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Symmetrically multilateral-bargained allocations in multi-sided assignment markets

Abstract: We extend Rochford’s (1983) notion of symmetrically pairwise-bargained equilibrium

to assignment games with more than two sides. A symmetrically multilateral-bargained

(SMB) allocation is a core allocation such that any agent is in equilibrium with respect to

a negotiation process among all agents based on what every agent could receive -and use as

a threat- in her preferred alternative matching to the optimal matching that is formed. We

prove that, for balanced multi-sided assignment games, the set of SMB is always nonempty

and that, unlike the two-sided case, it does not coincide in general with the kernel (Davis and

Maschler, 1965). We also give an answer to an open question formulated by Rochford (1983)

by introducing a kernel-based set that, together with the core, characterizes the set of SMB.

Keywords: Cooperative games, core, kernel, bargaining

JEL Classification: C71, C78

Resum: Aquest treball tracta d’extendre la noció d’equilibri simètric de negociació bilateral

introdüıt per Rochford (1983) a jocs d’assignació multilateral. Un pagament corresponent a

un equilibri simètric de negociació multilateral (SMB) és una imputació del core que garanteix

que qualsevol agent es troba en equilibri respecte a un procés de negociació entre tots els

agents basat en allò que cadascun d’ells podria rebre -i fer servir com a amenaça- en un

’matching’ òptim diferent al que s’ha format. Es prova que, en el cas de jocs d’assignació

multilaterals, el conjunt de SMB és sempre no buit i que, a diferència del cas bilateral,

no sempre coincideix amb el kernel (Davis and Maschler, 1965). Finalment, responem una

pregunta oberta per Rochford (1982) tot introdüınt un conjunt basat en la idea de kernel,

que, conjuntament amb el core, ens permet caracteritzar el conjunt de SMB.



1 Introduction

In a m-sided assignment game (Quint, 1991) there are m different types of agents and a

single worth is attached to any coalition of exactly one agent of each type -what will be called

an essential coalition-. The worth of any arbitrary coalition is obtained by partitioning it

into essential coalitions and singletons (that have zero worth), adding up their worth and,

finally, keeping the maximum of such values. Multilateral assignment markets represent

many situations in which multiple partnerships are formed and can be modeled by m-sided

assignment games (see Tejada and Rafels, 2009, for some examples and a further justification

on that link).

In their seminal paper about two-sided assignment games, Shapley and Shubik (1972)

prove that two-sided sided assignment games have always a nonempty core, whereas Kaneko

and Wooders (1982) -in a more general framework- and Quint (1991) show that this property

does not hold for arbitrary m-sided assignment games.

Tejada and Rafels (2009) show that, for multi-sided assignment games, there is a bijection

between competitive prices and core allocations. Therefore, the core represents the very first

main approximation to resolve the problem of predicting which prices will emerge in a multi-

sided assignment market. Nevertheless, Shapley and Shubik (1972) already noticed that one

of the main drawbacks of the core as a prediction of the outcome of a cooperative game, in

particular of a multi-sided assignment game, is that it is based only on what agents can do,

not on what they can prevent other agents to do.

In this paper we show that, if agents do not base their behavioral strategy only on

what they can do but also on what they can prevent others to do, the core of a balanced

multi-sided assignment game can be non-trivially refined. This is made introducing a set

of multilateral-bargained (SMB) allocations, that generalizes the set of pairwise-bargained

(SPB) allocations introduced by Rochford (1983). In particular, for two-sided assignment

games this refinement coincides with the intersection between the kernel and the core, as
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Rochford (1983) demonstrates, which is, in fact, the kernel itself (Driessen, 1998 and Granot,

1995)1. We show that this coincidence fails to hold for arbitrary multi-sided assignment

games. Nevertheless, we show that if the kernel is slightly modified, the set of SMB can be

characterized by this new kernel-based set. For two-sided assignment games, this last set is

precisely the kernel.

