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Abstract: While a growing literature examining the relationship between income and 

health expenditures suggests that health care is a luxury good, this conclusion is 

contentiously debated due to heterogeneity of the existing results. This paper tests the 

luxury good hypothesis using meta-regression analysis, taking into consideration 

publication selection, precision, and aggregation bias. The findings suggest that publication 

bias exists, a result that is robust irrespectively of the tests employed. Precision and 

aggregation bias also appear to play a role in the generation of estimates. The corrected 

income elasticity estimates range from 0.26 to 0.84, although we cannot reject the luxury 

good hypothesis for some of the performed corrections.  

JEL Classification: I1, I10, I11, I18 

Keywords: meta-regression analysis, health care, luxury good, income elasticity, aggregate 

health expenditure, regional health expenditure 

 

Resum: Mentre que una creixent literatura que ha examinat la relació entre la renda i la 

despesa sanitària suggereix que els serveis sanitaris són un be de luxe (elasticitat renda 

superior a la unitat), aquesta conclusió es contínuament debatuda atesa l'heterogeneïtat dels 

resultats. Aquest article testa la hipòtesis dels serveis sanitaris com bens de luxe fent server 

anàlisi de meta- regressió, particularment analitzant l'existència de biaixos de selecció de 

publicació, precisió així com biaixos d'agregació. Els resultats apunten l'existència d'un 

biaix de publicació, robust independentment dels controls analitzats. Els biaixos de precisió 

i agregació semblen tenir un paper en la generació de les estimacions de l'elasticitat renda. 

Els nostres resultat suggereixen que l'elasticitat renda dels serveis sanitaris un cop corregir 

pels biaixos esmentat varien entre 0.26 i 0.84, però no podem rebutjar que la elasticitat 

renda es igual a la unitat en algunes estimacions de l'elasticitat corregides. 

Paraules clau: meta- regressió , serveis sanitaris , be de luxe,  elasticitat renda,  despesa 

sanitària agregada i despesa sanitària regional. 

 

 



1. Introduction 
 

Beginning with the seminal paper by Newhouse (1977), a contentious debate has raged 

over the income elasticity of demand1, the central question being whether health 

expenditures increase faster than per capita income. The general finding has been that 

income elasticity estimates exceed unity, implying that health care is a luxury good 

(Newhouse, 1987, Gerdtham and Johnson, 2000). Given the marked implications for the 

allocation of health care resources, the debate has often centered on the methodological 

robustness of elasticity estimates. The argument reads that if health care is a 

“necessity”, this necessitates more redistribution of health care resources and arguably 

greater public involvement in health care. That is, the value of income elasticity 

provides insight into the optimal level of health expenditures in the economy and the 

efficient proportion of public and private health spending2.  

 

Some researchers suggest caution in interpreting the early results that health care is a 

luxury good as misspecification may be a possibility (Culyer, 1987). As a result, the 

methodological debate has focused on the existence of specific controls, such as health 

system controls (Gerdtham and Johnson, 2000), and the methods used, primarily the 

statistical properties of the data. Another source of variation is the heterogeneity of 

health care (Parkin, 1987; Gertham, 1992, Roberts, 2000), which depends on whether 

the data is measured at the national, regional, or individual level (Getzen, 2000; 

DiMatteo, 2003). The interdependence of several forms of health care implies that an 
                                                 
1 We define the income elasticity of demand as the percentage change in health expenditures that is 
associated with a one percent change in income. The formula is given by: ( )( )IHEIHEeI ∂∂=  
where HE represents health expenditures and I represents income. If the income elasticity is less than one, 
then the health care expenditures are a necessity good. If the income elasticity is greater than one, then 
health care expenditures  are a luxury good.  
2 If the income elasticity exceeds unity, some might argue that universal health coverage is unnecessary as 
the private market is more efficient in the provision of coverage. Alternatively, it may be that income 
inequalities are prevalent, although this interpretation rests on the assumptions that most health care 
consumption is necessary and that there is significant unmet demand among lower-income populations. 
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aggregate analysis is more intuitive, but there may be biases in employing aggregate 

