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Abstract

This paper analyzes several aspects of convergence behaviour in the Solow
growth model. In empirical work, a popular approach is to log-linearize around
the steady-state. We investigate the conditions under which this approximation
performs well, and discuss convergence behaviour when an economy is some
distance from the steady-state. A formal analysis shows that convergence speeds
will be heterogeneous across countries and over time. In particular, the Solow
model implies that convergence to a growth path from above is slower than
convergence from below. We find some support for this prediction in the data.

1 Introduction

The hypothesis of conditional convergence is central to the recent empirical growth
literature. The hypothesis is that any given country can be viewed as converging to
a balanced growth path, and the country’s distance from this balanced growth path
will influence its growth rate. Countries a long way below their steady-state path
will show relatively fast growth, while countries a long way above their steady-state
position will grow relatively slowly, and perhaps even see reductions in GDP per
worker. In general, if we control for the determinants of the level of the steady-state
path, countries that are relatively poor will grow more quickly.

From the perspective of traditional time series analysis, this is really not much
more than a partial adjustment model. Models of economic growth add to this by
making quantitative predictions about the speed at which economies will converge
towards the long-run equilibrium. Testing these predictions may be informative
about key structural parameters. The rate at which countries converge to a steady-
state path also tells us whether transitional dynamics or steady-state behaviour play
the dominant role in observed patterns of growth rates. For economies that take
a long time to converge to their steady-state, transitional dynamics are important,

∗We are grateful to Edmund Cannon for helpful suggestions. The usual disclaimer applies.
†Corresponding author. Email: jon.temple@bristol.ac.uk
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while economies that converge rapidly will often be close to their steady-state posi-
tions, and differences in growth might then be attributed to steady-states that are
changing over time.

Even if the rate of convergence is not the focus of interest, the partial adjustment
model has implications for cross-section and panel data studies. Since the key stud-
ies of Baumol (1986), Barro (1991), Barro and Sala-i-Martin (1992), and Mankiw,
Romer, and Weil (1992), empirical models of growth have routinely controlled for
the initial level of GDP per capita or GDP per worker. This idea has influenced
ongoing empirical debates that predate the conditional convergence literature by
several decades, such as studies of the growth effects of foreign aid.

In this article, we focus on the conditional convergence effect in more detail than
is usual. We study this effect for the Solow (1956) model of growth. As is now well
known, the Solow model can be used to derive a conditional convergence relationship
between growth and initial income. The argument relies on a first-order Taylor series
approximation of the governing equations around the steady-state. This also allows
the derivation of speeds of convergence and half-life times in the neighbourhood of
the steady-state. The advantage of this approach is that it yields linear, analytical
solutions even if the governing equations are highly non-linear and difficult to solve.
The weakness of this approach is that its validity is strictly limited to within the
close vicinity of the steady-state.

Although the Taylor series approximation is a standard theoretical justification
for conditional convergence effects, its accuracy has rarely been studied in a sys-
tematic way, with Reiss (2000) as the leading exception. We will extend this line of
research in a number of ways. We will consider several alternative definitions of the
speed of convergence. Near the steady-state, these will give identical answers, but
otherwise the precise definition matters. Further from the steady-state, the speed
of convergence will not be constant, and the standard Taylor series approximation
may then be a poor guide to growth behaviour. We will study the accuracy of this
approximation for the Cobb-Douglas case. We also show that, although in principle
the use of higher-order approximations should improve accuracy, in practice they do
not always preserve the qualitative properties of the governing dynamic equation.

Our second main contribution is to show that these issues are more than simply
a technical nicety. The standard Taylor series approximation leads to an equation
for growth in which the coefficient on initial income is likely to be broadly the same
across countries. This helps to justify the use of initial income in growth regressions,
and these regressions usually assume that the effect of initial income is homogeneous
across countries. If countries are not in the neighbourhood of the steady-state, this
assumption is no longer true. We show that the coefficient on initial income can then
be written as an integral of a time-varying convergence rate. Moreover, this integral
depends on the distance between an economy’s initial position and the steady-state.

The practical implication of this is that the coefficient on initial income will
vary across countries. We investigate an especially stark example of this. The
analytical results that we develop suggest that the coefficient on initial income will
be higher (in absolute terms) for countries converging to a steady-state from below,
compared to countries converging from above. Work by Cho and Graham (1996) has

2



suggested that convergence from above is not a rare phenomenon. We use a standard
method for dividing countries into two such groups, and find that the hypothesis of
heterogeneous convergence effects has some support in the data. This is consistent
with standard growth models, once we relax the assumption that economies are close
to their respective steady-states.

Since much of the analysis in the paper is relatively technical, we now pro-
vide a detailed overview. In section 2, we present a detailed review of the Solow
model, including the key assumptions on which it is based, its fundamental govern-
ing equations, and its main predictions. We also discuss the particular case of a
Cobb-Douglas production function.

In analysing conditional convergence, one question that arises is whether to lin-
earise or log-linearise the governing equation. In the neighbourhood of the steady-
state, identical speeds of convergence are found for output and capital, regardless
of whether the governing equations have been linearised or log-linearised (see for
example Romer (2001) and Barro & Sala-i-Martin (2004)). But it is desirable to
obtain speeds of convergence and half-life times away from the steady-state. After
all, it is these departures that motivate the focus on conditional convergence in the
first place. Once away from the steady-state, the precise definition of the rate of
convergence becomes important, and the analysis becomes more complicated. For
example, working on the Cobb-Douglas case, Reiss (2000) has shown that output
and capital converge at different rates when away from the steady-state, when using
certain measures of the convergence rate.

Our analysis in section 3 begins by noting that commonly used definitions of
speed of convergence and half-life times can be classified into two types: those based
on ordinary variables (OVs) and those based on log variables (LVs).1 Linearising
about the steady-state leads to OV-based definitions of speed of convergence while
log-linearising leads to LV-based definitions. Both OV-based and LV-based measures
yield one speed of convergence (and hence half-life time) for output and capital in
the neighbourhood of the steady-state. Outside the neighbourhood of the steady-
state, these speeds may differ, and OV-based and LV-based measures are shown to
give different conclusions.

Since we focus on behaviour away from the steady-state, it is natural to ask
whether significant gains are obtained by adding more terms to the widely used
first-order Taylor expansions near the steady-state. Thus, in an appendix, we derive
quadratic and cubic log expansions and compare their performance to that of the
linear expansion. The cubic (and any higher order expansion) is relatively difficult
to solve, and the solution obtained will be too complicated to offer useful insights
into the transitional dynamics. The quadratic expansion yields a solution which is
generally more accurate than the linear solution, but it can give results that are
not consistent with the exact solution; for certain initial positions, the quadratic
solution predicts that the economy will evolve away from the steady-state. The
analysis therefore shows that the linear log expansion, although the least accurate
away from the steady-state, always gives qualitative results that are consistent with

1Note that what is referred to as the OV-frame here is also called the linear scale, and the

LV-frame is also called the log (or ratio) scale.
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the exact solution, and is simplest to derive and solve. The linear log expansion is
therefore the most useful for many purposes.

In section 4, we study convergence behaviour far from steady-state. We find
that speeds of convergence and half-life definitions derived in the OV-based frame
generally lead to different predictions from those derived in LV-based frames. OV-
based speed-of-convergence definitions yield different speeds for output and capital,
while LV-based measures give identical speeds. We derive OV-based and LV-based
formulas for the half-life times of capital and output, and demonstrate that the
properties of the half-life times are consistent with those of the associated OV-based
and LV-based speeds of convergence, respectively.

By focusing on the case of a Cobb-Douglas production function, we confirm
the finding of Reiss (2000) that OV-based definitions always yield unequal speeds of
convergence (and half-life times) for output and capital. For example, if the exponent
of capital is between 0 and 1, then as the economy converges to its balanced growth
path from below, the speed of convergence for output is shown to increase while that
for capital decreases, towards the (common) rate that obtains in the steady-state.
In terms of LVs, the evolution equations for output and capital are essentially the
same, and hence the LV-based definitions give identical speeds of convergence for
output and capital. The LV-based speed of convergence is shown to decrease as an
economy approaches its balanced growth path from below, and increase (towards
the speed observed when close to the steady-state) when approaching from above.

In section 5, we derive the empirical implications of allowing economies to be far
from their steady-state. In particular, as noted above, we show that the coefficient
on initial income can be expressed as an integral over time of a time-varying rate of
convergence. Since the convergence rate varies with an economy’s distance from its
steady-state, so does this integral. This implies that the coefficient on initial income
will be heterogeneous across economies when some are far from their steady-state
positions, contrary to the usual assumption in the empirical literature.

In section 6, we investigate the more specific hypothesis that LV-based speeds of
convergence should be higher for economies converging to their steady-states from
below than for economies converging from above. By modifying standard growth
regressions, we show how to test this hypothesis, and find there is some support for
the hypothesis in the data.

We remark that the material contained in section 2 is well-known, presented
here because it forms the basis of subsequent analyses. The material in section 3
is also standard, but the approach employed here to derive the linear expansions
and the speed-of-convergence definitions is relatively systematic. The rest of the
material, consisting of sections 4, 5 and 6, and the appendix (the comparison of
linear, quadratic and cubic log expansions), represent the original contributions of
this paper.

2 The Solow model

The Solow model of economic growth forms the basis of the work presented in this
article. In this section we derive the model and present its main results, first for
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a general production function and then for the case of a Cobb-Douglas production
function.

We consider a closed economy in which output Y (t) is generated according to
the production function

Y = F (K, AL), (1)

where K(t), capital, L(t), labour, and A(t), the level of technology, are all functions
of time. The function F is assumed to be at least twice differentiable, satisfies the
Inada conditions, has positive, diminishing returns to each of its arguments, and
constant returns to scale. The rates of saving, population growth, and technological
progress are taken as exogenous, and L and A are assumed to grow at constant rates
according to

L̇ = nL, (2)

Ȧ = gA, (3)

where L̇ = dL/dt. Capital, however, is taken to accumulate endogenously according
to

K̇ = sY − δK, (4)

where s is the rate of saving and δ is the rate of capital depreciation. The input
variables of the model are capital and labour, which are assumed to be paid their
marginal products. It is convenient to introduce the variables y = Y/(AL) and
k = K/(AL), where AL is a measure of the effective units of labour. The equations
(1) and (4) become

y = f(k), (5)

k̇ = sf(k)− (n + g + δ)k, (6)

respectively. The equations (5) and (6) are the fundamental equations of the Solow
model and they describes the evolution of y(t) and k(t) in time.2 Equation (6) says
the rate of change of k is given by actual investment per unit of effective labour,
sf(k), less (n + g + δ)k, the amount of investment required to keep k at its existing
level.3 The amount of investment required to keep k from falling due to depreciation
is δk. This amount of investment is not enough to keep k constant though, because
effective labour is also growing

(
at the rate (n + g)

)
. Thus the total investment

required to keep k at its existing level is (n + g + δ)k.