In fact, Rochford already noticed that, for more than two sides, the kernel might not be

the most appropriate solution set. In her words (Rochford, 1983, p. 278), ”In a game where

the resulting coalition structure contains coalitions with more than two members, it is not

clear why a solution based on pairwise equilibrium is appropriate”.

The rest of the paper is organized as follows. In Section 2 we introduce the notation and

background results needed. In Section 3 we define symmetrically multilateral-bargained SMB

allocations. Finally, in Section 4 we present the main results of the paper.

2 Notation and Preliminaries

Consider a market in which there are m different finite sets (or types) of agents N1, ..., Nm

such that n1 = |N1|, ..., nm = |Nm|. With some abuse of notation2, for all j, 1 ≤ j ≤ m we

denote N j = {1, 2, ..., nj}. By convention (see Quint, 1991), we refer to the i-th agent of type

j as j-i. We call any m-tuple of agents E = (i1, ..., im) ∈ N1× ...×Nm an essential coalition.

As an abuse of notation, and when no confusion is possible, we will also use E to refer to the

set {1-i1, ...,m-im}.

A m-sided assignment problem (m-SAP), that will be denoted by (N1, ..., Nm;A), is

characterized by a nonnegative m-dimensional matrix A = (ai1...im)i1∈N1,...,im∈Nm . An arbitrary

entry of A , namely ai1...im, corresponds to the worth that is attached to any essential coalition

1In light of Driessen (1998) and Granot and Granot (1995), what Rochford (1983) actually did, therefore,

was giving a different characterization of the kernel of a two-sided assignment game in terms of a bargaining

process based on threats.
2Formally, for any j, 1 ≤ j ≤ m, Nj should be denoted by {j}×{1, .., nj}. Then, any agent is a pair (j, ij),

j denoting the type of the agent and ij denoting the index within the set of agents of her same type.
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E = (i1, ..., im). Observe that A can be cast to a mapping from N1 × ...×Nm to R+ defined

by A(i1, ..., im) = ai1...im.

If n1 = n2 = ... = nm = n we say that (N1, ..., Nm;A) is square. A dummy agent is

such that the worth of any essential coalition ’containing’ her is always zero. Dummy agents

do not alter the characteristic function when we restrict to real players (see, for instance,

Quint (1991) for a complete argument). Therefore, by adding dummy agents, from now on

we will assume, without loss of generality, that (N1, ..., Nm;A) is square. In fact, in addition

to (N1, ..., Nm;A) being square, another dummy agent will always be artificially introduced

for each type. The reason to do that will be apparent below in Section 3.

A matching µ = {E1, ..., Et} among N1, ..., Nm is a set of essential coalitions such that

|µ| = t = min1≤j≤m |N j | and any agent j-i belongs at most to one essential coalition

E1, ..., Et. We say that agent j-i is unassigned by µ if she does not belong to Ek for

any 1 ≤ k ≤ t. We denote by M(N1, ..., Nm) the set of all matchings among N1, ..., Nm. A

matching is optimal if it maximizes
∑

(i1,...,im)∈µ A(i1, ..., im) in M(N1, ..., Nm). We denote

by M
∗
A(N1, ..., Nm) the set of all optimal matchings of (N1, ..., Nm;A).

Following Shapley and Shubik (1972) and Quint (1991), for each multi-sided assignment

problem (N1, ..., Nm;A) the m-sided assignment game (m-SAG) is the cooperative game3

(N,ωA) with set of players N = {j-i : 1 ≤ j ≤ m, 1 ≤ i ≤ nj} and characteristic function ωA

defined by

ωA(S) = max
µ∈M(N1∩S,...,Nm∩S)





∑

(i1,...,im)∈µ

A(i1, ..., im)



 ,

where the summation over the empty set is zero. Notice that if m = 2 the setting reduces to

the classic Shapley-Shubik assignment market.