estimates to infer individual behavior. Most research that utilizes aggregate data relies 

on country-level aggregation, mainly due to data availability, but interestingly, studies 

employing regional data do not necessarily find income elasticities below one. This 

evidence might imply that aggregation bias exists, which is consistent with findings 

from studies that relied on aggregate data to examine crime (Glaeser et al, 2003; Glaeser 

and Sacerdote, 2007). However, the increasing availability of data and statistical 

methods implies the need for a paper that aggregates the existing studies on the basis of 

such effects. To date no study has investigated empirical biases in the income elasticity 

literature.  

 

Among the potential biases, two are primarily important: publication selection (Stanley, 

2008) and precision effects (Stanley, 2005). The existence of publication selection points 

toward a preference – typically among journal referees, editors, editorial boards, the 

disciplinary scientific community as a whole, and even authors themselves - for statistically 

significant results that confirm the prevailing theoretical paradigm. In terms of precision 

effects, there may be heterogeneity in the estimates given that all authors inevitably select 

different samples and employ different controls. Due to the inevitable heterogeneity of 

methods, samples, and classifications across different studies, meta-analysis or meta-

regression analysis (MRA) are two available techniques for scrutinizing the existing 

studies and determining whether health care or its components are luxury goods. Meta 

analysis integrates the existing estimates of a defined outcome variable (Farly, 1982) 

and assumes that the individual studies can be homogenized through a standard measure 

of empirical effect or effect size (Glass et al 1981), which is held constant across all 

studies. The effect size is the difference in the outcome [e.g. elasticity] of the study and 

control groups, adjusted by the standard deviation of the control group. 
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Given the subjectivity of meta analysis, meta-regression analysis is an alternative tool 

that harmonizes the heterogeneity of studies to obtain a flexible estimate that can be 

adapted to context-specific circumstances (Stanley and Jarrell, 2005). MRA entails a 

regression analysis of existing studies with controls for the study type, the sample 

characteristics, and the scope and precision of the elasticity estimate, allowing us to test 

the sensitivity of the parameter of interest to certain objective characteristics. There 

have been some applications of MRA in the economics literature (Roberts, 2005), but 

there are only a few known applications to health care (Asensio-Boadi et al., 2007; 

Gemmill et al, 2007; Doucouliagos and Stanley, 2008). 

 

To address the debate regarding whether health care is a luxury or necessity good, this 

paper pools the existing aggregate income elasticity estimates from social science 

journals. We then apply MRA to obtain a corrected income elasticity estimate, 

accounting for the precision, publication selection, and aggregation nature of the 

included papers. The analysis is restricted to total health expenditures given that studies 

which consider specific expenditure types (e.g., pharmaceutical or inpatient) or employ 

individual-level data might not produce comparable estimates. Once we control for the 

relevant study-specific factors, it becomes clear that income elasticity estimates suffer 

from publication bias. After removing the publication bias, we can no longer conclude 

that health care is luxury good.  

 

The paper is organised as follows: Section 2 provides an overview of the existing 

studies, distinguishing between those that employed national-level data and those that 

used regional-level data. Section 3 describes the methods employed in the analysis and 
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offers more detail on the use of meta-regression analysis. Section 4 details the results, 

and Section 5 concludes with a discussion. 

 

2. Brief overview of the literature 

This section of the paper covers the literature that has used national- and regional-level 

aggregate data to consider the relationship between income and overall health 

expenditure. Because studies that have used individual-level data or have distinguished 

between health expenditure categories may not be comparable, these types of papers 

were not included in the literature review or the analysis.   

 

  2.1. Studies using country-level data 

Two literature reviews that focused on country-level analyses of the relationship 

between income and health expenditures (Getzen, 2000; Gerdtham and Johnson, 2000) 

found that most papers reported income elasticity coefficients greater than one. Getzen 

(2000) argued that while evidence indicates that health care is necessity good at the 

individual level, it is a luxury good at the aggregate level, although Hansen and King 

(1996) suggest that this relationship could be spurious.  

