We have 0*)( =xH

0*)('0*)('');('
)(

1)(
)( 2 GxG

)()('' ≥⇔≥+
−

= xHxxH
x

xHxgx ππ  

2

22

2

)(
)(

)(
)(

)(
2)()(2)(' xg

xG
xG

gxg

xG
cxGxgxH −

⎟⎟
⎠

⎜⎜
⎝

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

 

)(
)(

)(
')(

)()(
)('

)( xG
xcg

xG
cgxg

xG
c

xG
cgxg

xG

c

⎟⎟
⎞

⎜⎜
⎛

⎟⎟
⎞

⎜⎜
⎛

+⎟⎟
⎞

⎜⎜
c

⎜⎜
⎛

−
⎠⎝⎠⎝⎠⎝

⎛
⎟⎟
⎞

⎞⎛

⎠⎝

Using convexity of G and the fact that 0*)( =xH , we can simplify to 
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2

2

2
2

*)(
*)(

*)(*)(4

*)('*)(
*)(*)(

*('

*)(*)(2*)(*)(2*)('

xG
xg
xgxGxg

xcg
G

cgxg
xG
c

xg
xg

xGxgxGxgxH

−≥

≥⎟
⎞

⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛
+−

*)('
*)(*)(

*)()
xGx

xG ⎟
⎠

⎜⎟⎜

−+=

 

This is nonnegative if G meets 

[ ]*,,)(')(4 vxxgxg
Gθ∈∀≥ , a condition that is completely equivalen

)()( xgxG
t to 

[ ]*,,
)(
)(3)(

)(
2

vx
xG
xg

dx
xG
xgd

Gθ∈∀⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

. QED 

 

So, if G is “strong” enough but “not too much”, we have this result for sure. We 

uch” the last inequa

restrictive than log-co

understand as “not too m lity condition, which is in fact less 

ncavity of G, which is defined as 

0
)(
)(

≤
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

dx
xG
xgd

 

 We can see as well that there always exists som sible c such that both three 

conditions that are stated at Result 3

 

Result 4: 

e plau

 are compatible. 

Consider the benchmark case of Result 1. Assume that *,
2
3 vc HF <≤ θθ . Then, if F 

hazard-rate dominates the uniform distribution between c and v* on [ ]HF θθ , , i.e. 

[ ]HFx
cxxF

xf θθ ,,1
)(
)(

∈∀
−

≥  

then the ex ante probability of second-auction seller having zero profits is (non-

strictly) higher in the original case than in the benchmark case. 

Proof: 

 20



The probability of having zero profits for the seller is equal to the probability of not 

having more than one bidder finally in the auction. Thus, we have to check that 

whenever the hazard-rate condition is met, and given our assumptions, then 

 [ ] [ ] [ ] [ ] [ ])(1)(1*)(1)(1*)()(1 2222
LHFF GFFFFF θθθθθθ −⋅−⋅−+−≥− , i.e 

]Lθ  

The first equation only state ers in the 

second auction is (non-strictly) higher in the benchmark game than in the original game.  

Given that 

[ ] [ ] [1)(1)(1 2
HF GFF θθ −⋅−≥− )(

s that the probability of having two final bidd

cF FF =θθ )( , we can see that 
c

cFcF F
F

F

F
F

−
=

−
=−

θθ
θ

θθ )()(1 , so that 

[ ] [ ]
c

cFFF F
FFF

−
−=−

θθθθ )()(1)(1 2  

On the other hand, as *vH <θ  

L

H

L

LH

L
LLL

ccdxxGc
GcdxxGG

H

LH θθθ

θ

θθ
≥

−
=⇔=+

∫
∫

)(
)()()(

L θ
θ

θ
θθ

θθ

−
−=

−− 1)(  

Having that , we can follow as cF LH =θθ )(

[ ][ ] [ ] [ ]
c

FFFGF H
HH

L

H
HLH

cc −
−=

−
−≤−−

θθθ
θ

θθθθ )()(1)(1)(1)(1  

It is then sufficient to check that 

[ ] [ ]
c

cFF
c

cF H
HH

F
F

−
−≥

− θθθθθ )()(1)(  F F− θ )(1

which holds for sure if the function [ ] ))(()(1)( xFxH cxxF −−=  is non-strictly 

decreasing on x over the range HF[ ]θθ , . The condition that makes H(x) be decreasing is 

cxxF
xF

xF
xf

−
≥

−
− 1
)(1
1)(2

)(
)(  

FF
F

FF xxFxFxxFcFc θθ
θ

θθ ≥∀−≥−⇔≥∀≥⇔≥=⇔≤ )(11)(2
3
2)(

3
2)(

2
3  and 

the hazard-rate dominance condition becomes sufficient. QED 
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Result 5: 

