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Abstract: The paper addresses the concept of multicointegration in panel data 

frame- work. The proposal builds upon the panel data cointegration procedures 

developed in Pedroni (2004), for which we compute the moments of the parametric 

statistics. When individuals are either cross-section independent or cross-section 

dependence can be re- moved by cross-section demeaning, our approach can be 

applied to the wider framework of mixed I(2) and I(1) stochastic processes analysis. 

The paper also deals with the issue of cross-section dependence using approximate 

common factor models. Finite sample performance is investigated through Monte 

Carlo simulations. Finally, we illustrate the use of the procedure investigating 

inventories, sales and production relationship for a panel of US industries. 

Key words: Multicointegration, panel data, I(2) processes, common factors, cross-

multicointegration, cross-section dependence 

JEL classification: C12, C22 
 
 
Resum: Aquest article estèn el concepte de multicointegració a l’entorn de dades de 

panell. La proposta es basa en els procediments de contrast de cointegració en dades 

de panell desenvolupats per Pedroni (2004), pels quals es calculen els moments dels 

estadístics paramètrics. Quan els individus són o bé independents entre si, o bé la 

dependencia transversal es pot eliminar treient la mitjana del tall transversal, la 

nostra aproximació es pot aplicar a l’àmbit a on es consideren processos estocàstics 

I(2) i I(1) de manera conjunta. El treball també considera aquella situació en què la 

dependència transversal es pot recollir mitjançant models de factors comuns. El 

comportament en mostra finita dels estadístics de prova és estudiat a través de 

simulacions de Monte Carlo. Finalment, el treball il·lustra l’ús del procediment 

analitzant la relació entre existències, vendes i producció per a un panell d’indústries 

dels Estats Units. 

Paraules clau: Multicointegració, dades de panell, processos estocàstics I(2), 

factors comuns, multicointegració transversal, dependència transversal 

Classificació JEL: C12, C22 



1 Introduction

Panel data techniques for macroeconomic analysis have experienced huge development in

recent years. The increasing availability of statistical information has allowed to conduct

studies using data of di¤erent countries, regions or cities to get more insights into eco-

nomic relationships. In addition, the use of panel data statistics allows improvement in

the power of statistical inference since it combines the information in both the time and

cross-section dimensions. Macroeconomic panels can be characterized as those panel data

sets with moderate or large number of observations (T ) compared to the number of indi-

viduals (N). This feature implies that non-stationarity in variance can be present in the

panel data set, so that practitioners have to check whether the estimation of their model

relating economic variables results in spurious regression or in cointegration relationship.

Non-stationarity in variance has been profusely addressed in panel data literature.

We can �nd proposals that extend univariate unit root and stationarity tests to panel

data framework, and similar developments have been proposed in cointegration analysis.

Overviews of the �eld can be found in Banerjee (1999), and Breitung and Pesaran (2005).

Main developments in panel data framework have addressed cointegration relationships.

These proposals allow the assessment of the presence of long-run relationships among

variables that in most cases are characterized as I(1) processes. However, standard coin-

tegration analysis might be incomplete even in the case that cointegration is found. Thus,

it is possible that a deeper level of cointegration, i.e. multicointegration, exists. As noted

in Engsted, Gonzalo and Haldrup (1997), multicointegration is also an important prop-

erty of the data that needs to be considered empirically. The statistical properties of the

procedures that are used for estimating and testing cointegrated systems become invalid

if multicointegration is not taken into account when it is present. This will have serious

consequences, for instance, in forecasting and hypothesis testing. Therefore, considera-

tion of multicointegration when it is present can give us better statistical results when

we analyze long-run economic relationships, especially in those cases where stock-�ow

relationships are involved. Extending multicointegration to panel data framework is not

only a matter of theoretical interest, but useful from an empirical point of view.

Empirical applications considering multicointegration have appeared in time series

literature, although they can be extended to panel data framework as well �see Granger

and Lee (1989), Lee (1992), Leachman (1996), Leachman and Francis (2002), and Siliver-

stovs (2003). Previous multicointegration analyses are carried out either for one or more

individuals, although the stochastic properties are studied individual-by-individual. For

the latter, the application of multicointegration in panel data is of interest, provided that

we can gain more insight on panel data stochastic properties through the combination of

the information in both the cross-section and time series dimensions. Finally, it is worth

mentioning that our approach can be applied to the analysis of cointegration with I(2)
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processes, since multicointegration is a special case of polynomial cointegration. In this

case, further applications can be conducted �for instance, the analyses in Juselius (1999,

2004), and Banerjee, Cockerell and Russell (2001) can be extended to panel data frame-

work. Multicointegration has mostly been tested using either the two-step approach in

Granger and Lee (1989), the one-step approach in Engsted, Gonzalo and Haldrup (1997),

or the Error Correction Model speci�cation in Engsted and Haldrup (1999). In this paper

we address this concern and generalize the approach in Pedroni (2004) to tackle panel

data multicointegration.

One important feature of non-stationary panel data analysis is cross-section depen-

dence. So far, cross-section independence among individuals has been commonly assumed

in all these cases since it allows standard Normal limiting distributions to be obtained.

However, this assumption plays an important role in practice. Banerjee, Marcellino and

Osbat (2005) analyze the e¤ects of cross-section dependence in panel data unit root tests

that assume independence among individuals. They show that important size distortions

(over-rejections) appear when cross-section dependence is ignored. Recent developments

in the literature aim to weaken this assumption using di¤erent approaches to account for

cross-section dependence. In this paper we proceed in two stages. First, we derive the

limiting distribution of the panel multicointegration test assuming that the individuals

are cross-section independent. In a second stage we consider the factor structure in Bai

and Ng (2004), and Banerjee and Carrion-i-Silvestre (2006) to account for cross-section

dependence whether the �rst level cointegrating vector is known or unknown. Both the

one and the two-step approaches available in the literature for testing multicointegration

are useful in conducting our analysis.

The paper is organized as follows. Section 2 de�nes the concept of multicointegration

and presents the model that is used in the paper. Section 3 de�nes the panel data

multicointegration test statistics, for which both �nite sample and asymptotic moments

are computed. In Section 4 we consider the presence of cross-section dependence when

testing for multicointegration through common factors models. Section 5 analyses the

�nite sample performance. In Section 6 we investigate the presence of multicointegration

between sales and production for a panel data set of forty-eight US industries. Finally,

Section 7 concludes.

2 Multicointegration in panel data

Cointegration is a necessary condition for the presence of multicointegration as de�ned

in Granger and Lee (1989). Thus, if we consider one dimensional time series fyi;tg10
and m-dimensional time series fxi;tg10 all being I(1) non-stationary stochastic processes,
t = 1; : : : ; T , i = 1; : : : ; N , these variables are assumed to satisfy the following standard

cointegration model:
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yi;t = ct�i + xi;t�i + #i;t; (1)

where fctg11 is an s0-dimensional deterministic sequence of general form � typically,

ct = 0, ct = 1 and ct = (1; t) �and where #i;t is an I(0) series. Suppose that the cumulated

cointegration residuals, Si;t =
Pt

j=1 #i;j, cointegrate with either fyi;tg10 and/or fxi;tg10 ,
then we obtain the standard multicointegration model, that is

Si;t = mt�i + xi;ti + ui;t; (2)

where fmtg11 is the s1-dimensional deterministic sequence and where ui;t is an I(0) series.
Following Engsted, Gonzalo and Haldrup (1997), we can write (2) as:

Yi;t = Cmt�i +Xi;t�i + xi;ti + ui;t; (3)

where Yi;t =
Pt

j=1 yi;j and Xi;t =
Pt

j=1 xi;j are I(2) variables and Cmt =
Pt

j=1 cj +mt is

the new m0-deterministic component associated to multicointegration relation (3), with

m0 = s0 + s1 and �i = (�0i; �
0
i)
0. The speci�cation given by (3) can be written using

the Phillips�(1991) triangular representation. Thus, fYi;tg10 and fXm
i;tg10 are assumed

to be generated according to Yi;t = Cmt�0 + Y
0
i;t and X

m
i;t = (Cmt; xi;t; Xi;t), with the

stochastic regressors de�ned as xi;t = Cmt�i;1 + x
0
i;t, �x

0
i;t = "i;1t, Xi;t = Cmt�i;2 +X

0
i;t,

�2X0
i;t = "i;2t, where x0i;t and X

0
i;t are the m1 and m2-dimensional stochastic processes

integrated of order one and two, respectively, and Cmt denotes the m0-deterministic

component of the di¤erent variables. Y 0i;t is generally integrated of order two and linked

to x0i;t and X
0
i;t through

Y 0i;t � x0i;ti �X0
i;t�i = ui;t; (4)

with �dui;t = vi;t. The order of integration d can be either d = 0; 1 or 2, which is to be

discussed below. The processes x0i;t; X
0
i;t; Y

0
i;t are initialized at t = 1; 0; 0, respectively �

this does not a¤ect the results. The wi;t = (vi;t; "i;1t; "i;2t)0 stochastic processes involved

in the de�nition of the model are assumed to be a strong-mixing sequence satisfying

the multivariate invariance principle in Phillips and Durlauf (1986). Thus, let BT (r) =

T�1=2
P[Tr]

t=1 wi;t be the partial sum process. Then, as T !1, BT (r)) B(r) � BM(
),
where ) denotes weak convergence of the associated probability measure on the unit

interval [0,1], and B(r) denotes a vector Brownian motion process with long-run variance

matrix 
i. Moreover, we partition 
i conformably with wi;t, so that


i =

264 !i;00 !i;01 !i;02

!i;10 
i;11 
i;12

!i;20 
i;21 
i;22

375 = �i + �i + �0i; (5)
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where �i = E(wi;0w
0
i;0) and �i =

P1
k=1E(wi;0w

0
i;k). For subsequent use, we also de�ne

�i = �i + �i, which can be partitioned in conformity with 
i. In (5) the diagonal

submatrices 
i;11 and 
i;22 are assumed to be positive de�nite such that x0i;t and X
0
i;t are

not permitted to be individually cointegrated.

There are in this I(2) system several cointegration possibilities depending on the order

of integration of ui;t, i.e. �dui;t = vi;t with d = 0; 1; 2. When d = 2 there do not exist

either cointegration or multicointegration because there is not any common stochastic

trend �i.e. ui;t process is integrated of order two. When d = 1 there is only cointegration

at the �rst level. Note that in this case Y 0i;t; X
0
i;t � CI(2; 1) with cointegrating vector

(1;��i) and, hence,
Pt

j=1 zi;j =
Pt

j=1 yi;j �
Pt

j=1 xi;j�i is integrated of order 1. Then,

the residuals zi;t must be stationary showing that there is cointegration at the �rst level.

Finally, when d = 0 we conclude that the variables yi;t and xi;t are multicointegrated in

such a way that all stochastic trends are cancelled in the multicointegration relation. The

conditional model (4) can be expressed as:

Yi;t = Cmt�i +Xi;t�i + xi;ti + ui;t = X
m
i;t�i + ui;t; (6)

where �i = (�i;0 � �i;1i � �i;2�i). Depending upon the integration order of ui;t, there
may be stochastic cointegration at di¤erent levels as well as deterministic co-trending if

some elements in �i turn out to be zero, although the series individually have nonzero

elements in their deterministic part. The speci�cation in (6) nests the multicointegration

framework de�ned in Haldrup (1994) and Engsted, Gonzalo and Haldrup (1997) once we

specify either Cmt = 0, Cmt = 1, Cmt = (1; t) or Cmt = (1; t; t
2), i.e. zero, constant,

trend and quadratic trend respectively.

3 Testing the null of non-multicointegration in panel

data

In this section we present the panel data residual based statistic that allows testing the

null hypothesis of non-multicointegration. Although our set-up builds upon the multi-

cointegration framework, the proposal can be applied in more general situations in which

the presence of cointegration can be tested for mixed I(2) and I(1) variables. This is of

great interest provided that, to the best of our knowledge, there are not any proposal in

non-stationary panel data analysis that address this concern.

The computation of the statistics proceeds as follows. First, the OLS estimated

residuals in (6) are used to specify an augmented Dickey-Fuller type regression,

�ûi;t = �iûi;t�1 +
piP
j=1

�i;j�ûi;t�j + �i;t; (7)
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from which either the normalized bias �computed as T �̂i
�
1� �̂i;1 � � � � � �̂i;pi

��1
, see

Hamilton (1994), pp. 523 �or the t-ratio statistic
�
t�̂i
�
can be de�ned for each individ-

ual. Second, the individual information can be combined using the parametric between-

dimension panel data statistics as de�ned in Pedroni (2004), i.e.

N�1=2Z�̂NT = N
�1=2

NX
i=1

T �̂i�
1� �̂i;1 � � � � � �̂i;pi

� ; N�1=2Zt̂NT = N
�1=2

NX
i=1

t�̂i : (8)

Haldrup (1994) follows Phillips and Ouliaris (1990) and derives the limiting distribu-

tion for the individual t�̂i statistics, which is shown to converge to t�̂i )
R 1
0
Qi (s) dQi (s)hR 1

0
Qi (s)

2 ds
i�1=2

, and, similarly,
�
1� �̂i;1 � � � � � �̂i;pi

��1
T �̂i )

R 1
0
Qi (s) dQi (s)

hR 1
0
Qi (s)

2 ds
i�1
,

where Qi (s) = !
1=2
i;00:1

�
Wi;0 (s)�Wi;� (s)

�R 1
0
W 0
i;� (s)Wi;� (s)

��1 �R 1
0
Wi;0 (s)Wi;� (s)

��
,

with !i;00:1 = !i;00� !i;01
�1i;11!i;10, Wi;� (s) = (f (s) ;Wi;1 (s) ;Wi;2 (s))
0, f (s) denotes the

limit of the deterministic components, Wi;1 (s) is a vector of m1 Brownian motions, and

Wi;2 (s) the vector of m2 integrated Brownian motions.

Note that this framework considers high degree of heterogeneity since both the coin-

tegrating vector and the short-run dynamics vary among individuals. The panel test

statistics are shown to converge to standard Normal distributions once they have been

properly standardized.

Theorem 1 Let fyi;tg10 and fxi;tg10 be the I(1) stochastic processes that de�ne the

cointegration relationship given in (1), and Yi;t =
Pt

j=1 yi;j and Xi;t =
Pt

j=1 xi;j be

the I(2) stochastic processes that de�ne the multicointegration relationship in (6). Let

� and 	 denote the mean and variance for the vector Brownian motion functional

� �
�R 1

0
Qi (s) dQi (s)

hR 1
0
Qi (s)

2 ds
i�1

,
R 1
0
Qi (s) dQi (s)

hR 1
0
Qi (s)

2 ds
i�1=2�0

. Further-

more, let pi be the order of autoregression chosen such that pi ! 1 and p3i =T ! 0.

