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Abstract

A subclass of games with population monotonic allocation schemes is studied, namely

games with regular population monotonic allocation schemes (rpmas). We focus on the

properties of these games and we prove the coincidence between the core and both the

Davis-Maschler bargaining set and the Mas-Colell bargaining set.

Resum

En aquest article s’estudia una subclase dels jocs cooperatius amb esquemes de dis-

tribució monótons des del punt de vista poblacional, i que anomenem jocs amb esquemes

de distribució regulars. L’anàlisi es centra en les propietats d’aquests jocs i, com a resul-

tat principal, es demostra que el nucli del joc coincideix amb el conjunt de negociació de

Davis-Maschler, aix́ı com també amb el conjunt de negociació de Mas-Colell.
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1 Introduction

Cooperative games with transferable utility (TU) deal with the problem of freely dis-

tributing the profit arising from potential cooperation among agents (players). The idea

underlying games with population monotonic allocation schemes (Sprumont, 1990) is that,

for such games, it is worthwhile to add new players to a given and previously formed coali-

tion as the individual payoff received will benefit all its members. For instance, consider

a convex game (Shapley 1971) and suppose that, if a coalition forms, the Shapley value

(Shapley, 1953) will be the allocation rule for distributing potential gains; in this case,

any coalition of agents will accept the entrance of new players since the individual profit

of already existing players increases if the Shapley value is applied.

Formally, let N = {1, 2, . . . , n} be the set of players. For any coalition S ⊆ N , |S| or s

denotes the number of players in S. A cooperative game is a pair (N, v) where v : 2N → R
is the characteristic function such that v(S) is the worth of coalition S ⊆ N and v(∅) = 0.

The subgame of (N, v) corresponding to S is denoted by (S, vS) where vS is the restric-

tion of v to subsets of S. The set of cooperative games with player set N is denoted by GN .

Let P(N) = {S |S ⊆ N, S 6= ∅} be the set of nonempty subsets of N . An allocation

scheme (xiS)i∈S,S∈P(N) is a collection of allocation vectors such that each one corresponds

to some coalition S of players with
∑

i∈S xiS = v(S) and it is interpreted as the pro-

posed payoff distribution for the members of that coalition. In this context population

monotonicity can be expressed by the following condition:

for all S ⊂ T ⊆ N ⇒ xiS ≤ xiT , for all i ∈ S.

Population monotonicity explains, in a way, the fact that the total coalition N will

form, because the more players that enter the coalition, the better off they are. Con-

versely, once a coalition is formed it ensures that no player or set of players has incentives

to leave that coalition.

Many authors have worked on the concept of pmas: Slikker, Norde and Tijs (2003)

have shown that the class of games with pmas coincides with the class of information

sharing games; Voorneveld, Tijs and Grahn (2002) have studied pmas for the class of clan

games and define a more suitable concept for that model called bi-mas; Slikker (2000)
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studies population monotonicity in the context of graph restricted games; Hokari (2000)

analyzes population monotonic allocation schemes for convex games. Most of this work

has studied whether a solution generates population monotonic allocation schemes, or

whether a subclass of games has pmas. The aim of this paper is to study a restricted

class of games with pmas and, in particular, some core properties of these games. Let us

introduce this class of games.

Suppose S and T are two non-comparable coalitions with a non-empty intersection

(i.e. S 6⊆ T , T 6⊆ S and T ∩S 6= ∅). Population monotonicity does not impose restrictions

on the allocation corresponding to this pair of coalitions. This fact allows situations in

which some players who are in the intersection of the two coalitions might be better off in

one of these coalitions, while the rest will prefer to be in the other. The central hypothesis

of this paper is that, in such situations, all players that are in both coalitions S and T

should be better off in one of these coalitions. Formally,

for all S, T ⊆ N ⇒ either xiS ≤ xiT , or xiS ≥ xiT for all i ∈ S ∩ T.

Another way to tackle this situation is to suppose that a coalition S ⊆ N is formed

and their members have to decide whether to join coalition Q or coalition Q′ outside S.

This decision problem turns out to be irrelevant if all players in S will be better off (in

terms of the payoff received) by joining, for instance, coalition Q than coalition Q′. In

other words, we require that all players in S could rank in the same order of preference

potential entrant coalitions. This approach will be the starting point of this work and

will motivate the definition of regular population monotonic allocation scheme.