Consider the benchmark case of Result 1. Assume that *vH <θ . If 

[ ]HFx
cxx

c
xF

xf θθ ,,1
)(1

)(
∈∀

−
≤

−
 

then the ex ante probability of second-auction seller having zero profits is (non-

stric

Opposite to Result 4, in this case we want to check that 

]

Given that 

tly) lower in the original case than in the benchmark case. 

Proof: 

[ ] [ ] [ )(1)(1)(1 2
LHF GFF θθθ −⋅−≤−  

*vH <θ and that any distribution function is non-decreasing: 

cGcGGc θθθθθθθ /)())(() ≤⇔≤−+⇔  

so that 

LL dxxGG H

L

θθ
θ

θ
()()( =+ ∫ HLLHLLL

[ ] [ ] [ ] )/1()(1)(1)(1 HHLH cFGF θθθθ −⋅−≥−⋅− . 

On the other hand, [ ] [ ] )/1()(1)(1)( 2
FFFFF cFFcF θθθθθ −⋅−=−⇔=  

That means that it is sufficient to check that 

[ ] [ ] )/1()(1)/1()(1 FFHH cFcF θθθθ −−≥−−  

Define the function [ ] )/1()(1)( xcxFxH −−=

e [ ]HF

. If this function is non-strictly 

increasing over the rang θθ , , we are done. And this happens if and only if the 

condition mentioned at the result statement is met. QED 

non-compatible. As they have opposite consequences, they cannot be simultaneously 

met. We see it mathematically. At some point of the proof of Result 4, we had 

 

It is readily seen, and easily understood, that the conditions of Results 4 and 5 are 

cxxF
xF

xF
xf

−
≥

−
− 1
)(1
1)(2

)(
)(  over the range [ ]HFx θθ ,∈  

This is compatible with the condition of Result 5 if and only if 

c
x

xF
xF

≥
−
)(

1)(2  
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, which only happens when cvx H === *θ , something that is impossible given the 

def

 

5. Some conclusions 

ts competition could be 

if there are positive geographical externalities (interdependencies in terms of Gandal, 

1997) betw ies. This 

sequential game could be applied to other cases where wining a contract or an object 

give the new owner advantage when trying to get another one. I use an auction theory 

per her app ould give a 

different light to this issue, but auction theory applied to this field is good in explaining 

effective competition patterns among private firms. 

sequential weakly efficient auctions with participation costs, 

with two potential bidders in each auction and two objects to be sold. Bidders are ex 

ant st auction. There is a positive externality between objects in the 

sense that acquiring the first one gives  

valuation. The model follows the IPV assumption as it focuses on specific uncorrelated 

individual features. It also assumes that each bidder learns his valuation in each auction 

bef ion decision, as in Mene

m’s co

er takes profit of this positive 

externality. Both bidders participate in the first auction with higher probability than if 

no positive externality existed. They also bid more aggressively, as they advance future 

ear

Consequences of the ity on sec d-object seller’s profit are less 

clear. There are two contradictory effects. On one hand, there is a bidder who is 

“str environment. On the 

other hand, the other bidder becomes relatively “weaker”, hence reducing potential 

competition. I have derived some conditions that make one effect outweigh the other. 

inition of c. 

In this paper, I have developed a simple sequential game in order to find out what 

the effects of contracting out local services on privatized marke

een municipalities, due mainly to geographical scale econom

spective. Ot roaches such as contract theory or bargaining games c

I present a model of 

e identical in the fir

the buyer a higher expected second object

ore taking the participat zes and Monteiro (2000), which is 

quite realistic concerning fir st structure. 