Under the null hypothesis of non-multicointegration that �i = 0 8i; i = 1; : : : ; N , in (7)
and assuming that individuals are cross-section independent, the Z�̂NT and Zt̂NT statistics

given in (8) converge as T !1 followed by N !1, i.e. (T;N !1)seq, to:

N�1=2Z�̂NT ��1
p
N ) N (0;	1) ; N�1=2Zt̂NT ��2

p
N ) N (0;	2) :

where �1;	1;�2 and 	2 are the mean and variance of the Brownian motion functionals

to which the individual normalized bias and t-ratio statistics converge.

As in Pedroni (2004), in order to prove Theorem 1 we require only the assumption

of �nite second moments of the random variables characterized as Brownian motion

functionals, which will allow us to apply the Lindberg-Levy Central Limit Theorem as

N !1. The moments of the limiting distributions, �1;	1;�2 and 	2, are approximated
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by Monte Carlo simulation for the four deterministic speci�cations � zero, constant,

trend and quadratic trend �for di¤erent combinations of m1 I(1) and m2 I(2) stochastic

regressors in the cointegrating relationship. To be speci�c, we have followed Haldrup

(1994), and Engsted, Gonzalo and Haldrup (1997) and de�ne (m2 + 1) I(2) stochastic

processes �one for the endogenous variable and m2 for the regressors �using partial sum

of partial sum of iid N (0; 1), whereas for the m1 I(1) stochastic processes we have used

using partial sum of iid N (0; 1) with T = 1; 000 in all cases. Tables 1 and 2 present the

moments of the limit distributions.

Since the limit distribution of the tests can provide poor approximation in �nite

samples, we have approximated the moments of the statistics for T = f50; 100; 250g as
well. For these sample sizes the moments have been computed selecting the order (pi)

of the parametric correction in (7) with the t-sig criterion in Ng and Perron (1995) with

pmax = 5 as the maximum number of lags. Other criteria might be followed to select the

order of the autoregressive correction �i.e. we could chose pi by means of information

criteria such as AIC or BIC, or �x pi in exogenous way. Since the t-sig criterion in Ng and

Perron (1995) is one of the most widely used strategies in practice, we have preferred to

compute �nite sample moments following this approach. Obviously, the use of di¤erent

methods to select pi in �nite samples a¤ects the moments that have to be used to compute

the statistic. Thus, practitioners willing to apply other criteria when selecting the order

of the autoregressive correction should compute the moments of the statistics in �nite

samples. Tables 1 and 2 report the �nite sample moments for the di¤erent deterministic

speci�cations based on the t-sig criterion in Ng and Perron (1995). In all simulations

10,000 replications were done. As can be seen, the moments of the distribution depends

both on the speci�cation and the number of stochastic regressors.

4 Panel multicointegration with common factors

Previous sections have assumed that individuals in the panel data set are independent

from each other. Notwithstanding, economic models predict that macroeconomic vari-

ables such as GDP, consumption, interest rates, exchange rates and investment for di¤er-

ent countries are related. Economic models for which multicointegration can be present

are based on some of these variables, so dependence among individuals is found. For in-

stance, life-cycle hypothesis involves income, consumption and wealth, which are expected

to be related for di¤erent countries. Unful�lment of independence among individuals im-

plies that previous results no longer hold. As mentioned in the introduction, there are

di¤erent approaches in the literature to account for cross-section dependence. In this

section we adopt approximate common factor models to model cross-section dependence

among individuals. Our speci�cation follows that in Banerjee and Carrion-i-Silvestre

(2006) for the panel cointegration analysis. However, the application of this approach
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has led us to write the multicointegration testing procedure in terms of the two-steps

procedure in Granger and Lee (1989), instead of using the one-step approach in Engsted,

Gonzalo and Haldrup (1997).

Let us assume that we have a panel data multicointegrated set given by:

yi;t = ct�i + xi;t�i + #i;t (9)

yi;t = mt�i + Si;ti + ui;t (10)

where Si;t =
Pt

j=1 #i;j. Equation (9) represents the �rst level of cointegration, while (10)

speci�es the multicointegrating relationship, i.e. the relationship between yi;t and the

cumulated residuals of the �rst level cointegrating regression. Since multicointegration

requires that variables in levels have to be cointegrated, then Si;t � I(1) by de�nition. The
OLS estimated residuals in (9) can be written as #̂i;t = #i;t� ct (�̂i � �i)�xi;t

�
�̂i � �i

�
.

Note that (�̂i � �i) = Op
�
T�1=2

�
and

�
�̂i � �i

�
= Op (T

�1) �see Phillips and Ouliaris

(1990) �so that #̂i;t = #i;t + Op
�
T�1=2

�
. This feature allows us to use the cumulated

estimated residuals of (9) and de�nes the following set-up:

yi;t = mt�i + Si;ti + ui;t (11)

ui;t = Ft�i + ei;t (12)

(I � L)Ft = C (L) �t (13)

(1� �iL) ei;t = Hi (L) �i;t (14)

(I � L)xi;t = Gi (L) "i;t; (15)

where Si;t =
Pt

j=1 #i;j, which can be estimated using #̂i;t obtained in the �rst step without

a¤ecting the results. C (L) =
P1

j=0CjL
j, Ft denotes a (1� r)-vector containing the

common factors, with �i the vector of loadings. Despite the operator (1�L) in equation
(13), Ft does not have to be I(1). In fact, Ft can be I(0), I(1), or a combination of both,

depending on the rank of C(1). If C(1) = 0, then Ft is I(0). If C(1) is of full rank, then

each component of Ft is I(1). If C(1) 6= 0, but not full rank, then some components of Ft
are I(1) and some are I(0). Our analysis is based on the same set of assumptions in Bai

and Ng (2004), and Banerjee and Carrion-i-Silvestre (2006). As in Banerjee and Carrion-

i-Silvestre (2006), we distinguish two situations depending on whether the stochastic

regressor Ŝi;t is strictly exogenous or non-strictly exogenous regressor. This distinction

is important since under strict exogeneity the limiting distribution of statistics does not

depend on Ŝi;t. However, this is not true when correlation between ei;t and #̂i;t is allowed

so some sort of modi�cations should be introduced to account for the endogeneity. Here

we suggest using the Dynamic OLS (DOLS) estimation method in Stock and Watson

(1993). Throughout the paper, we assume that the number of leads and lags is �xed as in
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Stock and Watson (1993), although they can be chosen using BIC information criterion as

suggested in Westerlund (2005b) �see Banerjee and Carrion-i-Silvestre (2006) for further

details on non-strictly exogenous regressors.

For ease of exposition, we assume that Ŝi;t is strictly exogenous stochastic regressor.

The estimation of the common factors is done as in Bai and Ng (2004), and Banerjee and

Carrion-i-Silvestre (2006). The procedure to estimate both the idiosyncratic disturbance

term and the common factors proceeds as follows. First, we compute the �rst di¤erence

of the model:

�yi;t = �mt�i +�Ŝi;ti +�Ft�i +�ei;t: (16)

Note that if Ŝi;t is non-strictly exogenous, we should introduce leads and lags of �2Ŝi;t

in (16). Then, we take the orthogonal projections y�i;t = ft�i + zi;t, with y�i = Mi�yi,

being Mi = I � �x�i (�x�0i �x�i )
�1�x�0i the idempotent matrix, f = Mi�F , zi = Mi�ei

and �x�i the matrix that collects the �rst di¤erence of the deterministic and the Ŝi;t
stochastic regressor � the superscript � in �x�i indicates that there are deterministic
elements. The estimation of the common factors and factor loadings can be done as

in Bai and Ng (2004) using principal components. Then, the estimated residuals are

de�ned as ~zi;t = y�i;t � ~ft~�i, so that we can recover the idiosyncratic disturbance terms

through cumulation, i.e. ~ei;t =
Pt

j=2 ~zi;j, and test the unit root hypothesis using the

ADF regression equation. When r = 1 we can use the ADF type equation to analyze the

order of integration of Ft as well. However, we should proceed in two steps. In the �rst

step, we regress ~Ft on the deterministic speci�cation and the stochastic regressors. In

the second step, we estimate the ADF regression equation using the detrended common

factor
�
~F �t

�
, i.e. the residuals of the �rst step. Finally, if r > 1 we should use one of the

two statistics proposed in Bai and Ng (2004) �denoted asMQ�c(q) for the non-parametric

statistic and MQ�f (q) for the parametric one �to �x the number of common stochastic

trends (q). The following Theorem presents the limiting distribution of these statistics.