Definition 1 An allocation scheme (xiS)i∈S,S∈P(N) is regular population monotonic (in

short rpmas) if:

(i) for all ∅ 6= S ⊆ N and for all Q ⊆ N \ S,

xiS ≤ xiS∪Q for all i ∈ S;

(ii) for all ∅ 6= S ⊆ N and for all Q, Q′ ⊆ N \ S, Q 6= Q′

(xiS∪Q − xiS∪Q′) · (xjS∪Q − xjS∪Q′) ≥ 0, for all i, j ∈ S.
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Notice that condition (i) of regular monotonicity is just population monotonicity while

condition (ii) states that, given two players in S, i and j, if player i prefers (does not pre-

fer) to join coalition Q rather than Q′, so does (does not) player j. We call this condition

regularity.

Example 1 The following table describes the worth of all coalitions in a four-person

game and an allocation for each coalition:

S x1S x2S x3S x4S v(S)
{1} 1 - - - 1
{2} - 3 - - 3
{3} - - 0 - 0
{4} - - - 4 4
{1,2} 1 3 - - 4
{1,3} 3 - 1 - 4
{1,4} 4 - - 5 9
{2,3} - 3 0 - 3
{2,4} - 3 - 4 7
{3,4} - - 1 4 5
{1,2,3} 3 3 1 - 7
{1,2,4} 4 5 - 5 14
{1,3,4} 4 - 1 5 10
{2,3,4} - 3 1 4 8
{1,2,3,4} 4 5 1 5 15

Notice that in this game, besides population monotonicity, we can check regularity

just by comparing the allocation schemes corresponding to three-person coalitions: for

instance, if we take S = {1, 3}, Q = {2} and Q′ = {4}, notice that (shown inside boxes)

x1{1,2,3} ≤ x1{1,3,4} and x3{1,2,3} ≤ x3{1,3,4}. The reader may check regularity for other

possible pairs of three person coalitions.

Several examples of regular population monotonic allocation schemes can be found in

the literature. Some of them are the following:

A Labor-Managed firm (Dutta and Ray, 1989) A firm of n individuals is considered.

Output is produced by the combined effort of the individuals. Individual i is capable of
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producing αi units of a unique output, i ∈ N . For any coalition S, the total output is∑
i∈S αi. To set up a firm requires a fixed cost of c > 0,

∑
i∈N αi > c. Each coalition can

choose whether or not to set up a firm. Therefore the worth of a coalition S is given by

v(S) := max{
∑
i∈S

αi − c, 0}.

If we suppose (w.l.o.g.) that α1 ≥ α2 ≥ . . . ≥ αn, the egalitarian solution (Dutta and

Ray, 1989) for this model, E(v), is:

Ei(v) = 1
k

[∑k
r=1 αr − c

]
> 0 for 1 ≤ i ≤ k

Ei(v) = αi for i > k,

where k is either n, or the smallest integer such that 1
k

[∑k
r=1 αr − c

]
> αk+1.

The allocation scheme based on the egalitarian solution, i.e. xiS = Ei(vS) if
∑

i∈S αi >

c and xiS = 0 otherwise, is regular population monotonic. To check this, note that,

for all i ∈ S, Ei(vS) = min{λS, αi} where λS is such that
∑

i∈S Ei(vS) = v(S). Given

this parametric representation, notice that, if S ⊆ T ⊆ N ⇒ λS ≤ λT , which guaran-

tees population monotonicity. On the other hand, given a coalition S ⊆ N , and a pair

Q, Q′ ⊆ N \ S such that λS∪Q ≤ λS∪Q′ then Ei(vS∪Q) ≤ Ei(vS∪Q′) for all i ∈ S and so

regularity is also met. In another context, but formally identical to this model, we find

the class of bankruptcy games (O’Neill, 1982) which are a subclass of convex games.

Average monotonic games (Izquierdo and Rafels, 2001) A game (N, v) is average

monotonic if (i) it is positive (v(S) ≥ 0), and (ii) there exists a vector of weights α ∈ RN
+ ,

α 6= 0 such that

{S ⊆ T ⊆ N} ⇒ {α(T ) · v(S) ≤ α(S) · v(T )}.

If αi > 0 for all i ∈ N this condition reads {S ⊆ T ⊆ N} ⇒ { v(S)

α(S)
≤ v(T )

α(T )
}. In this

context, the proportional distribution with respect to the weight α defines an rpmas of

the game, i.e. xiS = αi · v(S)
α(S)

, if α(S) 6= 0 and xiS = 0, otherwise. Other examples of

average monotonic games are Externality games (Grafe, Iñarra and Zarzuelo, 1998) and

Clan Games (Potters, Poos, Tijs and Muto, 1989); the previous model of a labor-managed
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firm and banruptcy games are also examples of these kind of games.