The core of a game is the set of imputations that cannot be improved upon by any

coalition on its own. Quint (1991) shows that, given a square multi-sided assignment game,

3A cooperative game is a pair (N, v), where N is the set of players and v, the characteristic function,

associates a numerical value v(S) ∈ R to any coalition S ⊆ N , being v(∅) = 0.
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its core, C(ωA), is the set of nonnegative vectors x satisfying

(1) A(i1, ..., im) −

m∑

j=1

xjij ≤ 0,

for any (i1, ..., im) ∈ N1 × ... × Nm, where (1) must be tight if (i1, ..., im) belongs to some

optimal matching.

On the other hand, for any imputation4 x of (N,ωA) and any coalition S ⊆ N , the excess

of coalition S with respect to x is defined by e(S, x) = ωA(S)− x(S), where x(S) =
∑

i∈S xi.

Given (N,ωA) an arbitrary m-SAG, we introduce the following set, that is defined for any

pair of agents j-i and any k-l,

(2) Γj-i,k-l = {S ⊆ N : j-i ∈ S, k-l /∈ S} ,

Them, for any x ∈ I(ωA), the surplus of agent j-i against agent k-l at x is

(3) sj-i,k-l(x) = max {e(S, x) : S ∈ Γj-i,k-l} .

The above expression can be interpreted as the maximum that agent j-i can expect to obtain

(if negative, the least she can expect to lose) if she departs from x without agent k-l’s

collaboration and assuming that other agents are happy with what they recieve in x. Notice

that sj-i,k-l(x) is a bilateral concept, in the sense that only two agents, j-i and k-l, are involved

in the definition. Then, an idea of bilateral equilibrium is formulated in the following property:

(P) sj-i,k-l(x) = sk-l,j-i(x) for all 1 ≤ j, k ≤ m, 1 ≤ i, l ≤ n such that j-i 6= k-l.

Observe that (P) implies that each pair of agents are in equilibrium through the bargaining

4Given a cooperative game (N, v), the set of imputations is defined by I(v) = {x ∈ Rn : xi ≥

v({i}),
∑n

i=1
xi = v(N)}.
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process defined in (3). The kernel of (N,ωA) is the set5

K(ωA) = {x ∈ I(ωA) : x satisfies (P)} .

3 Main definitions

Let (N,ωA) be a balanced m-SAG and let (µ, x) be the ’current’ stable outcome. That is,

agents are matched under an optimal matching µ and are paid the payoff x ∈ C(ωA). Then

suppose that some agent wonders about what would happen if she broke the essential coalition

she belongs to in µ, formed a new essential coalition, payed to her hypothetical new partners

the worth they are receiving in the current payoff x, whereas she would appropriate the rest

of the worth of the new formed coalition. Since x is a core allocation, such worth will never

be larger than what she is currently receiving in x. In fact, the more such worth is below

than what she is receiving in x, the less credible a threaten she might pose on other agents

not to deviate from (µ, x) is. This is true in the sense that any change in the outcome would

drive her lose part of her current payoff, whereas other agents would benefit. As any agent

in the market can think in the same way, one would expect that, given a proposed allocation

x, after a negotiation process among all agents, they should be paid exactly what they can

threaten. However, such payoffs might not be efficient, in the sense that the market is always

able to provide at least the whole resources to pay all agents their threats, but many times

can pay more. In such case, the most straightforward idea to share the remaining benefits is

to distribute them symmetrically.

To formalize all the above ideas we introduce the following set, that is defined for any

5The kernel is introduced by Davis and Maschler (1965). However, to be accurate, the definition provided

in our paper is that of the pre-kernel (Maschler, Peleg and Shapley, 1972, 1979). Nevertheless, Maschler and

Peleg (1967) prove that for zero-normalized and monotonic games the kernel coincides with the pre-kernel,

which is always nonempty. A game (N, v) is zero-normalized if v({i}) = 0 for all i ∈ N and is monotonic if

v(S) ≤ v(T ) whenever S ⊆ T ⊆ N . Finally, it is straightforward to check that multi-sided assignment games

are zero-normalized and monotonic.
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agent j-i and any essential coalition E,

(4) Γξ
j-i,E =

{
Ẽ ∈ N1 × ... × Nm : j-i ∈ Ẽ, E 6= Ẽ

}
,

The concept of threat, that generalizes Rochford’s (1983) definition to m-SAGs with more

than two sides, is introduced in the following definition.