Theorem 2 Let fYi;tg the stochastic process with DGP given by (11) to (15). Let pi be
the order of autoregression chosen such that pi !1 and p3i =min [N; T ]! 0. Then, the

following results hold as (T;N !1)seq.
(1) Under the null hypothesis that �i = 1 in (14),

ADF c~e (i))
1
2

�
Wi (1)

2 � 1
��R 1

0
Wi (r)

2 dr
�1=2 ; ADF �~e (i)) �1

2

�Z 1

0

V �i (r)
2 dr

��1=2
;

where ADF c~e (i) and ADF
�
~e (i) denote the statistics for the constant and time trend spec-

i�cations, respectively, and V �i (r) =Wi (r)� rWi (1).
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(2) When r = 1, under the null hypothesis that Ft has a unit root

ADF �~F )
R 1
0
W �
w (r) dW

�
w (r)�R 1

0
W �
w (r)

2 dr
�1=2 ;

whereW �
w (r) denotes the detrended �either by a constant or a linear time trend depending

on the deterministic speci�cation �Brownian motion.

(3) When r > 1, let Wq be a q-vector of standard Brownian motion and W �
q the detrended

counterpart. Let v� (q) be the smallest eigenvalues of the statistic computed as

�� =
1

2

�
W �
q (1)W

�
q (1)

0 � Ip
� �Z 1

0

W �
q (r)W

�
q (r)

0 dr

��1
;

(3.1) Let J be the truncation lag of the Bartlett kernel, chosen such that J ! 1 and

J=min
hp
N;
p
T
i
! 0. Then, under the null hypothesis that Ft has q stochastic trends,

T [~v�c (q)� 1]
d! v� (q).

(3.2) Under the null hypothesis that Ft has q stochastic trends with a �nite VAR(�p)

representation and a VAR(p) is estimated with p � �p, T
�
~v�f (q)� 1

� d! v� (q).

The proof of Theorem 2 is entirely analogous to that in Banerjee and Carrion-i-

Silvestre (2006) and sketched in the Appendix. Note that the limiting distribution

of the statistics is the same as the ones in Bai and Ng (2004), and in Banerjee and

Carrion-i-Silvestre (2006). We can de�ne a panel data unit root statistic using the indi-

vidual ADF statistics computed for the idiosyncratic disturbance term, i.e. N�1=2Z~ej =

N�1=2PN
i=1ADF

j
~e (i), j = fc; �g, which, standardized, it is shown to converge to the stan-

dard Normal distribution. Asymptotic and �nite sample moments �~ej and 	
~e
j , j = fc; �g,

of the statistics are reported in Table 3 using 1,000 replications �note that these moments

can be also used to compute those statistics in Bai and Ng (2004), and in Banerjee and

Carrion-i-Silvestre (2006). As above, the �nite sample moments are based on the use of

the t-sig criterion in Ng and Perron (1995) with pmax = 5 as the maximum number of

lags for the autoregressive correction.

The presence of multicointegration depends on the rank of the C(1)matrix in (13) and

on the values of �i in (14). Thus, if �i = 1 8i and C(1) is of full rank, multicointegration
does not exist. Multicointegration is present when �i < 1 8i and C(1) = 0. Finally,

multicointegration will be present with up to r1 (� r) non-stationary factors if �i < 1 8i
and C(1) 6= 0, but not full rank, since then some components of Ft are I(1) and some

are I(0). This situation can be encountered if cross-multicointegration is present between

yi;t and/or xi;t for di¤erent individuals.1 In this case, the non-stationary common factor

1Note that this is a natural extension of the concept of cross-cointegration in Banerjee, Marcellino
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might be understood as a common stochastic trend relating yi;t (or xi;t) series in each

panel data set.

5 Monte Carlo simulations

Finite sample performance of the statistics that have been proposed in this paper is inves-

tigated using simulations. We present simulation results for the situation in which indi-

viduals are assumed to be cross-section independent, and for the case where cross-section

dependence is driven by common factors. Note that throughout the section we assume

that the the �rst level cointegrating vector �i is assumed to be unknown. Throughout the

section, the lag order for the autoregressive correction that is required for computing the

ADF statistics is selected using the t-sig criterion in Ng and Perron (1995) with pmax = 5

lags as the maximum order.

5.1 Cross-section independent individuals

The data generating process (DGP) that has been used is given by

xi;t = AiWi;t + �i;1�Wi;t + xi;2t

yi;t = Wi;t + �i;2�Wi;t + yi;2t; �Wi;t = �i;t;

where, without loss of generality, Ai = 2 8i = 1; : : : ; N , and �i;t � N
�
0; �2�;i

�
. Note

that when �i;1 = �i;2 = 0 and xi;2t; yi;2t � I (0) we are under the null hypothesis of non-
multicointegration, while when �i;1 6= �i;2 6= 0 and xi;2t; yi;2t � I (�1) we are under the
alternative hypothesis of multicointegration. We have several local alternatives depending

upon the values for �i;1, �i;2 and the di¤erent possibilities to obtain I (�1) processes, i.e.
overdi¤erenced stationary processes. The xi;2t and yi;2t stochastic processes have been

de�ned as follows:

xi;2t = �wi;1t yi;2t = �wi;2t

wi;1t = �i;1wi;1t�1 + "i;1t wi;2t = �i;2wi;2t�1 + "i;2t;

where "i;1t � N
�
0; �2"i;1

�
, "i;2t � N

�
0; �2"i;2

�
with �2"i;1 = �2"i;2 = 1. Note that when

�i;1 = �i;2 = 1 we are under the null hypothesis, while for �i;1; �i;2 < 1 we are under the

alternative hypothesis.

Several speci�cations have been adopted in the Monte Carlo simulations for the pa-

rameters of interest when analyzing the empirical power � i.e. under the alternative

hypothesis. We have imposed �i;1 = �i;2 = 0:5 for all individuals since they do not

and Osbat (2005).
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a¤ect the empirical power of the statistics. There are two di¤erent sets of parame-

ters that a¤ect the empirical power of the statistics, i.e. the autoregressive parame-

ters �i;1 and �i;2, and �
2
�;i, which has the interpretation of a signal-to-noise ratio since

we have set �2"i;1 = �2"i;2 = 1. Regarding these parameters, we have followed two ap-

proaches. First, we have assumed that they are �xed and common to all individuals

setting �i;1 = �i;2 = f0:99; 0:9g and �2�;i = f10; 30; 50g. Second, when investigating the
empirical power we have allowed heterogeneous values for both the autoregressive parame-

ters specifying �i;1 = �i;2 � U [0:9; 0:99] and for the signal-to-noise ratio �2�;i � U [10; 50],
where U denotes the uniform distribution. In all cases, we have carried out simulations

for T = f50; 100; 250; 1; 000g and N = f20; 40g, with 1,000 replications. The nominal
size is set at the 5% level of signi�cance.