In general, games with rpmas are not always average monotonic games as exam-

ple 1 shows. To check this, let us suppose that the game is average monotonic with

respect to (α1, α2, α3, α4). Since v({1}) + v({2}) = v({1, 2}) and v({2}) = 3v({1})),
and from the definition of this class of games it follows that α2 = 3α1; analogously,

as v({2}) + v({4}) = v({2, 4}) and v({4}) = 4
3
v({2}), we have α4 = 4

3
α2; and fi-

nally, as v({3}) + v({2}) = v({2, 3}) and v({3}) = 0, α3 = 0. Therefore, the vector

α should be of the form (1
3
a, a, 0, 4

3
a) with a > 0. But then, α({1, 2, 3, 4}) · v({1, 3, 4}) >

α({1, 3, 4}) · v({1, 2, 3, 4}) contradicting the definition of average monotonic game. Fur-

thermore, we can also check that the game is not convex (see definition in next section) as

v({1, 2, 3}) + v({1, 2, 4}) > v({1, 2, 3, 4}+ v({1, 2}). Thus, games with rpmas constitutes

a large subclass of games with pmas that generalizes average monotonic games and are

different from convex games.

The paper is organized as follows. In section 2 we study properties of games having

rpmas and we provide (proposition 3) a sufficient condition in terms of positive linear

combination of simple monotonic games for a game to have an rpmas. Finally, in section

3 we prove - for this subclass of games - the coincidence between the core and both the

Mas-Colell bargaining set (Mas-Colell, 1989) and the classical bargaining set (David and

Maschler, 1963, 1967).

2 Preliminaries

A game (N, v) is superadditive if for all S, T ⊆ N, S ∩ T = ∅, v(S) + v(T ) ≤ v(S ∪ T ).

A game (N, v) is zero-monotonic, if v(S)−
∑

i∈S v({i}) ≤ v(T )−
∑

i∈T v({i}), whenever

S ⊆ T ⊆ N . A game (N, v) is said to be convex if, for every S, T ⊆ N , v(S) + v(T ) ≤
v(S ∪ T ) + v(S ∩ T ). A game is a simple monotonic game if v(S) ∈ {0, 1} with v(N) = 1

and v(S) ≤ v(T ), whenever S ⊆ T ⊆ N . A simple unanimity game corresponding to

T ⊆ N , (N, uT ) is defined as uT (S) := 1 if S ⊇ T , and uT (S) := 0 otherwise; if T = {i}
we simply denote the game by ui.

Let RN stand for the space of real-valued vectors x = (xi)i∈N . Given x ∈ RN , x(S)

denotes
∑

i∈S xi, with x(∅) = 0 and xS ∈ RS is the restriction of x to S. The set of
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preimputations of a game (N, v) is defined by:

I∗(N, v) := {x ∈ RN |x(N) = v(N)}.

The set of imputations of a game (N, v) is defined by:

I(N, v) := {x ∈ RN |x(N) = v(N) and xi ≥ v({i}) for all i ∈ N}.

The core of the game (N, v) is defined by:

C(N, v) := {x ∈ RN |x(N) = v(N) and x(S) ≥ v(S) for all S ⊆ N}.

A game with a non-empty core is called balanced, and is called totally balanced if

each subgame (S, vS) is also balanced.

A game with rpmas keeps the basic properties of games with pmas, this is, zero-

monotonicity, superadditivity, balancedness and relative invariance under S-equivalence.

This last property means that for any game v with rpmas, any vector d ∈ RN and δ ∈ R+,

the game δ · v + d, where (δ · v + d)(S) := δ · v(S) + d(S) also has rpmas.

A notable property of games with pmas which is no longer preserved for games with

rpmas refers to the sum of games: given two games v and w with rpmas the sum game

v + w defined as (v + w)(S) := v(S) + w(S) is not necessarily a game with rpmas. The

next example shows this point.

Example 2 Let N = {1, 2, 3, 4} and let (N, u{1,2}) and (N, u{3,4}) be the simple una-

nimity games corresponding to coalitions {1, 2} and {3, 4} respectively. These games

are games with rpmas (as can be seen by computing the Shapley value for the corre-

sponding games and subgames). Nevertheless, the sum game v = u{1,2} + u{3,4} does not

have rpmas. To check this, let (ziS)i∈S,S∈P(N) be an arbitrary allocation scheme of the

game v. First, if population monotonicity must hold we have that ziS ≥ 0. Notice also

that v({1, 2}) = v({3, 4}) = 1 and so z1{1,2} + z2{1,2} = 1 and z3{3,4} + z4{3,4} = 1.