I derive as a result of the model that first-object sell

nings. If both bidders participate, first-object seller extracts the whole bidder’s 

expected second-auction profit differential between being a winner in the first auction 

and being a loser. All this is shown in Result 1. 

positive external on

onger”, hence raising expected price if there is a competitive 
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The distribution function of ld be “strong” enough to entirely deter 

competition, as 

the winner cou

in Results 2 and 3, which is a frankly bad result for the second-object 

seller. If this distribution function is not that “strong”, I derive conditions that make 

competition intensity, measured as the probability of having two final bidders, be lower 

(higher) with respect to a no-externality benchmark. This is found in Result 4 (Result 

5). 

An alternative research project could be devoted to explaining why some 

municipalities are pioneering in privatizing services and other ones are followers, from 

the auction theory perspective as well as from other approaches. Also, changes in the 

assumptions underlying this model can be assessed. For instance, auction mechanism 

could be like in Levin and Smith (1994), in the sense that bidders have to pay 

participation costs before learning own valuations. However, this assumption is, from 

my point of view, less realistic concerning local service contracting out. 
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Appendix 

First of all, I present an extension of Tan and Yilankaya (2003) proposition 4, which 

is in turn a generalization of Lemma 1 here. 

Proposition 1: 

Consider a second-price sealed-bid auction of an indivisible object, where there are 

N potential, risk-neutral bidders. There is no reservation price. Participating in the 

auction has a known cost c ( *0 vc << ) for each final participant. Each bidder learns 

his valuation before deciding whether to participate or not in the auction. Each ex ante 

ith-bidder’s valuation is believed by other bidders to follow a distribution Fi over the 

support [0,v*]. Valuations are independent among bidders. Then, if bidders can be 

ordered in a first order stochastic dominance ranking, such that 

[ ]*,0),(...)()( 21 vvvFvFvF N ∈∀≤≤≤  

, then this game has at least a cut-off equilibrium *)*,...,*,(* 21 Nθθθ=Θ that meets 

 *...** 21 Nθθθ ≤≤≤  

Proof: 

We assume, without loss of generality, that bidders are numbered according to the 

first order stochastic dominance ranking. Now, if N=2, the proof is done in Lemma 1, so 

we focus on the cases where N>2. First of all, define an ordered (k)-semi-equilibrium 

 as a k-first-players cut-off equilibrium that would appear if bidders k+1, k+2,…, N 

kept their threshold strategy constant at the values above indicated. Define continuos 

ordered k-semi-equilibrium line as a function that returns for each possible value 

 and some fixed vector 

 )),...,,(),...,,...,,((),...,,( 2121121 Nkk
k
kNkk

k
Nkk

k θθθθθθθθθθθ ++++++ =Θ  

[ ]*,0 vx∈ ),...,( 2 Nk θθ +  an ordered k-semi-equilibrium 

in such a way that the resulting line is continuos and defined on [0,v*]N. Semi-

equilibria always exist in the same way as equilibrium does. A continuous semi-

equilibrium path can always be found as optimal threshold strategies are continuous and 

hence a little change in one of the parameters change the function values smoothly. 

Then the following claims follow: 

 )),...,,(),...,,...,,((),...,,( 2212 Nk
k
kNk

k
Nk

k xxx θθθθθθθθ +++ =Θ  
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[ ] 1
2 *,0),...,( −−

+ ∈ kN
Nk vθθ  First claim: If for any parameters there is a continuos k-

semi-equilibrium line such that for any [ ]*,0 vx∈  

kk θθθθθθ ≤≤≤ ),...,,(...),...,,(),...,,( 22221 Nk
k
kNkNk xxx θθθ +++    (1) 

, then for the previously fixed parameters ),...,( 3 Nk θθ +

exists a continuous (k+1)-semi-equilibrium line such that for any 

and whenever there Nk ≤+ 2  

[ ]*,0 vy∈  

),...,,(...)(),...,,( 3
1
1

1
23

1
1 Nk

k
kN

k
Nk

k yyy θθθθθθθ +
+,...,, 3k θθ ++

12
2

kic

dmaxFxmaxFxmaxF
kj

jj

x

k

kj

ij
Nk

k
jj

Nk
k
i

∈∀≤=−

−⋅⋅ ∏∫ ∏
+>

+

≤

≠
+

+ εεθεεθθθ
θθθ

 

e 

function 

+
+

+ ≤≤≤   (2) 