Tables 4 and 5 report the empirical size and power when the relevant parameters

of the model are homogeneous for all individuals. In general, the statistics show mild

over size distortions for small sample sizes (T = 50), though the empirical size tends

to be close to nominal one as T increases. In addition, size distortions decrease with

the signal-to-noise ratio. Notwithstanding, note that these size distortions only appear

for those speci�cations that include deterministic terms, since for the non-deterministics

case the empirical size is around the nominal one in almost all situations. These oversize

distortions could be explained by the speci�cation of the DGP in structural form. Note

that if we express the DGP in �nal form we obtain that the disturbance term is a mixture

of the disturbance terms in the structural form, which under the null hypothesis include

overdi¤erenced stochastic processes. Simulations not reported here indicate that the

empirical size equals the nominal one in all cases when the stochastic I(2) and I(1)

processes are generated in an independent way. Regarding the empirical power, the test

statistics show good properties with values that equal one in most cases when �i;1 =

�i;2 = 0:9 8i. Furthermore, the statistics have reasonable power values even when �i;1 =
�i;2 = 0:99 8i, i.e. when we are very close to the null hypothesis. Finally, results are
very similar if we allow for heterogeneous individuals � see Table 6. We observe size

distortions for those speci�cations that include linear or quadratic time trend, while

the statistics have empirical size close to the nominal one for the non-deterministic and

constant speci�cations. In all cases, the empirical power is high with values that equal

one in most situations.
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5.2 Cross-section dependent individuals

We de�ne the DGP given by

yi;t = Si;t + ui;t (17)

xi;t = Si;t +�Si;t + ui;t (18)

�Si;t = #i;t; ui;t = Ft�i + ei;t;

where #i;t � iid N (0; 1) and �i � U [2; 10]. The idiosyncratic disturbance terms are

generated according to ei;t = �iei;t�1 + �i;t, with �i;t � iid N
�
0; �2�i

�
, while the common

factor term is given by Ft = �Ft�1+�t, with �t � iid N (0; �2�). In this section we consider
the case of one known common factor (r = 1) as well as the case three (r = 3) unknown

common factors. For the later, we have estimated the number of common factors using

the panel BIC information criteria in Bai and Ng (2004) allowing for up to six common

factors. In order to save space, we only investigate the empirical size and power of

the Z~e� statistic, using �i = f0:9; 0:99; 1g 8i, � = f0:9; 0:95; 1g, with �2�i = f3; 5g and
�2� = 1 �note that �

2
�i
has interpretation in terms of signal-to-noise ratio. Simulations

are computed for T = f50; 100; 250g and N = 40, using 1,000 replications. The nominal

size is set at the 5% level of signi�cance.

The DGP given in (17) and (18) implies that yi;t and xi;t are cointegrated with cointe-

grating vector (1, -1). The presence of multicointegration depends on the values of �i and

�. Thus, if �i = 1 8i and/or � = 1, multicointegration does not exist. Multicointegration
is present when both �i and � are less than one 8i. Finally, multicointegration will be
present up to r1 (� r) non-stationary factors if �i < 1 8i and � = 1 for r1 common factors.
We have obtained the OLS estimated residuals from yi;t = �i + xi;t�i + #i;t, and de�ned

Si;t =
Pt

j=1 #̂i;j. Then, we have proceeded following the procedure described in Section

4, with mt = (1; t) in (11). We use the �nite sample moments reported in Table 3 to

compute the Z~e� statistic.

Let us �rst focus on the results for the one common factor. Results in Table 7 indicate

that for large T the empirical size of the Z~e� statistic is close to the nominal one, although

size distortion appear for T = 50. This feature was to be expected since in this case T

is similar to N �note that our approach requires T larger than N . The ADF �F statistic

shows good empirical size, although mild distortions appear for T = 50. As expected,

the power of both statistics increases as �i and � moves away from one. Furthermore, the

power of the Z~e� statistic increases as �
2
�i
grows.

Table 8 reports empirical size and power for the Z~e� and MQ
�
f statistics when �i =

1, �i = 0:99 and �i = 0:9 � the bandwidth for the Bartlett spectral window used in

the computation of the MQ�f statistic is set as J = 4ceil [min [N; T ] =100]1=4. We only

o¤er results for the non-parametric version of the MQ statistic
�
MQ�f

�
since results for
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the parametric one (MQ�c) were almost equivalent. In this Table, MQ(3) denotes the

frequency that the MQ�f statistic has detected three common stochastic trends, MQ(2)

for the frequency corresponding to two stochastic trends, MQ(1) for one stochastic trend

and, �nally, MQ(0) denotes the times that the statistic has not detected any stochastic

trend. Results in Table 8 indicate that the empirical size of the Z~e� statistic approaches

the nominal one as T increases, regardless of �2�i. As expected, the power of the test

increases as �i moves away from one, and as T gets larger. Note that these conclusions

are obtained irrespective of �. The performance of theMQ�f statistic is quite good, since it

tends to detect the right number of common stochastic trends most times, while it shows

non-trivial power when the common factors are stationary. As for the Z~e� statistic, these

conclusions are robust to the value of �i. In all, simulations that have been conducted

in this paper indicate that the test statistics o¤er good properties in �nite samples when

testing the null hypothesis of non-multicointegration, regardless of the test statistic that

is used.

6 Production and sales multicointegration relation-

ship in US industries

In this section we illustrate the application of the procedures developed in this paper using

monthly inventories and sales series as in Granger and Lee (1989). We use seasonally

adjusted series in 1996 constant dollars that cover the period January 1967 to December

1996, i.e. T = 359 observations, and are drawn from the US Department of Commerce,

Bureau of Economic Analysis database �the analysis cannot be extended from January

1997 onwards due to methodological changes in the de�nition of these time series. The

database o¤ers information on inventories (Invi;t) and sales (salesi;t) for 47 US industries

that belong to manufacturing, wholesale trade and retail trade sectors. The production

(prodi;t) series are obtained using the identity in Granger and Lee (1989), i.e. prodi;t =

salesi;t + �Invi;t, i = 1; : : : ; 47 and t = 1; : : : ; 359. Granger and Lee (1989) conclude

that empirical results generally support the presence of multicointegration relationships

between production and sales in many of the US industries and industrial aggregates. The

goal of this section is to extend the previous evidence using the panel data techniques that

have been proposed in this paper, which allows the power of the analysis to be increased

through the combination of the information of the time and cross-section dimensions.

We have applied the panel data unit root tests in Maddala and Wu (1999) �hereafter,

MW statistic �and Im, Pesaran and Shin (2003) �henceforth IPS statistic �to analyze

the panel data sets of sales, production and inventories. The order of the autoregressive

speci�cation that is used to compute the individual statistics is selected using the t-sig

criterion in Ng and Perron (1995) with the maximum order of lags set at twelve as in
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Granger and Lee (1989). Panel A of Table 9 indicates that for the case where cross-section

independence is assumed, the t-ratio IPS statistic concludes that sales, production and

inventories are I(1), while the �rst di¤erence of inventories is stationary in variance.

Mixed evidence is obtained when using the MW statistic. The null hypothesis of non-

stationarity cannot be rejected at the 5% level of signi�cance for sales and inventories,

while it is rejected for production and change in inventories. Cross-independence might

be an unrealistic assumption, especially when analyzing sales and production series of

industries that belong to the same economy.

We have accounted for the presence of cross-section dependence in three di¤erent ways.