Definition 1 Given a balanced m-SAG (N,ωA), µ ∈ M
∗
A(N1, ..., Nm) and x ∈ C(ωA), the

vector of threats t(x) ∈ Rnm is defined by

tji(x) = max
(k1,...,kj−1,i,kj+1,...,km)∈Γξ

j-i,E



A(k1, ..., kj−1, i, kj+1, ..., km) −

m∑

s=1,s 6=j

xsks



 ,

for all 1 ≤ j ≤ m and 1 ≤ i ≤ n, where j-i ∈ E and E ∈ µ.

Some remarks must be made on the above definition. First observe that xji − tji(x) is

the minimum loss that agent j-i would incur if, for some reason, the essential coalition she

belongs to in some stable outcome broke. On the other hand, since x ∈ C(ωA) and we have

assumed that for any type there is at least one dummy agent6, we have that 0 ≤ tji(x) ≤ xji.

Lastly, and most important, it can be checked that the vector of threats does not depend on

the optimal matching µ chosen7.

The idea of a symmetrically sharing of the remainders of a negotiation process based on

the above threats is formally introduced in the following definition and generalizes that from

Rochford (1983) to m-SAGs with more than two sides.

Definition 2 Given a balanced m-SAG (N,ωA), µ ∈ M
∗
A(N1, ..., Nm) and x ∈ C(ωA), the

vector of symmetrically bargained incomes b(x) ∈ Rnm
+ is defined by

bji(x) = tji(x) +
1

m


A(i1, ..., im) − tji(x) −

m∑

s=1,s 6=j

tsis(x)




6I.e. there really are n + 1 agents of each type, since for all 1 ≤ j ≤ m, jn+1 is a dummy agent. However,

we will only care about those with index lower than n + 1. This can be made without loss of generality and

it is an assumption that Rochford (1983) also makes.
7Let µ1 6= µ2 be two optimal matchings. The non-trivial case occurs when agent j-i is matched in µ1 and

µ2 to different partners, i.e., when j-i ∈ E ∈ µ1, j-i ∈ E′ ∈ µ2 and E 6= E′. In such case E′ ∈ Γµ1

j-i,E and E ∈

Γµ2

j-i,E′ . Lastly, since x ∈ C(ωA), t
µ1

ji (x) = t
µ2

ji (x) = xji.
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for all 1 ≤ j ≤ m and 1 ≤ i ≤ n, where (i1, ..., ij−1, i, ij+1, ..., im) ∈ µ.

Again, it is important to point out that b(x) does not depend on the specific optimal

matching chosen. Indeed, it is not difficult to show that the set of all agents can be

partitioned in two sets, both of them having the same number of agents of all types: those

that belong to the same essential coalition in any optimal matching and those that do

not. If agent j-i belongs to the first subset, we trivially have that b
µ1

ji (x) = b
µ2

ji (x) for any

µ1, µ2 ∈ M
∗
A(N1, ..., Nm). On the other hand, threats of agents of the second set coincide with

their payoff in x, which, after some calculations, implies that bµ
ji(x) = tji(x) for any agent

j-i of the second set. In conclusion, b(x) does not depend on the specific optimal assignment

chosen. Additionally observe that, given x ∈ C(ωA), the vector of symmetrically bargained

incomes b(x) pays to each agent j-i his threat plus a ’symmetric’ part of the (negative or

positive) difference between the worth of any essential coalition that contains her and belongs

to some optimal matching µ and the threats of agent j-i herself and her partners in µ. In

particular, given x ∈ C(ωA) a new vector b(x) is obtained after a process of bargaining.

As usual, we focus our attention on those allocations that are invariant through the above

bargaining procedure.