When sf(k) exceeds (n + g + δ)k, the capital per effective unit of labour grows,
and when sf(k) is lower than (n + g + δ)k, the capital per effective unit of labour
falls. The point at which

sf
(
k̂
)

= (n + g + δ)k̂, (7)

represents the steady-state level at which k̇ = 0.4 Note that since ẏ = k̇f ′(k) and
f ′(k) is finite and vanishes nowhere in 0 < k < ∞, at the steady-state ẏ = 0 as

2Note that f(k) ≡ F
`
k, 1

´
and, since F satisfies the Inada conditions, lim

k→0
f ′(k) = ∞ and

lim
k→∞

f ′(k) = 0.
3Note that in this context, it has been assumed that saving equals investment.
4We use the hat to denote steady-state variables.
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k

k̇(t)

k = k̂

Slope of this line = k̇/k = γk

Directed length of this line = k̇

Figure 1: Phase diagram showing how k̇ varies with k for a typical neoclassical production
function. The horizontal arrows indicate the direction in which the economy evolves.

well. The situation is illustrated in figure 1 which shows a phase diagram where k̇

is plotted against k. It shows that if the initial level of k is less than k̂, then k(t)
grows towards k̂. If it is initially greater than k̂, then it decays towards k̂. Thus,
regardless of its initial position, the economy always evolves towards the steady-
state k = k̂, demonstrating that k = k̂ is a stable equilibrium. In the steady-state,
K = ALk̂ and, since k̂ is constant, the growth rate of K (and Y ) is given by (n+g).
Also, with K/L = Ak̂ and Y/L = Aŷ, the growth rate of both output per capita
Y/L and capital per capita K/L is thus g − demonstrating that, on the balanced
growth path, the growth rate of per capita variables is determined only by the rate
of technological progress.

From (7), the steady-state level of the economy is determined by the exogenous
parameters s, n, g and δ. Economies for which these parameters are equal (that
is, economies that are structurally similar) will have the same steady-state level.
We analyse the effects of changes in these parameters on the steady-state level k̂.

Differentiating (7) with respect to s gives

f
(
k̂
)

+ s
∂k̂

∂s
f ′
(
k̂
)

= (n + g + δ)
∂k̂

∂s
.

Then, rearranging using (7) and noting that k̂f ′
(
k̂
)
/f
(
k̂
)

is the elasticity of out-
put with respect to capital at steady-state, equal to capital’s share of output, and
denoted α

(
k̂
)

here, gives
∂ log k̂

∂ log s
=

1

1− α
(
k̂
) . (8)

Since 0 < α
(
k̂
)

< 1, this expression is always positive. In fact, as α increases from
zero to one, the absolute value of (8) increases from 1 to ∞. Thus there is a positive
functional dependence of k̂ on s, indicating that an increase in the saving rate, all
other parameters kept fixed, leads to a higher steady-state level.
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It can also be shown that

∂ log k̂

∂ log n
=

−n(
1− α

(
k̂
))

(n + g + δ)
< 0. (9)

In a similar manner, the elasticities of k̂ with respect to g and δ are also negative.
Therefore, an increase in any of the parameters n, g or δ leads to a lower steady-state
level. In the case of an increase in the rate of depreciation, for example, the steady-
state level falls because more savings have to go into the replacement of worn-out
capital.

Next, to gain more insight into the behaviour of the economy as it evolves towards
the steady-state, we analyse the growth rate of k, denoted γk. From (6) and through
the use of (7), this can be expressed as

γk(t) =
d
dt

[
ln k(t)

]
=

sf(k)
k

− (n + g + δ)

= (n + g + δ)
[
Y
K
− 1
]

, (10)

where Y = y/ŷ and K = k/k̂. Notice that γk(t) is related to γy(t) through α(k), as
follows:

γy(t) =
d
dt

[
ln y(t)

]
=

kf ′(k)
f(k)

[
sf(k)

k
− (n + g + δ)

]
= γk(t)α(k). (11)

Since 0 < α(k) < 1, the growth rate γy(t) will be a fraction of γk(t), but the two will
always bear the same sign. These expressions indicate that in the steady-state where
Y = K = 1, the growth rates of k(t) and y(t) vanish, as expected. Away from the
steady-state, using L’Hopital’s rule and the Inada conditions, yields lim

k→0
(Y/K) = ∞

and lim
k→∞

(Y/K) = 0. Thus for economies with k < k̂, the growth rate is positive and

increases with distance from k = k̂. In the limit lim
k→0

γk = ∞. Above k = k̂, growth

rates are negative, ranging from γk = 0 when k = k̂ to γk = −(n + g + δ) in the
limit k →∞. A graphical illustration of γk is shown in figures 1 and 2.

The form of γk means that, for two structurally similar economies which differ
only in their initial endowments of k, both starting with K < 1, the poor economy
will have a higher growth rate than the rich one. The poor economy will have a
higher growth rate so long as it remains poorer than the other economy. The growth
rates equalise only when the poor economy catches up with the initially rich economy.
For K > 1, richer economies are shown to decay faster than (and hence converge
to) poor economies nearer to the steady-state. Thus, the Solow model predicts that
structurally similar economies converge in the long run. The hypothesis that poor
economies generally grow faster than (and hence converge to) rich ones is called
absolute convergence. Empirical evidence of growth experiences of a broad selection
of countries (e.g. Barro and Sala-i-Martin 2004) shows no correlation between initial
output levels and subsequent rates of growth. In this case, then, the hypothesis of
absolute convergence appears to be rejected by the data. The explanation for this is
the presence of heterogeneities across these countries whereas the notion of absolute
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K

γk

K = 1

−(n + g + δ)

Figure 2: The growth rate γk plotted as a function of K. The arrows show the direction
and relative magnitude of the growth rate.

convergence is based on the assumption that all parameters, except the initial levels
of capital, are identical. We note that a potential weakness of these empirical studies
is the lack of a wide range of reliable data over long periods. Consequently, to avoid
the problem of “selection bias”, the studies use data over time periods that may not
be sufficiently long.

Empirical studies of growth rates of more homogeneous groups of economies
(e.g. Barro & Sala-i-Martin 2004, Sala-i-Martin 1996) show significant agreement
with the hypothesis of absolute convergence. Data on the OECD economies (from
1960 to 1990), states of the United States (from 1880 to 1992), and the Japanese
prefectures (from 1930 to 1990) all show that poor regions (states) generally grow
faster per capita than rich ones. The convergence exhibited by these data occurs
without conditioning on any other characteristics of the economies besides the initial
level of per capita product or output, and hence it is absolute. This is consistent
with the model because these economies may have essentially similar characteristics
like technologies, tastes, and political institutions. Because of the relatively homo-
geneous conditions, the economies will have similar steady-state levels, and hence
converge in the long-run.

For the case where heterogeneities across economies are significant, the differ-
ences in the parameters of the economies imply that they will have different steady-
states. A graphical representation of the form shown in figure 2 would have multiple
growth curves along which each of the economies traverse. In this situation, the
notion of conditional convergence asserts that an economy’s rate of growth is pro-
portional to the distance from its own steady-state level. Thus, the growth rate of
a poor economy may be lower than that of a rich economy if the poor economy is
proportionately closer to its steady-state than the rich one.
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Cobb-Douglas Production Function

The most widely used production function, which satisfies the properties of a neoclas-
sical production function and may provide a reasonable description of real economies,
is Cobb-Douglas. It is instructive to study the Solow model characterised by a Cobb-
Douglas production function because, in this case, an exact analytical solution can
be found, which greatly enhances comparative analysis. The formula (1) is thus
replaced by

Y = Kα(AL)1−α, 0 < α < 1. (12)

The system of equations that govern the evolution of capital and output per effective
unit of labour become

y = kα, (13)

k̇ = skα − (n + g + δ)k, (14)

ẏ = αsy2− 1
α − α(n + g + δ)y. (15)

Exact analytical solutions of the evolution equations (14) and (15) can be found,
and they are given by

k(t) =
[

s

(n + g + δ)

(
1− e−λt

)
+ k1−α

0 e−λt

] 1
1−α

, (16)

y(t) =
[

s

(n + g + δ)

(
1− e−λt

)
+ k1−α

0 e−λt

] α
1−α

, (17)

respectively, where λ = (1−α)(n+g+δ) and k0 = k(0) is the initial level of capital.5

These expressions show that the time-dependent components of k(t) and y(t) decay
exponentially with time, and hence the economy approaches a steady-state level in
the long-run, given by

k̂ =
[

s

(n + g + δ)

] 1
1−α

, (18)

ŷ =
[

s

(n + g + δ)

] α
1−α

. (19)

The terms that decay include those that depend on the initial level of capital k0.

Hence the steady-state level of the economy is independent of its initial position,
but is determined by the exogenous parameters s, n, g and δ.

As the economy approaches steady-state, the growth rate of capital is given by

γk =
k̇

k
= (n + g + δ)

(
k̂1−α − k1−α

0

)[
k(t)

]α−1
e−λt

= (n + g + δ)
(
1−K1−α

0

)
Kα−1e−λt. (20)

Since the terms (n+g+δ), k(t) and eλt are all positive, the sign of γk is determined
by whether k0 is less or greater than k̂. If k0 < k̂, then γk is positive implying growth

5A full solution of (14), previously obtained by, for example, Williams and Crouch (1972), is

presented in the appendix.
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while for k0 > k̂, γk is negative and k decays in time. The absolute magnitude of
the initial growth rate, given by

|γk(0)| = (n + g + δ)
∣∣∣Kα−1

0 − 1
∣∣∣,

is proportional to the distance of K0 from 1, taking small values when K0 is in the
neighbourhood of 1 and large values when K0 is far from 1. With the exponent
(α− 1) < 0, when K0 → 0 we have γk(0) →∞, and as K0 →∞, the initial growth
rate γk(0) → −(n + g + δ). The magnitude of γk at subsequent times then decreases
to zero because the term e−λt, equal to one at t = 0, goes to zero as t → ∞. Thus
k approaches k̂ (that is, the economy approaches the steady-state) asymptotically
from below if k0 < k̂, and from above if k0 > k̂. Hence the level k = k̂ is a stable
equilibrium.

