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Resum 

La regressió basada en distàncies és un mètode de predicció que consisteix en 

dos passos: a partir de les distàncies entre observacions obtenim les variables 

latents, les quals passen a ser els regressors en un model lineal de mínims 

quadrats ordinaris. Les distàncies les calculem a partir dels predictors originals 

fent us d’una funció de dissimilaritats adequada. Donat que, en general, els 

regressors estan relacionats de manera no lineal amb la resposta, la seva selecció 

amb el test F usual no és possible. En aquest treball proposem una solució a 

aquest problema de selecció de predictors definint tests estadístics generalitzats i 

adaptant un mètode de bootstrap no paramètric per a l’estimació dels p-valors. 

Incluim un exemple numèric amb dades de l’assegurança d’automòbils.  

 

Abstract 

Distance-based regression is a prediction method consisting of two steps: from 

distances between observations we obtain latent variables which, in turn, are the 

regressors in an ordinary least squares linear model. Distances are computed 

from actually observed predictors by means of a suitable dissimilarity function. 

Being in general nonlinearly related with the response their selection by the 

usual F tests is unavailable. In this paper we propose a solution to this predictor 

selection problem, by defining generalized test statistics and adapting a non-

parametric bootstrap method to estimate their p-values. We include a numerical 

example with automobile insurance data. 

 

Key words: Distance-based regression; Predictors selection; Non-parametric 

bootstrap; Automobile insurance data. 

JEL: C12, C14, C15, G22, C80. 
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1. Introduction 

Distance-based regression (DBR) (Cuadras (1989), Cuadras and Arenas (1990), 

Cuadras et al. (1996)) is a prediction tool which can be applied directly to 

qualitative or mixed explanatory variables, while retaining compatibility with 

ordinary regression by least squares (LS), which appears as a particular case. 

Intuitively speaking, the model projects the vector of continuous responses onto 

a Euclidean space obtained by Metric Multidimensional Scaling (see, e.g., Borg 

and Groenen (1997)) from the observed predictors, which are nonlinearly 

mapped into a set of latent, i.e., non-observed, dimensions in this space. As 

predictors are nonlinearly related with the response, except for trivial or 

degenerated situations, they cannot be selected by the usual F tests. 

The aim of this paper is to propose a new method for selecting predictors in 

the DBR model. To this end we define and study some properties of a 

significance test for predictors. Our constructed test statistic, Q, analogous to 

and a generalization of the classical F, appears through the concept of geometric 

variability (see Cuadras and Fortiana (2003)). Since, in general, the distribution 

of Q is unknown we estimate it via a non-parametric bootstrap technique: 

bootstrapping pairs (see Flachaire (1999)).  

The organization of the paper is as follows: In Section 2 we outline the main 

characteristics of the DBR model, in Section 3 we define the new Q statistic, in 

Section 4 we adapt a bootstrapping pairs method to estimate its p-values, and in 
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Section 5 we illustrate the performance of the resulting predictor selection 

scheme by applying it to a real actuarial dataset.   

2. The distance-based regression model 

A continuous response Y is to be predicted from a set of p predictors, 

, possibly a mixture of quantitative and qualitative variables. An 

n-vector, y, contains  the values of Y for an n-set 

1 2, , , pw w w…

Ω  of individuals or cases. Let 

:δ +Ω×Ω→  be a distance function acting on the wj-coordinates (i.e., a 

function ( ),ij i jδ δ= w w such that: 0;  0;ij iiδ δ≥ = ;ij jiδ δ=  ij ik kjδ δ δ≤ + ) and let 

( )ijΔ δ=  be the related n  matrix of inter-distances, the predictor distance 

matrix. 

n×

Δ  is called Euclidean if, for some integer r, we can find 1
r

n, , ∈x x… , 

such that 

( ) ( ) 2 ,     1
T

i j i j ij i, j nδ− − = ≤x x x x ≤

n

,           (2.1) 

where the super-index T stands for matrix transposition. The  matrix X 

formed by stacking the n rows , the Euclidean configuration matrix, verifies 

that  is positive semi-definite (p.s.d.), where  is the 

 centering matrix. Schoenberg’s theorem (see e.g. Thm. 14.2.1 in Mardia et 

al. (1979)) states that if  

n r×

T
ix

TG HXX H= 1 T
n nH I n−= − 1 1

n n×

( )21
2

G HΔ= − H                  (2.2) 
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is p.s.d., where ( ) ( )2 2
ijΔ δ= , then Δ  is Euclidean, with ( ) 1r rank G n= ≤ − . In 

this case, any X such that  is a Euclidean configuration, automatically 

centered: 

TG = XX

HX X= . Note that in (2.2), the relation between G  and ( )2Δ  is 

, where ( )2 2T T
n n GΔ = + −g 1 1 g g  is the row vector containing the main diagonal 

entries in G. 

