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Birth Spacing and Neonatal Mortality in India: 
Dynamics, Frailty and Fecundity 

 
Sonia Bhalotra and Arthur van Soest 

 

1    Introduction 
In developing countries, high fertility is closely related to high levels of childhood 

mortality. Understanding the way in which family behaviour shapes this relation is 

crucial to understanding the demographic transition1 that has historically preceded 

economic growth. Moreover, the avoidance of child death is probably one of the most 

significant aspects of human progress, while sustained reductions in fertility have 

dramatic implications for the economic independence of women. 

Time series analyses of historical data for today�s industrialized countries suggest 

that a marked decline in childhood mortality preceded the decline in fertility (see 

Mattheisen and McCann 1978, Wolpin 1997), and a similar tendency has been observed 

in recent aggregate data for sub-Saharan African countries (e.g. Nyarko et al. 2003). At 

the same time, cross-sectional studies using household survey data have produced 

considerable evidence of the reverse direction of causation, namely that high fertility, 

associated with close birth spacing or with an early start (when the mother is very young), 

causes an increase in childhood mortality risk within families (e.g. Cleland and Sathar 

1984, Curtis et al. 1993).  

In families with multiple children, it is easy to see that there is in fact a recursive 

bi-causal relation of these variables, and that this merits a panel data analysis. The death 

of a child has been found to result in a shorter interval to the next birth, which may be 

explained in terms of volitional replacement (see Preston 1985) or else by the fact that the 

mother stops breastfeeding and, thereby, is able to conceive the next child sooner than 

otherwise (e.g. Bongaarts and Potter 1983, Chen et al. 1974). The short birth interval, in 

turn, results in an elevation of the mortality risk of the next child in the family, for 

                                                 
1 This refers to the transition from high birth and death rates to low birth and death rates which, in 
the history of today�s industrialized countries, was systematically associated with changes in 
economic and population growth. For recent theoretical analysis of this relation, see Galor and 
Weil (2000). Historical analyses of this relation have emphasised the relative timing of mortality 
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example, because the mother has not recuperated physiologically from the previous birth 

(e.g. DaVanzo and Pebley 1993, Scrimshaw 1996).  

Despite the long-standing interest in both economics and demography in the 

relation of reproductive behaviour and child mortality, the literature is scarce in a 

complete micro-data analysis of the inter-relations of these variables (see section 2). 

Since the Millenium Development Goals include reduction of childhood and maternal 

mortality, there is renewed interest in these topics in both research and policy circuits 

(see Lancet 2003, UNDP 2003).2  

The main contribution of this paper is that it produces estimates of the causal 

effect of birth interval length on subsequent mortality risk, and of mortality on the 

subsequent birth interval length, after controlling for unobserved heterogeneity in both 

processes (referred to as frailty and fecundity respectively). The recursivity of these 

relations generates genuine state dependence in the sense that the death of a child causes 

an increase in the risk of death of the subsequent sibling in the family. The causal 

mechanism, in this case, operates via a short birth interval. The analysis in this paper 

further investigates whether there are other causal mechanisms generating state 

dependence. An example of an alternative mechanism is maternal depression. It is 

plausible that the death of a child causes the mother to be depressed and that her 

depression causes her subsequent birth to be more vulnerable to early death.3 Identifying 

state dependence after controlling for inter-family heterogeneity and quantifying the 

extent to which short birth spacing creates state dependence is a further contribution of 

this paper, of relevance to understanding the widespread phenomenon of death clustering 

amongst siblings.4,5 

                                                                                                                                                 
and fertility decline, thereby raising issues of causality that have excited attention (see Ben-Porath 
1976 for example).    
2 A number of international organizations have programmes that encourage longer birth-spacing. 
For instance, USAID is currently supporting the Optimal Birth Spacing Initiative. 
3 Steer et al. (1992), for example, report evidence that depression can cause adverse pregnancy 
outcomes. 
4 Defining a state as a realisation of a stochastic process, state dependence as used here captures 
the idea that the mortality risk facing a child is dependent upon the state ((i.e. died in or survived 
the neonatal period) revealed for the previous child in the family. Since time is implicit in the 
sequencing of children, models that include the previous child�s survival status are analogous to 
dynamic models.  
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Our main findings are summarized here. A neonatal death shortens the subsequent 

birth interval by about 20 per cent. This, in turn, raises the neonatal mortality risk of the 

next child in the family by almost 1 percentage-point. With birth interval length held 

constant, there is an additional risk-raising effect of the preceding sibling�s mortality of 

about 4.3 percentage-points. So the total impact of a neonatal death on the risk of 

subsequent neonatal death in the same family is estimated at 5.2 percentage-points, and 

this is after all sources of between-family heterogeneity are held constant. This is 

remarkable, given that the average incidence of neonatal mortality in the sample is 7% 

(see section 3). It is notable that birth-interval-related mechanisms can explain only a 

fifth of state dependence in mortality. This suggests a role for other factors, identification 

of which is an important avenue for further research. Maternal depression, that we 

suggest, has not previously been recognized as a potential mechanism for state 

dependence and, thereby, death clustering.  

There is clear evidence of unobserved heterogeneity in the mortality, birth-

spacing and fertility equations, but there is no evidence that frailty is correlated with 

fecundity. There is a significantly negative correlation between the unobserved 

heterogeneity terms in the equations for birth spacing and for continued fertility, 

implying that mothers who tend to have shorter birth intervals also tend to have more 

children, even if age, calendar year, and other characteristics are held constant. We find 

that neglecting to allow for frailty and fecundity biases upwards the effect of lagged 

mortality on mortality of the index child, but that it has no significant effect on the 

estimated impact of birth interval length on mortality risk, or on the impact of mortality 

on birth interval length. Geographic cluster effects included to account for sampling 

design are significant. Although incorporating these effects increases the standard errors, 

it does not change the main findings.    

The next section summarises related research. Section 3 describes the data and the 

endogenous variables. The econometric model is detailed in section 4. The main results 

                                                                                                                                                 
5 State dependence is an expression that has been used in other statistical applications. For 
example, state dependence in unemployment refers to the causal effect of (individual) 
unemployment in one period on the risk of unemployment in the following period. Several 
studies have attempted to disentangle state dependence and unobserved heterogeneity in seeking 
an explanation of unemployment persistence (e.g. Arulampalam et al 2001).  
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are reported in section 5, where we also report some specification checks. Section 6 

concludes.  

 

2    Related Literature and Contributions 
Previous demographic research provides estimates of some of the main effects 

analysed in this paper, although not in a unified framework: for example, see Curtis et al. 