These results are of course in accord with the well-known findings of the previous
section based on a general neoclassical production function.

3 Convergence behaviour near steady-state

As the analysis of the previous section has shown, a central result of the Solow model
of economic growth is conditional convergence − that is, the farther an economy is
below its steady-state level, the higher will be its growth rate (other parameters
equal). A key question that arises as a consequence of this prediction is how long
it takes for an out-of-equilibrium economy to adjust to steady-state. The answer
to this question is pivotal because it determines whether transitional dynamics or
steady-state behaviour is important in the study of an economy’s time evolution.
Transitional dynamics are important if an economy takes a long time to adjust
to steady-state, and steady-state behaviour is important if the economy adjusts
rapidly. For a variable X (t) which evolves from an initial value X (0) = X0 towards
a steady-state level X̂ , commonly used measures of its speed of convergence can
be classified into two types. First, those derived with respect to X and, second,
those derived with respect to lnX . Here we refer to definitions of the first type
as ordinary-variable (OV) based and those of the second type as log-variable (LV)
based. OV-based definitions of speed of convergence include

Λ1X (t) = − Ẋ (t)
X (t)− X̂

, and (21)

Λ2X (t) = −dẊ
dX

, (22)

where Ẋ = dX/dt. Commonly used LV-based definitions of speed of convergence
are

Λ3X (t) = −
d
[
lnX (t)

]
/dt

lnX (t)− ln X̂
, and (23)

Λ4X (t) = − d
d lnX

d
dt

(
lnX (t)

)
= −d(Ẋ/X )

d lnX
. (24)
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Another measure closely related to the speed of convergence is the half-life of X (t).
Again there are two slightly different definitions, one OV-based and the other LV-
based, given by

1
2(X0 − X̂ ) = X (TX )− X̂ , and (25)

1
2(lnX0 − ln X̂ ) = lnX (TX )− ln X̂ , (26)

respectively, where TX and TX are used to denote half-life times obtained using the
two approaches.

The standard approach to studying properties of transitional behaviour is to
derive OV- or LV-based linear expansions in the neighbourhood of the steady-state.
With the governing equations generally difficult to solve because of the non-linear
form of the production function, this approach usually yields equations that are
straightforward to solve. The solutions obtained this way are in exact analytical
form and hence useful to analyse the structural properties of transitional dynamics.
Moreover, their linear form makes them ideal for use in linear regression empirical
tests.

The formulas (21)−(26) are usually applied to the linearised equations to calcu-
late speeds of convergence and half-life times in the neighbourhood of the steady-
state. In this context, all the definitions yield the same speed of convergence (and
hence half-life times) for both k(t) and y(t). For example, Romer (2001) has used
definition (22) while Barro and Sala-i-Martin (2004) have employed definition (24),
and have found the same speed of convergence for k(t) and y(t) near the steady-
state. On the other hand, Reiss (2000) has used definition (21) and found that,
outside the vicinity of the steady-state, k(t) and y(t) generally exhibit different con-
vergence behaviours, while Okada (2006) has used definitions (23) and (24).6 Since
the idea of the speed of convergence is most useful for the study of out-of-equilibrium
economies, the question of whether the definitions provide consistent results outside
the neighbourhood of the steady-state is important. We consider convergence be-
haviour outside the vicinity of the steady-state in the next section.

In this section, we analyse convergence behaviour near the steady-state. We
conduct a comparative study of convergence properties as predicted by the speed of
convergence and half-life time definitions (21)−(26). In section 3.1, working with a
general production function, we demonstrate that the different speed-of-convergence
definitions arise as a result of linearising with respect to different variables (OVs or
LVs) and using different approaches to measuring convergence speed. All definitions
are shown to yield the same speed of convergence for both k(t) and y(t) near the
steady-state. In an appendix, we consider the question of how useful and reliable
the widely used linear expansion is. Using a Cobb-Douglas production function, we
derive quadratic and cubic log expansions and compare their performances against
the exact solution with that of the linear expansion. It is shown that, despite its

6Reiss uses definition (21) throughout his analysis. Note that, as our study demonstrates below,

definition (24) is also a legitimate measure of the speed of convergence. It differs from the definition

(21) because, (i), it is LV-based while (21) is an OV-based measure and (ii), it measures speed

through a different mechanism. Moreover, since X and Ẋ are functions of time, Λ3 is also a

function of time, just like Λ1.
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being the least accurate in quantitative terms, the linear log expansion is the most
useful, for reasons explained in the appendix.

3.1 Linear expansions

In this section, we show how linearising in terms of OVs leads to Λ1- and Λ2-type
definitions while linearising in terms of LVs leads to Λ3- and Λ4-type definitions. All
definitions are shown to yield the same speed of convergence for both y(t) and k(t)
in the neighbourhood of the steady-state.

3.1.1 Measuring speed of convergence

Both in terms of OVs and LVs, there are two different approaches to measuring the
speed with which the variable X (t)

(
or lnX (t)

)
is converging to its steady-state

level X̂ . The first is to measure the proportional rate at which the gap
∣∣X (t) − X̂

∣∣(
or
∣∣ lnX (t) − ln X̂

∣∣) is decreasing. In effect, this approach defines the speed of
convergence as the growth rate of

∣∣X (t)− X̂
∣∣ (or

∣∣ lnX (t)− ln X̂
∣∣). It will become

apparent that the definitions Λ1 and Λ3 are based on this approach.
The second approach involves measuring the proportional rate at which the slope

of the X (t)
(
or lnX (t)

)
curve changes in time as X (t)

(
or lnX (t)

)
approaches X̂ (or

ln X̂ ). This approach defines the speed of convergence as the growth rate of Ẋ (t)(
or d

[
lnX (t)

]
/dt
)
. While speeds of convergence derived using the two approaches

are generally unequal (unless Ẋ is a linear function of X in the case of OV-based
definitions), they simplify to the same expression in the vicinity of X = X̂ . Moreover,
both OV-based and LV-based definitions yield identical expressions in the vicinity
of the steady-state.

3.2 Speed of convergence measures

For an economy characterised by a general production function, the Solow funda-
mental equations that describe the time evolution of variables per unit of effective
labour take the form

y = f(k), (27)

k̇ = F(k) = sf(k)− (n + g + δ)k, (28)

ẏ = k̇f ′(k) = f ′(k)
[
sf(k)− (n + g + δ)k

]
, (29)

where f ′(k) = df/dk. The condition satisfied in the steady-state is given by

sf
(
k̂
)

= (n + g + δ)k̂. (30)

Valuable insight into the behaviour of the economy near the steady-state is usually
gained by approximating the governing equations using OV- or LV-based Taylor
expansions. Linear expansions are the most commonly used.

12



To analyse behaviour predicted by the system (27)−(29) near the steady-state,
we first derive an OV-based linear expansion of equation (28), to get

d
dt

(
k − k̂

)
=

[
sf ′(k̂)− (n + g + δ)

]
(k − k̂)

= −

(
1− k̂f ′(k̂)

f(k̂)

)
(n + g + δ)(k − k̂)

= −
(
1− α

(
k̂
))

(n + g + δ)(k − k̂), (31)

where we have used (30) and the fact that kf ′(k)/f(k) = α(k) is capital’s share of
output. Since k̂ is time-independent, α is constant along the balanced growth path.
Dividing both sides of (31) by (k− k̂) reveals that the coefficient −(1−α)(n+g + δ)
is the growth rate of (k− k̂), that is, the proportional rate at which the gap (k− k̂)
is decreasing in time. The negated growth rate of (k − k̂) is defined as the speed of
convergence of the variable k(t) onto k̂, denoted

Λ1k = (1− α)(n + g + δ) = −
d
(
k − k̂

)
/dt

k − k̂
. (32)

By noting that k− k̂ = ∆k and letting ∆k → 0 in the neighbourhood of the steady-
state, yields

lim
∆k→0

d(∆k)/dt

∆k
=

dk̇

dk
.

This is the proportional rate at which the slope of k(t) changes in time, and hence
provides an alternative approach to measuring the speed of convergence

Λ2k = −dk̇

dk
. (33)

Therefore Λ2 = Λ1 in the vicinity of the steady-state level. Away from the steady-
state, Λ1(tp) measures the (negative) slope of the straight line joining

[
k(tp), k̇(tp)

]
and (k̂, 0) in the phase plane, while Λ2(tp) measures the instantaneous slope of k̇ at
time t = tp, that is, the growth rate of k̇. A graphical illustration is shown in figure
3.

To linearise the output equation (29), first note that
∂

∂y
=

∂

∂f(k)
=

1
f ′

∂

∂k
. Thus we have

d
dt

(
y − ŷ

)
=

{
sf ′(k̂)− (n + g + δ) +

f ′′(k̂)

f ′(k̂)
F(k̂)

}(
y − ŷ

)
,

and since F(k̂) = sf(k̂)− (n + g + δ)k̂ = 0, this becomes

d
dt

(
y − ŷ

)
=

[
sf ′(k̂)− (n + g + δ)

]
(y − ŷ)

= −
(
1− α

(
k̂
))

(n + g + δ)(y − ŷ). (34)

Comparing this equation with (31) indicates that OV-based linear Taylor expansions
yield identical evolution equations for output and capital in the neighbourhood of
the steady-state.
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k(t)
k(tp)

k̇(t)

k = k̂

k̇(tp) Slope of this line is

k̇(tp)/
[
k̂ − k(tp)

]
= −Λ1k(tp)

Slope of this tangent line is dk̇(tp)/dk = −Λ2k(tp)

Slope of this line = k̇/k = γk(tp)

Figure 3: Graphical illustration of the speed of convergence definitions Λ1 and Λ2 for a
neoclassical production function.