The DBR of y on Δ  is defined as an LS regression with response y and 

matrix of predictors X, where X is a Euclidean configuration of Δ . It can be 

proved that this definition is consistent, i.e., it does not depend on which 

Euclidean configuration X is chosen. Explicitly, the adjusted  is given by: ŷ

ˆˆ X=y β                      (2.3) 

where β  is such that 2 minX− =y β , i.e., 

( ) 1
ˆ T TX X X X

−
=y y                            (2.4) 

where X is such that , T
n X =1 0 TXX G= , rank (X) = r, and we have assumed 

that y is centered. 

Since ( ) 1TP X X X X
−

= T

+

 is the unique orthogonal projector on the column 

space of X, which coincides with the column space of G (see, e.g., Rao (1973), 

1.b.6, p. 27),  does not depend on the choice of X. Also ŷ P G G GG+= =  where 

 is the Moore-Penrose g-inverse of G, hence G+

ˆ P=y y .                    (2.5) 
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Below we will need the following equality: 

( ) 2TG X X X X
−+ = T                               (2.6) 

which can be proved by a direct computation. 

As we mentioned above, a remarkable feature in DBR is that the ordinary LS 

model is recovered as a particular instance: Namely, when the explanatory 

variables actually belong to some  and we choose the natural Pythagorean, 

, distance for 

m

2l δ . We refer the reader to Cuadras and Arenas (1990) and 

Cuadras et al. (1996) for a thorough discussion of the model and its properties. 

The prediction for a new individual { }1n +  is  

1 1
ˆˆ ˆn n+ +=y x β ,        (2.7) 

where  is as above and β̂

( ) ( ) 1

1
1ˆ
2

T
n X X X

−

+ = −x g d               (2.8) 

is given by Gower’s interpolation (Gower 1966, Gower and Hand 1996), from 

the row vector d , which contains the n squared distances from { }1n +  to the 

previous ones. Taking (2.6) into account, we see that the resulting prediction 

( ) ( ) ( )2

1
1 1ˆ
2 2

T T
n  X X X X  G

− +
+ = − = −y g d y g d y        (2.9) 

can be expressed in terms of distances only, that is, with no explicit dependence 

on X. 
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For the general case, if we have a mixture of quantitative, qualitative, and 

dichotomous variables, we can use the Euclidean distance based on Gower’s 

similarity coefficient (Gower (1971)):  

( )
( )

1

1

1 2 3

1
p

ih jh h
h

ij

w w G a
s

p p d p

α
=

− − +
=

+ − +

∑ +
       (2.10) 

where 1p  is the number of continuous variables, a and d are the number of 

positive and negative matches, respectively, for the 2p  dichotomous variables, 

and α  is the number of matches for the 3p  multi-state variables.  is the range 

of the h-th continuous variable. The square distance is 

hG

2 1ij ijsδ = −  and ( )ijΔ δ=  

is a Euclidean distance matrix (Gower and Legendre (1986)).  

DBR allows a second Euclidean distance matrix Δy  acting as the response.  In 

our case,  

( )2 2T T
n n GΔ = + −y y y yg 1 1 g            (2.11) 

where TG =y yy . Linear prediction is given by  

( )2 ˆˆ ˆ ˆ 2T T
n n GΔ = + −y y y yg 1 1 g ,           (2.12) 

where ˆ ˆ ˆ TG =y yy  is the projected inner product matrix, , and Ĝ PG P=y y ˆ yg  

contains its diagonal entries. This general formulation can be applied to predict 

qualitative or mixed responses (Fortiana and Cuadras (1998)) but here we adopt 

it just as a notational convenience.  