(1993) or Madise and Diamond (1995) for analysis of the effects of birth-spacing on 

mortality, and Zenger (1993) or Frankenberg (1998) for analysis of the effects of 

mortality on birth-spacing. The limitation of these studies is that their estimates cannot be 

given a causal interpretation (also see Moffitt 2003).  

In previous research in economics, equations for childhood mortality (or other 

indicators of child health) have been estimated in which endogeneity of birth spacing has 

been allowed. For example, Bhargava (2003) argues that the endogeneity of birth spacing 

is taken care of by controlling for the survival status of older siblings. This, in turn, is 

instrumented using household possessions and number of previous births, assuming birth 

history is exogenous. Rosenzweig and Schultz (1983b) directly instrument birth spacing 

using incomes and prices. However, as discussed in the more recent papers of 

Rosenzweig and Wolpin (1988, 1995), the implied exclusion restrictions typically do not 

hold. The more recent work of Rosenzweig and Wolpin (1988, 1995) uses sibling 

differences to eliminate the mother-specific endowment. In order to further allow for 

differences across siblings in frailty, they instrument inputs in the differenced equation 

using �lagged� inputs from older siblings and parental characteristics. The econometric 

strategy in this paper is similar insofar as it relies upon information restrictions associated 

with the sequencing of births. Rather than use lagged inputs as instruments, we allow 

lagged mortality to affect the endogenous variables. Differences in method aside, this 

paper augments the evidence from these studies in providing estimates of the causal 

effect of birth spacing on mortality risk.  

A further difference of this paper from these studies is that it simultaneously 

provides estimates of the effect of previous mortality on birth spacing (and fertility). 

Most previous estimates of these effects have been obtained under the untenable 

assumption that parents have no influence on the survival chances of their offspring (e.g., 
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Ben-Porath 1976; see Wolpin 1997, Cigno 1998). Exceptions are Olsen (1980) and Olsen 

and Wolpin (1983), both of which analyse the response of the number of births to child 

mortality, allowing for endogeneity. The approach taken in the current analysis is 

different in that we use a dynamic panel data framework, and we provide estimates of the 

response of birth spacing to mortality (together with estimates on the same data of the 

reverse relation, described above). 

Another contribution of this paper is that it introduces lagged mortality (i.e. the 

survival status of the previous child) in the mortality model, in addition to the preceding 

birth interval. There is relatively little previous research on state-dependence type effects 

in analysis of sibling data, although sibling correlations in outcomes have been widely 

studied (e.g. Solon et al. 1991).6 A recent demographic literature has highlighted the 

widespread phenomenon of sibling death clustering, emphasizing the role of unobserved 

heterogeneity, estimated using multi-level models that incorporate a random effect at the 

mother-level (e.g. Guo 1993, Zenger 1993, Curtis et al. 1993, Sastry 1997a,b). 

Arulampalam and Bhalotra (2004a,b) contribute to this discussion by drawing a 

distinction between unobserved heterogeneity and causal mechanisms that produce 

genuine state dependence. By joint modeling of birth-spacing with mortality, this paper is 

further able to provide estimates of the extent to which birth-spacing drives state 

dependence, as opposed to other possible causal processes.  

In a broader scape, this paper relates to a larger literature in economics, concerned 

with the manner in which the allocational decisions of parents affect the quality of their 

children. For example, numerous studies have attempted to estimate the effect of child 

schooling, a parental input, on child quality, while allowing for unobserved (inheritable) 

endowments or ability (e.g. Card 1999). This is similar to the problem in the present 

analysis of allowing endogeneity in inputs to health, given endowment heterogeneity. 

This paper also relates to research on the dynamics of family formation, although it 

focuses on birth and death (which is more appropriate in a developing country context 

                                                 
6 Identification of the (endogenous) effect of an outcome for one individual on the outcome of a 
�proximate� individual has, in research on neighbourhood effects, proved challenging (e.g. 
Manski 1993). Here, this problem is resolved by the natural sequencing of siblings and the fact 
that, after controlling for heterogeneity, the effects of predetermined variables can be interpreted 
as causal. 
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where these rates are high) in contrast to recent research in economics that, with 

reference to industrialized countries, has focused on marriage and divorce (e.g. Akerlof 

1998, Cherlin 1990).  

 

3    Data & Descriptive Statistics 
3.1    The Data 

The data are from the second round of the National Family Health Survey of India 

(NFHS-II) which recorded complete fertility histories for ever-married women aged 15-

49 in 1998-99, including the time and incidence of child deaths.7 Mothers constitute the 

cross-sectional dimension of the data. As mothers are observed repeatedly, in relation to 

every birth, birth-order creates the time dimension of the panel.  

We use data for Uttar Pradesh (UP), the largest Indian state which, in the year 

2000, contained 17.1% of the country�s population (approximately 165 million people).  

It has social and demographic indicators that put it well below the Indian average (see 

Drèze and Sen 1997). After dropping mothers with at least one multiple birth, we have a 

sample that contains 28,668 live births of 6716 mothers, that occurred between 1963 and 

1998.8,9 

The incidence of neonatal death over the sample period in UP was 7.39% (7% in 

the sample used), compared with an all-India average of 5.21%.10 Previous research on 

developing country data suggest that birth intervals less than 24, and especially 18, 

months have deleterious effects. The percent of birth intervals in the sample that are 

shorter than 18 months is 18.1, and the percent that are 18-23 months long is 18.6. The 

                                                 
7 For details on sampling strategy and context, see IIPS and ORC Macro (2000). 
8 The original sample contains 29,937 births from 7,297 mothers. Our elimination of multiple 
births is in line with the demographic literature on mortality. Children of a multiple birth face 
hugely higher odds of dying, other things equal. Including multiple births would complicate the 
relation of mortality and birth intervals that is of interest in this paper. 
9 As discussed in section 4.1, the model will include a quadratic trend term. In future research, we 
will investigate how the main effects in this analysis have changed over time, and also investigate 
them for other Indian states, and other countries. 
10 These figures are averages over the data sample. As this contains retrospective data, it includes 
children born across almost four decades, 1963-1998. Although we do not have recent figures for 
neonatal death (death in the first month of life), the infant death rate (death in the first year of life) 
in India is estimated to have been 6.7% in 2001 (UNDP 2003), while the all-India average of the 
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mean number of births per mother is 5.32, the median number is 5, and the maximum is 

14. The mean age of mothers at first birth is 23.1, and the median is 22. As many as 

28.8% of all live births are to teenage mothers (age range 12-19) and 14.6% are to 

mothers under 18 (i.e. 12-18). 