Next, we consider LV-based linear expansions. As mentioned earlier, LVs are
widely used in empirical analyses because they can lead to linear equations. More-
over, coefficients of explanatory LVs in linear equations have an economic interpre-
tation − they give the elasticity of the dependent OV with respect to the particular
explanatory OV. It is thus very common to derive LV-based linear expansions to
study behaviour near steady-state. We demonstrate how these expansions lead to
the Λ3- and Λ4-definitions. Dividing equation (28) by k gives a differential equation
for ln k(t)

k̇

k
=

d
dt

[
ln k(t)

]
= H(k) = s

f(k)
k

− (n + g + δ). (35)

Then, in linearising this equation with respect to ln k(t), it is convenient to use the

chain-rule formula
∂

∂ ln k
= k

∂

∂k
to differentiate the terms on the right hand side,

and we obtain

d
dt

[
ln k̂ +

(
ln k − ln k̂

)]
= s

(
f ′(k̂)−

f
(
k̂
)

k̂

)(
ln k − ln k̂

)
d
dt

(
ln k − ln k̂

)
= −

(
1− k̂f ′(k̂)

f(k̂)

)(
n + g + δ

)(
ln k − ln k̂

)
= −

(
1− α

(
k̂
))

(n + g + δ)(ln k − ln k̂). (36)

From this equation, the (negated) proportional rate at which the gap
(
ln k− ln k̂

)
=

lnK decreases is given by

Λ3k = (1− α)(n + g + δ) = −
d
(
ln k − ln k̂

)
/dt(

ln k − ln k̂
) . (37)
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This expression is the log-based counterpart of Λ1. It can be written in the form

Λ3k = −
d
[
ln(k/k̂)

]/
dt

ln(k/k̂)
= − d

dt

[
ln
(
lnK

)]
,

which shows that the Λ3k measure is the negated growth rate of lnK. The last term
in (37) can be written as

−
d
[
∆ ln k

]
/dt[

∆ ln k]

and, in the limit ∆ ln k → 0, this yields

Λ4k = −
∂
[
d(ln k)/dt

]
∂ ln k

= − d
dt

[
ln(k̇/k)

]
= − d

dt

[
ln γk(t)

]
. (38)

This shows that the Λ4k definition measures the negated ‘growth rate of the growth
rate’. Hence Λ4 = Λ3 in the vicinity of the steady-state k = k̂. Far from steady-state,
Λ3k(tp) gives the slope of the straight line joining the points

[
ln k(tp), d

dt

[
ln k(tp)

]]
and

[
ln k̂, 0

]
while Λ4k(tp) measures the instantaneous slope of the d

dt

[
ln k(t)

]
curve

at time t = tp. The situation is illustrated in figure 4 which shows a phase diagram
for the equation (35). Notice that, while for the associated OV-based equation (28),
the function F(k) is concave down because F ′′(k) = sf ′′(k) < 0, for the LV-based
equation (35), the function H(k) is monotone decreasing because

∂H
∂ ln k

=
sf(k)

k

(
α(k)− 1

)
< 0.

Use of L’Hopital’s rule shows that lim
k→0

H(k) = ∞ while lim
k→∞

H(k) = −(n + g +

δ), implying that H(k) is concave up. The properties of the functions F and H
are thus qualitatively different, and this means that we can expect inconsistencies
between OV-based and LV-based results, especially far from steady-state. Analysis
of convergence behaviour far from steady-state will be presented in section 4.

Log-linearising the output equation (29) requires the use of the formula
∂

∂ ln y
=

∂

∂ ln f(k)
=

f

f ′
∂

∂k
, and yields

d
dt

[
ln ŷ +

(
ln y − ln ŷ

)]
=

{(
f ′′
(
k̂
)

f ′
(
k̂
) − f ′

(
k̂
)

f
(
k̂
) )F(k̂)+ F ′

(
k̂
)} (

ln y − ln ŷ
)

=
[
sf ′(k̂)− (n + g + δ)

](
ln k − ln k̂

)
d
dt

(
ln y − ln ŷ

)
= −

(
1− α

(
k̂
))

(n + g + δ)(ln y − ln ŷ), (39)

where the relation ŷ = f
(
k̂
)

has been used. Thus the LV-based linear expansions
also give identical evolution equations for capital and output.

While evolution equations derived in terms of LVs generally have different prop-
erties to those derived in terms of OVs, it can be shown that the LV- and OV-based
linear expansions are equivalent in the neighbourhood of the steady-state. Using
the property lnx ' (x − 1) around x = 1, we can write ln k − ln k̂ ' k/k̂ − 1 near
k = k̂, and the equation (36) can be expressed as

d
dt

[
k/k̂ − 1

]
' −(1− α)(n + g + δ)(k/k̂ − 1)
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ln k(t)ln k(tp)

d
dt

[
ln k(t)

]

ln k = ln k̂

Slope of this line is(
k̇/k

)
/
[
ln k̂ − ln k

]
= −Λ3k(tp)

Slope of this tangent line is d
(
k̇/k

)
/d ln k = −Λ4k(tp)

Figure 4: Graphical illustration of the speed of convergence definitions Λ3 and Λ4 for a
neoclassical production function.

which is the same as the OV-based equation (31), for example.

Thus all four definitions of the speed of convergence yield the same value in the
vicinity of steady-state, for capital and output. The expression (1 − α)(n + g + δ)
implies that the speed of convergence is negatively related to α and positively related
to n, g, and δ. The speed of convergence in this regime is independent of both the
saving rate and the actual distance of the economy from steady-state.

4 Convergence behaviour far from steady-state

The conventional approach to studying transitional behaviour is first to linearise
or log-linearise about the steady-state, as demonstrated in the previous section.
However, measures derived using this approach are not applicable far from steady-
state, and yet convergence information is most useful in the study of economies far
from steady-state. Studies that analyse convergence measures far from steady-state
are limited. They include the work of Reiss (2000) who has employed the OV-based
Λ1-definition and found different convergence behaviours for capital and output. In
this section, we extend this analysis and study the predictions of all the OV-based
and LV-based measures introduced in section 3. Using a Solow model characterised
by a Cobb-Douglas production function, we calculate expressions for the speed of
convergence using the Λ1-, Λ2-, Λ3- and Λ4-definitions. We demonstrate that the
OV-based measures give unequal speeds of convergence for capital and output far
from steady-state. The LV-based measures give equal speeds of convergence for
capital and output even far from steady-state. We compare the OV-based and LV-
based definitions of half-life times of convergence. The OV-based and LV-based
definitions represent the times at which the variable X is equal to the arithmetic
and geometric mean of X0 and X̂ , respectively.
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4.1 Speed of convergence

It is convenient to begin by stating the evolution equations of k(t) and y(t) applicable
in this case, given by

k̇ = B(k) = skα − (n + g + δ)k, (40)

ẏ = D(y) = αsy2− 1
α − α(n + g + δ)y. (41)

As already noted, in this case the exact solutions are known, and hence the exact
values of convergence parameters can be found even outside the vicinity of the
steady-state. We calculate expressions of speed of convergence for capital and output
based on the Λ1-, Λ2-, Λ3- and Λ4-definitions.

The Λ1-definition gives the following speeds of convergence

Λ1k =
k̇

k̂ − k
=

γk(t)(
1
K − 1

)
= (n + g + δ)

(Kα−1 − 1)(
1
K − 1

) (42)

Λ1y =
ẏ

ŷ − y
=

αγk(t)(
1
Y − 1

)
= α(n + g + δ)

(Kα−1 − 1)(
1
Kα − 1

) (43)

where K = k/k̂, Y = y/ŷ and Y = Kα. We remark that the final line of (43) is
the same as the expression presented by Reiss (2000). The Λ2-definition gives the
following speeds of convergence

Λ2k = −dk̇

dk
= (1− α)(n + g + δ)− αγk(t)

= (n + g + δ)(1− αKα−1) (44)

Λ2y = −dẏ

dy
= (1− α)(n + g + δ) + (1− 2α)γk(t)

= (n + g + δ)
[
α + (1− 2α)Kα−1

]
. (45)

Notice that in terms of LVs the evolution equation for ln y(t) is α(t) times the
evolution equation of ln k(t) in general. In the Cobb-Douglas case, α is constant at
all times, and hence the evolution equations of ln y(t) and ln k(t) are essentially the
same, so that Λ3y = Λ3k and Λ4y = Λ4k. Thus we have

Λ3y = Λ3k = −
(
k̇/k

)
ln k(t)− ln k̂

= −γk(t)
lnK

= −(n + g + δ)
(Kα−1 − 1)

lnK
(46)

Λ4y = Λ4k = −
d
(
k̇/k

)
d ln k

= −dγk(t)
d ln k

= (1− α)(n + g + δ) + (1− α)γk(t)

= (1− α)(n + g + δ)Kα−1, (47)
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The last line of (47) is the same as the expression presented in Barro and Sala-i-
Martin (2004).7

Since γk(t) → 0 and K → 1 as the economy approaches steady-state, the formulas
(42)−(47) show that all the definitions of speed of convergence give λ = (1−α)(n+
g + δ) in the steady-state − in agreement with the findings of section 3.8 Outside
the neighbourhood of the steady-state, in addition to the parameters α, n, g and δ,

the speeds of convergence are shown to depend also on the economy’s growth rate.
For example, Λ4k(t) = λ + (1− α)γk(t) is larger than λ when γk > 0, that is, if the
economy is below the steady-state. Since, in this case, γk increases with distance
from K = 1, the farther an economy is below the steady-state, the higher the Λ4k

measure. Above the steady-state, γk < 0 and approaches −(n + g + δ) as K → ∞.
Thus, Λ4k will be less than λ in this case. It will decrease with distance from K = 1,
approaching 0 in the limit K →∞.

Figures 5 and 6 show how speeds of convergence Λ1, Λ2, Λ3 and Λ4 vary with K
and α, respectively.

OV-based definitions: For all values of α, the Λ1k and Λ2k speeds of convergence
are less than λ whenever K < 1 and higher than λ if K > 1. Thus, economies
that evolve from below their steady-state begin with small values of Λ1k and
Λ2k, which then increase towards λ as the economy converges to steady-state.

The Λ1y and Λ2y measures are less than λ if K < 1 and higher than λ if
K > 1, provided 1

2 < α < 1. When α = 1
2 , ẏ is a linear function of y and hence

the speed of convergence of y is constant at all times, given by Λ1y = Λ2y =
α(n + g + δ) = λ. For 0 < α < 1

2 , the measures Λ1y and Λ2y are larger than λ

when K < 1 and less than λ when K > 1.

The properties of the OV-based measures are driven by the concavity of the
functions B(k) and D(y) in equations (40) and (41), respectively. While B(k)
is concave down for all 0 < α < 1, the function D(y) is concave up, a straight
line, or concave down whenever 0 < α < 1

2 , α = 1
2 or 1

2 < α < 1, respectively.
Consequently, whenever α is outside the interval 1

2 < α < 1, capital and output
exhibit different convergence behaviours in the OV-frame. As the economy
evolves to the steady-state from above, for example, Λ1k and Λ2k decrease
towards λ while Λ1y and Λ2y increase towards λ.

LV-based definitions: For all values of α, the LV-based speeds of convergence are
higher than λ whenever K < 1 and slower than λ when K > 1. For economies
that start with K > 1, and hence are converging from above, the LV-based
speeds of convergence are slower than, and gradually increase towards λ as
the economies tend to their steady-states. In this case, the functions that
determine the evolution of ln y(t) and ln k(t) are concave up for all values of
α.