Furthermore and without loss of generality, we will suppose that, on the one hand,

z1{1,2} ≥ 0 and z2{1,2} > 0 and, on the other hand, z3{3,4} ≥ 0 and z4{3,4} > 0. In

this case, since v({1, 2, 4}) = 1 it should hold that z4{1,2,4} = 0 and, since v({2, 3, 4}) = 1

we have z2{2,3,4} = 0. Moreover again, if population monotonicity must hold, we have

z2{1,2,4} ≥ z2{1,2} > 0 and z4{2,3,4} ≥ z4{3,4} > 0. But then regularity is not satisfied
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for S = {2, 4}, Q = {1} and Q′ = {3}. For other cases, similar reasoning leads to an

analagous incompatibility.

Finally, in line with the characterization result given in Sprumont (1990, theorem 1)

for games with pmas, we state a sufficient condition for a game to have an rpmas in terms

of simple monotonic games with veto-power (i is a veto-player if v(S) = 0 for all S such

that i 6∈ S).

Proposition 1 Let (N, v1), (N, v2), . . . , (N, vm) a family of simple monotonic games such

that v1 ≥ v2 ≥ . . . ≥ vm. Then, if

v =
m∑

j=1

∑
i∈N

λj
i ·min{vj, ui}, λj

i ≥ 0, for all i ∈ N and j = 1, . . . ,m,

then the game (N, v) has an rpmas.

Proof. Define xiS =
∑m

j=1 λj
i ·min{vj(S), ui(S)}. Notice that

∑
i∈S xiS =

∑
i∈S

∑m
j=1 λj

i ·min{vj(S), ui(S)} = [ as ui(S) = 0 for all i ∈ N \ S]

=
∑

i∈S

∑m
j=1 λj

i ·min{vj(S), ui(S)}+
∑

i∈N\S
∑m

j=1 λj
i ·min{vj(S), ui(S)}

= v(S).

This allocation scheme is population monotonic, since for any S ⊆ T ⊆ N we have

vj(S) ≤ vj(T ) and so, for all i ∈ S it holds that

xiS =
m∑

j=1

λj
i ·min{vj(S), ui(S)} ≤

m∑
j=1

λj
i ·min{vj(T ), ui(T )} = xiT .

Moreover, for all S ⊆ N it holds that

v1(S) ≥ v2(S) ≥ . . . ≥ vm(S).

Therefore, as these games are simple monotonic games, let us define jS as follows:

jS = card{j ∈ {1, . . . ,m}|vj(S) = 1}.
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Hence, let S ⊆ N and Q,Q′ ⊆ N \ S. If jS∪Q = 0 then v(S ∪ Q) = 0 and trivially

0 = xiS∪Q ≤ xiS∪Q′ for all i ∈ S. If jS∪Q > 0, let us suppose, without loss of generality,

that jS∪Q ≤ jS∪Q′ . In this case we have that, for all i ∈ S,

xiS∪Q =
m∑

j=1

λj
i ·min{vj(S ∪Q), ui(S ∪Q)} = (as i ∈ S and ui(S ∪Q) = 1)

=
m∑

j=1

λj
i · vj(S ∪Q) =

jS∪Q∑
j=1

λj
i ≤ (as jS∪Q ≤ jS∪Q′)

≤
jS∪Q′∑
j=1

λj
i =

m∑
j=1

λj
i · vj(S ∪Q′) =

m∑
j=1

λj
i ·min{vj(S ∪Q′), ui(S ∪Q′)} = xiS∪Q′ .

Hence, regularity is also satified. 2

This proposition describes a way to generate games with rpmas as a positive linear

combination of monotonic simple games with veto-power (notice that the game min{vj, ui}
is a monotonic simple game where i is a veto player).

Example 3 The game of example 1 can be decomposed as follows.

Let v1 = max{u{1}, u{2}, u{3}, u{4}}, v2 = max{u{4}, u{1,3}} and v3 = u{1,4}. Notice that

v1 ≥ v2 ≥ v3. If we denote by vi
j = min{vj, ui}, then

v = v1
1 + 3v2

1 + v4
1 + 2v1

2 + v3
2 + 3v4

2 + v1
3 + 2v2

3 + v4
3.

It remains an open question whether this condition is also necessary.

3 The bargaining sets

It is known that in several classes of totally balanced games the core coincides with differ-

ent concepts of bargaining set: convex games, average monotonic games and assignment

games are some examples. Until now, there is no answer to the same question with re-

spect to the general class of games with pmas. The aim of this section is to prove that the

core of games with rpmas coincides with both the Mas-Colell bargaining set (Mas-Colell,

1989) and the classical bargaining set (Davis and Maschler, 1963, 1967). Let us recall

these bargaining sets.
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The classical bargaining set includes the imputations that survive a bargaining process

comprising objections and counter-objections. Given a game (N, v) and y an imputation

of this game, an objection of player k against player l at y is a pair (T, u), where T is a

coalition containing k but not l and u is a vector in RT such that

u(T ) = v(T ),

ui > yi for all i ∈ T .