 



 

 

 

6 
 
 

3. Generalizing the F statistic: Geometric variability   

In this section we define three quantities (3.2), (3.3) and (3.4), generalizing as 

many quantities usual in the study of ordinary LS regression and which, most 

importantly for our purposes, depend only on the inter-distances between 

individuals. We do this by making use of the concept of geometric variability, 

(3.1), defined in Cuadras and Fortiana (2003). Geometric variability is the 

extension of the concept of total variation in the field of distances. 

1. The geometric variability of a distance matrix Δ  is: 

( )2
2

1 1( )
2

T
n nV

n n
Δ Δ= =1 1 trG ,          (3.1) 

where G is its associated inner product matrix. This quantity extends the 

concept of total variation, i.e., the trace of the covariance matrix.  

2. The coefficient of determination, in terms of geometric variabilities, 

2
,

ˆ( )
( )

V
R

V
Δ
Δ

= y
y w

y
.           (3.2) 

3. Given two models, ( )1 2ˆ DBR , , , ,k
k=y y w w … w  and 

( )1
1 2 1ˆ DBR , , , , ,k

k k
+

+=y y w w w… w , say, the squared partial correlation 

coefficient, in terms of geometric variabilities, is: 

1 1 2

1
2
, |

ˆ ˆ( ) ( )
ˆ( ) ( )k k

k k

k

V V
r

V V
Δ Δ
Δ Δ+

+ −
=

−
y

y w w w w
y y

y
,                (3.3) 

where ˆ( )kV Δy  comes from the first model and 1 ˆ( )kV Δ+
y  from the second one. 
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4. Similarly, when comparing two models, the test statistic 

1

1 1 2 1

ˆ ˆ( ) ( )
( , | ) ˆ( ) ( )

k k

k k k

V V
Q Q

V V
Δ Δ

Δ Δ

+

+ +

−
≡ =

−
y y

y y

y w w w w      (3.4) 

 

plays the role of the usual F test statistic to assess the significance of a new 

predictor, , added to a  given set, . Indeed, since 1k+w 1 2, , , kw w w…

0
ˆ( ) ( )kRSS n V VΔ Δ⎡ ⎤= −⎣ ⎦y y  and 1

1
ˆ( ) ( )kRSS n V VΔ Δ+⎡ ⎤= −⎣ ⎦y y ,     (3.5) 

then  0

1

1RSS RSSQ
RSS
−

= . When the explanatory variables actually belong to 

some  and m δ  is the natural  metric, Q is proportional to F –degrees of 

freedom are not defined for a DBR model. For the statistic defined in 

2l

(3.4) 

we have chosen a notation mimicking that of the partial correlation in (3.3), 

mainly because of similarity in their right hand sides. 

 

4. Non-parametric Bootstrap 

In order to test the null hypothesis that the addition of a new predictor, , to a 

given set, , does not significantly improve the current  model:  

1k+w

1 2, , , kw w w…

0 1:  is not significantkH +w ,          (4.1) 

we simulate the null distribution of Q, by adapting to the DBR context an 

appropriate version of non-parametric bootstrap. The basic principle is to 

generate B bootstrap samples by drawing with replacement from the observed 
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dataset; for each of them the statistic of interest is calculated and percentiles can 

be evaluated from the B resulting values. For regression models, two possible 

paradigms are: bootstrapping residuals, in which each bootstrap sample of the 

response n-vector is derived from n resampled residuals, and bootstrapping 

pairs or resampling cases, in which each bootstrap sample consists of n 

response-predictor pairs from the original data (see Davidson  and Hinkley 

(1997) for details, also Wehrens and van der Linden (1997)). The difference 

between the two methods is that in bootstrapping residuals the latent variables 

(or predictors in the DB model) are regarded as fixed. One assumes that the 

basic regression model is correct and that the residuals can be regarded as equal. 

If this is not the case for instance, when residuals have different variances or 

when errors are present in predictors bootstrapping residuals will yield 

erroneous results. The bootstrapping pairs paradigm, on the other hand, is less 

sensitive to wrong model assumptions. Furthermore, if the assumptions 

underlying bootstrapping residuals are met, bootstrapping pairs will yield 

approximately the same results. In this paper we concentrate on the 

bootstrapping pairs paradigm, adapting its data generating process (DGP) to the 

DB context.  