 

In dealing with international health care expenditure functions, the availability of data 

has fostered a significant amount of empirical work. However, health care systems are 

heterogeneously managed, regulated, and financed, and accordingly, there are sizeable 

differences in the health care packages among OECD counties. As a result, it is doubtful 

that data from different countries is measuring the same outcome. Another issue is that 

there might be a ‘stability problem’ when examining data over a large period of time 

(Jewell et al, 2003; Clemente et al, 2004).  
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As these methodological issues have led many to question the validity of the elasticity 

results (Clemente et al, 2004; McCoskey and Selden, 1998; Hansen and King 1996; 

Blomqvist and Carter, 1997; Karatzas, 2000; Roberts, 2000), some researchers have 

addressed specific methodological issues underlying the determination of the health care 

expenditure function. In particular, these studies account for the potential non-stationary 

of the data, although there is no agreement on whether the data is co-integrated 

(Gerdthan and Lothgren, 2000; Clemente et al, 2004, Herwaetz and Theilen, 2003). 

Others have used panel data methods to account for potential differences in tastes and 

preferences in the health care expenditure function (Hitris and Possnett, 1992; Di 

Matteo and Di Matteo, 1998), but none of these analyses have considered spatial 

interactions, the existence of which might invalidate some of the existing conclusions. 

Some of the literature has focused on causality problems that occur when examining 

health expenditure and GDP, and this has been examined in the Spanish health care 

system (Devlin and Hansen, 2001). Okunade and Suraratdecha (2000) use a dynamic 

Engel specification of a Box–Cox expenditure model to account for the existence of 

inertia, especially in publicly financed health systems. It is important to note that they 

find that per capita real GDP elasticity’s show the tendency for medical care to behave 

like a necessity in 20 of the 21 OECD countries. 

 

In a further attempt to overcome some of the institutional heterogeneity issues, some 

studies have controlled for health system characteristics. Gerdtham et al. (1998) is one 

of the few studies that examines the influence of a set of institutional reforms. The 

authors find that systems with physicians as gatekeepers areconsistently statistically 

significant and associated with lower health expenditures. Gerdtham et al. (1998), 
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Hansen et al. (1996), and Roberts (1998) control for the percentage of public to total 

health expenditures, but there are mixed results for this control. 

 

 

  2.2 Studies using regional-level data 

Importantly, the controls for institutional context may be insufficient to overcome 

institutional heterogeneity (Di Matteo and Di Matteo, 1998), and thus some studies have 

used sub-national data to overcome this bias. There have been regional studies 

conducted in five countries (Canada, Italy, Spain, Switzerland, and the United States), 

and all of these studies find an income elasticity below one (Cantanero, 2005; Costa-

Font and Pons, 2006; Crivelli et al, 2007; Di Matteo, 2003; Gionannoni and Hittris, 

2002; Vater and Rüefli, 2003). As data at the regional level has only become available 

relatively recently, most of the studies examining health expenditures at the regional 

level are from the last ten years.  

 

  2.3 Aggregation effects 

The bulk of evidence supporting the luxury good theory has been drawn from aggregate 

datasets, and there may be difficulties in drawing inferences about individual behaviour 

from aggregate data (Glaeser et al, 2002). Most studies using regional-level data have 

found elasticity values below one, while studies using national-level data find elasticity 

values above one. The difference in results could be due to the aggregation effect 

(Glaeser et al, 2002). In particular, the association between a country’s income level and 

health care expenditures can be affected by strategic complementarities; such and 

preference or information spillovers due to information asymmetries. Furthermore, 

individual-level income does not adequately capture the effect of technology, while at 
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the national level, income includes the technology effect. In practice, measuring the 

technology effect is difficult because there is no accepted measure of technology 

change. Another reason for casting doubts on behavioural inferences resulting from 

aggregate data is that individual-level budget constraints differ from those at the 

regional or national level, particularly in the presence of universal or extended insurance 

coverage. The implication of this discussion is that aggregation effects may exist with 

national-level data, and it is important to test for this possibility. 