In addition, let (T, u) be an objection of k against l at y. A counter-objection to this

objection is a pair (M, z) , where M is a coalition containing l but not k, and z is a vector

in RM sucht that

z(M) = v(M),

zi ≥ ui for all i ∈ M ∩ T ,

zi ≥ yi for all i ∈ M \ T .

An objection is justified if there is no counter-objection to it. The classical bargaining

set of (N, v) is the set:

M(i)
1 (N, v) = {x ∈ I(N, v) | no player has a justified objection at x against any other player}

Next, we define the Mas-Colell bargaining set. Let (N, v) be a game and let y be a

preimputation. An objection at y is a pair (T, u), where T is a non-empty coalition and

u is a vector in RT such that

u(T ) = v(T ),

ui ≥ yi for all i ∈ T , and at least one of the inequalities is strict.

Let (T, u) be an objection at y. A counter-objection to this objection is a pair (M, z)

where M is a non-empty coalition and z is in RM and satisfies

z(M) = v(M),

zi ≥ ui for all i ∈ M ∩ T ,

zi ≥ yi for all i ∈ M \ T ,
and at least one of the inequalities is strict.
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As before, an objection is justified if there is no counter-objection to it. The Mas-Colell

bargaining set of (N, v) is the set:

MB(N, v) = {x ∈ I∗(N, v) | no non-empty coalition has a justified objection at x}.

To prove the main result of this section, we use reduced games as a tool. Specifically,

we define a slightly modified version of the classical reduced game given in Davis and

Maschler (1965).

Definition 2 Given a cooperative game (N, v), a vector y ∈ RN , and a proper coalition

S ⊆ N , S 6= ∅, the reduced game on S at y, (S, vS
y ) is defined as,

vS
y (∅) := 0,

vS
y (R) := max

∅⊆Q⊆N\S
{v(R ∪Q)− y(Q)}, for all ∅ 6= R ⊆ S.

Notice that, in contrast to the Davis and Maschler reduced game, the worth of the

grand coalition follows the same definition as that of other subcoalitions. The following

lemma states sufficient conditions for the non-emptiness of the core of this reduced game.

To make it easier to prove these results let us denote the reduced game as maximum of

games (S, vS,Q
y ):

vS
y (R) = max

∅⊆Q⊆N\S
{vS,Q

y (R)}, for all R ⊆ S.

where vS,Q
y (R) = v(R ∪Q)− y(Q), for all ∅ 6= R ⊆ S and vS,Q

y (∅) = 0.

Lemma 1 Let (N, v) be a TU game, x = (xiS)i∈S, S∈P(N) an rpmas of this game, y ∈
I∗(N, v) \ C(N, v), and let S ⊆ N be such that y(Q) ≥

∑
i∈Q xiS∪Q for all Q ⊆ N \ S.

Then, to each Q ⊆ N \ S there exists an allocation scheme zQ =
(
zQ

iT

)
i∈T, T∈P(S)

of the

game (S, vS,Q
y ) such that

(a) zQ =
(
zQ

iT

)
i∈T, T∈P(S)

is population monotonic (define a pmas of the game (S, vS,Q
y ));

(b) the following conditions holds:

xiT∪Q ≥ zQ
iT , for all T ⊆ S, all Q ⊆ N \ S and all i ∈ T ; (1)
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(c) for any coalition QM ⊆ N \ S such that v(S ∪QM)− y(QM) ≥ v(S ∪Q)− y(Q) for

all Q ⊆ N \ S it holds:

(c1) zQM

iS ≥ zQ
iS for all Q ⊆ N \ S and all i ∈ S.

(c2) zQM

S =
(
zQM

iS

)
i∈S

∈ C(S, vS
y ) and so the reduced game is balanced.

Before proving this lemma let me remark that a direct consequence of item (a) is that

the reduced game (S, vS
y ) is a maximum of games with pmas. Item (b) states that the

payoffs according to the new population allocation schemes are, in some sense, below the

original ones. Finally, item (c1) and (c2) gives a point in the core of the reduced game

and so states that the core of this game is nonempty. This point is precisely the payoff

vector to S corresponding to an allocation scheme mentioned in item (a). This lemma is

necessary to prove the main result in this section.

Proof of the lemma. First of all notice that, as x is an rpmas of the game v, we can describe

2N\S as an ordered set of elements {Q1, Q2, . . . , Qm} such that Qk ⊆ N \S, k = 1, 2, . . . ,m

and xiS∪Qk
≤ xiS∪Qk+1

for all i ∈ S.