Proof: It can be shown, given weak efficiency and the revenue equivalence theorem, 

that bidder i’s expected profits, once he knows his valuation vi and chooses to bid in the 

auction, is equal to 

cdmaxFiv

ij
jj −∫ ∏

≠
0

}),{( εεθ  

 Each (k)-semi-equilibrium meets then 

},...,1{,0)(

}),{(}),{(})),,...,,({(
1

),...,,(

0

The less-or-equal inequality only applies when the upper bound of the integral is 

equal to v*, as in further equations where the symbol appears in brackets. We define th

)(1 xk+π  as equal to 

semi-equilib θθ ++

cdmaxFxmaxF
kj

jj

x

kj
Nk

k
jj −⋅∏∫ ∏

+>≤
+ εεθεθθθ

1
0 2 }),{(})),,...,,({(  

If this function equals zero in x (or is non-positive for x=v*), then we have a (k+1)-

rium )),,...,k θθθθ for the vector ,(),...,,...,,(( 221 xxx Nk
k
kNk ),...,( 2 Nk θθ + .  

efine ),...,( 2 Nkk θθω +  as 

2 vNk ≤+ θθ . We deduce that 

D

0)(}),{(})),,...,({(
1

),...,(

0

1

2
2 ≤=−∏∫ ∏

+>

+≤

≠
+

+ cdmaxFmaxF
kj

jj

kj

kj
Nkkj

Nkk εεθεθθω
θθω

 

Given (1), it is seen that ),...,(),...,),,...,(( 222 NkkNkNkk
k
k θθωθθθθωθ +++ ≥ . On the 

other hand, it is obvious that *(vk
kθ *),...,,
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[ ]∈≡ + ,(:*),,...,({ 2 xvxH k
kNkkk θθθω

Call h

∅≠=+ }),...,2 xNk θθ  

f Hk. Then, by first order dominance between 

bidders k and k+1, 

k to the maximum element o

0)(1 ≤+ kk hπ . Hence, if 0*)(1 ≤+ vkπ , 

equilibrium 

kkk+  

which meets (2). And if 

we have a (k+1)-semi-

*)),,...,*,(),...,,...,*,((),...,( 2212 vvv NkkNkNk θθθθθθθθ +++ =Θ 1

0*)(1 >+ vkπ *),[ k* vhx ∈  that yields , there exists some point 

the following (k+1)-semi-equilibrium 

 semi-equilibrium also meets (2). The reason is that for any 

, we have for sure , due to the definition of hk and the 

fact that 

2) to all possible cases of

*)),,...,*,(),...,,...,*,((),...,( 2212
1 xxx Nk

k
kNk

k
Nk

k θθθθθθθθ +++
+ =Θ  

Notice that this

[ ]*,vhx k∈ xx Nk
k
k ≤+ ),...,,( 2 θθθ

*),...,*,( 2 vv Nk
k
k ≤+ θθθ . 

 2+kθFinally, it only remains to generalize ( , and to state 

that the (k+1)-semi-equilibrium line obtained is also continuos, which is always possible 

as argued before. DONE 

Second claim: For any [ ] 3
4 *,0),...,( −∈ N

N vθθ , whenever these parameters make 

sense, and in any case when N=3, there exists a continuos (2)-semi-equilibrium line 

such that for any [ ]*,0 vx∈ (just ignore Nθθ ,...,4  if N=3) 

22 xx θθθ ≤ ),...,,(),...,,( 4241 NN θθθ       (3) 

Proof: Define ),...,,( 41 Nx θθω  and ),...,,( 42 Nx θθω  as 

0)(

}),{(}),{(})),,...,,({(
),...,,(

0
3

3412
41

≤=−

−⋅⋅∫ ∏
>

.,

0
3

3421

≤=−

−⋅⋅∫ ∏
>

c

dmaxFxmaxFxmaxFN

j
jjN

θ
εεθεεθθω

 

