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Abstract: The usual assumption when considering investment grants is that grant 

payments are automatic when investments are undertaken. However, evidence from 

case studies shows that there can exist some time lag until funds are received by 

granted firms. In this paper the effects of delays in grant payments on the optimal 

investment policy of the firm are analyzed. It is shown how these delays lead not 

only to a higher financing cost but to an effective reduction in the investment grant 

rate, and in some cases, how benefits from investment grants could be canceled due 

to interactions with tax effects. 
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Resumen: El supuesto habitual cuando se consideran subvenciones a la inversión es 

que los pagos asociados se reciben automática e instantáneamente cuando se 

emprenden las inversiones. Sin embargo la evidencia empírica muestra que 

frecuentemente existen retrasos en el cobro de las subvenciones. En este trabajo se 

analizan los efectos de estos retrasos en la política óptima de la empresa, y se 

demuestra que éstos conllevan no únicamente un mayor coste financiero sino una 

reducción efectiva de la subvención, y que en algunos casos ésta puede ser 

totalmente absorbida a consecuencia de los efectos fiscales. 
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1 Introduction

Among the set of government policies to stimulate capital accumulation, fiscal policies are

being used with the aim of reducing the user cost of capital (Jorgenson, 1963 and Hall and

Jorgenson, 1967). Several works in the tradition of the neoclassical theory of investment

(e.g., Ruane, 1982, and Van Loon, 1983) have studied the effects of financial incentives on

the investment policy of firms in the form of grants related to assets. These incentives are

usually paid out on a project-by-project basis (a firm qualifying for them should purchase,

construct or otherwise acquire long-term assets) and are typically available only for specific

regions or industries.

The usual assumption made in the literature when considering investment grants is

that, when an investment is undertaken, the firm automatically receives the associated

funds (or they are paid directly to the equipment supplier by the granting institution)

and therefore only a fraction of the investment expenditure is needed. However, it is not

unusual for there to be some time lag between investment and the reception of funds,

leading the firm to face the whole investment expenditure and, some time later, receive

the grant payment. In the European Commission’s Synthesis Report (1999) case studies

for several European regions are analyzed. For instance, in the Spanish region of Castilla-

La Mancha, delays of up to 6 months are reported (and after a substantial reduction

from recent past) between completion of the investment and grant payment, and actions

such as up-front payments to help cash flow are quoted as innovative examples of good

practice.

The aim of this paper is to analyze the effects of delayed grant payments on the optimal

investment policy of firms through the effects on the user cost of capital. We discuss and

solve a simple model that includes a fixed time delay for grants associated to current

investment. It is shown that not only a financing cost due to advancing the amount of

the grant payment arises, but a reduction in the effective grant proportional to the time

lag. Moreover, interactions with corporate income tax could cancel all the benefits from

the grant. In addition, a detailed analysis of the dynamics illustrates the effects of the

existence of delays on the speed of convergence of the firm to the optimal size.

The mathematical techniques involved in the resolution of the delayed model are those

of optimal control methods of hereditary systems (or systems with aftereffect). In general,

these problems are much more complicated than when the assumption of the immediate

response is made. In fact, although this topic has been the object of much interest in the
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engineering field, delayed response problems in economics are often modeled as immediate

response problems. As we will show, our model falls within the kind of delayed problems

which can be handled in a nonstandard but easy way.

The paper is organized as follows: in Section 2 the model describing the lag is intro-

duced as a delayed optimal control problem. In Section 3 we solve the delayed optimal

control problem, deriving an expression for the user cost of capital. Section 4 analyzes

and compares the cost of capital obtained for the delayed case, with both the non-delayed

case and the non-granted case. In Section 5 we extend the model in order to break the

linearity by introducing investment adjustment costs, and the effects of delays on the

optimal investment policy are analyzed. Finally, in Section 6, a discussion of the results

obtained is given, and generalizations of the model are suggested.