Female sterilization is the predominant form of contraception in India. At the time 

of the survey, 22.5% of women were sterilized, information that we use in estimation of 

the model. Of the women who report sterilization, 59% were sterilized at a parity greater 

than or equal to 5. In the five years before the survey, for which more detailed 

information on contraception is available, 54.4% of all women had never used any 

method of contraception.  

The Indian National Health Survey used in this paper is one of a family of about 

70 Demographic and Health Surveys.11. The methods used in this paper are therefore 

immediately applicable to a vast array of countries with different profiles of the structural 

processes. For instance, persistently high fertility and childhood mortality are a greater 

problem in many African countries than in India. The analysis in this paper could 

fruitfully be applied to analyze the extent to which the African problem reflects a 

�demographic trap�, described by the inter-dependence of mortality and fertility.  

 

3.2   The Endogenous Variables 

Means and standard deviations of all variables used in the analysis are in 

Appendix Table 1. The focus in this paper is on neonatal mortality, or death in the first 

month of life.12 This assists the statistical modeling since it means that we can be sure 

that if the preceding sibling died, then this event occurred before the birth of the index 

child. In other words, lagged mortality is always a predetermined variable in the birth 

interval equation. Previous research confirms that the association of birth spacing and 

mortality is strongest in the neonatal period (e.g. Cleland and Sathar 1984, Zenger 1993, 

Frankenberg 1998, Nyarko et al. 2003).  

                                                                                                                                                 
infant mortality rate in our sample is 8.2%. In our all-India sample, 63.4% of infant deaths 
occurred in the neonatal period. 
11 See www.measuredhs.com 
12 Strictly, neonatal death refers to death in the first four weeks or 28 days of life, but the data 
record death in the first month. 
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Although the focus of policy is on reduction of under-5 mortality (see UNDP 

2003), 46.2% of under-5 deaths in India are neonatal (46.4% in UP; figures from the 

NFHS data), and this proportion has been increasing over time (e.g. World Bank 2004). 

This is consistent with socio-economic development and �nurture� having a greater 

impact on survival chances for older children, with biology (�nature�) weighing more 

heavily in the causes of neonatal death. For this same reason, gender differences in 

mortality risk are smaller in the neonatal than in the post-neonatal period. As a result, 

data on boys and girls are pooled in the analysis. Note that, to the extent that the health 

technology varies with child age (e.g. Wolpin 1997, p.525), it is less restrictive to 

estimate models for neonatal mortality separately from models for later childhood 

mortality than it is to group deaths in the under-5 band. 

The birth interval is the interval between reported dates of birth, rather than the 

inter-conception interval. As a result, measured birth intervals will be shorter on account 

of premature births (e.g., Gribble 1993). This is investigated in section 5. A further 

potential problem is that birth intervals, as measured, will be longer on account of 

miscarriage or stillbirth (e.g. Madise and Diamond 1995). We do not have reliable 

estimates of the extent of miscarriage or stillbirth in the data and are therefore unable to 

assess the impact of this problem.13  

Before introducing any structure, let us describe the main relationships of interest. 

Figure 1 is a non-parametric regression of the (unconditional) predicted probability of 

neonatal death as a function of the logarithm of the preceding birth interval. This is seen 

to decline monotonically. At short birth intervals, not only is the probability of neonatal 

death highest, but also the gains from an additional month�s spacing are largest.14 Figure 

2 plots the kernel density functions of the birth interval for two sub-samples of the data, 

selected according to whether or not the previous child in the family survived the 

                                                 
13 Ignoring miscarriage and stillbirth may lead to under-estimation of the mortality-raising effect 
of short birth intervals in equation (1) below if women who have these problems also tend to 
produce weaker live births, since then falsely long intervals will be associated with higher 
mortality. However, this bias may be expected to be small once we control for mother-specific 
frailty and fecundity.  
14 The curve eventually turns up. Some previous demographic research has noted that, while most 
of the action is at short birth intervals, there is sometimes a positive association of long birth 
intervals and mortality (e.g. Rutstein 2000, who uses cross-country data). We report below that a 
quadratic in the logged birth interval was insignificant.  
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neonatal period. It shows that the birth interval distribution for the case where the 

preceding child has died lies to the left of the other. The median birth interval is 22.5 

months after a neonatal death and 27 months when the previous sibling has survived the 

neonatal period (the corresponding means are 24.6 and 30.9 months). The raw data thus 

exhibit the patterns that we are seeking to quantify: Figure 1 shows that short birth 

intervals raise mortality risk, and Figure 2 shows that previous mortality in the family 

results in shorter birth intervals.  

In order to describe the degree of persistence in the data, that is, to see how 

strongly correlated the mortality risks of successive siblings are, let us exclude first-born 

children for the moment, as lagged mortality (i.e. mortality of the preceding sibling) is 

undefined for them. In the sample of second and higher-order children, the average 

probability of neonatal death is 6.41%.15 Consider how the probabilities compare 

conditional upon the survival status of the preceding sibling in the neonatal period. In the 

sub-sample in which the previous sibling survived, this probability is 5.29%, and 

amongst those whose previous sibling died, the probability is a remarkable 19.26%. Thus 

the death of a preceding sibling is associated with an increase in mortality risk by about 

14 percentage points (or, it increases risk almost four-fold). This clustering of sibling 

deaths can be explained by unobserved heterogeneity and genuine state dependence, and 

state dependence can, in turn, be explained by short birth-spacing or other mechanisms. 

The analysis to follow will disentangle the causal effects from correlations amongst 

siblings, and consider the contribution of causal effects working through birth-spacing. 

 

4    The Model 
The model has a recursive dynamic structure: the propensity of neonatal mortality risk 

depends upon previous mortality in the family (and, thereby, on lagged inputs to child 

health) and on the preceding birth interval, while the birth interval, in turn, depends upon 

the mortality status of the preceding sibling. Identification of the main causal effects rests 

on exploiting the natural sequencing of the birth spacing and mortality processes. 

Amongst other covariates in the model are maternal age at birth of the child, and the year 

                                                 
15 The average probability of neonatal death amongst first-born children is 8.75%. That first-borns 
face higher death risks has been noted in previous demographic research. 
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of birth of the child. Both of these variables are endogenous by virtue of their dependence 

upon the entire history of birth intervals (and maternal age at first birth). This is allowed 

(see section 4.1). 

The mortality equation can be regarded as a health production function in which 

the birth interval is an endogenous input (as in Rosenzweig and Schultz 1983a,b). The 

birth spacing equation is an input equation but, at the same time, it describes an outcome 

that depends upon both tastes and technology. These two equations are estimated jointly 

with an equation for continued fertility that accounts for right-censoring of the birth 

interval, and an equation for mortality risk of the first-born child, that addresses the initial 

conditions problem.  