 

 

3. Data and Methods 

  3.1. Methodology 

The intent of this paper is to determine the corrected magnitude of the income elasticity 

estimate derived from meta-regression analysis and to examine the extent to which the 

predicted elasticity differs from one ( 1≠βi ). Specifically, the goal is to establish 

whether the elasticity is greater than one (a luxury good) or less than one (a necessity 

good) after controlling for study-specific characteristics.  

 

Meta-regression analysis involves collecting the outcome variable and relevant study-

specific information from the existing literature in a systematic manner to determine 

which factors influence the variability of the treatment variable (Stanley and Jarrell, 

1989). These factors are then recorded as covariates, creating the meta-regression 

dataset. The assumption is that each observation is drawn from an overall statistical 

population. Based on this compiled dataset, we can test our main hypothesis that the 

income elasticity of demand is greater than one and determine the important factors that 

influence this treatment variable. 
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This technique has the distinct advantage of being less subjective than literature reviews 

where the researcher is interested in the average effect of a particular outcome variable. 

A literature review is subjective in that the researcher determines the inclusion criteria 

for the literature, the method of interpreting the results, and the potential reasons for 

varying results. Systematic literature reviews offer a methodological improvement and 

provide techniques for reducing the subjectivity, but researchers still have considerable 

leeway when deciphering the results and crediting various factors to variation in the 

outcome variable. As a result, the ultimate aim of MRA is to overcome some of the 

pitfalls of literature reviews, allowing us to obtain an “estimate of estimates” with some 

acceptable precision.  

 

The analysis begins with the collation of information from relevant studies, where we 

have N estimates of iη  (the dependent variable) and i=1,…,N. We identify the k 

characteristics of the diverse studies and integrate the findings as follows: 

 

i

K

k
itki XS εβββη η +++= ∑

=1
0                             (1). 

 

The reported income elasticity estimate of each i study ( )iη  equals the real income 

elasticity estimate ( )β  adjusted for the standard error of iη  ( )ηS  and the k 

characteristics  of each published study. The  are the independent variables and 

account for the processes which explain the production of empirical results, while the 

parameters 

( ikX )

)

ikX

( kββ ,0  represents the biases associated with specific characteristics that 

lead to misspecifications (Stanley and Jarrell, 2005). The covariates might be variables 
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measuring the quality of the study (e.g., the impact factor of the journal), numerical 

continuous variables accounting for the study size, and any other relevant characteristics 

of the study (e.g., outlier estimates). Given that estimates are obtained by varying 

degrees of precision, it is possible to control for publication bias by including the 

standard error of the estimate in the regression. The standard error might be indicative 

of precision or publication bias, perhaps because journals are more likely to publish 

significant estimates (i.e. standard errors might be biased downwards).  

 

Given that the model is based on estimates from previous regressions, it is important to 

examine the distributional properties of the data. In the absence of publication selection, 

estimates will vary randomly, hence symmetrically, around the “true” effect (Stanley, 

2008).  

 

  3.2 The Funnel Asymmetry (FAT) and the Precision Effects Test (PET) 

Because the model is based on estimates from previous research, it is important to 

examine the distributional properties of the data. While MRA coefficients should be 

unbiased and consistent (Stanley and Jarrell, 1989), the fact that the revised studies are 

drawn from different datasets leading to heterogeneity, have differing sample sizes, and 

utilize different controls and methods generally leads to heteroskedasticity in the error 

term. As a result, we first need to test for the existence of heteroskedasticity, and if the 

bias is present, correct for this effect using a weighted least squares (WLS) regression. 