2 The model

In most of the models in the literature, automatic eligibility (approval of the grant and

consequent right acquisition and grant recognition) and instantaneous grant payment are

assumed. We differentiate these two instants by introducing a time lag of τ time units from

the eligibility moment until the grant is received by the firm. Note that the distinction

between eligibility and grant payment only matters when taxation is considered. Without

corporate taxation, the relevant moment is that of the payment of the grant.

Consider a firm that maximizes its value to the shareholders,

J =

∫ ∞

0

D(t)e−itdt , (1)

where D(t) is the variable representing the dividend payout, and i is the time preference

rate of the shareholders. The state of the firm is described by the capital goods stock

K(t), and the firm can decide on the dividend payout, D(t), and investment, I(t).

Let S(K) be the earnings function with the usual concavity assumptions (S(K) > 0,

dS/dK > 0, d2S/dK2 < 0), a the true economic and tax deductible depreciation rate, f

the profit tax rate and g the investment grant rate. With respect to the rules governing the

tax base, there exists a great variation among countries, so that a general rule for taxation

of grants cannot be drawn. In order to determine the corporate income tax, two methods

of presentation in the balance sheet of grants related to assets are commonly used: the

gross method and the net method. Under the gross method, the grant is accounted for as

deferred income, whereas under the net method the grant is deducted in arriving at the
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carrying amount of the asset. In any case, both methods lead to a depreciation amount

related to the non-granted portion of the capital goods, that is, (1− g) aK (t), where

price of capital assets is taken to be unity and income recognition (gross method) follows

the economic depreciation rate. According to the accrual basis of accounting, we assume

that the gross method is applied, income is recognized at the economic depreciation rate,

and a proportion γ of the grant is considered taxable income, so that for γ = 1 the tax

rule is similar to the accounting rule, and, for γ = 0, investment grants are not subject

to taxation.1 Then, profit taxes, T (K(t)), are2

T (K(t)) = f · [S (K (t))− (1− γg) aK (t)] . (2)

Assuming that there is no debt, and no cash account is considered in the model,

operating cash flow is allocated between dividends and investment:

S (K (t))− T (K(t)) + gI (t− τ) = D(t) + I(t), (3)

where current cash from grants comes from investments undertaken τ periods before, due

to the delay in grant payments.

The dynamics of the state variable is described by the following first order differential

equation:

K̇ (t) = I (t)− aK (t) , K(0) = K0 . (4)

We will also make the usual assumption that, under stationary market conditions, there

exists a desired firm size that maximizes (1), which is represented by the optimal capital

stock Ks, i.e.,

lim
t→∞

K(t) = Ks . (5)

Finally, as every action (investment) performed at a moment t will affect the system

at t and t + τ , we will assume the (otherwise reasonable) condition that I(t) is a given

function for t ∈ [−τ, 0); that is, before the beginning of the planning horizon the value of

I(t) is a data of the problem. For instance, if we think of the firm as a new project, then

1This framework is not as restrictive as it might seem. In most EU countries, tax

regulations consider it the rule, or it is included as an option. See, for instance, the

Paper of the Accounting Advisory Forum on Government Grants XV/312/91 rev.3 (1995):

‘http://ec.europa.eu/internal market/accounting/otherdocs en.htm’
2Note that, under the above assumptions, corporate taxes do not depend on the time delay, since the

legal financial structure of the assets at a given time is not affected by the delayed grant payments due

to the automatic recognition of the grant.
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I(t) = 0 for t ∈ [−τ, 0), since before the beginning of the planning horizon no investment

activity is carried out.

3 User cost of capital

The problem stated above is a nonstandard linear optimal control problem, in the sense

that investment has a twofold effect: it appears as a current and as a delayed variable in

the model. Note that the delayed variable is I(t−τ), where τ is finite and discrete,3 which

simplifies greatly the problem. In order to derive the optimality conditions, we follow an

approach similar to the one described in Kamien and Schwartz (1991), ch. 19 (see also

Budelis and Bryson, 1970).