Definition 3 Given a balanced m-SAG (N,ωA), the set of symmetrically multilateral-bargained

(SMB) allocations is

SMB(ωA) = {x ∈ C(ωA) : x = b(x)} .

Notice that SMB(ωA) is only defined for balanced m-SAGs and is a subset (or a refinement)

of the core. In the next section we will prove that SMB(ωA) is always nonempty for balanced

m-SAGs (see Theorem 7) and that, unlike the two-sided case, it does not coincide with the

kernel (see Example 8). Furthermore, we will prove that, for more than two sides, the kernel

can be slightly modified so that a characterization of SMB(ωA) in terms of this new kernel-

based set is still possible (see Theorem 6), hence extending Rochford’s (1983) result and
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proving that her intuition about the non-appropriateness of the kernel in m-SAGs, in which

the ’essential’ coalitions consist on more than two agents, was right.

In addition to all the above, recall that an allocation belongs to the kernel of a m-sided

assignment, K(ωA), if any pair of agents in the market, namely j-i and k-l, are in equilibrium

through a bilateral bargaining, that is sj-i,k-l(x) = sk-l,j-i(x). However, as we have already

said, in a m-SAG, it is m agents (one of each side) that are needed to make a deal. Hence,

it seems natural to look for multilateral equilibria instead of bilateral equilibria. To do so

we extend the surplus functions given in (3) to include surpluses of any agent either against

essential coalitions containing her or singletons. Formally, given (N,ωA) an arbitrary m-SAG,

we introduce the following set, that is defined for any agent j-i and any B being either an

essential coalition containing j-i or a singleton,

(5) Γj-i,B = {S ⊆ N : j-i ∈ S, B * S} .

Observe that, when B is an essential coalition, let us say E, then Γj-i,E∩
{
Ẽ : Ẽ ∈ N1 × ... × Nm

}

is precisely the set introduced in (4). On the other hand, when B is a singleton, the set defined

in (5) is exactly the set defined in (2). For any x ∈ I(ωA), the surplus of agent j-i against B

at x is

(6) sj-i,B(x) = max {e(S, x) : S ∈ Γj-i,B} ,

where, again, B is either an essential coalition containing j-i or a singleton. Notice that,

for m = 2, (6) coincides with (3). This having been defined, we introduce a kernel-based

set that requires that, after a bargaining process among all agents, none of them should be

’discriminated’ against agents of her same type (P1) whereas agents of any possible essential

coalition should make a ’fair’ deal among them (P2).

Definition 4 Given an arbitrary m-SAG (N,ωA), the multi-sided kernel (in short, m-Kernel)

is the set

Km(ωA) = {x ∈ I(ωA) : x satisfies (P1) and (P2)} ,
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where

(P1) sj-i,j-l(x) = sj-l,j-i(x) for all 1 ≤ j ≤ m, 1 ≤ i 6= l ≤ n.

(P2) s1-i1,E(x) = ... = sm-im,E(x) for all E = (i1, ..., im) ∈ N1 × ... × Nm.

Notice that, in the above definition, we do not require (N,ωA) to be balanced. Moreover,

in the next section we will prove that Km(ωA) is always nonempty, regardless (N,ωA) is

balanced or not (see Theorem 5). Lastly, the reader can check that, given a balanced m-SAG

(N,ωA), if x ∈ C(ωA) then sj-i,k-l(x) = 0 for any agents j-i and k-l that are not assigned

together under some optimal matching. This implies the following remark.

Remark 1 Given a balanced m-SAG (N,ωA) and x ∈ C(ωA), then x ∈ Km(ωA) if and only

if x satisfies (P2).

4 Main results

This section is primarily devoted to prove that, for any balanced m-SAG (N,ωA), the set

SMB(ωA) is nonempty and can be characterized by the multi-sided kernel. First we show

that the kernel is always included in the multi-sided kernel.