This estimator divides equation (1) by the standard error of iη  ( )ηS . The dependent 

variable in the WLS model becomes the t-statistic as follows: 
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i

K

k

ikk
o

i
i S

X
SS

t μ
β

ββ
η

ηηη

+++== ∑
=1

1
1      (2), 

 

where  is the t-value associated with the iit
th reported estimate in the MRA dataset. The 

 are the study specific controls including the impact factor of the journal (quality), 

institutional features of the data (health system type), type of data (public or private), 

and the level of aggregation (regional or national). This regression facilitates the funnel 

asymmetry test (FAT), which is related to funnel plots and tells us about the existence 

of  funnel asymmetry (hence the name (Egger et al. 1997, Sutton et al. 2000 and Stanley 

2005)). FAT is an initial method of identifying potential biases in the elasticity 

estimates, and it is common practice in performing MRA.  The null hypothesis is: 

ikX

00 =β , the rejection of which is taken to indicate the presence of publication selection.  

 

Equation (2) also facilitates the Precision Effect Test, which allows us to identify an 

empirical effect even if publication bias exists. The null hypothesis of PET normally 

would read as follows: 01 =β  (in our case, the null hypothesis is 11 =β  as we are 

testing health is a luxury good). It is important to note that FAT is considered to have 

low value and is sensitive to the introduction of controls (Stanley, 2007). One the other 

hand, PET suffers from inflated Type I errors if the existing heterogeneity is larger than 

the sampling error (Stanley, 2005). Therefore, it is important to perform further 

confirmatory tests.  

 

  3.3 The Precision Effect Estimate with Standard Error 

As an extension of model (2), a Heckman-like correction, the Precision Effect Estimate 

with Standard Error (PEESE) model, can be used to obtain an estimate that is robust to 
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standard error. For a complete derivation of this model, please see Stanley and 

Doucouliagos (2007). The PEESE equation starts from the premise that there is a nonlinear 

relationship between the observed outcome and its standard error, yielding the equation: 

 

       (4), i

K

k
itki XS εαααη η +++= ∑

=1

2
0

 

Assuming heteroskedasticity in the error term, we again apply the WLS correction to 

yield: 

 

 i

K

k
itk

i S

X

S
St δ

α
αα

ηη
η +++=

∑
=1

0       (5), 

 

so that α estimates the magnitude of the empirical effect corrected for publication 

selection. The advantage of using the t-value rather than the elasticity as the dependent 

variable is that t-values have a specific unit and dimensionality, providing a 

standardized measure of interest. As with any other empirical specification, as long as 

the model is not misspecified, it measures the specific meta-effects. One method of 

gauging the sensitivity of the model to misspecifications is to vary the independent 

variables and measure the effects.  

 

  3.4 Meta-significance testing 

A further constancy test is meta significance testing (MST), which relies on the 

assumption that if there is a genuine underlying effect, there will also be a logarithmic 
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relationship between a study’s t-statistic and its degrees of freedom. Statistical theory 

predicts that the t-ratio will be related to the square root of the degrees of freedom, or : 

 

)log()(log 1 ioi dftE γγ +=                                (6), 

where 1γ =0  would confirm the null hypothesis of no effect and the remainder would 

suggest evidence of selection bias (Stanley, 2005). A meta significance test is developed 

by simply regressing the logarithm of elasticity estimates against the degrees of 

freedom, and as Stanley (2005, 2007) demonstrates, the slope should be precisely 0.5. 

Another possible test is one developed by Mookerjee (2006) that involves a regression 

between the t-value of the outcome variable and the square root of the degrees of 

freedom. The significance of such as relationship reflects the existence of publication 

bias.  

 

  3.5 Homogeneity 

Homogeneity, i.e. whether there is a common mean, is another aspect of the dataset that 

needs to be considered. We can test for homogeneity using the 

( )( ) ( )iiQ ηηη η var/2
var∑ −=  statistic, where iη  is each elasticity estimate, ( )ηη var  is a 

weighted average of each elasticity estimate corrected by its variance, and ( )iηvar  is the 

variance of each estimate. Under the null hypothesis of homogeneity, Q  is distributed 

as  where N is the number of studies. If the null hypothesis of homogeneity is 

rejected, this suggests that regression analysis is needed. 