The estimation allows for endowments (persistent mother-specific traits), 

unobservable by the econometrician but potentially known to the mother, and for the 

agency of the parent in influencing outcomes. The health endowment is referred to as 

frailty. Modeling this term allows for the fact that children of the same mother have 

correlated mortality risks because of shared genetic or environmental factors. We also 

allow for inter-family unobserved heterogeneity in the birth spacing and fertility 

equations (for convenience both of these heterogeneity terms are henceforth referred to as 

fecundity, although they are not restricted to be the same), and for this to be correlated 

with frailty. This allows, for example, that women who are more careful about 

contraception may also be more careful in maintaining the health of their children. 

Ignoring unobserved heterogeneity will not only give biased estimates of the dynamics of 

each process (see Heckman 1981, Hyslop 1999) but may also bias estimates of the causal 

effect of each of these variables on the other (e.g. Alessie et al. 2004).  

The econometric model is an extension of the univariate model of Heckman 

(1981) and Hyslop (1999), and is broadly similar to the bivariate discrete choice model of 

Alessie et al. (2004) although, here, the second equation (for birth interval length) is 

continuous rather than discrete, and subject to right-censoring. The approach we take to 

dealing with right-censoring is somewhat unconventional (section 4.3). The way in which 

the initial conditions problem is addressed is also different in this paper (section 4.4). To 

take account of sampling design, we introduce a random effect at the community (cluster) 
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level (section 4.5). The model is estimated by simulated maximum likelihood (section 

4.6). 

Let there be ni children in family i (which implies an unbalanced panel).  Mij 

denotes an indicator variable with value 1 if child j in family i suffers neonatal death, and 

0 otherwise. Bij is the log of the length of the interval between the birth of child j-1 and 

child j in family i.16 In other words, Bij
 refers to the interval closed by the birth of child j. 

As it is the preceding birth interval for child j, it is, by definition, predetermined with 

respect to Mij. The rest of this section describes each of the four equations in the model, 

and explains the estimation procedure. 

 

4.1    Neonatal Mortality 

For child j (j=2,�,ni) in family i (i=1,2,�, N), the equation for neonatal mortality is  

 

(1) Mij
* =g( xi , xi1, xij , Mi1,� Mi,j-1, Bi2,�, Bij; θm) + αmi + umij; 

Mij=1 if  Mij
*>0 and  Mij=0 if  Mij

*<0 

 

In order to explain the assumptions needed for consistent estimation, it is initially written 

in a general form. Here αmi is family (or mother)17 specific unobserved heterogeneity, 

reflecting �frailty� from genetic sources (e.g maternal propensities to low birth weight 

and prematurity) as well as from environmental factors and child-care behaviours. As 

emphasized in Rosenzweig and Wolpin (1988), the fact that endogenous inputs like 

breastfeeding are not explicitly incorporated implies that the estimated family-effect will 

reflect not only inter-family heterogeneity in endowments but also any inter-family 

heterogeneity in preferences. It is assumed that αmi is known to the family, though not 

observed by the econometrician. The error term umij varies over mothers as well as 

children. It is revealed at the birth of child j and we assume that it does not influence 

parental inputs to child j in the one month of life during which parental choices can 

                                                 
16 The logarithm of the birth interval is used as this has a more normal distribution than the level 
in months. 
17 Re-marriage (and re-partnering) amongst Indian women is rare enough that it is reasonable to 
use �mother� interchangeably with �family�. 
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influence neonatal mortality risk. However, we allow umij-1 to influence parental inputs 

into child j through past mortality in the family, Mij-1.  

The vectors xi, xi1, and xij are exogenous explanatory variables, partitioned into 

variables that vary over children (xij, j=2,�,n),  that are specific to the first child (xi1) and 

that do not vary over children (xi). The vector of unknown parameters is denoted by θm. 

The variables Mi1,� Mi,j-1, Bi2,�, Bij are predetermined, i.e., realized at or before the birth 

of child j.  

For the function g, we will use a linear specification in xi, xij, Mi,j-1, Bij, and also 

include quadratic terms in the year of birth of the child, and in the age of the mother at 

birth of the index child, both of which are functions of  xi1 and Bi2,�, Bij.18 Since the age 

of the mother at birth of child j depends upon her age at birth of child j-1 and the length 

of the intervening birth interval, Bij, it is clear from recursivity of the model that maternal 

age at birth of j can be expressed as a function of maternal age at first birth (in xi1) and 

the history of birth intervals up until that date (Bi2,.. Bij). Thus, by allowing for the 

endogeneity of birth intervals and conditioning on xi1, we are allowing for the 

endogeneity of maternal age. Since the data used include births that occurred across a 

span of about 30 years, a quadratic in the year of birth of the child is included to capture 

any technological change. This, like maternal age, is a function of the year of birth of the 

first child (assumed exogenous, and in xi1), and the history of previous birth intervals of 

the mother.  

We expect a negative effect of Bij on Mij, consistent with the hypothesis of 

maternal depletion indicated in section 1, and also with competition amongst closely-

spaced siblings (e.g. Cleland and Sathar 1984, Zenger 1993). The effect of lagged 

mortality, Mi,j-1 on Mij may be negative if learning effects dominate, or positive if there is 

a strong role for factors such as maternal depression (indicated in section 1). The first-

order Markov assumption implicit in our specification of g is justified by consideration of 

the mechanisms that may drive state dependence (that is, a causal effect of Mij-1 on Mij): 

see Zenger (1993). 

                                                 
18 We experimented with interactions and squares of other terms but found no significant 
improvement. 



 14

We assume that xi, xi1, and xij are independent of αmi and umij. Mean independence 

of (xi, xi1) and αmi is the usual assumption in a random effects model, needed for 

identification; the conditional mean of αmi given xi and xi1 is subsumed in g. In xi, we 

include variables reflecting education levels of the mother and father, and caste and 

religion dummies. In xi1 we additionally include calendar year and age of mother at first 

birth. 

 A potential drawback of random effects models as compared with fixed effects 

models is the assumption that the �time-varying� (in this context, varying across siblings 

and, thereby, implicitly over time) regressors xij are assumed to be independent of the 

individual effects αmi. In our case, however, the only variables included in xij are child 

gender and birth-order. Since there seems to be no reason why these should be correlated 

with mother-level frailty, the independence assumption would seem unproblematic in this 

model.  