If we write (1) as

J =

∫ ∞

0

Ldt , (6)

where L = D(t)e−it, using (3) and (4), and denoting the delayed variables by Kτ (t) =

K(t− τ) (and K̇τ (t) = K̇(t− τ)), we can express L as

L(K, K̇, Kτ , K̇τ , t) =
[
S(K)− T (K) + g

(
K̇τ + aKτ

)
−

(
K̇ + aK

)]
e−it . (7)

A necessary condition for the maximization of (6) is that the first variation of J vanishes,

i.e. dJ = 0.4 We get

dJ =

∫ ∞

0

(
∂L

∂K
δK +

∂L

∂K̇
δK̇ +

∂L

∂Kτ

δKτ +
∂L

∂K̇τ

δK̇τ

)
dt =

=

∫ ∞

0

(
∂L

∂K
δK +

∂L

∂K̇
δK̇

)
dt +

∫ ∞

0

(
∂L

∂Kτ

δKτ +
∂L

∂K̇τ

δK̇τ

)
dt.

Since we are assuming that the activity prior to the beginning of the planning horizon is

known at t = 0 (i.e., I(t) and K(t) are given for t ∈ [−τ, 0)), then δKτ and δK̇τ vanish

for t < τ . Therefore, the second integral in the relation above can be rewritten as∫ ∞

0

(
∂L

∂Kτ

δKτ +
∂L

∂K̇τ

δK̇τ

)
dt =

∫ ∞

τ

(
∂L

∂Kτ

δKτ +
∂L

∂K̇τ

δK̇τ

)
dt =

=

∫ ∞

0

(
∂L

∂Kτ

∣∣∣∣
t+τ

δK +
∂L

∂K̇τ

∣∣∣∣
t+τ

δK̇

)
dt

3General hereditary systems consider the case in which the delay is continuous and it is distributed

along a time interval, which can be finite or infinite.
4Since L is concave in K (S(K) is concave) and linear in K̇, this condition is also sufficient for the

existence of a maximum of (6).
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(after doing the change of variables t → t− τ). Hence,

dJ =

∫ ∞

0

(
∂L

∂K
+

∂L

∂Kτ

∣∣∣∣
t+τ

)
δKdt +

∫ ∞

0

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

)
δK̇dt. (8)

Integrating by parts the second integral in (8), we obtain∫ ∞

0

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

)
δK̇dt = lim

b→∞

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

)
δK(t)

∣∣∣∣b
0

−

−
∫ ∞

0

δK
d

dt

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

)
dt. (9)

Since K(0) = K0, then δK(0) = 0. In a similar way, limt→∞K(t) = Ks (the steady

state capital goods stock is also fixed), so limt→∞δK(t) = 0, and the term limb→∞ |·| inside

(9) vanishes. Therefore, if we substitute (9) in (8), we obtain

dJ =

∫ ∞

0

[(
∂L

∂K
+

∂L

∂Kτ

∣∣∣∣
t+τ

− d

dt

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

))
δK

]
dt.

Then, the (necessary) criticality condition dJ = 0 is satisfied if, and only if, the

following Euler-Lagrange equation is fulfilled,

∂L

∂K
+

∂L

∂Kτ

∣∣∣∣
t+τ

=
d

dt

(
∂L

∂K̇
+

∂L

∂K̇τ

∣∣∣∣
t+τ

)
. (10)

Using (7) and (2) we get

∂L

∂K
=

[
dS

dK
− f

(
dS

dK
− a(1− γg)

)
− a

]
e−it ,

∂L

∂Kτ

∣∣∣∣
t+τ

= age−i(t+τ) ,

d

dt

(
∂L

∂K̇

)
= ie−it ,

d

dt

(
∂L

∂K̇τ

∣∣∣∣
t+τ

)
= −ige−i(t+τ) .