2
1−Nχ
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  3.6. Data selection 

The likely predictors of the outcome variable are a number of theoretical controls and 

study-specific covariates. All of these potential independent variables can be identified 

from the specific papers collected for the analysis and are classified as follows: 

(a) measurement and methods or study-specific characteristics (e.g. the number of 

observations), 

(b) institutional setting (e.g. the type of insurance coverage, the type of health system) 

(c) publication or dissemination effects  (e.g. whether published in a social science 

journal, quality or impact factor of the journal), and 

(d) method or data specific controls (e.g. the presence of outliers). 

 

Each of these predictors is intended to capture specific biases that influence the outcome 

variable. One of the most important considerations in the regression may be the 

coefficient on the standard error variable as a positive coefficient may be indicative of a 

publication or dissemination effect. That is, some social science journals might be more 

interested in publishing studies with income elasticity estimates greater than one as this 

confirms the luxury good hypothesis. A further example is that estimates can vary 

significantly across study characteristics, such as the number of observations and the 

journal where the estimate was published. The institutional setting, such as whether the 

estimate was generated from a tax-based or social insurance-based country, may also be 

a key factor in determining the income elasticity as it reflects the distribution of income 

across the population and possible cultural factors. Finally, the presence of outliers 

related to specific studies that are of varied quality is another important effect. 
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The search for available evidence involved prescreening, selecting, and then classifying 

the income elasticity values and the associated study characteristics to create the MRA 

database. In developing the database, we identified and cross-referenced published 

studies using Econlit, Medline, and Sociofile up until 2006. An important point is that 

we restricted our sample to income elasticity estimates derived from aggregate datasets 

and published in social science journals. The intuition regarding aggregate estimates 

was explained previously, and the use of estimates published in social science journals 

has two primary reasons. One argument is that social science journals are more likely to 

provide elasticity estimates and the associated standard errors. Additionally, an 

interesting sub-question to consider in the analysis is whether publication bias exists in 

this particular area of the literature.  

 

In most cases both the income elasticity and the associated standard error were available 

in the paper. In a few cases, the standard error was not provided, but where possible we 

calculated this either from the given t-value or from the mean square error (MSE). In the 

case where the study reported the t-value associated with iη  rather than the standard 

error, we used the formula for the t-value: 

 

( )i

i

es
valuet

η
η

..
0−

=− ,        (7). 

 

Thus, we substituted in the known values of iη  and the t-value to solve for ( )ies η.. . 

Alternatively, if the authors only reported the mean square error, we took the square 

root of the MSE to obtain ( )ies η.. . 
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4. Results 

After the data collection process, our final sample consisted of 167 comparable 

elasticity estimates from a set of 48 published studies. Before proceeding to the 

regression, we first considered the possibility of homogeneity in the sample by 

calculating the Q-statistic. At a value of 30,641 (p=0.000), this was high enough to 

indicate that significant heterogeneity existed in the sample. The implication was that 

regression analysis was needed. 

 

The next step was to visually examine the data to get a feel for any publication bias. 

Figure 1 is a funnel plot, which plots the elasticity estimates against a measure of 

precision (1/s.e). With the exception of a few outlier estimates, most of the income 

elasticity coefficients range from 0 to 2. The funnel plot also suggests that the value of 

one is likely at the centre of the distribution, and with the exception of few outliers, the 

distribution appears to be symmetrical around that value. Interestingly, if we look at the 

descriptive statistics for the income elasticity value (Table 1), there is significant 

variability as indicated by the values at the 10th and 90th percentiles.  

 

[Insert Figure 1 and Table 1 about here] 

 

Following the methodology put forward in Section 3, we then ran a set of separate 

regressions. We first examined the FAT and PET tests using equation (2). Table 2 

shows that the constant ( 0β ) is significant and positive, meaning that we can reject the 

null hypothesis of no selection bias (according to FAT). In line with the interpretation of 

the funnel plot, the direction of the bias is initially positive. However, when more 
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controls are introduced, part of the selection or publication bias appears to be picked up 

by the controls, and the test becomes insignificant.  