 

4.2    Birth Spacing 

The equation for the log length of the birth interval is specified in a similar way to the 

mortality equation: 

 

(2) Bij =h( xi , xi1,  xi,j-1 , Mi1,� Mi,j-1, Bi2,�, Bij-1; θb) + αbi + ubij; 

 

The family-specific effect in the birth spacing equation, αbi, is referred to as �fecundity� 

though it will include not only biological fecundity but also any other sources of 

persistent inter-family heterogeneity that are unobserved. A causal effect of mortality of 

child j-1 on the birth interval to child j is allowed through Mi,j-1. Past death shocks are, in 

this way, allowed to influence current behaviour. We include xi,j-1 since the gender of the 

previous child (j-1) may have an effect on the interval to the birth of child j. The function 

h is specified as a linear combination of xi,  xi,j-1, Mi,j-1, and the calendar year and age of 

the mother at the time of the birth of child j-1 and their squares. As discussed in section 

4.1, the calendar year or year of birth of the child, and maternal age at birth of the child 

are functions of xi1 and Bi2,�, Bij-1. Biomedical and demographic research provide no 

clear argument for a causal effect of Bij-1 on Bij, conditional on αbi, so we do not allow for 
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this.19 The assumptions concerning family-specific effects and error terms, ubij, are 

similar to those for equation (1). We assume that xi, xi1, and xij are independent of αbi and 

ubij and that ubij is independent of the past.  

We allow for correlation between the unobserved heterogeneity terms αbi and αmi 

in equations (1) and (2). This allows an alternative, non-causal explanation for the 

correlation between birth interval lengths and mortality in the raw data. It also accounts 

for the potential endogeneity of the preceding birth interval in equation (1), which, 

although predetermined, may be correlated with frailty, αmi. For example, parents with 

weak endowments may choose shorter birth intervals in order to meet their target number 

of children in a given time. Similarly, our model allows Mij-1 in equation (2) to be 

correlated with family-level fecundity, αbi.  

 The distribution of the family effects (αmi, αbi) is assumed to be bivariate normal 

with mean zero, variances σm
2, σb

2, and covariance σmσbρα. The child-specific error 

terms umij and ubij are assumed to be independent of αmi and αfi and normally distributed 

with mean zero. Without loss of generality, the variance of umij is set to 1. 

 

4.3    Right-Censoring 

 Inclusion of the birth spacing equation, (2), in the model demands a correction for 

right-censoring because some mothers will not have completed their fertility at the time 

of the survey.20 The data contain information on whether a mother is sterilized at the time 

of the survey, which helps to estimate the parameters of the model more efficiently. For 

these mothers, who constitute 22.5% of the sample, it is safe to assume that the complete 

birth process is observed. Of the remaining mothers, some will have another child after 

the survey date, and others will not. To account for this, we model the probability that 

mother i will have another child after the birth of child j, as follows: 

                                                 
19 Heckman et al. (1985) show, for a sample of Swedish mothers, that there is no state 
dependence in the birth spacing process once controls for unobserved heterogeneity are 
introduced. 
20 It may be useful to think in terms of the fertility equation being to the birth-spacing equation, 
what the participation equation is to the wage equation in the more familiar context of selection 
into wage work (e.g. Heckman 1974). The birth interval equation only applies if the woman has 
decided to have another child, i.e., if what we call the fertility equation has a certain (binary) 
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(3) Fij
* =f( xi , xi1 ,  xij , Mi1,� Mi,j-1, Bi2,�, Bij; θf) + αfi + ufij; 

Fij=1 if  Fij
*>0 and Fij=0 if Fij

*<0 

 

We specify f as a linear combination of xi, the calendar year and age of the mother at the 

time of the birth of child j-1 and their squares (functions of  xi1 and Bi2,�, Bij-1), dummies 

for the presence of boys and the presence of girls in the family (that did not suffer 

neonatal death), and the total numbers of boys and girls in the family who survived the 

neonatal period (functions of j, Mi1,� Mi,j, and Bi2,�, Bij-1). The variables are gender 

specific to allow for son-preference, of which there is considerable evidence for the state 

of UP (e.g. Dreze and Gazdar 1997). Endogeneity of the gender-specific sibship variables 

is taken care of in the same way as in the other equations � these variables are a function 

of lagged dependent variables. Moreover, confounding unobserved factors are controlled 

for by allowing arbitrary correlations of αfi with αmi and αbi, assuming joint trivariate 

normality with arbitrary covariance matrix and independence of exogenous variables. We 

make similar assumptions on ufij as on the other error terms: normality, independence of 

individual effects and error terms for other birth-orders or other equations, and 

independence of exogenous variables.    

Equation (3) is estimated jointly with equations (1), (2) and (4) (below). If mother 

i has more than j children, then we know she has given birth to another child after child j, 

and the likelihood will incorporate the probability that Fij=1.  If the mother reports that 

she has had exactly j children and was sterilized after the birth of the j-th child, then the 

likelihood will incorporate the probability that Fij=0. If at the time of the survey, the 

mother had j children but was not (yet) sterilized, then it is unclear whether child j is the 

last child or not; it could be that the birth interval after the birth of child j extends beyond 

the time of the survey. The probability that this will happen, given that there will be 

another birth and given unobserved heterogeneity components, follows from (2) and is 

given by Φ([T- {h( xi , xi1 ,  xi,j-1 , Mi1,� Mi,j-1, Bi2,�, Bij-1; θb)+ αbi}]/σ), where T is the 

length of the time interval elapsed between the birth of child j and the time of the survey, 

                                                                                                                                                 
outcome. The interval is infinity if the woman decides to have no more children. This is 
analogous to the wage being zero if the individual does not participate in market work.  
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and σ is the standard deviation of the error term in (2). In this case, the likelihood 

(conditional on unobserved heterogeneity terms) will contain a factor that accounts for 

the fact that we do not observe whether or not there will be another birth after birth j:  

Φ(zij′′′′ββββc+αfi)Φ([T- {h( xi , xi1 , xi,j-1,Mi1,�Mi,j-1,Bi2,�,Bij-1; θb)+ αbi}]/σ)+1-Φ( zij′′′′ββββc+ αfi).   

 The usual approach to right-censoring is to assume that the same process 

continues but that we simply stop observing it at the time of the survey (e.g. Wooldridge, 

2002, Chapter 20). This approach does not work well in the current application since the 

fertility process is necessarily finite (though at different points for different women) and 

ended well before the time of the survey for many women in the sample.21 In the absence 

of information on sterilization, natural but less promising alternatives would be to assume 

that fertility stops at a given age (e.g. 40) for all mothers, or to estimate equation (3), but 

without the sterilization information. In this case, the fertility equation would only be 

indirectly identified in the sense that we would observe many women with very long birth 

intervals, and the model estimates would attribute this to cessation of fertility. These 

estimates are likely to be much less precise than we obtain with the sterilization 

information. 