Therefore, from the Euler-Lagrange equation above, and rearranging terms, the opti-

mal capital stock Ks must satisfy the following equation,

dS

dK

∣∣∣∣
K=Ks

= cτ =
i

1− f

(
1− ge−iτ

)
+ a

(
1− e−iτ − fγ

1− f
g

)
. (11)

The right-hand side of equation (11) represents the marginal cost of one unit of capital

goods, cτ , which characterizes the optimal capital goods stock in the steady state.
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4 Effects of delayed grant payments

In this Section we analyze the expression for the user cost of capital derived above. In

order to make comparisons, let us first analyze, taking into account the assumptions made

here, the well-known expression for the cost of capital in the non-delayed case,5 c0, which

is obtained from equation (11) by taking (τ = 0):

c0 =
i

1− f
(1− g) + a

(
1− g

1− f
+

fγ

1− f
g

)
. (12)

Equation (12) can be divided into two terms. The first one expresses the cost of equity

per unit of capital goods. Note that the time preference rate of the shareholders has

been transformed into a marginal rate of return to equity before tax payments of i/(1−
f), taking into account that dividend payout cannot be offset against corporate income

tax. The second term expresses the cost due to economic depreciation. Here we must

differentiate two cases: whether investment grants are considered taxable income (γ = 1)

or not (γ = 0). For γ = 1 the cost due to economic depreciation is a(1−g), that is, the true

economic depreciation rate of the non-granted investment. For γ = 0 this cost reduces to

a [1− g/ (1− f)], since the tax liability due to the recognition of the investment grant as

current income, (ag [(fγ) / (1− f)]), vanishes.

Let c = i/ (1− f) + a be the user cost of capital when there are no investment grants

(g = 0). Rearranging equation (12), we have

c0 = c− g

(
i + (1− fγ) a

1− f

)
.

Since fγ < 1, it holds (according to intuition) that c0 < c. Note that the previous

inequality is always satisfied independently of the value for γ, i.e., the investment grant

reduces the cost of capital whether it is considered taxable income or not.

Returning to the general expression for the user cost of capital, cτ , in (11) it can be

seen that the higher the time delay until the grant payment the higher the corresponding

user cost of capital (∂cτ/∂τ > 0). Moreover, the user cost of capital depends positively

on the discount rate of the shareholders i. Therefore, firms facing high interest rates from

their shareholders are more sensitive to delays.

Comparing equations (11) and (12), we can observe that whereas the tax liability due

to recognition of the grant as current income remains unaffected (since it is independent of

5See for instance, Hilten et al. (1993), ch. 6, for a model with investment grants.
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the payment moment), the financing and economic components of the user cost increase

because of a reduction in the effective investment grant rate. This reduction equals its

discounted value at the time preference rate of the shareholders, from g to ge−iτ . This

can be explained by the fact that a loss arises due to the need of advancing the grant

component of the investment expenditure for an amount of g(1 − e−iτ ) valued at the

moment when the investment is undertaken. Because of this loss the firm faces two new

costs: the financing cost, ig(1 − e−iτ )/ (1− f) , and the corresponding cost of economic

depreciation ag (1− e−iτ ) / (1− f).

Finally we compare the user cost of capital for the delayed case with the non-granted

case. Proceeding as before, we obtain

cτ = c−
(

ige−iτ + (e−iτ − fγ) ga

1− f

)
. (13)

Note that whereas for non-taxable grants (γ = 0) the cost of capital is always lower

than the non-granted case, i.e., (c > cτ ), in case that investments grants are subject to

taxation (γ = 1), from (13) we have that c < cτ when (i + a) < faeiτ . Hence, in this

case the investment grant becomes a disincentive for the firm since the tax liability due

to the grant offsets its benefits. Although this negative effect is not likely to occur for

usual values of the parameters involved, it could arise in situations of high profit tax rates

and/or large delays in the grant payments.