7Barro & Sala-i-Martin (2004), page 78.
8While showing this result is straightforward for the other cases, Λ1k,y and Λ3k require the

use of L’Hopital’s rule. lim
K→1

Λ1k = (n + g + δ) lim
K→1

(α− 1)Kα−2

−K−2
= λ, lim

K→1
Λ1y = α(n + g +

δ) lim
K→1

(α− 1)Kα−2

−αK−α−1
= λ, lim

K→1
Λ3k = −(n + g + δ) lim

K→1

(α− 1)Kα−2

K−1
= λ.
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Figure 5: Speeds of convergence Λ1, Λ2, Λ3 and Λ4 plotted against K for α = 1
3 and α = 3

4 .

The curve of the speed of convergence near the steady-state, λ, is also shown (horizontal)
for comparison. In all cases n = 0.01, g = 0.02 and δ = 0.05.

The graphs in figures 5 and 6 show that speeds of convergence generally possess
a negative relationship with α, that is, the higher the values of α the lower the
convergence speeds. The absolute deviations (errors) between the exact speeds of
convergence and λ are shown to be generally smaller for the measures based on the
proportional rate of decrease of the gap (k − k̂)

(
or (ln k − ln k̂)

)
than for those

based on the proportional rate of change of the slope of k
(

or ln k
)
. Thus, as the

economy evolves to the steady-state, the quantities |Λ1− λ| and |Λ3− λ| are always
smaller than |Λ2 − λ| and |Λ4 − λ|.

Figure 7 shows how the proportional approximation error of using λ varies with
α. It shows that the proportional deviations from λ are also smaller for Λ1 and
Λ3 than for Λ2 and Λ4. Proportional deviations for capital are largest (in absolute
terms) as α → 0 and smallest as α → 1, in the LV-frame. In the OV-frame, the
proportional deviations are largest as α → 1 and smallest as α → 0. For output, in
the OV-frame, the proportional deviations are shown to be smallest around α = 1

2
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Figure 6: Speeds of convergence – – - Λ1, - - - Λ2, · · ·Λ3 and –·–·– Λ4 plotted against
α for K = 0.2 and K = 2. In each case, the curve of the speed of convergence near the
steady-state, λ, is also shown (solid) for comparison. In all cases n = 0.01, g = 0.02 and
δ = 0.05.

and maximal in the limits α → 0 and α → 1.
A weakness of the Λ2 definition is that, away from the neighbourhood of

the steady-state, it can give negative values of speed. Convergence speeds Λ2k

are negative whenever (1 − αKα−1) < 0, and Λ2y values are negative whenever[
α− (2α− 1)Kα−1

]
< 0. The reason for this is that, geometrically, Λ2k is the (neg-

ative) instantaneous slope of the k̇ curve on the phase plane (k, k̇), and takes on
negative values whenever the curve is up-sloping (see illustration in figure 3). Nega-
tive speeds of convergence are misleading because they give the (wrong) impression
that the economy is evolving away from its steady-state level. Consequently, for the
rest of the analysis here, we focus on the Λ1, Λ3, and Λ4 definitions.

The foregoing analysis has demonstrated that, whereas all speed of convergence
definitions yield the same value for both k(t) and y(t) near the steady-state, different
definitions generally give different speeds of convergence far from steady-state. The
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Figure 7: Proportional error — Λ1/λ− 1, –·–·– Λ2/λ− 1, - - -Λ3/λ− 1 and · · ·Λ4/λ− 1
plotted against α for K = 0.2 and K = 2. In all cases n = 0.01, g = 0.02 and δ = 0.05.

differences are essentially caused by changes in the concavity of the function (that
occur as a result of expressing in terms of different variables) that determines the
time evolution of the system in the phase plane. Whenever this function is concave
up, speeds of convergence are higher than λ to the left of K = 1, and slower than λ

to the right of K = 1. This can be explained using the graphical illustrations of the
speeds of convergence, shown in figures 3 and 4. Consider the line whose (negative)
slope gives Λ3k in figure 4, for example. Call this line `Λ3k, say. Since the evolution
function is concave up, `Λ3k will always lie above the curve. This means, to the left
of K = 1, `Λ3k will be steeper than the gradient of the curve at K = 1, while to the
left, `Λ3k will be flatter. Since the (negative) slope of the gradient at K = 1 equals
λ, whenever `Λ3k is steeper then Λ3k > λ and if `Λ3k is flatter then Λ3k < λ. The
reverse happens if the curve is concave down, and then speeds of convergence are
lower than λ to the left of K = 1, and higher than λ to the right of K = 1.
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4.2 Half-life times

Since the theoretically predicted length of time required by an economy to fully
attain its balanced growth equilibrium is infinity, it is conventional to use the notion
of half-life to compare convergence speeds. Short half-life times indicate high speeds
of convergence while long half-life times imply low speeds of convergence. There
are two commonly used definitions of the half-life, an OV-based definition and an
LV-based one. We derive expressions for half-life times of y(t) and k(t) based on
these definitions, and then discuss their properties.

In terms of OVs, the half-life is defined as the time it takes for the gap
(
k − k̂

)
to decrease by half. Finding the half-life Tk involves solving the equation

1
2(k0 − k̂) = k(Tk)− k̂,

which can be written as
k(Tk) = 1

2(k̂ + k0), (48)

or
K(Tk) = 1

2(1 +K0). (49)

The equation (48) says that Tk marks the time at which k(t) equals the arithmetic
mean of k0 and k̂.

In terms of logarithmic variables, the half-life is defined as the time it takes for
the log distance

(
ln k−ln k̂

)
to be halved. We use Tk to denote half-life times derived

in this way. The condition satisfied by Tk is

1
2(ln k0 − ln k̂) = ln k(Tk)− ln k̂,

which yields

k(Tk) =
√

k̂k0, (50)

and hence
K(Tk) =

√
K0. (51)

Equation (50) indicates that the log version of half-life corresponds to the time at
which k(t) equals the geometric mean of k0 and k̂.

Consequently, the two approaches will generally give different values of the half-
life. However, noting that

√
K0 ' 1

2(1 + K0) in the neighbourhood of K0 = 1
shows that, in the vicinity of the steady-state, half-life times obtained using the two
approaches will be comparable. From the equations (31) and (36), the evolution
paths of economies in the vicinity of k = k̂, are given by

k(t)− k̂ = e−λt(k0 − k̂), and (52)

ln k(t)− ln k̂ = e−λt(ln k0 − ln k̂), (53)

in the two frames, respectively. Substituting (52) and (53) into the equations (49)
and (51), respectively, yields

T̃ = 1
λ ln 2 (54)
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in both cases. Hence, for economies that evolve from within the neighbourhood
of k = k̂ (that is K0 ∼ 1), the half-life is independent of the initial distance from
steady-state, but depends only on λ.

For economies evolving from outside the neighbourhood of the steady-state, the
expressions (52) and (53) are no longer applicable and we use the exact solutions
(16) and (17) to compute the half-life times.

First, substituting (16) into the OV-based definition (49) gives

[(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α = 1

2(1 +K0),

from which the half-life time is given by9

Tk =
1
λ

{
ln
∣∣∣K1−α

0 − 1
∣∣∣− ln

∣∣∣[1
2

(
K0 + 1

)]1−α
− 1
∣∣∣} . (55)

Similar calculations for y(t) give

Ty =
1
λ

{
ln
∣∣∣K1−α

0 − 1
∣∣∣− ln

∣∣∣[1
2

(
Kα

0 + 1
)] 1

α
−1
− 1
∣∣∣} , (56)

which is generally unequal to (55) except when K0 = 1. The half-life time expression
(56) has previously been established by Reiss (2000).

Substituting (16) into the LV-based definition (51) and solving for Tk gives

Tk =
1
λ

ln
(
K

1
2
(1−α)

0 + 1
)
, (57)

and we have Tk = Ty in this case.10

Again, along the balanced growth path where K0 = 1, all formulas (55)−(57)
converge to the half-life of T̃ = 1

λ ln 2 as predicted by the linear Taylor expansions.
Away from K0 = 1, the half-life times depend on both λ and K0, and the times

given by (55), (56), and (57) are then significantly different. The variations of Tk, Ty

and Tk with K0 and α are illustrated graphically in figures 8 and 9. We compare
half-life times obtained in the two frames for k(t) and y(t).

OV-based half-life times: For economies that start below their steady-states, the
half-life times Tk are longer than T̃ , irrespective of the value of α − and vice
versa is true for K0 > 1.

For output, provided 0 < α < 1
2 , the half-life times Ty are shorter than T̃ if

K0 < 1 and longer if K0 > 1. When α = 1
2 , the half-life Ty = T̃ irrespective

of the value of K0. When 1
2 < α < 1, the situation is the reverse of the case

when 0 < α < 1
2 .

LV-based half-life times: In this case, the half-life times Ty = Tk are shorter than
T̃ whenever K0 < 1 and longer if K0 > 1.

9See appendix for the complete solution.
10See the appendix for complete solution.

23



We remark that the OV-based and LV-based half-times give results that are
consistent with the OV-based and LV-based definitions of speed of convergence,
respectively. For example, OV-based definitions gives slower speeds of convergence
Λ1,2k than λ whenever K0 < 1. This means, in the OV-based frame of reference, an
economy approaching steady-state from below actually takes longer than predicted
by λ − and hence Tk > T̃ . In the LV-based frame, however, Λ3,4k > λ whenever
K0 < 1 implying that the economy takes a shorter time to converge than predicted
by λ. Hence the half-life times Tk < T̃ .
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Figure 8: Half-life times for k (on the left) and y (· · · Ty = Tk, –·–·– Tk, Ty) plotted as
functions of K0 for α = 1

3 and 3
4 . The curve of T̃ , is also shown (solid) in each case for

comparison. In all cases n = 0.01, g = 0.02 and δ = 0.05.

4.3 Discussion

Our analysis has demonstrated that definitions of the speed of convergence and
half-life times can be derived in either an OV-based frame or an LV-based frame.
It has been shown that all definitions give the same speed of convergence λ =
(1−α)(n + g + δ) and half-life T̃ = 1

λ ln 2 in the neighbourhood of the steady-state.
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functions of α for K0 = 0.2 and K0 = 2. The curve of T̃ , is also shown (solid) in each case
for comparison. In all cases n = 0.01, g = 0.02 and δ = 0.05.