As a consequence, notice that

∑
j∈S

xjS∪Qk
≤

∑
j∈S

xjS∪Qk+1
, for all k ∈ {1, . . . ,m− 1}. (2)

Moreover, for all Q ⊆ N \ S, we have that

v(S ∪Q) =
∑
j∈S

xjS∪Q +
∑
j∈Q

xjS∪Q ≤
∑
j∈S

xjS∪Q + y(Q)

and so

v(S ∪Q)− y(Q) ≤
∑
j∈S

xjS∪Q. (3)

Hence, for any Q ⊆ N \ S, we will define the allocation scheme zQ =
(
zQ

iT

)
i∈T,T∈P(S)

in

two steps:

1. Taking into account the inequalities (2) and (3) and the description of 2N\S we first

define
(
zQ

iS

)
i∈S

as follows:
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(i) if
∑

j∈S xjS∪Qk
< v(S ∪Q)− y(Q) ≤

∑
j∈S xjS∪Qk+1

then

zQ
iS := λQ xiS∪Qk

+ (1− λQ) xiS∪Qk+1
, (4)

where λQ ∈ [0, 1] and v(S ∪Q)− y(Q) = λQ
∑
j∈S

xjS∪Qk
+(1−λQ)

∑
j∈S

xjS∪Qk+1
;

(ii) if v(S ∪Q)− y(Q) ≤
∑
j∈S

xjS∪Q1 ,

zQ
iS := xiS∪Q1 −

∑
j∈S

xjS∪Q1 − [v(S ∪Q)− y(Q)]

|S|
. (5)

Notice that zQ
iS ≤ xiS∪Q, for all Q ⊆ N \ S and that, by definition,∑

i∈S

zQ
iS = v(S ∪Q)− y(Q), for all Q ⊆ N \ S. (6)

2. For all Q ⊆ N \ S and for all i ∈ S let us first define δQ
iS := xiS∪Q − zQ

iS ≥ 0. Notice

that, being fixed Q ⊆ N \ S, for all T ⊆ S, T 6= ∅, we have

∑
i∈T

δQ
iS ≤

∑
i∈S

δQ
iS =

∑
i∈S

[xiS∪Q − zQ
iS] =

∑
i∈S

xiS∪Q − [v(S ∪Q)− y(Q)]

=
∑
i∈S

xiS∪Q − [
∑

i∈S∪Q

xiS∪Q − y(Q)] = −
∑
i∈Q

xiS∪Q + y(Q)

≤ −
∑
i∈Q

xiT∪Q + y(Q).

Hence, for any T ⊆ S, T 6= ∅, let us define
(
δQ
iT

)
i∈T

as follows:

δQ
iT := δQ

iS +

−
∑
i∈Q

xiT∪Q + y(Q)−
∑
i∈T

δQ
iS

|T |
. (7)

Note that, for all T ⊆ T ′ ⊆ S, and all i ∈ T ,

δQ
iT ≥ δQ

iT ′ ≥ 0. (8)
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You may check easily this inequality upon definition (7) since −
∑

i∈Q xiT∪Q ≥
−

∑
i∈Q xiT ′∪Q, δQ

iS ≥ 0 and −
∑
i∈T

δQ
iS ≥ −

∑
i∈T ′

δQ
iS.

Finally, for all T  S, T 6= ∅, we define
(
zQ

iT

)
i∈T

as:

zQ
iT := xiT∪Q − δQ

iT . (9)

Note that, since inequality (8) holds, the allocation schemes
(
zQ

iT

)
i∈T,T∈P(S)

defined in

(4), (5) and (9) are population monotonic (hence condition (a) of the lemma is satisfied).

Moreover, since δQ
iT ≥ 0, it also holds that xiT∪Q ≥ zQ

iT , for all T ⊆ S and all i ∈ T (hence

condition (b) of the lemma also holds). Finally, it follows from (4) and (5) that, for any

coalition QM ⊆ N \S such that v(S ∪QM)−y(QM) ≥ v(S∪Q)−y(Q) for all Q ⊆ N \S,

zQM

iS ≥ zQ
iS for all Q ⊆ N \ S and all i ∈ S. Thus condition (c1) of the lemma is satisfied.

Item (c2) is straightforward from (a) and (c1). 2

Now we will use two results from Holzman (2001). The first establishes (theorem 2.1) the

inclusion of the classical bargaining set in the Mas-Colell bargaining set for the class of

superadditive games:

if (N, v) is a superadditive game, then M(i)
1 (N, v) ⊆MB(N, v).