First, we have followed the approach in Im, Pesaran and Shin (2003), and have proceeded

to remove the cross-section mean �which implies assuming that cross-section dependence

is driven by one stationary common factor. Results reported in Panel A of Table 9 indicate

that sales, production and inventories are I(1), while change in inventories is I(0). The

second way to consider cross-section dependence is based on the computation of the

bootstrap distribution for the IPS andMWpanel data statistics. In this case, we reach the

same conclusions as when individuals were assumed to be independent. Finally, we can

base the analysis on the common factor approach in Bai and Ng (2004). Panel A of Table 9

presents the estimated number of factors (r̂) determined using the panel BIC information

criterion allowing for up to six common factors. Both versions of theMQ statistic indicate

that there are non-stationary factors driving production, sales and inventories, while the

panel ADF statistic applied to the estimated idiosyncratic disturbance term does not

reject the null hypothesis of unit root. Therefore, production, sales and inventories can

be characterized as non-stationary panels. The opposite situation is found for change in

inventories, since both components are stationary in variance.

So far, the analysis reveals that production and sales are cointegrated with vector

(1, -1) since all computation that has been carried out shows that change in invento-

ries is I(0). Furthermore, Bai and Ng (2004) methodology indicates that dependence

across US industries in the change in inventories is driven by stationary common factors.

Panel B of Table 9 presents the panel data statistics for testing the null hypothesis of

non-multicointegration. Assuming that individuals are cross-section independent leads to

reject the null hypothesis of non-multicointegration using both Z�̂NT and Zt̂NT statistics

at the 5% level of signi�cance. Therefore, we �nd evidence that points to the presence

of multicointegration. Nevertheless, these results might be wrong if cross-section de-

pendence is present amongst individuals. First, we have accounted for the presence of

cross-section dependence including temporal e¤ects. Thus, working with cross-section

demeaned data produces inconclusive results. The Z�̂NT statistic �nds evidence of panel

multicointegration, whereas the Zt̂NT does not.

Previous analyses have revealed that common factors might be driving cross-section

dependence. In order to account for this feature, we have computed the statistics in
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Section 4 allowing for up to six common factors. Results in panel B of Table 9 investi-

gates whether inventories cointegrates with production and/or sales. In both cases the

maximum number of common factors is achieved. Let us focus �rst on sales and inven-

tories relationship. In this case, there are non-stationary common factors �the number

depends both on the information criterion and on the version of the MQ statistic that

is used �and panel data ADF statistic computed for the idiosyncratic disturbance term

does not reject the null hypothesis of unit root at the 5% level of signi�cance. Therefore,

results indicate that there is not cointegration between sales and inventories. When the

analysis focuses on production and inventories, we �nd that, regardless of the information

criterion and the version of the MQ statistic that is used, there are two non-stationary

in variance common factors. The panel ADF statistic based on the estimated idiosyn-

cratic disturbance term shows that the null hypothesis of unit root can be rejected at the

10% level. Taken at a whole, we have found evidence of mild multicointegration up to

the presence of two non-stationary common factors. As mentioned above, note that this

situation might be encountered if cross-multicointegration is present between production

or inventories for di¤erent industries, i.e. if series of production (or inventories) of dif-

ferent industries cointegrate each other. Thus, the non-stationary common factors might

be understood as common stochastic trends relating production (or inventories) series in

each panel data set.

7 Conclusions

We have proposed test statistics that allow us to analyze the presence of multicointegra-

tion relationships in panel data. Although the proposal has focused on multicointegration

testing, the statistics can be used to study the presence of cointegration in a wider frame-

work, that is, panel cointegration among I(2) processes when individuals are independent

or when cross-section dependence can be modelled by including temporal e¤ects �to the

best of our knowledge, this has not been previously considered in the literature. How-

ever, this is not the case when cross-section dependence is modelled through approximate

factor models. In this situation, the analysis has to be carried out in a I(1) set-up. The

use of the common factor approach can be used regardless of whether the cointegration

vector of the �rst level is known or unknown. Simulations conducted in the paper reveal

that the statistics show good performance in terms of empirical size and power. Finally,

we have illustrated the use of the proposal investigating multicointegration relationships

between sales and production of US industries.
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A Mathematical Appendix

A.1 Proof of Theorem 2

We proceed to sketch the proof the case were the deterministic term is driven only by

a constant (mt = 1), although the results can be generalized for the other speci�cations.

Thus, we show that our framework can be reduced to the one in Bai and Ng (2004), and

Banerjee and Carrion-i-Silvestre (2006), so that interested readers can �nd further details

in those references.

Note that the model given by (11) and (12) can be expressed as:

Yi;t = mt�i + Ŝi;ti + Ft�i + ei;t:

Note that we can write

~zi;t = zi;t + ft�i � ~ft~�i (19)

= zi;t � vtH�1�i � ~ftdi;

where vt = ~ft� ftH and di = ~�i�H�10�i. The computation of the partial sum processes

of (19) gives:

T�1=2
tX
j=2

~zi;j = T
�1=2

tX
j=2

zi;j � T�1=2
tX
j=2

vjH
�1�i � T�1=2

tX
j=2

~fjdi: (20)

Let us analyze each element of (20) separately. The left-hand side of (20) is equal to

T�1=2
tX
j=2

~zi;j = T�1=2
tX
j=2

Mi�~ei;j (21)

= T�1=2
tX
j=2

�~ei;j � T�1=2
tX
j=2

[Pi�~ei]j ;

where [Pi�~ei]j denotes the j-th element of the matrix Pi�~ei, and Pi = IT�1 �Mi. The

�rst element on the right of (21) is T�1=2
Pt

j=2�~ei;j = T
�1=2~ei;t+Op (1)) �Wi (r). The

second element on the right hand of (21) tends to T�1=2
Pt

j=2 [Pi�~ei]j ! 0, provided

that T�1�Ŝ 0i�Ŝi = T�1�S 0i�Si � 2T�1�S 0i
�
c (�̂i � �i) + xi

�
�̂i � �i

��
+ Op (T

�2) =

T�1�S 0i�Si + Op
�
T�1=2

�
!p Q�Si�Si and T

�1�Ŝ 0i�~ei = T
�1�S 0i�~ei + Op

�
T�1=2

�
! 0

since we assume that stochastic regressor Si;t is strictly exogenous. Henceforth, we use

�Si;t instead of �Ŝi;t in the derivations provided that it has been shown that �Ŝi;t =

�Si;t +Op
�
T�1=2

�
.

These derivations lead us to T�1=2
Pt

j=2 ~zi;j = T
�1=2~ei;t+op (1), since T�1=2Si;t (�S 0i�Si)

�1
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�S 0i�~ei = op (1) �see Banerjee and Carrion-i-Silvestre (2006) for further details. The

same result can be achieved for T�1=2
Pt

j=2 zi;j. This indicates that the presence of sto-

chastic regressors does not have any e¤ect on the partial sum processes. Regarding the

term involving fvtg we see from Eq. (A.3) in Bai and Ng (2004) that T�1=2
Pt

j=2 vj =

Op
�
C�1NT

�
, where CNT = min

�
N�1=2; T�1=2

	
. Moreover and as shown in Bai and Ng

(2004), the term di = Op
�
C�1NT

�
and T�1=2

Pt
j=2

~fj = Op (1), so that T�1=2
Pt

j=2 ~zi;j =

T�1=2
Pt

j=2 zi;j +Op
�
C�1NT

�
:From all these results it follows that

DF c~e (i))
1
2

�
Wi (1)

2 � 1
��R 1

0
Wi (r)

2 dr
�1=2 ;

that is, the limiting distribution is the same derived in Bai and Ng (2004) for the constant

case �see Bai and Ng (2004) for the proof. The same result is found for the ADF test. This

implies that the presence of stochastic regressors does not a¤ect the limiting distribution

of the statistic.