Theorem 5 For any arbitrary m-SAG (N,ωA), the kernel of (N,ωA) is always included in

the multi-sided kernel of (N,ωA), i.e. K(ωA) ⊆ Km(ωA).

Proof. Take x ∈ K(ωA) and assume, without loss of generality, that E = (1, ..., 1) and

that s1-1,E(x) ≥ ... ≥ sm-1,E(x). On one hand, suppose that there is S∗ ∈ Γ1-1.E such that

m-1 ∈ S∗ and s1-1,E(x) = e(S∗, x). By definition of Γ1-1.E, there is j, 2 ≤ j ≤ m−1 such that

j-1 /∈ S∗. Hence, s1-1,E(x) ≥ sm-1,E(x) ≥ sm-1,j-1(x) ≥ e(S∗, x) = s1-1,E(x), which implies

that all inequalities must be tight. On the other hand, suppose that, for all S ∈ Γ1-1,E such

that m-1 ∈ S, we have that s1-1,E(x) > e(S, x). Then, s1-1,m-1(x) = s1-1,E(x) and, since

x ∈ K(ωA), we obtain that s1-1,E(x) ≥ sm-1,E(x) ≥ sm-1,1-1(x) = s1-1,m-1(x) = s1-1,E(x).
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Again, all inequalities must be tight. In conclusion, s1-1,E(x) = ... = sm-1,E(x) and, since

E = (1, ..., 1) was picked without loss of generality, K(ωA) ⊆ Km(ωA).

Example 8 at the end of the paper shows that the inclusion of K(ωA) into Km(ωA) is

sometimes strict.

The main theorem of the paper is devoted to characterizing the set of symmetrically

multilateral-bargained allocations of a balanced multi-sided assignment game in terms of the

core and the multi-sided kernel, hence generalizing Rochford’s (1983) main result.

Theorem 6 Given a balanced m-SAG (N,ωA), SMB(ωA) = C(ωA) ∩ Km(ωA).

Proof. Before proving the two inclusions we show that given µ ∈ M
∗
A(N1, ..., Nm), E ∈ µ

and j-i ∈ E then, for any x ∈ C(ωA), we have that

(7) sj-i,E(x) = −xji + tji(x).

Throughout the whole proof we will assume, without loss of generality, that µ = {(i, ..., i) :

1 ≤ i ≤ n} is an optimal matching of (N1, ..., Nm;A). In particular, given j-i an arbitrary

agent, E = (i, ..., i) is the essential coalition of µ that contains j-i. By Definition 1 and (6),

we have that, for any agent j-i,

sj-i,E(x) = max {e(S, x) : S ∈ Γj-i,E}

≥ max
{
e(S, x) : S ∈ Γξ

j-i,E

}
= −xji + tji(x).(8)

We will prove (7) by the counterreciprocal. Indeed, suppose that the above inequality is

strict, i.e., that there is S ∈ Γj-i,E such that .

(9) e(S, x) > −xji + tji(x)

Since S ∈ Γj-i,E and E = (i, ..., i), there must be k ∈ {1, ..., n} such that k-i /∈ S. Let

µ̃ ∈ M
∗
A(N1 ∩ S, ...,Nm ∩ S). We distinguish two cases.

• Case 1:
∣∣S ∩ N j

∣∣ ≤ mink∈{1,..,j−1,j+1,...,m}

∣∣S ∩ Nk
∣∣.
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In this case, j-i must be assigned under µ̃. We denote the essential coalition that

contains j-i by
(
µ̃−1

1 (i), ..., µ̃−1
m (i)

)
, where µ̃−1

j (i) = i and, for k ∈ {1, ..., j − 1, j +

1, ...,m}, µ̃−1
k (i) is the index of the agent of type k that is assigned together with j-i

under µ̃. Observe that, since k-i /∈ S, we have that µ̃−1
k (i) 6= i. Then,

e (S, x) =
∑

(i1,...,im)∈µ̃

A(i1, ..., im) −
∑

h-r∈S

xhr

= A(µ̃−1
1 (i), ..., µ̃−1

m (i)) − xji −

m∑

h=1,h 6=i

xhµ̃−1

h
(i)