5 Investment adjustment costs

The simple setting analyzed so far, despite allowing us to study the effects of delayed grant

payments, presents some well-known drawbacks: it leads to an instantaneous adjustment

to the desired stock of capital Ks, and there is no investment function as such.6 In order

to avoid this unrealistic immediate adjustment process, two extensions have been made in

the literature. The first one is to consider the existence of financing limits (e.g., Leland,

1972, or Van Loon, 1983). By also adding a lower bound for the control variable, for

instance, assuming irreversible investments, Arrow (1968), the control variable becomes

bounded below and above. Therefore, although the structure of the model remains linear,

the instantaneous adjustment to Ks is avoided, and the problem becomes one of the

bang-bang type. The second approach incorporates investment adjustment costs (e.g.,

6A detailed analysis can be found in Takayama (1985).
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Eisner and Strotz, 1963, Gould, 1968, Treadway, 1969 or Nickell, 1978), in order to

break the linearity of the model. The term ‘adjustment costs’ refers7 to costs due to

the investment expenditures of the firm, for instance those due to temporary decrease

of productivity as a consequence of reorganization of the production line or retraining of

workers. An usual specification for the adjustment cost function is to consider that it is a

convex and increasing function of investments (net or gross), reflecting the fact that, on

average, adjustment costs are higher, the greater the investment rate. Later, Kort (1988)

studies a model which incorporates both financial constraints and adjustment costs, and

characterizes the optimal investment policy of the firm by means of the net present value

of marginal investments.

In this section, we extend the model introduced in Section 2 by assuming that there

exist convex adjustment costs associated to the investment process, and analyze changes

in the optimal investment policy due to delayed grant payments.

Consider that the adjustment cost function, U(I), is a strictly convex function of gross

investments, i.e., U(I) > 0, U ′(I) > 0 and U ′′(I) > 0 for all I(t) > 0, U ′(0) ≥ 0, and

U(0) = 0. Assume that a fraction β of the adjustment costs are assumed to be tax

deductible, so that, profit taxes are

T (K(t)) = f · [S (K(t))− (1− γg) aK(t)− βU(I(t))] .

Now, equation (3) transforms into

D(t) + I(t) + U(I(t)) = S (K (t))− T (K(t)) + gI(t− τ).

In order to solve the problem, define the functional (6) for the extended model with

L(K, K̇, Kτ , K̇τ , t) =
[
S(K)− T (K) + g

(
K̇τ + aKτ

)
−

(
K̇ + aK

)
− U(K, K̇)

]
e−it. (14)

Following the same steps as before, the criticality condition dJ = 0 is satisfied if, and

only if, expression (10) holds with L(·) defined as in (14). For more specific results, and

following Eisner and Strotz (1963), let us assume that both S(K) and U(I) functions are

quadratic. Then, consider as the earnings function

S(K) = AK − B

2
K2, (15)

7For a survey see Hilten et al. (1993), ch. 5.
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where A and B are two positive constants. S(K) is an increasing and strictly concave

function on the relevant interval for K. With respect to the adjustment cost function, we

take

U(I) =
ω

2
I2 i.e. U(K̇ + aK) =

ω

2
(K̇ + aK)2, with ω > 0. (16)

Now, after substituting expressions (15) and (16) into (10), we obtain the following second-

order linear non-homogeneous differential equation to be satisfied by the optimal capital

goods stock,

(1− βf)ωK̈ − (a + i)(1− βf)ωK̇ − [(1− f)B + (a + i)a(1− βf)ω]K =

(a + i)(1− ge−iτ )− f(1− γg)a− (1− f)A. (17)

Solving (17), applying initial condition (4), and assuming that there exists a desired firm

size Ks that maximizes (6), the optimal path for the capital goods stock is8

K∗(t) = (K0 −Ks)e
αt + Ks, (18)

where α is the negative root of the characteristic equation of the homogeneous part of

(17), i.e.,

α =
(a + i)

2
− 1

2

√
(a + i)2 + 4

(
(a + i)a +

(1− f)B

(1− βf)ω

)
,

and Ks is the desired firm size

Ks = −(a + i)(1− ge−iτ )− f(1− γg)a− (1− f)A

(1− βf)ω(a + i)a + (1− f)B
.