 

4.4    The Initial Conditions Problem 

�Lagged� mortality, Mij-1, is endogenous in equation (1) by virtue of being 

correlated with frailty, αmi. This creates the initial conditions problem commonly 

encountered in analysis of dynamic models with unobserved heterogeneity (e.g. Heckman 

1981). This problem is addressed by formulating a separate equation for the mortality risk 

of the first-born child of every mother, which can be estimated jointly with the other 

equations in the model: 

 

(4) Mi1
* = g1 ( xi , xi1; θm,1) + λmαmi + λbαbi + λ fαfi + umi1; 

Mi1=1 if  Mi1
*>0 and  Mi1=0 if  Mi1

*<0 

 

                                                 
21 Initial experimentation with our data showed that the usual procedure produces a poor fit, being 
unable to explain why so many women suddenly completely stop having children. This is because 
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In most existing applications of these sorts of models, described by Heckman (1981), 

Hyslop (1999) and Wooldridge (2000), the true process is ongoing and the first 

observation is generated in the same way as later observations, the only difference being 

that it is the first observation in the sampling window. Heckman et al. (1985) is an 

exception. They model birth spacing and observe the process from its natural start, the 

start of menarche. Here, similarly, we observe the birth and mortality processes from 

their beginning for each mother in the sample, and the first child is a genuine starting 

point of that process (as in Arulampalam and Bhalotra 2004a,b). This makes Heckman�s 

approach quite natural compared to, for example, the alternative approach to addressing 

initial conditions recently proposed by Wooldridge (2000).  

We will work with a linear specification of g1, in line with the specification of (1). 

It seems likely that Mi1 will be correlated with αmi but since the equation for Mi1 contains 

no lagged dependent variable, the coefficient on αmi is allowed to be different from 1 (by 

λm). Mi1 is also allowed to be correlated with αbi or αfi, the family-specific effects in the 

birth-spacing equation, (2), and the fertility equation, (3). The error term umi1 is assumed 

to be standard normal and independent of the other error terms in the model, of the 

individual effects, and of the exogenous regressors xij and xi. θm1, λm, λb and λ f are 

auxiliary parameters. Equation (4) is a flexible function of the exogenous variables. We 

do not impose restrictions on the relation of the parameters in (4) (risk for first born 

child) to those in (1) (risk for other children in the family). 

 
4.5    Geographical Cluster Effects 

The data are collected in 333 geographical clusters (�communities�) with, on 

average, 21.3 mothers per cluster. To allow for the possibility that mothers (and children) 

within a cluster share unobservable traits (for example, sanitation or social norms), we 

need to include a cluster-level term in the equation error. As the large number of clusters 

makes it infeasible to use cluster dummies, we incorporate random cluster effects in 

equations (1) and (2) and (3) in the same way as the mother-specific effects, with similar 

                                                                                                                                                 
it merges the birth interval with the fertility decision, when in fact we need two separate 
equations for these two processes. 
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assumptions.22 A linear combination of the cluster effects in (1), (2) and (3) is added to 

equation (4), with three additional auxiliary parameters as coefficients. For identification, 

it is assumed that the cluster effects are independent of mother-specific effects. Thus 

common characteristics of all mothers in a given community will be picked up by the 

cluster effects rather than by the mother-specific effects.  

 

4.6    Estimation  

The complete model can be estimated by maximum likelihood, including the 

nuisance parameters of the initial conditions equation, and the fertility equation. 

Conditional on the random (mother and cluster level) effects, the likelihood contribution 

of a given mother can be written as a product of univariate normal probabilities and 

densities over all births of a mother, and the likelihood for a given cluster can be written 

as the product over all mothers in that cluster. Since random effects are unobserved, the 

actual likelihood contribution is the expected value of the conditional likelihood 

contribution, with the expected value taken over all random effects (three in the model 

without cluster effects, six in the model with cluster effects). This is a three or six-

dimensional integral, which could in principle be approximated numerically using, for 

example, the Gauss-Hermite-quadrature.  

In this paper, we instead use (smooth) simulated ML, drawing multivariate errors 

from N(0, I3). These are then transformed into draws of the random effects using the 

parameters of the random effects distribution. The conditional likelihood contribution is 

then computed for each draw and the mean across R independent draws is taken. If R→∞ 

with the number of observations (i.e., in this case, clusters, since mothers are no longer 

independent observations), this gives a consistent estimator; if draws are independent 

across households and R→∞ faster than √N, then the estimator is asymptotically 

equivalent to exact ML (see, for example, Hajivassiliou and Ruud 1994). We use Halton 

draws, which have been shown to give more accurate results for smaller values of R than 

                                                 
22 That is, trivariate normal with arbitrary covariance structure to be estimated, independent of 
exogenous variables and error terms. 
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independent random draws (see Train 2003). The results we present are based on R=50. 

Using R=75 gives very similar results (see section 5.5).23  

 

5    Results 
This section first presents the results of the benchmark model (Tables 1-4) and 

then, in section 5.5, we discuss sensitivity of the results to some changes in specification 

(Table 6). Table 5 presents the estimated covariance structure of the mother and 

community level random effects.  

 

5.1    Neonatal Mortality 

Table 1 presents the parameter estimates of the equation for neonatal mortality. It 

also reports marginal effects for the second child, assuming that the first child survived 

the first month of life, and setting all family characteristics to their benchmark values 

when categorical (boy, Hindu, not of a backward caste, maternal and paternal education 

zero), and to their average values for second children when not (birth year 1985.7, age of 

the mother at birth 20.8 years, previous log birth interval 3.31).24 The estimated 

probability of neonatal mortality for this benchmark child is 4.33%. 

 The preceding birth interval has the expected negative effect on the probability of 

neonatal death. A ten percent increase in the length of the birth interval reduces the 

probability of death by about 0.4 percentage-points in the benchmark case, and the 

marginal effect is similar for higher birth-orders. In view of the finding, in previous 

research, that the deleterious effects of short birth intervals are enhanced if the previous 

sibling has survived (e.g. Zenger 1993, Cleland and Sathar 1984), we also included an 

interaction of �lagged� neonatal mortality and the log of the preceding birth interval but 

this was insignificant. This interaction term is similarly insignificant in the analysis of 

data from Pakistan by Cleland and Sathar (1984), who interpret it as evidence that 

maternal depletion rather than sibling competition explains the mortality-increasing 

effects of short birth intervals. Maternal depletion is likely to be especially pronounced 

                                                 
23 An explicit specification of the likelihood function can be found in the version of our paper 
available at http://www.ecn.bris.ac.uk/www/ecsrb/bhalotra.htm. 
24 The marginal effects are birth-order-specific. A full set of marginal effects by birth-order is 
available on request; not shown for parsimony. 
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amongst poor women who need longer to replenish stocks of nutrients like calcium and 

iron that are needed to support a healthy pregnancy. 