Because of first order dominance, 

c

dmaxFxmaxFxmaxFNx

jjN

θθω
εεθεεθθω

 j

0)(

}),{(}),{(})),,...,,({(
),..,( 42 x θω

),...,,(),...,,( 4241 NN xx θθωθθω ≤ . Notice that 

44 NN x θθθθ ),...,,),,...,,((),...,,( 1
#

141 N xx ωθθθω =  
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),...,,),,...,,((),...,,( 442
#
242 NNN xxx θθθθωθθθω =  

, where # refers to the optimal threshold strategy. In the plane ),...,,( 4 Nx θθ , bidder 

1’s optimal threshold strategy is closed under [ ] [ ]*),,...,,()., 41 vx NN,(, 41 xc ,..θω θθωθ ×  

and bidder 2 [ ] [ ]*),,...,4 vN,(),...,,(, 242 xxc N θ’s one is closed under θωθθω × . Hence, 

both functions are closed in this plane under the com tersection set pact in

[ ] [ ]*),,...,,(),...,,(, 4241 xx N vc Nθθωθθω × rem, this im

al threshold functions, i.e. a 2-semi-equilibrium, 

must be in this set. In such equilibrium, condition (3) is met for sure. A trivial 

generalization to any possible x holds, and, by analogous argum tation to the one of 

the

the condition. DONE 

ims two and one, we see that we can find a continuos (N-1)-semi-equilibrium 

line  that meets the condition 

. By Brower’s fixed-point theo plies 

that an intersection between both optim

en

 end of claim 1 proof, we can find a continuos (2)-semi-equilibirum line that meets 

By cla

)(1 xN−Θ

[ ]*,0),(...)()( 1
1

1
2

1
1 vxxxx N

N
NN − ∈∀≤≤≤ −θθθ

that this line intersects with Nth-bidder’s optimal threshold 

strategy in a point N

−−  

 It remains to check 

*)*,...,*,(* 2 θθ1θ=Θ that meets *...** 21 Nθθθ ≤≤≤ . But mimicking 

claim 1 proof except for its last paragraph readily does this. QED 

 

Finally, I present a proof of a versi

Proposition 2: 

Consider a second-price sealed-bid auction of an indivisible object, where there are 

N potential, risk-neutral bidders. There is no reservation price. Participating in the 

auction has a known cost c (

on of Miralles (2002) proposition 1. 

*0 vc << )

ved by other bidde

 for each final participant. Each bidder learns 

his valuation before deciding whether to participate or not in the auction. Each ex ante 

ith-bidder’s valuation is belie rs to follow a differentiable distribution 

Fi over the support [0,v*]. Valuations are independent among bidders. Then, if (and 

only if) there exists some potential bidder k and some number such that ce ≥

( )
)(1 eFk−

* cvevvE kF
−

=>  
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, the auction has a cut-off equilibrium in which the rest of bidders never participate 

and bidder k participates if and only if his value is greater than c. 

Proof: 

( )

cdxxFccF

cdxxFeeFc

eFeF

xxf

eF
cvevvE

v

c kk

v

e kk

v

e
kk

e k

k

≤+⇒

⇒=+⇔=⎥⎦

−−
⇔

−
−

=>

∫

∫

∫

*

**

)()(

)()(

)(1)(1

)(

)(1
*

 

This implies that, if bidder k plays a threshold strategy c and the rest of bidders 

except for one of them play a threshold strategy of v* (hence they do not participate in 

any case), the remaining bidde

dxxFeeFvvFv

cdxxxfvcvdx

e kkk

v

k

v

kF

⎤
⎢⎣
⎡ −−−

⇔=−⇔
−

=

∫

∫
*

*

)()(**)(*

)(**

r would obtain non-positive expected profits in case of 

taking part in the auction. His best response would be a threshold strategy of v* (so 

nev

ipate in s valuation is higher than c. Hence, his optimal 

threshold strategy would be precisely c. This completes the equilibrium. QED 

er participating as well). If all bidders except for k never participate, k would 

partic  the auction whenever hi
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