Far from the steady-state however, convergence properties derived in the two
frames are generally inconsistent. We have used the case of a Cobb-Douglas pro-
duction function to demonstrate that OV-based measures generally yield different
speeds of convergence and half-life times for output and capital. Provided 1

2 < α < 1,

speeds of convergence for output and capital are slower than, and increase towards
λ if the economy is evolving from below the steady-state, and are faster than, and
decrease towards λ if the economy evolves from above. When 0 < α < 1

2 , the con-
vergence measures for output and capital are shown to exhibit opposite evolution
trends as the economy approaches the steady-state.

An advantage of the LV-based frame is that, for any value of α, the convergence
measures for output and capital are always equal. For economies below steady-state,
speeds of convergence are shown to be faster than λ, and decrease towards λ as the
economy approaches steady-state. Above steady-state, speeds of convergence are
slower than λ, and increase towards λ as the economy approaches steady-state.
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Therefore, far from steady-state, measures of convergence derived in the OV-
based frame generally yield different results to those derived in the LV-based frame.

5 Empirical implications

A key implication of exogenous growth models is conditional convergence. There
have been numerous empirical studies aimed at testing the hypothesis of conditional
convergence against the data. Based on equations derived by log-linearising about
the steady-state, these studies typically assume that the speed of convergence ex-
hibited by economies is constant and independent of the distance from steady-state.
The theoretical analysis of the preceding sections, however, has indicated that, ex-
cept in the close vicinity of steady-state, the speed of convergence depends on both
capital’s share of output and the economy’s distance from its steady-state. More-
over, economies approaching steady-state from below have been predicted to have
faster (than λ) LV-based speeds of convergence while economies approaching from
above have slower speeds of convergence.

In this section, we consider the empirical implication of the preceding analysis.
In the next section, we will test these implications. Our empirical work builds upon
the approach introduced by Mankiw, Romer and Weil (1992) (referred to as MRW
henceforth) and extended by Cho and Graham (1996) and Okada (2006). We test the
hypothesis that economies converging from below have higher speeds of convergence
than those converging from above. Using the data set of MRW, we split the sample
into two groups based on whether an economy was above or below their predicted
steady-state in 1960. We then perform a nonlinear regression that allows us to test
whether speeds of convergence are significantly different between the two groups.
Our results show that the hypothesis is supported by the data.

5.1 The Augmented Solow model

5.1.1 The model

Following MRW, we adopt a Cobb-Douglas production function which incorporates
human capital and takes the form

Y = KαHβ(AL)1−α−β, 0 < α + β < 1, (58)

where H is the human stock of capital and all other variables are defined as before.
If sk and sh are the fraction of output invested in physical and human capital,
respectively, and human capital is assumed to depreciate at the same rate as physical
capital, then the economy evolves according to

y(t) =
[
k(t)

]α[
h(t)

]β
, (59)

k̇(t) = sky(t)− (n + g + δ)k(t), (60)

ḣ(t) = shy(t)− (n + g + δ)h(t), (61)
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where h = H/(AL). Eliminating y between the equations (60) and (61) shows that
human capital and physical capital satisfy the equation

d
dt

(
k(t)
sk

− h(t)
sh

)
= −(n + g + δ)

(
k(t)
sk

− h(t)
sh

)
(62)

the solution of which, is

k(t)
sk

− h(t)
sh

= e−(n+g+δ)t

(
k0

sk
− h0

sh

)
. (63)

This expression indicates that, at steady-state, the condition

k(t)/sk = h(t)/sh (64)

is satisfied irrespective of the initial levels of human capital (h0) and physical capital
(k0).

Under the assumption that the initial levels of human and physical capital are
such that is k0/h0 = sk/sh from the outset, it is possible to find an exact solution of
the system (59)−(61).11 It is instructive to study this case because exact expressions
of quantities can be found even outside the vicinity of the steady-state. The time
evolution of output per effective unit of labour is given by

y(t) =
(

sh

sk

)β
{

k̂1−α−β
(
1− e−λht

)
+ k1−α−β

0 e−λht

} α+β
1−α−β

, (65)

where λh = (1 − α − β)(n + g + δ).12 The economy therefore evolves towards the
steady-state

ŷ =
(

sh

sk

)β

k̂α+β =

{
sα
ksβ

h

(n + g + δ)α+β

} 1
1−α−β

. (66)

The steady-state output per capita can be obtained from this expression by taking
logs and is given by

ln
Ŷ (t)
L(t)

= ln A0 + gt− α+β
1−α−β ln(n + g + δ) + α

1−α−β ln sk + β
1−α−β ln sh. (67)

Another equation involving steady-state output per capita can be derived by log-
linearising the differential equation for y(t) about the steady-state.13 The solution
of the linear log expansion can be expressed in the form

ln y(t)− ln y0 = θ
(
ln ŷ − ln y0

)
, (68)

where θ = 1 − e−λht and λh is the speed of convergence near the steady-state.
Expressing in terms of per capita variables and combining with (67) gives

ln
Yt

Lt
−ln

Y0

L0
= gt+θ lnA0− α+β

1−α−β θ ln(n+g+δ)+ α
1−α−β θ ln sk+

β
1−α−β θ ln sh−θ ln

Y0

L0
,

(69)
11See appendix for complete solution.
12Note that we use the notation λh = (1 − α − β)(n + g + δ) to denote speed of convergence

in the augmented Solow framework, compared to λ = (1 − α)(n + g + δ) in the framework of the

traditional Solow model.
13See appendix for derivation.
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where the left hand side is the growth of output per capita over the period (not
annualized). This framework, based on log-linearising about the steady-state, takes
the speed of convergence to be constant irrespective of the distance from, and the
direction of approach to, the steady-state. However, as our analysis in section 4 has
shown, the speed of convergence for economies converging from outside the vicinity
of steady-state is dependent on both the distance from and the direction of approach
to steady-state.

For, consider the speed of convergence parameter Λ3 (introduced in section 3)
which can be expressed in the form

Λ3y(t) = −
d
[
ln
(
y/ŷ
)]/

dt

ln
(
y/ŷ
) = − d

dt

{
ln
(

ln
(
y/ŷ
))}

. (70)

Since the right hand side is an exact differential, (70) can be readily integrated and
rearranged to give

ln y(t)− ln y0 = Θ
(
ln ŷ − ln y0

)
, (71)

where Θ = 1− exp
{
−
∫ t

0
Λ3y(τ)dτ

}
. This expression (71) is to be compared with

(68) in which the speed of convergence is constant.
For the case under consideration (a Cobb-Douglas production function under

the assumption that k0/h0 = sk/sh from the outset), we can substitute the exact
solution for y(t) into (70) to obtain an analytical expression for Λ3y(t), namely

Λ3y(t) = − d
dt

{
ln

(
ln
[
1 + e−λht

(
K1−α−β

0 − 1
)] α+β

1−α−β

)}
. (72)

The equations (70) and (72) indicate that Λ3y(t) (and hence Θ), is generally a
function of time, approaching λh in the limit t →∞. Figures 10 and 11 show the time
evolution of Λ3y(t) and the relative error (Θ− θ)/θ, respectively, for economies with
α = 1

3 , starting from different initial levels.14 The value of α = 1
3 is conventionally

used within the framework of the traditional Solow model. For economies that begin
below/above their steady-states, the speeds of convergence Λ3y(t) are shown to be
initially faster/slower than, and decrease/increase towards λ in time. The rate at
which Λ3y(t) converges onto λ is shown to be higher for economies that start below
their steady-states compared to those that start from above.

Figures 12 and 13 show the time evolution of Λ3y(t) and the relative error (Θ−
θ)/θ, respectively, for economies with α = 2

3 . This value of the capital share is typical
in the framework of the augmented Solow model. The graphs show the behaviour
of the quantities Λ3y(t) and (Θ − θ)/θ in time to be qualitatively similar to that
of the α = 1

3 case. The main differences are that, in this case, the relative errors
are comparatively lower15 and the development of Λ3y on both sides of steady-state
appears to be fairly symmetric.

14Note: The initial positions relate to the predicted steady-state levels in 1960, and correspond

to 10-, 25-, 50-, 75-, and 90-percentiles computed for the MRW sample.
15While the low relative errors are partly due to smaller initial deviations from the steady-state

predicted in this model, our calculations show that higher values of α, keeping everything else fixed,

generally lead to lower relative errors (see Appendix 6.2).
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These results mean that λ generally over-estimates the actual speeds of conver-
gence and hence the coefficient Θ for economies that approach steady-state from
above. Equally, the coefficient θ = 1− eλt will generally under-estimate its counter-
part Θ for economies that converge from below.

6 Convergence from both sides

In this section, we investigate whether economies that approach a steady-state
growth path from below have higher speeds of convergence than those that con-
verge from above. Our starting point will be the papers by Mankiw, Romer and
Weil (1992) and Cho and Graham (1996). We use the method of Cho and Graham
to identify countries that may be converging from above, and then estimate the
augmented Solow model by nonlinear least squares, allowing a different rate of con-
vergence for the countries that converge from above. Our empirical test complements
an alternative, more complex approach developed by Okada (2006).

The group of countries is the main, ‘non-oil’ sample used in MRW. For this
group of countries, we calculate whether output per worker was above or below
the steady-state level in 1960. To determine this, we first run the MRW growth
regression

ln
Y85

L85
−ln

Y60

L60
= b0+b1(ln sk−ln(n+g+δ))+b2(ln sh−ln(n+g+δ))+b3 ln

Y60

L60
, (73)

based on equation (69). Here Y85 denotes output in 1985. Once the coefficients
in (73) have been determined, they are combined with (67) to derive an equation
that gives 1960 steady-state per capita output levels.16 Notice that, since 1960
corresponds to time t = 0, equation (67) yields

ln
Ŷ60

L60
= lnA60 + α

1−α−β (ln sk − ln(n + g + δ)) + β
1−α−β (ln sh − ln(n + g + δ))

= − 1
b3

[
b0 − gt + b1(ln sk − ln(n + g + δ)) + b2(ln sh − ln(n + g + δ))

]
,(74)

where the last expression is obtained by comparing (69) with (73), for which the
coefficients have already been determined. Note that we have employed the widely
used a priori value of g = 0.02, corresponding to technical progress of 2% per year, in
our calculations. We are also imposing the theoretical restriction that the coefficients
on the investment, schooling and population growth terms sum to zero.

The steady-state output values, once found, can be compared with the observed
level of output per capita in 1960. We compute the ratio Y60 = Y60/Ŷ60 = y60/ŷ60,

on the basis of which the sample is split into two groups depending on whether
Y60 ≤ 1 or Y60 > 1. This is close to the method adopted in Cho and Graham
(1996). Okada (2006) uses a related method.