 Neonatal mortality of the previous sibling makes neonatal death significantly 

more likely for the index child, even with the birth interval held constant. For the 

benchmark second child, the estimated difference is 4.3 percentage-points. Similar effects 

are found for the third, fourth, and later children. This suggests that any learning effects, 

whereby a mother is better able to avoid a further child death once she has experienced 

one, are dominated by state dependence mechanisms that create a positive association of 

sibling deaths and that do not operate via the shortening of birth intervals. As indicated in 

section 1, we hypothesize that the loss of a child may create psychological effects that the 

mother may not have recovered from by the time she conceives her next child, as a result 

of which there may be physiological effects that make this child more vulnerable both in 

the womb and after birth.25 While this is one plausible causal mechanism there may, of 

course, be other processes at work too.26 

 Conditional on the other covariates, neonatal mortality of boys and girls is not 

significantly different, consistent with the discussion in section 3.1. Neonatal mortality is 

also not sensitive to birth-order.27 For the benchmark child, there is a trend reduction of 

0.15 percentage-points per year (1.9% of the benchmark probability) in the risk of death. 

Neonatal mortality risk is U-shaped in mother�s age at birth of the index child, a pattern 

familiar from other studies using developing country data. The minimum occurs, in these 

data, at about 26 years of age. On average, mothers are much younger than this when 

giving birth to their second child (20.9 years old). This explains the significantly negative 

marginal effect obtained for the benchmark second child: if the mother�s age increases by 

                                                 
25 If Mij-1 were capturing a depression effect and if depressed mothers systematically had shorter 
or longer birth intervals, then we would expect the interaction term between preceding birth 
interval (Bij) and Mij-1 to be significant but, as discussed above, it is not. 
26 If the periods in which child j-1 and child j were exposed to the risk of death overlapped then 
the transmission of infection amongst siblings might contribute a further source of genuine state 
dependence. In our model, this is less likely since, if child j-1 suffered neonatal death on account 
of an infection, child j was, by definition, not yet born. Nevertheless, if the infection were 
persistent and stayed around until j was born, this could be a mechanism for state-dependence. Of 
course if infection were just more prevalent in certain households or communities all the time, 
then this would be picked up by the random effects in the model.   
27 Note that these results are for the sample of children of birth-order two or higher. There may 
well be a birth-order effect that is significant for first-borns.  
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one year, the mortality probability falls by 0.17 percentage-points. At higher birth-orders, 

the average age of the mother increases and the U-shape implies that for birth-orders 

above four, the marginal effect turns positive. For example, it is 0.16 percentage-points 

per year for the benchmark seventh child. Mortality risk tends to be decreasing in both 

maternal and paternal education, larger and more significant marginal effects being 

associated with maternal education. For example, secondary or higher education of the 

mother (which 6.4% of mothers in the sample have) is associated with a 2 percentage 

point reduction in mortality, relative to the case of mothers having no education (which is 

true of 75% of mothers). A striking result, that deserves further investigation, is that 

children of Muslim families are significantly less likely to die in the first month than 

Hindu children, with an estimated difference of about 1.6 percentage-points.28 Although 

the scheduled castes and tribes face similar mortality risk to the benchmark case, other 

backward castes face risks of neonatal death that are higher by about 1.6 percentage 

points.29  

Estimates of the �reduced form� probit equation for mortality of first-born 

children (equation 4) are in Table 2. The female dummy is now negative and significant 

at the two-sided 10% level, consistent with the fact that girls are born with a survival 

advantage, and with previous research that shows that discrimination against girls is 

increasing in birth-order (e.g. DasGupta 1990). Other effects are broadly similar.  

 

5.2    Birth Spacing 

Estimates of the birth spacing equation are in Table 3. Since the dependent 

variable is in logs, the interpretation of the parameters is in terms of percentage changes 

of the expected length of the birth interval. Note that all covariates in this model refer to 

the preceding child (i.e. the child born at the start of the birth interval). 

                                                 
28 The raw data probability of neonatal and infant death is also lower amongst Muslims. Since, 
compared with Hindus, Muslims exhibit shorter birth intervals, higher fertility and a greater 
proportion of mothers and fathers with no education, this suggests that the mortality-reducing 
intercept effect of religion identified here dominates the mortality-increasing effects flowing from 
these explanatory variables. It is useful to note that the state of UP (for which data are analysed in 
this paper) has, at 17%, an above average representation of Muslims in the population.  
29 Together, scheduled castes (dalits), scheduled tribes (adivasis) and other backward castes make 
up the �lower classes� in India. Other backward castes comprise almost 28% of the population of 
the state of UP (see Appendix Table 1). 
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There is a strong negative effect of neonatal death of the previous child on the 

subsequent birth interval, reducing its expected length by about 20.5%. This is consistent 

with replacement behaviour (e.g. Ben-Porath 1976).30 Feeding this into equation (1), we 

can conclude that the effect of Mij-1 that operates via Bij results in an increase in Mij of 

about 0.8%-points. Since the direct effect of Mij-1 on Bij in equation (1) was reported to 

be 4.3%-points, total state dependence increases the risk of death by 5.2%-points. Thus 

genuine state dependence accounts for a sizeable 37% of the clustering of sibling deaths 

or raw persistence that was shown, in section 3.2, to average 14%-points. The residual 

63% can be attributed to (observed and unobserved) heterogeneity.  

The gender of the last-born child is significant, consistent with son-preference. If 

this was a girl, the expected birth interval is about 3% shorter than if it was a boy. The 

quadratic trend is hump shaped, with a maximum at about 1978. Thus birth intervals have 

tended to get shorter in recent decades (1978-1998). This may be explained by rising 

living standards. In particular, since better-nourished mothers will tend to suffer less 

deleterious effects from a short birth interval, they can �afford� shorter birth intervals. 

There is some indication that spatial (inter-state) patterns in India resemble the inter-

temporal pattern detected here, with the wealthier states (like Punjab) having a greater 

proportion of births with short intervals while, at the same time, having lower neonatal 

mortality (see Arulampalam and Bhalotra 2004b). Birth spacing is hump-shaped in the 

age of the mother at birth, with a maximum at about 28 years of age. This means that, for 

the average mother, birth intervals increase until the sixth child is born. Parental 

education has no significant effect on birth spacing. Birth intervals are shorter amongst 

Muslim families by 8%, compared with Hindu families. There are no significant 

differences in birth spacing by caste-group. Other things equal, birth-order exhibits a non-

monotonic pattern, with the shortest birth intervals preceding the birth of the third and 

fourth child.  