The second proves that a preimputation y in the Mas-Colell bargaining set but not in

the core of the game is characterized by the emptiness of the core of the so-called excess

game. That is,

y ∈MB(N, v) \ C(N, v) ⇔ C(N, wy) = ∅,

where wy(S) := max
T⊆S

{v(T ) − y(T )} for all S ⊆ N . Combining these two results and

the fact that the core is included in both bargaining sets, it holds that for superadditive

games:

if C(N, wy) 6= ∅ for all y ∈ I∗(N, v), then M(i)
1 (N, v) = MB(N, v) = C(N, v). (10)

This result will be the argument of the proof of the main theorem of this paper.
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Theorem 1 Let (N, v) be a game with rpmas. Then

M(i)
1 (N, v) = MB(N, v) = C(N, v).

Proof. Let (xiS)i∈S,S∈P(N) be an rpmas of the game (N, v). If y ∈ C(N, v) it trivially holds

that C(N, wy) is non-empty as the null vector belongs to it. If y ∈ I∗(N, v) \C(N, v), let

us denote by S̄ a largest coalition of maximal excess at y. That is,

v(S̄)− y(S̄) ≥ v(S)− y(S) ∀S ⊆ N, and

v(S̄)− y(S̄) > v(S)− y(S) ∀S ⊇ S̄, S 6= S̄.

Hence, let us define

Ay(v) :=

{
S ⊆ S̄ | y(Q) ≥

∑
i∈Q

xiS∪Q, for all Q ⊆ N \ S

}
.

This set is nonempty as S̄ ∈ Ay(v). To check this, let us suppose that for some coalition

Q ⊆ N \ S̄ we have y(Q) <
∑

i∈Q xiS̄∪Q. But then we will have that v(S̄) − y(S̄) <∑
i∈S̄ xiS̄ − y(S̄) +

∑
i∈Q xiS̄∪Q − y(Q) ≤

∑
i∈S̄ xiS̄∪Q − y(S̄) +

∑
i∈Q xiS̄∪Q − y(Q) =

v(S̄ ∪Q)− y(S̄ ∪Q), and this contradicts S̄ to be a coalition of largest excess.

Take a minimal element with respect to the inclusion in Ay(v), say S∗ (S∗ 6= ∅ as in

other case y ∈ C(N, v)), and notice that

vS∗

y (S∗) = max
∅⊆Q⊆N\S∗

{v(S∗ ∪Q)− y(Q)} = v(S∗ ∪Q∗)− y(Q∗), where Q∗ = S̄ \ S∗ (11)

Moreover, by lemma 1 taking S = S∗, it holds that for each game (S∗, vS∗,Q
y ), ∅ 6= Q ⊆

N \ S∗, there exists an allocation scheme (zQ
iT )i∈T,T∈P(S∗) meeting items (a), (b), (c1) and

(c2) of the lemma ( for (c1) and (c2) we can take QM = Q∗).

Furthermore, it can be proved that

zQ∗

iS∗ > yi, for all i ∈ S∗. (12)

To check this, we will show that if there exists a player j ∈ S∗ such that zQ∗

jS∗ ≤ yj, then

S∗ \ {j} ∈ Ay(v) contradicting the minimality of S∗. For this purpose, take an arbitrary

coalition Q ⊆ N \ (S∗ \ {j}) and consider two cases:
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• j 6∈ Q. Then, it is straightforward that

y(Q) ≥
∑
i∈Q

xiS∗∪Q ≥
∑
i∈Q

xi(S∗\{j})∪Q.

• j ∈ Q. In this case,

yj ≥ zQ∗

jS∗ ≥ [by lemma 1 (c1)]

≥ z
Q\{j}
jS∗ = xjS∗∪(Q\{j}) − [xjS∗∪(Q\{j}) − z

Q\{j}
jS∗ ] ≥ [by lemma 1 (b)]

≥ xjS∗∪(Q\{j}) − [xjS∗∪(Q\{j}) − z
Q\{j}
jS∗ ]− [

∑
i∈S∗\{j}

(xiS∗∪(Q\{j}) − z
Q\{j}
iS∗ )]

= xjS∗∪(Q\{j}) − [
∑
i∈S∗

(xiS∗∪(Q\{j}) −
∑
i∈S∗

z
Q\{j}
iS∗ ] = [by (6)]

= xjS∗∪(Q\{j}) − [
∑
i∈S∗

xiS∗∪(Q\{j}) − v(S∗ ∪ (Q \ {j})) + y(Q \ {j})]

= xjS∗∪(Q\{j}) − [
∑
i∈S∗

xiS∗∪(Q\{j}) −
∑

i∈S∗∪(Q\{j})

xiS∗∪(Q\{j}) + y(Q \ {j})]

= xjS∗∪(Q\{j}) − [−
∑

i∈Q\{j}

xiS∗∪(Q\{j}) + y(Q \ {j})]

= [
∑
i∈Q

xiS∗∪(Q\{j}) − y(Q \ {j})] ≥
∑
i∈Q

xi(S∗\{j})∪Q − y(Q \ {j}),

and thus y(Q) ≥
∑
i∈Q

xi(S∗\j)∪Q, for all Q ⊆ N \ (S∗ \ {j}) where j ∈ Q.