The original form of the bootstrapping pairs DGP, proposed by Freedman 

(1981) was improved on by Flachaire (1999) with a resampling scheme that 

respects the null hypothesis of the test. Our adaptation of this refined version is 

as follows: 
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(a) Fit both models the one with k predictors, 

( )1 2ˆ DBR , , , , ,k
k P=y y w w w… k= y  and the one with k+1 predictors, 

( )1 1
1 2 1ˆ DBR , , , , ,k

k k P+ +
+=y y w w w w… k= y

k

 to the data. Then  calculate Q 

= . Keep the two distance matrices generated, as 

they contain all the interdistances to be used in subsequent resamplings. In 

this way no further distance computations will be needed. 

1 1 2( , | )kQ +y w w w w

(b) Obtain the centered modified residuals under the alternative hypothesis 1H  

by:  

- computing the raw residuals under 1H , 1ˆ ˆ k+= −r y y , and  

- modifying and centering them by   

( ) ( )
1 1

1 12 21

ˆ ˆ1

1 1

n
i s

i
k ks
i s

r rr
np p+ +=

= −
− −

∑ 1, , for i n= … ,   (4.2) 

  where 1k
ip +   is the (i,i)-th element of the main diagonal of the projector 

matrix .  1kP +

(c) Calculate the response under the null hypothesis for the bootstrap DGP, 

, by adding the centered modified residuals to the null response:  0Hy

0 ˆ k
H = +y y r .               (4.3) 

(d) Randomly resample with replacement from the set ( )0 ,H Wy , putting 

probability 1/n on each of the n observed data points, obtaining a bootstrap 

sample ( )* *,Wy  of size n. Center *.y  
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(e) Fit both models, the one with k predictors and the one with k+1 predictors 

for the bootstrap sample just obtained, giving 
   
*k

∧

y , 
       
* 1k

∧
+y . Calculate the 

bootstrap test statistic, = . *Q * * * * *
1 1 2( , | )k kQ +y w w w w

(f) Repeat  steps  (a)—(e) B times. The relative frequency: 

{ }*# Q Q
B
≥

.                         (4.4) 

is the bootstrap estimator of  the  p-value. 

 

5. Numerical example: Automobile insurance data 

In this section we illustrate the performance of the proposed DB predictor 

selection method. After describing the real dataset used in 5.1, we make two 

blocks of computations: First, in 5.2, in order to check the correct adaptation of 

the DGP to the DB context, we consider only continuous predictors and the 

natural  distance, and compare and validate the results of resampling with 

those of the usual F test for LS regression. Second, in 5.3, we use the whole set 

of mixed predictors with the Gower similarity index 

2l

(2.10) and make the 

complete selection process. 

5.1. The dataset 

Our application is in the selection of tariff variables in the rate-making process 

for automobile insurance. The response is the expected claim amount and the 

predictors are observed risk factors, i.e., quantities with a potential causal 
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relationship with the response (Booth et al. (1999)). In insurance rate-making, 

the expected total claim amount per policyholder (Pure premium) is the product 

of the expected number of claims per policyholder by the expected claim 

amount, hence factors influencing each can be separately studied (Boj et al. 

(2005), Haberman and Renshaw (1996)).  

In this paper, the empirical study is carried out using a portfolio from a 

Spanish automobile insurer, corresponding to compulsory civil liability 

insurance. We study factors which influence the claim amount (in ESP, with 1 

EUR = 166.386 ESP) related to bodily injury. The actual data set consists of 455 

claim amounts, belonging to the period 1/1/1996 - 1/1/1997, associated with the 

following eight risk factors: 

Continuous:  

Power = Power (in horse power) of the vehicle,  

Vehicle age = Age of the vehicle on 1 January 1997,  

Price = Original list price of the vehicle, 

Age = Age of the main driver on 1 January 1997,  

Categorical:  

Sex = Sex of the main driver (2 levels),  

Zone = Zone of use of the vehicle (10 levels),  

Type = Vehicle type (4 levels), 

Use = Vehicle usage (2 levels),  
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5.2. Bootstrap distribution of Q  

In order to compare and validate the results of resampling with those of the 

usual F test for LS regression, we test the significance of entering each of the 

four variables, Power, Vehicle age, Price, Age, to the empty model, φ . In each 

case we compute the bootstrap distribution of the appropriate test statistic Q  

with B = 500, 1000, 3000 and 5000 resamples. In Table 1 we list the values of 

the statistics with the associated p-values. Columns 6 and 7 confirm that Q is 

indeed proportional to an F with 1 and 453 degrees of freedom (F = 453 Q). 