+
∑

(i1,...,im)∈µ̃
ij 6=i

(
A(i1, ..., im) −

m∑

h=1

xhih

)

−x
(
S\
(
∪(i1,...,im)∈µ̃{1-i1, ...,m-im}

))

≤ −xji + A(µ̃−1
1 (i), ..., µ̃−1

m (i)) −

m∑

h=1
h 6=i

xhµ̃−1

h
(i)

≤ −xji + tji(x),

where the first inequality holds since x ∈ C(ωA) and the second inequality holds by

Definition 1, since
(
µ̃−1

1 (i), ..., µ̃−1
m (i)

)
∈ Γξ

j-i,E because µ̃−1
k (i) 6= i.

• Case 2:
∣∣S ∩ N j

∣∣ > mink∈{1,..,j−1,j+1,...,m}

∣∣S ∩ Nk
∣∣ .

If j-i is assigned under µ̃, it is left to reader to prove that an analogous argument as the

above demonstrates that e (S, x) ≤ −xji + tji(x). Thus, suppose that j-i is not assigned

under µ̃ or that there is no such µ̃. In such case we have

e (S, x) =
∑

(i1,...,im)∈µ̃

A(i1, ..., im) −
∑

hr∈S

xhr

=
∑

(i1,...,im)∈µ̃

(
A(i1, ..., im) −

m∑

h=1

xhih

)

−x
(
S\
(
{j-i} ∪(i1,...,im)∈µ̃ {1-i1, ...,m-im}

))
− xji

≤ −xji ≤ −xji + tji(x),

where the first inequality holds again because x ∈ C(ωA) and the last inequality holds

since tji(x) ≥ 0.
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In conclusion, we have proved that e(S, x) ≤ −xji+tji(x), which contradicts the assumption

made in (9). Hence, inequality in (8) must be tight, which implies that (7) must hold.

Having (7) been proved, we are in a position to prove the theorem. First we prove that

SMB(ωA) ⊇ C(ωA) ∩ Km(ωA). Indeed, take x ∈ C(ωA) ∩ Km(ωA). On one hand, since

x ∈ C(ωA), we have

(10)

m∑

k=1

xki = A(i, ..., i).

On the other hand, since x ∈ Km(ωA), we also have that sj-i,E(x) = sk-i,E(x) for all 1 ≤ k 6=

j ≤ m, where E = (i, ..., i). Thus, applying (7) we obtain that

(11) xki = xji − tji(x) + tki(x)

for all 1 ≤ k 6= j ≤ m, 1 ≤ i ≤ n. Lastly, combining (10) and (11) we get

xji = A(i, ..., i) −
m∑

k=1,k 6=j

xki

= A(i, ..., i) −
m∑

k=1,k 6=j

(xji − tji(x) + tki(x))

= A(i, ..., i) − (m − 1)xji + mtji(x) −

m∑

k=1

tki(x),

for 1 ≤ j ≤ m and 1 ≤ i ≤ n, which is equivalent to

xji = tji(x) +
1

m

(
A(i, ..., i) −

m∑

k=1

tki(x)

)
= bji(x).

In conclusion, x ∈ SMB(ωA).

Second, we prove that SMB(ωA) ⊆ C(ωA) ∩ Km(ωA). Since, by definition, SMB(ωA)

is always included in C(ωA), we only have to check that SMB(ωA) ⊆ Km(ωA). Indeed, let

x ∈ SMB(ωA). Then, for all 1 ≤ j ≤ m and 1 ≤ i ≤ n, we have that

xji = bji(x) = tji(x) +
1

m

(
A(i, ..., i) −

m∑

s=1

tsi(x)

)
.