Therefore S∗ \ {j} will be in Ay(v) and S∗ will not be a minimal coalition of this set,

contradicting the hypothesis on S∗. Now, we will prove that the excess game (N, wy) is

balanced where wy(S) := max
T⊆S

{v(T )− y(T )} for all S ⊆ N . In fact, we will show that the

vector r = (zQ∗

S∗ − yS∗ ; 0N\S∗) ∈ C(N, wy).

First note that it is efficient since
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∑
i∈N

ri =
∑
i∈S∗

ri =
∑
i∈S∗

zQ∗

iS∗ −
∑
i∈S∗

yi = [by (6)] = v(S∗ ∪Q∗)− y(S∗ ∪Q∗) = wy(N).

Then, for all S  N , S ∩ S∗ = ∅ and for all T ⊆ S, note that y(T ) ≥
∑
i∈T

xiS∗∪T ≥∑
i∈T

xiT = v(T ) where the first inequality holds since S∗ ∈ Ay(v) and T ⊆ N \ S∗.

Therefore, wy(S) = 0 and thus
∑
i∈S

ri = 0 ≥ wy(S), for all S  N , S ∩ S∗ = ∅.

On the other hand, for all S  N , S ∩ S∗ 6= ∅ we have that

∑
i∈S ri =

∑
i∈S∩S∗ ri =

∑
i∈S∩S∗(z

Q∗

iS∗ − yi) = [as zQ∗

iS∗ > yi, see (12)]

= max
∅⊆R⊆S∩S∗

{
∑
i∈R

(zQ∗

iS∗ − yi)} = max
∅⊆R⊆S∩S∗

{
∑
i∈R

zQ∗

iS∗ − y(R)} ≥ [as zQ∗

S∗ ∈ C(S∗, vS∗
y )]

≥ max
∅⊆R⊆S∩S∗

{vS∗

y (R)− y(R)}

= max
∅⊆R⊆S∩S∗

{ max
∅⊆Q⊆N\S∗

{v(R ∪Q)− y(Q ∪R)}}

≥ max
∅⊆R⊆S∩S∗

{ max
∅⊆Q⊆S\S∗

{v(R ∪Q)− y(Q ∪R)}}

= max
∅⊆T⊆S

{v(T )− y(T )} = wy(S).

.

Hence, we conclude that the excess game (N, wy) is balanced for any y ∈ I∗(N, v) and

so, by (10), that C(N, v) = M(i)
1 (N, v) = MB(N, v). 2
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[5] Grafe F., Iñarra E. and Zarzuelo J.M. (1998). Population Monotonic Allocation

Schemes on Externality Games. Mathematical Methods of Operation Research 48,

71–80.

[6] Hokari T.(2000). The nucleolus is not aggregate-monotonic onthe domain of convex

games. International Journal of Game Theory 29, 133–137.

[7] Holzman R. (2001). The comparability of the classical and the Mas-Colell bargaining

sets. International Journal of Game Theory 29, 543–553.

[8] Izquierdo J.M. and Rafels C. (2001). Average Monotonic Cooperative Games. Games

and Economic Behavior 36, 174–192.

[9] Mas-Colell A. (1989). An Equivalence Theorem for a Bargaining Set. J. Math. Econ.

18, 129–139.

[10] O’Neill B. (1982). A Problem of Rights Arbitration from the Talmud. Math. Soc.

Sci. 2, 345–371.

[11] Potters J., Poos J. Tijs S.H. and Muto S. (1989). Clan Games. Games and Economic

Behavior 1, 275–293.

[12] Shapley L.S. (1953). A Value for n-Person Games. In: Kuhn H.and Tucker A. (eds.),

Contributions to the theory of games II, Princeton University Press, 307–317.

[13] Shapley L.S. (1971). Cores of Convex Games. International Journal of Game Theory

1, 11–26.

[14] Slikker M.(2000). Inheritance of Properties in Communications Situations. Interna-

tional Journal of Game Theory 29, 241–268.

[15] Slikker M., Norde H. and Tijs S. (2003). Information Sharing Games. International

Game Theory Review 5, 1–12.

19



[16] Sprumont Y.(1990). Population Monotonic Allocation Schemes for Cooperative

Games with Transferable Utility. Games and Economic Behavior 3, 378–394.

[17] Voorneveld M., Tijs S. and Grahn, S. (2002). Monotonic Allocation Schemes in Clan

Games. Mathematical Methods of Operation Research 56, 439–449.

20