When we adopt this approach, we find that 49 of the 98 countries are classified
as converging from above. This may seem surprising, but output per capita grew

16Notice that this is the regression presented in table VI of MRW, and also shown in the first

column of Table 1 here.
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at less than 2% a year over 1960-85 in a large number of countries.17 Under the
assumptions of the augmented Solow model, they must have been converging from
above, perhaps reflecting declines in investment, or increases in population growth.
Note that converging to a growth path from above does not imply strictly nega-
tive growth in output per head, given the maintained assumption that the level of
efficiency is growing over time.

Now that we have classified the set of countries into ‘above’ and ‘below’ we can
test the theoretical implication that convergence is slower for countries converging
from above. Our starting point will be growth regressions of the form derived by
MRW:

ln
Y85

L85
− ln

Y60

L60
= θ lnA60 + gt +

α

1− α− β
θ(ln sk − ln(n + g + δ))

+
β

1− α− β
θ(ln sh − ln(n + g + δ))− θ ln

Y60

L60

A key prediction of our theoretical analysis is that the parameter θ should be smaller
in absolute terms for countries converging from above, reflecting slower convergence.
If we create a dummy variable, dabove, that is equal to one for countries that are
classified as ‘above’ and zero otherwise, we can rewrite the right-hand-side of the
growth regression in the following form:

gt+(1+γdabove)θ
[
b0 + b1(ln sk − ln(n + g + δ)) + b2(ln sh − ln(n + g + δ))− b3 ln

Y60

L60

]
(75)

where the theoretical prediction is that the new parameter γ < 0. This prediction is
easily tested by estimating (75) by nonlinear least squares.

First of all, we look at estimates for 1960-85. The data and sample are exactly
that used by MRW. In the first column of Table 1, we show a replication of the
MRW results based on their Table VI. In the second column, we show the outcome
obtained by using nonlinear least squares (NLS). The parameter γ is negative, as
predicted, but is significantly different from zero only at the 25% level.

It is possible that successfully detecting heterogeneity in convergence rates may
require a longer span of data. We therefore carry out a similar analysis for 1960-
2000, using data from version 6.1 of the Penn World Table (PWT) due to Heston,
Summers and Aten (2002). We first use the Cho and Graham method to classify
countries as converging from above, and then construct an updated version of the
MRW regression.

Our output measure will be output per adult, using PWT data on output, and
data on adult population from the World Bank’s World Development Indicators.
Since we do not have data on the MRW schooling variable for 1985-2000, we use
their measure for 1960-85 as a proxy for the whole 1960-2000 period. Due to gaps
in the PWT 6.1 data for the 1990s, we are missing data for 11 of the original 98

17It might be thought that countries could be classified as converging from above whenever their

observed growth in output per capita is less than 2%. But this would create problems for our

later statistical analysis, since it amounts to selection based on the dependent variable, and would

therefore generate a bias.
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observations in MRW.18

In column 3 of Table 6, we show the results obtained for MRW’s growth regres-
sion, estimated for 87 countries over 1960-2000. Then, in the final column, we report
the NLS estimates. In this case, γ is not only negatively signed, but also significant
at the 5% level. This supports the theoretical prediction that convergence from
above is relatively slow. Since the point estimate of γ is −0.436, the effect could
be substantial. Taken at face value, the point estimate implies that the value of θ

for countries converging from above is less than 60% of the value for countries con-
verging from below. We can reinforce this point by using the estimates to calculate
convergence rates for the two groups of countries. For those converging from below,
the annual convergence rate is calculated at 2.88%; for countries converging from
above, the rate is roughly halved, at 1.37%.

These results are subject to some familiar criticisms. First, equation (69) shows
the familiar point that output growth depends on the initial level of technology, A0.
This can lead to omitted variable bias if the unobserved variable A0 is correlated
with any of the regressors. Second, we assume that the rates of technical progress
are the same across economies (here, taken to be 2% per year). Third, we have used
the standard log-linearized framework, strictly valid only close to the steady-state,
to study behaviour away from equilibrium. A fourth and final criticism, especially
relevant to our specific empirical tests, is that identifying examples of convergence
from above is not straightforward. In particular, our use of the Cho-Graham method
assumes that countries have remained above or below their steady-state growth
paths throughout the period. This will be unsatisfactory to the extent that some
have changed sides. Note, however, that many of these problems might work to hide
the effect that we have identified in the data.

18These are Angola, the Democratic Republic of Congo, Germany, Haiti, Liberia, Myanmar,

Sierra Leone, Singapore, Somalia, Sudan, and Tunisia.

33



Growth regressions

Time period 60-85 60-85 60-00 60-00
Estimation OLS NLS OLS NLS
constant 2.46 2.45 3.29 3.56

(0.473) (0.836) (0.652) (1.12)
log(sk)− log(n + g + δ) 0.501 0.642 0.520 0.770

(0.082) (0.190) (0.094) (0.274)
log(sh)− log(n + g + δ) 0.235 0.336 0.332 0.453

(0.059) (0.114) (0.079) (0.194)
log(Y0/L0) -0.298 -0.397 -0.367 -0.513

(0.060) (0.121) (0.082) (0.184)
γ -0.302 -0.436

(0.246) (0.222)
g 0.025 0.016

(0.014) (0.007)

N 98 98 87 87
R2 0.48 0.49 0.53 0.54
α 0.48 0.47 0.43 0.44
β 0.23 0.24 0.27 0.26
λbelow 1.41% 2.02% 1.83% 2.88%
λabove 1.41% 1.30% 1.83% 1.37%

Table 1: The dependent variable is the log difference of either output per equivalent
adult (1960-85) or output per adult (1960-2000). Estimation is by ordinary least
squares (OLS) or nonlinear least squares (NLS). Standard errors in parentheses.
The last two rows of the Table indicate that convergence from above appears to be
slower than convergence from below, as the analysis earlier in the paper predicts.

7 Conclusions

This paper has made a number of contributions to the study of convergence be-
haviour in exogenous growth models. We have investigated convergence away from
the steady-state, and discussed a number of ways of measuring the rate of ad-
justment, extending the work of Reiss (2000). The analysis reveals that conver-
gence rates are likely to be heterogeneous in systematic ways. In particular, we
showed that, for log-linearized models of the kind commonly used in empirical work,
rates of convergence are faster for economies that converge from below than for
economies that converge from above. Using some straightforward modifications to
cross-country growth regressions, we have shown that there is some support for this
prediction in the data.
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8 Appendix

8.1 Solution of the Solow equation

Starting with the Solow equation k̇ = skα − (n + g + δ)k, we divide through by kα

to get
k̇

kα
= s− (n + g + δ)k1−α.

Then, setting u = k1−α yields k̇/kα = u̇/(1− α), and the equation becomes

u̇ + (1− α)(n + g + δ)u = (1− α)s.

This is linear in u and the integrating factor is eλt, where λ = (1 − α)(n + g + δ).
Thus

d
dt

(
ueλt

)
= (1− α)seλt,

which integrates to
u = k1−α =

s

n + g + δ
+ C0e

−λt,

where C0 is a constant of integration. Use of the condition that k = k(0) = k0 at
t = 0 yields C0 = k1−α

0 − s/(n + g + δ), and the particular solution is given by

k(t) =
[
k̂1−α

(
1− e−λt

)
+ k1−α

0 e−λt
] 1

1−α
. (76)

8.2 Higher-order Expansions

In this section, we compare linear, quadratic and cubic log expansions and find that
linear expansions are the most useful.

A common criticism of linear Taylor expansions is that their validity is strictly
limited only to within the close vicinity of the steady-state. One possible response
to this criticism is to include more terms in the expansions to increase the region of
validity. Using the case of a Cobb-Douglas production function, we derive quadratic
and cubic log expansions for the variable y(t), compare their performances with that
of the linear log expansion, and then discuss whether there are practical benefits of
higher-order expansions.

Starting with

ẏ/y = d
[
ln y(t)

]
/dt = G(y) = αsy1− 1

α − α(n + g + δ),

= α(n + g + δ)
(
Y1− 1

α − 1
)
, (77)

where, Y = y/ŷ, we have

y∂yG = (α− 1)(n + g + δ)Y1−1/α,

(y∂y)2G = 1
α(α− 1)2(n + g + δ)Y1−1/α,

(y∂y)3G = 1
α2 (α− 1)(n + g + δ)Y1−1/α,

The Taylor log expansion of (77) about y = ŷ is given by

d
dt

lnY = G(ŷ)+ lnY
[
y∂yG

]
y=ŷ

+ 1
2 ln2 Y

[
(y∂y)2G

]
y=ŷ

+ 1
6 ln3 Y

[
(y∂y)3G

]
y=ŷ

+ · · · .

(78)
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Hence, the linear, quadratic and cubic log expansions are given by

L̇y(t) = −λLy(t), (79)

L̇y(t) = −λLy(t) + 1
2

(
1
α − 1

)
λL2

y(t), (80)

L̇y(t) = −λLy(t) + 1
2

(
1
α − 1

)
λL2

y(t)− 1
6

(
1
α − 1

)2
λL3

y(t), (81)

respectively, where Ly(t) = lnY = ln y(t) − ln ŷ, and λ = (1 − α)(n + g + δ). The
degree to which each of the expansions (79)−(81) can estimate the original equation
(77) is measured by how well the left-hand-side expressions approximate G(Y) in
the neighbourhood of Y = 1. Figure 14 shows graphs of G(Y) and the expansions.19

All expansions are shown to be very accurate representations of G(Y) in the very
close vicinity of Y = 1. The interval in which the expansions are accurate generally
increases with α, and in fact all expansions collapse onto G(Y) in the limit α → 1.20

For 0 < α < 1, the linear expansion always has the smallest interval in which it
accurately reproduces G(Y). Outside this region, it under-estimates G(Y) on both
sides of Y = 1, but predicts the correct sign of G(Y) at all points. The usefulness of
the linear expansion very close to the steady-state is based on the fact that, when |Ly|
is very small, then |Ly| > |Ly|2 > |Ly|3 > · · · implying that good approximations
of (77) can generally be obtained by only considering terms linear in Ly. In this
regime, integrating (79) yields21

ln y − ln ŷ = e−λt
(
ln y0 − ln ŷ

)
(82)

which indicates that, in the close vicinity of the steady-state, the speed of conver-
gence of an economy (λ) depends only on α and not on the economy’s distance from
its steady-state. A form of this equation obtained by subtracting ln y0 from both
sides is widely used as a basis for growth regressions (e.g. Mankiw, Romer and Weil
1992).