Applying (7) to sj-i,E(x), where E = (i, ..., i), and using the above equality we obtain

sj-i,E(x) = −xji + tji(x) =
1

m

(
m∑

s=1

tsi(x) − A(i, ..., i)

)
,
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that does not depend on j. Hence, s1-i,E(x) = ... = sm-i,E(x) for any 1 ≤ i ≤ n. Since we

have chosen E = (i, ..., i) ∈ µ without loss of generality, we have proved that (P2) holds for

any essential coalition belonging to some optimal matching. It remains to show that this

implies that (P2) also holds for any coalition that does not belong to any optimal matching,

in particular µ. Let Ẽ = (i1, ..., im) be one of such coalitions and take j ∈ {2, ...,m}. On one

hand, if ij = i1, since x ∈ C(ωA), by (3) we have that s1-i1,j-i1(x) ≤ 0. On the other hand, if

ij 6= i1, we have that s1-i1,j-ij(x) = 0 because 1-i1 and j-ij are not assigned together under

µ. Hence, since Ẽ /∈ µ implies that there is at least one j ∈ {2, ...,m} such that ij 6= i1, we

obtain that

s1-i1,Ẽ
(x) = max

2≤j≤m

{
s1-i1,j-ij (x)

}
= 0.

Lastly, since above we have chosen s1-i1,Ẽ
(x) without loss of generality, then s1-i1,Ẽ

(x) = ... =

s
m-im,Ẽ

(x) = 0, that is, (P2) holds for any arbitrary essential coalition Ẽ. In conclusion,

together with Remark 1, we have proved that x ∈ Km(ωA).

A detailed revision of the above proof reveals that, in fact, given a balanced m-SAG

(N,ωA), a core allocation x belongs to Km(ωA) if and only if (P2) holds for all the essential

coalitions of an arbitrary optimal matching.

Moreover, as a consequence of the above theorem we prove that the set of symmetrically

multilateral-bargained allocations is always non-emtpy for any balanced m-SAG.

Theorem 7 Let (N,ωA) be any balanced m-SAG. Then, the set of symmetrically multilateral-

bargained allocations, SMB(ωA), is nonempty.

Proof. It holds directly from Theorem 5, Theorem 6 and the fact that C(ωA) ∩ K(ωA) is

nonempty (Schmeidler, 1969, proves it for arbitrary balanced games).

To illustrate the results contained in the paper, let us consider the following example.

Example 8 Let (N1, N2, N3;A) be an 3-SAP with two agents of each type given by the
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following matrix, where the optimal matching is marked in bold:

A =




3

0

0

0







2

0

0

0


 .

It can be checked that K(ωA) = K(ωA) ∩ C(ωA) = {(5
4 , 0; 5

4 , 0; 1
2 , 0)}, that Km(ωA) =

Km(ωA) ∩ C(ωA) = {(x11, 0;x21; 0;
1
2 , 0) : x11 + x21 = 5

2 , x11 ≥ 1
2 , x21 ≥ 1

2} and that

C(ωA) = {(x11, 0;x21; 0; 3 − x11 − x21, 0) : 2 ≤ x11 + x21 ≤ 3, x11 ≥ 0, x21 ≥ 0}. The

projections of the three latter onto the space {(x11, x21)} ⊂ R2 are drawn in Figure 1.

..

.

.

.

.

.

(0, 0)

(0, 2)

(0, 3)

(1
2 , 2)

( 5
4 , 5

4 )

(2, 0)

(2, 1
2)

(3, 0)

x11

x21

Figure 1: The core, the kernel and the m-kernel of the 3-SAG of the example.

That is, within {(x11, x21)} ⊂ R2
+, C(ωA) corresponds to the polygon delimited by (0, 2),

(2, 0), (3, 0) and (0, 3), Km(ωA) corresponds to the segment between (1
2 , 2) and (2, 1

2) and

K(ωA) corresponds to just (5
4 , 5

4 ). Observe that, in this example, K(ωA)  Km(ωA) =

SMB(ωA)  C(ωA). It is still an open question to know whether, for any balanced multi-

sided assignment game, the multi-sided kernel is always included in the core.
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