Let us now deal with the unit root hypothesis testing when there is r = 1 common

factor. The �rst di¤erence of the model de�nes an idempotent matrix Mi that depends

on the individual, although it is shown below that the elements that depend on i vanish

asymptotically. Thus, note that

tX
j=2

~fj =
tX
j=2

Mi� ~Ft

= ~Ft � (Si;t � Si;1)0 (�S 0i�Si)
�1
�S 0i� ~F ; (22)

since we de�ne ~F1 = 0. Note that the �rst element of (22) is

~Ft = H (Ft � F1) + Vt;

since � ~Ft = H �Ft + vt and Vt =
Pt

j=2 vj. The detrended estimated factor will remove

F1:
~F �t = H F �t + V

�
t ;

which can be shown that

T�1=2 ~F �t = H T�1=2F �t +Op
�
C�1NT

�
;

since T�1=2V dt = Op
�
C�1NT

�
�see Bai and Ng (2004), Lemma B.2. The second term in

(22) is T�1=2 (Si;t � Si;1)0 (�S 0i�Si)
�1�S 0i� ~F = op (1), since T

�1�S 0i�Si converges to the

matrix of covariance of �Si and T�1�S 0i� ~F = op (1) by assumption. Therefore, under

19



the null hypothesis the DF statistic converges to

DF d~F =
T�1

PT
t=2

~F �t�1� ~Ft�
~�2uT

�2PT
t=2

�
~F �t�1

�2�1=2 (23)

)
R 1
0
W �
w (r) dW (r)�R 1

0
W �
w (r)

2 dr
�1=2 ;

where W �
w (r) denotes the detrended Brownian motion and ~�

2
w

p! H2 �2w. The ADF

statistic has the same limiting distribution provided that the order of the autoregressive

correction is selected such that p!1 and p3=min [N; T ]! 0. The limiting distribution

of the test statistic that is used when there is more than one common factor (r > 1) is

the same as the one derived in Bai and Ng (2004) for the constant case. We address

the reader to Bai and Ng (2004) for the proof of this part of the Theorem, since our

framework is equivalent to theirs. Finally, it should be mentioned that all these results

hold for the case of non-strictly exogenous regressors once the model given by (11) and

(12) has been augmented to include leads and lags of �Ŝi;t. In practice, the number of

leads and lags can be selected using the BIC information criterion. Further details can

be found in Banerjee and Carrion-i-Silvestre (2006).
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Table 1: Mean and variance for the no deterministics and constant cases
Non-deterministics case

T = 50 T = 100 T = 250 T = 1; 000
Z�̂NT m1 m2 �1 	1 �1 	1 �1 	1 �1 	1

0 1 -5.654 26.739 -5.373 25.178 -5.213 24.894 -5.093 24.789
1 1 -10.037 45.394 -9.806 43.489 -9.620 42.471 -9.456 41.596
2 1 -14.189 65.113 -13.946 59.888 -13.849 59.566 -13.624 57.703
3 1 -18.157 85.567 -17.968 76.561 -17.899 74.861 -17.684 73.107
4 1 -21.994 108.195 -21.899 93.358 -21.898 90.320 -21.706 88.715
0 2 -10.290 49.626 -9.616 43.187 -9.185 41.569 -8.823 40.649
1 2 -14.626 71.889 -13.989 61.523 -13.603 58.983 -13.214 56.987
2 2 -18.761 94.887 -18.142 79.496 -17.796 75.546 -17.414 72.969
3 2 -22.745 120.241 -22.166 97.678 -21.847 91.441 -21.473 88.537
4 2 -26.596 147.699 -26.094 116.281 -25.887 107.664 -25.507 103.787

Zt̂NT m1 m2 �2 	2 �2 	2 �2 	2 �2 	2
0 1 -1.492 0.925 -1.377 0.875 -1.302 0.870 -1.250 0.908
1 1 -2.168 0.860 -2.059 0.778 -1.984 0.727 -1.935 0.706
2 1 -2.673 0.844 -2.554 0.735 -2.479 0.676 -2.421 0.630
3 1 -3.089 0.840 -2.963 0.730 -2.879 0.650 -2.816 0.594
4 1 -3.452 0.849 -3.319 0.725 -3.227 0.638 -3.160 0.577
0 2 -2.248 0.86 -2.070 0.750 -1.942 0.720 -1.846 0.743
1 2 -2.748 0.866 -2.579 0.740 -2.462 0.675 -2.376 0.649
2 2 -3.164 0.860 -2.995 0.729 -2.875 0.656 -2.790 0.606
3 2 -3.524 0.859 -3.353 0.731 -3.227 0.645 -3.140 0.584
4 2 -3.841 0.858 -3.671 0.726 -3.547 0.640 -3.454 0.571

Constant case
T = 50 T = 100 T = 250 T = 1; 000

Z�̂NT m1 m2 �1 	1 �1 	1 �1 	1 �1 	1
0 1 -10.381 44.055 -9.819 38.759 -9.453 36.351 -9.276 35.796
1 1 -14.259 64.275 -13.707 56.068 -13.329 52.427 -13.126 51.462
2 1 -18.144 85.923 -17.582 72.963 -17.251 68.480 -17.029 67.094
3 1 -22.060 110.768 -21.496 90.987 -21.185 84.285 -20.953 82.385
4 1 -25.878 136.910 -25.359 109.777 -25.125 100.824 -24.824 97.521
0 2 -15.617 76.183 -14.387 59.183 -13.633 53.168 -13.240 51.150
1 2 -19.499 100.986 -18.286 77.465 -17.550 69.541 -17.101 66.796
2 2 -23.363 126.88 -22.163 95.559 -21.462 86.355 -20.980 82.336
3 2 -27.251 155.956 -26.081 116.434 -25.393 102.557 -24.895 97.005
4 2 -31.048 188.191 -29.933 137.205 -29.326 119.582 -28.764 111.988

Zt̂NT m1 m2 �2 	2 �2 	2 �2 	2 �2 	2
0 1 -2.363 0.804 -2.218 0.723 -2.124 0.675 -2.071 0.663
1 1 -2.780 0.816 -2.641 0.722 -2.544 0.650 -2.489 0.617
2 1 -3.155 0.825 -3.015 0.720 -2.915 0.637 -2.855 0.594
3 1 -3.498 0.829 -3.356 0.722 -3.250 0.633 -3.184 0.577
4 1 -3.806 0.833 -3.664 0.724 -3.556 0.634 -3.480 0.568
0 2 -2.955 0.821 -2.742 0.702 -2.592 0.631 -2.502 0.608
1 2 -3.298 0.824 -3.100 0.713 -2.955 0.629 -2.863 0.587
2 2 -3.615 0.825 -3.426 0.713 -3.282 0.631 -3.187 0.578
3 2 -3.908 0.828 -3.728 0.715 -3.584 0.631 -3.486 0.565
4 2 -4.175 0.824 -4.007 0.718 -3.864 0.634 -3.759 0.559
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Table 2: Mean and variance for the linear and quadratic time trend cases
Linear trend case

T = 50 T = 100 T = 250 T = 1; 000
Z�̂NT m1 m2 �1 	1 �1 	1 �1 	1 �1 	1

0 1 -15.978 75.296 -14.712 58.648 -14.118 53.217 -13.706 51.180
1 1 -19.677 98.989 -18.407 76.561 -17.815 69.352 -17.423 67.149
2 1 -23.383 124.728 -22.166 94.558 -21.630 86.156 -21.222 82.757
3 1 -27.090 151.184 -25.947 113.290 -25.483 101.903 -25.062 97.387
4 1 -30.873 181.851 -29.763 133.997 -29.345 118.118 -28.907 112.825
0 2 -21.468 120.172 -19.259 83.279 -18.185 71.121 -17.472 66.520
1 2 -25.244 148.714 -23.055 103.193 -22.003 87.481 -21.281 82.437
2 2 -29.028 180.650 -26.858 122.963 -25.881 104.295 -25.115 97.409
3 2 -32.800 214.248 -30.689 144.101 -29.756 120.904 -28.988 111.843
4 2 -36.592 250.352 -34.532 167.071 -33.635 138.068 -32.839 127.237