 

Table 1. Q statistics (column 1) and associated p-values of entering the variables Power, Vehicle 
age, Price, and Age to the empty model φ , using the  distance with B = 500, 1000, 3000 and 5000 
resamples (columns 2 to 5) for the DBR model. And the F statistics and assymptotic p-values of the 
classical model (columns 6 and 7). 

2l

Candidate 
variable 

Q 
Estimated 
p-value 
B=500 

Estimated 
p-value 
B=1000 

Estimated 
p-value 
B=3000 

Estimated 
p-value 
B=5000 

F p-value
for F 

Power 0.00010702 0.834 0.823 0.826 0.826 0.48480060 0.826 
Vehicle age 0.00082011 0.540 0.546 0.551 0.546 0.37150983 0.542 

Price 0.00002348 0.920 0.924 0.918 0.918 0.01063598 0.918 
Age 0.00025328 0.750 0.734 0.742 0.737 0.11473584 0.735 

 

 

Fig. 1 shows the histograms for one of these statistics, Q (y,Age |φ ), under 

four resampling sizes  (the other three statistics behave similarly). In order to 

assess more precisely the similarity of its distribution to that of an F, in Table 2 

we list areas under the right tail of the histogram for several Q values as 

compared with the corresponding F probabilities. The resulting information 

suggests that B = 1000 is an adequate sample size. 
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                (a) Q (y,Age |φ ) with B=500               (b) Q (y,Age |φ ) with B=1000 
 
 

            
               (c) Q (y,Age |φ ) with B=3000               (d) Q (y,Age |φ ) with B=5000 

 
 

 Fig. 1. Histograms of bootstrap null distributions of the statistic Q(y,Age |φ ) with  
                             B = 500, 1000, 3000 and 5000 resamples using the  distance. 2l

 

 

 

Table 2. Estimated areas of the right tail of the bootstrap null distribution of the statistic  
           Q(y,Age |φ ) with B = 500, 1000, 3000 and 5000 resamples (columns 2 to 5) using  
           the  distance, and right F probabilities of the classical model (column 7).  2l

Q 
Estimated 

area 
B=500 

Estimated 
area 

B=1000 

Estimated 
 area 

B=3000 

Estimated 
area 

B=5000 
F Classic  

probability 

0.0005 0.628 0.623 0.641 0.637 0.2265 0.634 
0.0050 0.142 0.134 0.132 0.129 2.2650 0.133 
0.0070 0.080 0.072 0.073 0.073 3.1710 0.076 
0.0090 0.042 0.040 0.041 0.041 4.0770 0.044 
0.0095 0.032 0.031 0.034 0.034 4.3035 0.038 
0.0125 0.010 0.010 0.011 0.012 5.6625 0.017 
0.0200 0.002 0.002 0.002 0.002 9.0600 0.002 
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5.3. The predictor selection scheme  

Now we illustrate the selection process taking into account the full set of mixed 

predictors and the distance derived from the Gower similarity index (2.10).  

We perform a stepwise selection process as follows (see Tables 3  and 4): 

Starting with the null model with no predictors, the minimum p-value for adding 

one predictor corresponds to  Price (Table 3, first column). Power is added to 

the resulting model in the next step (Table 3, second column). The 

corresponding tests for elimination are shown in Table 3, rows 1 and 2, where 

notations such as Price|Power stand for comparison of the model with Price 

and Power as predictors with the model with only Power. The test statistic for 

this comparison is Q(y, Price|Power), as defined in Section 3. Successively, 

Type and Use are added in the same way (Table 3, columns 3 and 4) and the 

corresponding tests for deletion appear in Table 4, rows 3 and 4. Low 

significance of predictors is a known feature of bodily injury data, connected 

with the fact that claim amounts depend on risk factors that cannot be known a 

priori. An excessively strict observance of a conventional small significance 

level would lead us to consider no risk factors whatever. For a given portfolio 

under study it is better, as well as common practice, to accept the most 

significant predictor in each step, disregarding its numerical level.  
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Table 3. p-values for the four first inclusion phases of a stepwise predictor selection process taking 
into account the full set of mixed predictors, using the Gower similarity index and B = 1000 
resamples.   