As the distance from steady-state increases, |Ly| becomes large and then |Ly| <
|Ly|2 < |Ly|3 < · · · . In this case, the higher-order terms of the expansion become
significant. Thus, based on (80), the criterion |Ly| � 1

2

(
1
α−1

)
|Ly|2 can be used as a

rough guide to determine when the linear expansion is a reasonable approximation.
It leads to

1
2

(
1
α − 1

)∣∣ ln y − ln ŷ
∣∣� 1. (83)

This shows that the interval in which the linear log approximation is reasonable
is directly proportional to α. For small values of α, the interval is generally small,
and as α → 1, the linear approximation provides good estimates in larger intervals
around the steady-state.

The quadratic log expansion gives accurate values of G(Y) in a wider interval
than the linear expansion. Moreover, in the region where the linear expansion pro-
vides reasonable estimates, the quadratic expansion will yield even better estimates.
Figures 15 and 16 show the percentage errors incurred by using the linear, quadratic

19We remark that a similar graph appears as figure 13.24 in Carlin and Soskice (2006).
20Note that lim

α→1
G(Y) = 0 and, in this limit, the model under consideration simplifies to the

AK-model which exhibits no transitional dynamics.
21See appendix for full solution.
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Figure 14: Graphs of the linear (−·−·−), quadratic (−−−), and cubic (· · · ) log expansions
of G(Y) plotted against Y for α = 1

3 and α = 2
3 . The curve of G(Y) is also shown (solid) for

comparison. In all cases (n + g + δ) = 0.08.

and cubic expansions to estimate G(Y) for α = 1
3 and α = 2

3 , respectively. It is
shown that a higher value of α generally leads to lower percentage errors for all
values of Y.

The equation (80) can be solved and we obtain22

ln y− ln ŷ− 1
2

(
1
α − 1

)(
1− e−λt

)(
ln y0− ln ŷ

)(
ln y− ln ŷ

)
= e−λt

(
ln y0− ln ŷ

)
. (84)

This formula indicates that, in addition to α, an economy’s speed of convergence
also depends on its initial (log) distance from the steady-state. The predictions of
ln y(t) provided by (84) are compared with those provided by (82) in figure 17. For
0 < Y0 < 1, both expansions under-estimate the actual growth rate of y(t), but
the values provided by the quadratic expansion are always superior to those given
by the linear approximation even for very small values of Y0. For example, with
α = 1

3 , y0 = 1
10 and ŷ = 1, the quadratic solution converges to the exact solution in

about 60 years while the linear solution converges after 100 years.
For values of Y > 1 (above the steady-state) however, the qualitative properties

of the quadratic expansion are fundamentally different from those of G(Y), which
it is meant to approximate. For, while G(Y) is a monotone decreasing function for
all Y > 0, the quadratic expansion is decreasing only in 0 < Y < Ymin = exp

(
α

1−α

)
.

Then, for Y > Ymin, the quadratic expansion is an increasing function, and equals
zero when Y = Yzero = exp

(
2α

1−α

)
. Thus, approximating G(Y) with a quadratic log

expansion introduces an extraneous unstable equilibrium at Y = Yzero. Economies
that start with Y0 > Yzero evolve in the right-ward direction towards Y = ∞ while
those that start in 1 < Y < Yzero evolve towards Y = 1. Economies that start in the
range Ymin < Y < Yzero do not satisfy the conditional convergence property because
economies farther from Y = 1 are shown to have lower growth rates (absolute values).

22The full solution is presented in the appendix.
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Figure 17: Comparisons of the predicted evolution paths of ln y(t) provided by the linear
(− · − · −) and quadratic (− − −) log expansions of the governing equation. The curve of
ln y(t) given by the exact solution is also shown (solid) in each case for comparison. In all
cases ŷ = 1, n = 0.01, g = 0.02 and δ = 0.05.

Therefore, although the performance of the quadratic expansion is clearly superior
to that of the linear formulation in 0 < Y < Ymin, the situation is different when
Y > Ymin. Figure 17 shows, for example, an economy that starts just below Y = Yzero

at Y0 = 2.7 (with α = 1
3 , ŷ = 1, we have Yzero = e = 2.718 · · · ). The predictions

given by the quadratic expansion are shown to be clearly inferior to those obtained
using the linear expansion. The performance of the quadratic formulation is thus
unsatisfactory in the regime Y → Yzero and for Y > Yzero.

As a possible response to the foregoing issues, one might want to consider the
cubic log expansion (81). Figure 14 shows that the interval in which this expansion
accurately represents G(Y) is even wider than in the quadratic case and the cubic
curve is monotone decreasing just like G(Y). However, the concavity of the cubic
expansion is opposite to that of G(Y) to the right of Ymin. In this interval, the
cubic curve is concave down while G(Y) is concave up. This means that beyond a
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certain value of Y
(

= exp
(

2α
1−α

))
, the cubic estimates will be worse than the linear

ones. However, the main obstacle with regards to the cubic expansion is the fact
that the resulting equations are fairly difficult to solve. The obtained solutions are
complicated and hence do not facilitate any meaningful analysis of the transitional
dynamics. For example, the solution of (81) is[

lnLy − 1
2 ln

(
6− 3`Ly + `2L2

y

)
+ 1

5

√
15 tan−1

(√
15
[
− 1

5 + 2
15`Ly

])]t
0

= −λt,

where ` = 1
2

(
1
α − 1

)
.

In summary, the linear log expansions are the simplest to derive and yield linear
exact solutions that are well-suited for use in linear regression empirical tests. Away
from the vicinity of the steady-state, although these expansions generally yield the
least accurate estimates, their qualitative predictions are always consistent with
those of the basic governing equation. The linear evolution equation (82) has been
shown to be robust in the sense that, no matter how far from steady-state the
economy starts, the path predicted by this equation always converges to the exact
solution after sufficiently long times.

The quadratic log expansions improve on the linear approximation in 0 < Y <

Ymin, and give exact solutions which, even though nonlinear, are relatively simple
enough and can be estimated using nonlinear regression methods. However, a po-
tentially serious drawback of the quadratic formulation is that, for Y > Ymin, its
predictions are inconsistent with those of the basic governing equation.

The main disadvantage of cubic (and higher-order) expansions is that the benefits
gained from the solutions of the resulting equations are generally outweighed by the
amount of effort required to derive them. When (if) the solutions are found, they
are usually too complicated to be of much use.

One assessment is that of Romer (2001), who has stated that “Taylor-series
approximations are generally quite reliable . . . for the Solow model with conventional
production functions.”23 Perhaps surprisingly, the analysis carried out here has
demonstrated that, for a Solow model with a Cobb-Douglas production, working in
terms of LVs, only the linear Taylor expansion is reliable in qualitative terms.

8.3 Derivations of half-life formulas

Derivation of formula (55)

Starting with [(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α = 1

2(1 +K0),

then raising both sides to the power of (1− α) and rearranging gives

e−λTk =

[
1
2

(
K0 + 1

)]1−α
− 1

K1−α
0 − 1

.

Taking logs on both sides then yields (55)

23Romer (2001), page 25.
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Derivation of formula (57)

In this case, we solve the equation[(
1− e−λTk

)
+K1−α

0 e−λTk

] 1
1−α =

√
K0,

for Tk. Raising both sides to the power of (1− α) and rearranging gives

e−λTk =
K

1
2
(1−α)

0 − 1
K1−α

0 − 1
=

K
1
2
(1−α)

0 − 1(
K

1
2
(1−α)

0 − 1
)(
K

1
2
(1−α)

0 + 1
)

=
1(

K
1
2
(1−α)

0 + 1
)

Finally taking logs on both sides gives (57).

8.4 Solution of Taylor expansions

8.4.1 Solution of linear expansion

Starting from L̇y(t) = −λLy(t), we separate variables and obtain

dLy

Ly
= −λdt.

Integrate from time 0 to time t to get

ln
(
Ly(t)
Ly(0)

)
= −λt.

Note that Ly(0) = ln y0 − ln ŷ. Then, taking exponentials and rearranging yields
ln y(t)− ln ŷ = e−λt

(
ln y0 − ln ŷ

)
.

8.5 Solution of quadratic expansion

Starting from L̇y(t) = −λLy(t)+ 1
2

(
1
α −1

)
λL2

y(t), we factorise the expression on the
right hand side, separate variables, to get

dLy

Ly(1− `Ly)
= −λdt, (85)

where ` = 1
2

(
1
α − 1

)
. The left hand side can now be expressed in terms of partial

fractions as (
1
Ly

+
`

1− `Ly

)
dLy = −λdt.

Integrating from time 0 to time t then gives

ln

(
Ly(t)

[
1− `Ly(0)

]
Ly(0)

[
1− `Ly(t)

]) = −λt.

Finally, taking exponentials and rearranging leads to

Ly(t)− 1
2

(
1
α − 1

)(
1− e−λt

)
Ly(0)Ly(t) = e−λtLy(0),

from which (84) follows after expressing in terms of y(t).
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8.6 Derivations

8.6.1 Solution of Augmented Solow model

Using the equations (59) and (64), it is possible to decouple the differential equations
(59) and (64), to get

k̇ = sβ
hs1−β

k kα+β − (n + g + δ)k,

ḣ = sα
ks1−α

h hα+β − (n + g + δ)h.

Then, since k, h and y are related through h = (sh/sk)k and y = kαhβ, it is necessary
to solve only one of these equations. Following the procedure employed to derive
(76), the solution of the capital equation is

k(t) =

{
k̂1−α−β

(
1− e−λt

)
+ k1−α−β

0 e−λt

} 1
1−α−β

.

8.6.2 Log-linearising the y(t) equation

In the neighbourhood of the steady-state, the condition k/h = sk/sh always holds,
and the evolution equation for output can be expressed as

d
dt

[
ln y(t)

]
= R(y) = (α + β)sk

(
sk

sh

) β
α+β

y
1− 1

α+β − (α + β)(n + g + δ).

To derive the linear log expansion, first note that

ŷ
1

α+β
−1 =

sk

n + g + δ

(
sk

sh

) β
α+β

.

Then [
dR

d ln y

]
y=ŷ

=
[
y
dR
dy

]
y=ŷ

=

[
(α + β − 1)sk

(
sk

sh

) β
α+β

y
1− 1

α+β

]
y=ŷ

= −(1− α− β)(n + g + δ).

Hence

d
dt

[
ln ŷ +

(
ln y − ln ŷ

)]
=

[
dR

d ln y

]
y=ŷ

(
ln y − ln ŷ)

d
dt

(
ln y − ln ŷ

)
= −(1− α− β)(n + g + δ)

(
ln y − ln ŷ)
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