Zt̂NT m1 m2 �2 	2 �2 	2 �2 	2 �2 	2
0 1 -2.972 0.791 -2.759 0.674 -2.634 0.609 -2.548 0.573
1 1 -3.300 0.804 -3.099 0.694 -2.974 0.619 -2.889 0.573
2 1 -3.604 0.814 -3.416 0.701 -3.291 0.627 -3.204 0.570
3 1 -3.889 0.816 -3.711 0.708 -3.588 0.628 -3.497 0.562
4 1 -4.158 0.823 -3.989 0.715 -3.864 0.629 -3.767 0.559
0 2 -3.471 0.827 -3.195 0.700 -3.019 0.616 -2.895 0.568
1 2 -3.754 0.821 -3.501 0.708 -3.332 0.621 -3.210 0.567
2 2 -4.019 0.813 -3.786 0.708 -3.626 0.626 -3.501 0.560
3 2 -4.269 0.809 -4.055 0.709 -3.899 0.628 -3.774 0.553
4 2 -4.507 0.811 -4.309 0.711 -4.157 0.631 -4.028 0.552

Quandratic trend case
T = 50 T = 100 T = 250 T = 1; 000

Z�̂NT m1 m2 �1 	1 �1 	1 �1 	1 �1 	1
0 1 -21.887 117.198 -19.737 83.195 -18.556 69.827 -17.895 65.924
1 1 -25.485 145.813 -23.395 102.971 -22.239 86.462 -21.590 81.553
2 1 -29.169 177.125 -27.123 123.170 -25.992 103.017 -25.336 96.851
3 1 -32.826 210.241 -30.888 144.739 -29.814 119.575 -29.145 112.164
4 1 -36.543 248.073 -34.677 168.437 -33.646 136.887 -32.971 126.942
0 2 -27.853 182.413 -24.477 115.187 -22.641 88.917 -21.549 81.472
1 2 -31.606 217.124 -28.277 137.932 -26.448 106.112 -25.343 96.868
2 2 -35.452 256.907 -32.103 160.992 -30.272 123.135 -29.151 111.829
3 2 -39.185 296.390 -35.962 185.851 -34.141 140.566 -32.996 126.828
4 2 -42.988 341.124 -39.786 211.252 -38.004 158.116 -36.848 141.614

Zt̂NT m1 m2 �2 	2 �2 	2 �2 	2 �2 	2
0 1 -3.511 0.776 -3.238 0.669 -3.052 0.585 -2.934 0.545
1 1 -3.774 0.785 -3.529 0.686 -3.351 0.600 -3.236 0.549
2 1 -4.029 0.788 -3.806 0.692 -3.633 0.611 -3.518 0.549
3 1 -4.271 0.797 -4.068 0.699 -3.903 0.615 -3.785 0.549
4 1 -4.501 0.804 -4.317 0.702 -4.156 0.619 -4.037 0.547
0 2 -3.951 0.816 -3.63 0.709 -3.396 0.604 -3.233 0.550
1 2 -4.186 0.806 -3.898 0.709 -3.678 0.613 -3.519 0.550
2 2 -4.412 0.796 -4.153 0.703 -3.942 0.618 -3.786 0.548
3 2 -4.625 0.792 -4.396 0.704 -4.195 0.620 -4.038 0.546
4 2 -4.828 0.793 -4.622 0.700 -4.434 0.622 -4.278 0.545
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Table 3: Asymptotic and �nite sample moments for the ADF idiosyncratic statistics
T = 50 T = 100 T = 250 T = 1; 000
�~ej 	~ej �~ej 	~ej �~ej 	~ej �~ej 	~ej

ADF c~e (i) -0.401 1.167 -0.410 1.054 -0.420 0.996 -0.421 0.970
ADF �~e (i) -1.563 0.415 -1.554 0.378 -1.540 0.357 -1.529 0.339
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Table 6: Empirical size and power with heterogeneous individuals
Panel A: Empirical size

No deterministics Constant Linear trend Quadratic trend
N T Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT
20 50 0.055 0.051 0.086 0.084 0.081 0.088 0.099 0.106

100 0.029 0.027 0.075 0.067 0.091 0.086 0.081 0.079
250 0.036 0.026 0.071 0.060 0.073 0.070 0.091 0.082
1,000 0.056 0.041 0.085 0.077 0.103 0.099 0.094 0.094

N T Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT
40 50 0.039 0.032 0.112 0.100 0.110 0.102 0.109 0.104

100 0.045 0.035 0.083 0.074 0.101 0.082 0.091 0.075
250 0.031 0.030 0.078 0.070 0.104 0.090 0.088 0.086
1,000 0.053 0.048 0.087 0.083 0.119 0.106 0.098 0.095

Panel B: Empirical power
No deterministics Constant Linear trend Quadratic trend

N T Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT
20 50 1 1 0.175 0.181 1 1 1 0.988

100 1 1 0.686 0.627 1 1 1 1
250 1 1 1 1 1 1 1 1
1,000 1 1 1 1 1 1 1 1

N T Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT Z�̂NT Zt̂NT
40 50 0.353 0.396 0.196 0.251 1 1 1 0.985

100 0.968 0.968 0.878 0.809 1 1 1 1
250 1 1 1 1 1 1 1 1
1,000 1 1 1 1 1 1 1 1
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Table 7: Empirical size and power for the Z~e� and ADF
�
F statistics. One known common

factor, N = 40 individuals
T �2�i � �i Z~e� ADF �F �i Z~e� ADF �F �i Z~e� ADF �F
50 3 1 1 0.114 0.076 0.99 0.123 0.057 0.9 0.747 0.081
100 3 1 1 0.056 0.053 0.99 0.086 0.064 0.9 0.999 0.056
250 3 1 1 0.046 0.055 0.99 0.270 0.065 0.9 1 0.044
50 3 0.95 1 0.127 0.099 0.99 0.130 0.078 0.9 0.738 0.075
100 3 0.95 1 0.062 0.095 0.99 0.084 0.087 0.9 1 0.098
250 3 0.95 1 0.046 0.273 0.99 0.255 0.307 0.9 1 0.278
50 3 0.9 1 0.117 0.115 0.99 0.120 0.094 0.9 0.709 0.097
100 3 0.9 1 0.060 0.223 0.99 0.069 0.186 0.9 1 0.221
250 3 0.9 1 0.061 0.844 0.99 0.262 0.856 0.9 1 0.83
50 5 1 1 0.127 0.074 0.99 0.129 0.064 0.9 0.803 0.076
100 5 1 1 0.071 0.042 0.99 0.101 0.064 0.9 1 0.051
250 5 1 1 0.054 0.051 0.99 0.365 0.061 0.9 1 0.056
50 5 0.95 1 0.132 0.072 0.99 0.157 0.069 0.9 0.756 0.079
100 5 0.95 1 0.070 0.106 0.99 0.108 0.090 0.9 1 0.100
250 5 0.95 1 0.073 0.286 0.99 0.341 0.273 0.9 1 0.266
50 5 0.9 1 0.112 0.109 0.99 0.105 0.111 0.9 0.789 0.106
100 5 0.9 1 0.086 0.211 0.99 0.107 0.194 0.9 1 0.205
250 5 0.9 1 0.060 0.810 0.99 0.337 0.833 0.9 1 0.861
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