 

[Insert Table 2 about here] 

 

Next is the coefficient on es./1β , which is an unbiased estimate of the income elasticity 

of demand after correcting for selection bias (according to PET). The coefficient is 

positive statistically significant, with values ranging 0.26 to 0.71. Wald tests only  

rejected the hypothesis that es./1β  equals one for the first simple specification at the 

conventional 5% significance level, while for the rest of the specifications, we can only 

reject the hypothesis at a 10% level.  

 

In addition to the corrected elasticity estimate, the interpretation the controls are also 

important. Two controls, the use of regional data and the impact factor of the journal, 

were consistently significant. It appears that studies using regional data yield lower 

income elasticity values, with coefficients being negative and ranging from 0.664 to 

0.51. This is consistent with the aggregation bias hypothesis, which remains irrespective 

of the introduction of additional controls. As for the second effect, there is a positive 

relationship between the impact factor and the income elasticity, suggesting that high 

impact factor journals have a preference for significant and higher elasticity estimates.  

 

Table 3 provides the estimates of the PEESE model (from equation (5)) where es./1α̂  is 

the effect corrected for publication selection following Stanley and Doucouliagos 

(2007). The precision-corrected elasticity estimate lies between 0.38 and 0.84, 

depending on the specific study controls introduced. These results are in line with 

 18



previous results using the PET, overall indicating that health is not a luxury good. The 

coefficients on the study controls not surprisingly appear to previous  similar to the 

coefficients for the same controls reported in Table 2 . 

 

[Insert Table 3 about here] 

 

Finally, Table 4 provides the results of the meta-regression test (MRT), which tests the 

existence of a logarithmic relationship between the degrees of freedom and the t-value. 

Consistent with the previous results, we find a significant and robust effect that 

confirms the existence of selection bias. Post-estimation tests reject the null hypothesis 

of the coefficient being 0.5 (F(1, 39)=7.73). We also ran the regression proposed by 

Mookerjee (2006) between the t-value and the square root of the degrees of freedom. 

The significance of the coefficient on the degrees of freedom variable can be interpreted 

as additional evidence confirming the intuition of publication bias. 

 
[Insert Table 4 about here] 

 

5. Conclusion 

This paper has examined the existence of publication bias along with aggregation and 

precision effects to revisit the hypothesis of health care being a luxury good. Drawing 

from a battery of existing methodologies (FAT, PET, PEESE and MRT), our results 

suggest the publication bias does exist. Interestingly, we find that the income elasticity 

of demand for health care lies between 0.26 and 0.8, which negates the hypothesis that 

health care is a luxury good. This result is consistent with the proposal that health care 

is an individual necessity and an aggregate luxury (Getzen, 2000).  
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We also find that two study controls are consistently important predictors of the 

elasticity value. Studies using regional data yielded lower elasticity values, providing 

evidence for the existence of aggregation effects. Journal quality is also an important 

predictor, and it seems that journals with a better impact factor, namely more 

established journals, exhibit a systematic tendency to report higher elasticity effects. 

Other controls such as institutional and methodological factors did not appear to 

influence the elasticity estimates.  

 

It is important to bear in mind the potential limitations of this analysis. Over time, more 

studies appear to be showing that after introducing appropriate controls, income 

elasticity estimates decline markedly (Sen, 2006). Hence, future analyses that include 

more estimates might find less effect of publication bias or even publication bias in the 

opposite direction. In addition, there may be other important characteristics, such as 

indicators of health expenditure types (e.g. pharmaceutical, inpatient), that explain 

heterogeneity in elasticity estimates. However, given that expenditures are not 

independent and instead reflect an underlying demand for health channelled through 

agency relationships, an overall income elasticity measure would be more reliable than 

estimates for specific types of health expenditure. Future research could account for 

other sources of heterogeneity using individual-level data.  
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Figure 1. Funnel Plot 
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Table 1.  Definitions of the variables and summary statistics (N=167) 
 
Variable Definition Meana Median 10th 

percentile 
90th 
percentile 

inc_elasticity Income elasticity of demand 0.999        
(0.073) 

0.908 0.0793 1.654 

std_error Standard error of the elasticity 1.215        
(0.397) 

0.290 0.0450 1.471 

region Indicates whether the data was 
regional (vs. national) 