For the problem to be sensible from an economic point of view, it is assumed that Ks > 0.

Note that the firm size never reaches the value Ks, except for the unlikely case in which

K0 = Ks. In any other case, the optimal path for the capital goods stock is to approach

asymptotically Ks.

Next, the optimal investment policy during this path can easily be derived. From (4)

and the derivative of (18), we have that

I∗(t) = (a + α)(K0 −Ks)e
αt + aKs. (19)

When the initial size of the firm stands below Ks, the optimal investment policy is to

invest proportionally to the existing gap between K0 and Ks, with a decreasing factor

8For a detailed derivation of the solution see, for instance, Chiang (1992).
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with respect to time, plus the economic depreciation that would correspond to the optimal

firm size, so that the firm grows monotonically toward Ks. On other hand, if the initial

firm size is higher than Ks, the optimal investment policy is to reduce the current firm

size approaching the desired one. In this case, K∗(t) is a decreasing function on time,

that is, net investment is always negative.

Finally, in order to see the effects of delayed grant payments, we differentiate expres-

sions (18) and (19) with respect to τ to obtain

∂K∗(t)

∂τ
= −(1− eαt)

i(a + i)ge−iτ

(1− βf)ω(a + i)a + (1− f)B
< 0

and
∂I∗(t)

∂τ
= −(a(1− eαt)− αeαt)

i(a + i)ge−iτ

(1− βf)ω(a + i)a + (1− f)B
< 0.

Therefore, for a similar initial firm size, not only the desired capital goods stock, Ks,

is negatively affected by delayed grant payments (∂Ks/∂τ < 0), but also the optimal cap-

ital goods stock as well as the optimal investment rate, at every instant of the planning

horizon, are lower the larger the delay. Investment grants reduce the marginal cost of

acquiring a new unit of capital goods through reducing the price of capital goods. As

shown in Kort (1988), the optimal investment policy during the planning horizon is char-

acterized by the equality between marginal earnings and marginal costs of investment.

As delays in grant payments reduce the effective grant rate, they increase marginal costs

of capital goods. Hence, since marginal earnings are a decreasing function of K(t), the

optimal firm size is achieved at lower levels of K(t). Note that this fact also leads to a

permanent lower operating cash flow, so that in case where any liquidity constraint were

to be incorporated in the model, negative effects of delayed grant payments would be

intensified.

6 Concluding remarks

In this paper the expression for the user cost of capital is derived when grant payments

suffer some delay from the moment of investment. It is shown that this time lag leads

to a reduction in the effective investment grant rate, which equals its discounted value at

the time preference rate of the shareholders, while the tax liability remains unchanged.

Finally, it is pointed out that, under certain values of the relevant parameters, benefits

from investment grants could reverse and result in a higher cost of capital.
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When the model is extended introducing investment adjustment costs, and optimal

capital goods stock and optimal investment rate paths are derived for the adjustment

process to the desired firm size Ks, it is further shown that delays in grant payments also

have a negative effect on the dynamics of the firm.

There are interesting extensions for this study. For instance, due to the fact that the

time delay τ is unknown in many real cases, it may be more realistic to consider the

time delay τ not as fixed, but taking different values (maybe a continuum of them) with

certain probabilities. Nevertheless, the simple analysis carried out here draws attention

to the negative effects of delayed grant payments, and stress the need for government and

granting institutions to take measures to reduce time limits for granted firms in order to

obtain final payments, or to consider counteracting actions such as up-front payments.
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