Variable already included 
Candidate 
variable 

First step: 
φ  

Second step: 
Price 

Third step: 
Price, Power 

Fourth step: 
Price, Power, Type 

Power 0.474 0.450 -------- -------- 
Vehicle age 0.476 0.560 0.732 0.756 

Price 0.070 -------- -------- -------- 
Age 0.196 0.790 1 1 
Sex 0.446 0.656 0.700 0.664 

Zone 0.792 0.544 0.732 0.730 
Type 0.420 0.628 0.625 -------- 
Use 0.298 0.732 0.662 0.630 

Added 
variable: 

w(1) = Price w(2) = Power w(3) = Type w(4) = Use 

Table 4. p-values for the four first elimination phases of a stepwise predictor selection process 
taking into account the full set of mixed predictors, using the Gower similarity index and B = 1000 
resamples. 

Excluded  variable 
from a given set 

p-value 

First step: 
w(1) |φ  0.070 

Second step: 
w(2) | w(1) 
w(1) | w(2) 

0.450 
0.120 

Third step: 
w(3) | w(1)w(2) 
w(1) | w(2)w(3) 
w(2) | w(1)w(3) 

0.625 
0.138 
0.484 

Fourth step: 
w(4) | w(1)w(2)w(3) 
w(1) | w(2)w(3)w(4) 
w(2) | w(1)w(3)w(4) 
w(3) | w(1)w(2)w(4) 

0.630 
0.148 
0.504 
0.612 

 

 

Hence the process suggests a model with Price, Power, Type and Use, the first 

four predictors appearing in the selection process. Its 2R , equal to 0.2306,  is 

low, in agreement with the small predictive power of the known risk factors. In 

Fig. 2 we include some examples of estimated null distributions of Q. In all 

cases we use B = 1000 resamples. 
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                       (a) Q (y,Price |φ )                            (b) Q (y,Power  | Price)  
 
 

         
                   (c) Q (y,Type | Price Power)         (d) Q (y,Use | Price Power Type)  

 

 

             
                (e) Q (y,Power | Price Type)              (f) Q (y,Price | Power Type)  
 

 
Fig. 2. Histograms of bootstrap null distributions of the statistics Q(y,Price |φ ),  
Q(y,Power | Price), Q(y,Type | Price Power), Q(y,Use | Price Power Type),  
Q(y,Power | Price Type) and Q(y,Price | Power Type) with B = 1000 resamples  
using the Gower similarity index. 
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While DBR cannot be regarded as a universally better replacement for 

classical prediction recipes with mixed explanatory variables, the results of  the 

present paper provide it with a sound selection of variables tool and, as a 

consequence, render it a candidate alternative procedure.   

For instance, a standard treatment for our dataset is a generalized linear model 

(GLM) with Gamma-distributed errors and logarithm link function where 

suitable dummies replace categorical predictors. In it the F test statistic based on 

deviances (see, e.g., Brockman and Wright (1992)) to include a first predictor in 

the model gives all p-values greater than 0.25. With our set of four predictors 

this GLM gives 2 0.0102R = . Note, however, that for problems with a large 

number of categorical predictors the use of dummy indicators can eventually 

lead to sampling rarefaction, due to a curse of dimensionality effect, and to 

numerical unstabilities due to the singularity of the design matrix, whereas DBR  

is still appropriate when such problems arise. 

6. Concluding remarks 

In this paper we propose a method for selection of predictors in the DBR model. 

We construct a test statistic, Q, analogous to and a generalization of the classical 

F which appears through the concept of geometric variability. Since, in general, 

the distribution of Q is unknown, we estimate it via a non-parametric bootstrap 

technique, specifically by bootstrapping pairs. The two main contributions of the 

paper are: the definition of test statistic and the adaptation of bootstrapping pairs 
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to the DBR context. Finally, we illustrate the performance of the resulting 

predictor selection scheme by applying it to a real actuarial dataset. 
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