0.246        
(0.033) 

0.000 0.0000 1.000 

df Degrees of Freedom of each 
database 

421.20 
(36.11) 

24.2 17.1 671.3 

nhs Dummy for the percentage of 
NHS observations in the study 

0.532        
(0.031) 

0.500 0.0000 1.000 

public Dummy for public health 
expenditure 

0.090        
(0.022) 

0.000 0.0000 0.000 

impact The impact factor of the 
medium where the paper was 
published 

0.907        
(0.075) 

0.300 0.0000 2.500 

panel Indicates whether the study 
used panel data techniques 

0.174        
(0.029) 

0.000 0.0000 1.000 

astandard errors in parentheses 
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Table 2.  Funnel Asymmetry Test (FAT) and Precision Effect Test (PET) 
 

 coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

es./1β
 

0.265b

(0.148) 
0.712a

(0.321) 
0.644a

(0.320) 
0.645a

(0.321) 
0.665b

(0.412) 
0.662a

(0.331) 

regionβ
 

 -0.634a

(0.303) 
-0.588a

(0.293) 
-0.613a

(0.299) 
-0.605b

(0.324) 
-0.515b

(0.291) 

impactβ
 

  0.220a

(0.099) 
0.222a

(0.100) 
0.223a

(0.094) 
0.229a

(0.087) 

publicβ
 

   0.085 
(0.094) 

0.086 
(0.089) 

0.103 
(0.069) 

NHSβ
 

    -0.030 
(0.360)  

panelβ
 

     -0.157 
(0.208) 

0β  3.673a

(1.259) 
2.305b

(1.402) 
1.409 
(1.051) 

1.351 
(1.054) 

1.308 
(1.076) 

1.181 
(1.159) 

2R  0.16 0.452 50.13 0.505 0.505 0.516 
167
MF

 3.21 20.49 24.96 20.31 37.5 35.94 
asignificant at the 5% level, bsignificant at the 10% level 
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Table 3. Precision Effect Estimate with Standard Error (PEESE)  
 

 coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

0α  0.022 
(0.020) 

0.013 
(0.013) 

0.008 
(0.008) 

0.008 
(0.008) 

0.008 
(0.008) 

es./1α  0.387a

(0.139) 
0.824a

(0.278) 
0.691a

(0.296) 
0.691a

(0.297) 
0.742a

(0.371) 

regionα   -0.690a

(0.290) 
-0.610a

(0.284) 
-0.638a

(0.287) 
-0.613a

(0.322) 

impactα    0.262a

(0.119) 
0.261a

(0.119) 
0.261a

(0.121) 

publicα     0.100 
(0.100)  

NHSα      0.103 
(0.091) 

panelα      -0.086 
(0.345) 

2R  0.340 0.591 0.645 0.648 0.680 
F-test 5.340 6.530 85.93 72.69 121.0 
asignificant at the 5% level, bsignificant at the 10% level 
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Table 4. Meta-significance Tests 
 

 MST Mookerjee 
(2006) 

 coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

coefficient 
(s.e.) 

0γ  -0.03 
(0.403) 

0.006 
(0.007) 

0.002 
(0.008) 

-0.001 
(0.008) 

0.000 
(0.022) 

2.50 
(1.855) 

1γ  0.380a

(0.08) 
0.285 
(0.077) 

0.225a

(0.052) 
0.223a

(0.052) 
0.224a

(0.052) 
0.196a

(0.100) 

regionγ   -0.077a

(0.037) 
0.048a

(0.007) 
0.049a

(0.007) 
0.049a

(0.007)  

impactγ    -0.030 
(0.210) 

0.013 
(0.008) 

0.013 
(0.007)  

publicγ     -0.030 
(0.205) 

-0.002 
(0.022)  

NHSγ      -0.033 
(0.211)  

2R  0.16 0.32 0.40 0.41 0.41 0.05 
F-test 11.46 20.56 25.67 21.3 44.7 3.8 
asignificant at the 5% level, bsignificant at the 10% level 
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