 

                                                 
30Hoarding in view of expected mortality will, in general, result in a positive correlation of the 
unobserved heterogeneity terms in the mortality and fertility equations. This is not so relevant in 
the current context since mortality is defined as neonatal. In this case, parents have (neonatal) 
mortality information on all previous children before they decide to have the next child. 
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5.3   Fertility Equation 

Table 4 presents estimates of the probability of having another child after each 

birth, as a function of current family composition, maternal age and other family 

characteristics and calendar time. Of particular interest are the family composition 

variables. The results indicate son-preference, of which there is considerable evidence 

from Northern India and, especially, the state of UP (e.g. Dreze and Sen 1997). The 

probability of continued fertility is decreasing in the number of surviving children, but 

almost five times as rapidly in the number of surviving boys. Also, if the family has no 

surviving boys, the probability of having another child is much larger (34.3%-points) 

than if there are no surviving girls (7%-points). Similar results have been reported for 

other countries in Asia and North Africa (e.g. Rahman and DaVanzo 1993, Nyarko et al. 

2003)31 

 The quadratic in the child�s year of birth is hump-shaped, with a maximum at 

about 1979. So, for the latter two decades of the data, fertility has been declining. The 

quadratic in mother�s age is U-shaped, with a minimum at about 31 years. In the sample, 

89% of births were to mothers younger than this so, for most cases, (conditional) fertility 

is falling in maternal age. Continued fertility is seen to fall with the level of education of 

both mother and father, larger effects of a given level of education being associated with 

mothers. Muslims show a higher tendency to continue fertility, as do all of the backward 

castes. 

 

5.4    Unobserved Heterogeneity  

Table 5 presents the estimated covariance structure of the mother and community 

level random effects. From now onwards the sum of these effects is referred to as total 

unobserved heterogeneity. The underlying auxiliary parameters are presented in the 

bottom panel of the table. There is evidence of mother and community-specific effects in 

all equations. Compared to the idiosyncratic noise term (with variance 1), the two 

heterogeneity terms in the mortality equation make a modest contribution, capturing 

about one seventh of the total unsystematic variation in Mij
* (0.1675/(1+0.1675)). Most of 



 25

this is heterogeneity across communities, only about 20% of it is across mothers within 

communities. Previous research in rich and poor countries has found evidence of mother-

level frailty, with varying estimates of its contribution to the overall variation in mortality 

risk (e.g. Rosenzweig and Schultz 1983a,b, Rosenzweig and Wolpin 1988, 1995, Curtis 

et al. 1993, Guo 1993, Zenger 1993) but these studies typically do not allow for 

clustering at the community level and so they will tend to over-estimate the mother 

effects (see Sastry 1997b, Bolstad and Manda 2001, Nyarko et al. 2003). 

In the equation for the log birth interval, the idiosyncratic noise term has 

estimated variance 0.204 (0.4522), and the heterogeneity terms together pick up only 

about 10% of the total unsystematic variation. We find no evidence of correlation 

between either the mother or the community-specific heterogeneity terms in the birth 

spacing and neonatal mortality equations: (see the parameters πbm and τbm in the bottom 

panel of the table). Moreover, the estimated covariances are of opposite sign and almost 

cancel out against each other, giving a correlation coefficient of �0.004 for the total 

unobserved heterogeneity terms. 

The heterogeneity terms in the fertility equation explain about 16% of the 

unsystematic variation in Fij
*. Correlation with the heterogeneity terms in the mortality 

equation is insignificant, but we find a large negative and significant correlation between 

mother-specific effects in the fertility and birth interval equations of �0.92, inducing a 

negative correlation between the total unobserved heterogeneity terms of �0.44. These 

estimates indicate that mothers who have many children also tend to have shorter birth 

intervals, keeping observed explanatory variables constant. This is consistent with, for 

example, the target fertility model (see Heckman et al 1985, Wolpin 1997). 

Overall, the heterogeneity terms are statistically significant but relatively small 

compared to the idiosyncratic errors. This raises the question of whether neglecting to 

allow for unobserved heterogeneity would lead to biased estimates of the parameters of 

interest. This question is explored in the following section. 

Table 5 also shows how the unobserved heterogeneity terms enter the equation for 

neonatal mortality of the first child. As expected, mothers with a relatively large 

                                                                                                                                                 
31 Angrist and Evans (1998) find no such asymmetry for the US; they do find that the probability 
of a third child is larger if the first two children are of the same sex than if they are of different 
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probability of neonatal mortality of higher birth-order children are also more likely to 

experience higher mortality risk for the first child. Somewhat surprisingly, we do not find 

the same for the community effects - these are insignificant in the mortality equation for 

the first child. We also find that mothers with a tendency towards higher fertility face a 

larger probability of neonatal mortality for the first child (the significantly positive value 

of π0f).        

 

5.5    Sensitivity Analysis 

Table 6 presents estimates of the coefficients on the (lagged) endogenous 

variables for alternative specifications. The effects of the other variables are not shown as 

they do not change much compared to the benchmark model (Model 1), estimates of 

which are in Tables 1-5. Consider the consequences of omitting the birth interval from 

the mortality equation (Model 2). This increases the estimated effect of lagged mortality 

in the mortality equation, consistent with the mechanisms described in section 1. 

Omission of the birth interval from equation (1) also biases the effect of lagged mortality 

on the birth interval in equation (2). The reason is that, once the birth interval is omitted 

(Model 2), there is a significant negative correlation (of �0.49) between the (total) 

unobserved heterogeneity terms in equations (1) and (2), and this creates an upward 

simultaneity adjustment on the coefficient of lagged mortality. Recall that Model 1 

showed a small and insignificant correlation (of �0.004) between total unobserved 

heterogeneity terms in equations (1) and (2) (see section 5.4).  

Model 3 excludes the community effects. The estimated covariance matrix of the 

mother-specific effects in this model is similar to the covariance matrix of the sum of 

mother and community specific effects in the complete model, with, for example, a very 

small correlation between the terms in the mortality and birth interval equations (0.014). 

This explains why the point estimates are very similar to those in the benchmark model.32 

The main difference is that this model underestimates the standard errors on account of 

                                                                                                                                                 
sex 
32 There are some changes in significance of the other covariates. For example, the paternal 
education terms become significant in the mortality equation, whereas, in the benchmark case, 
which adjusts for geographic clustering, only the maternal education terms are significant. 
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its ignoring correlations across observations. These results are in line with those of Sastry 

(1997b). 

Model 4 does not allow unobserved heterogeneity at the community or mother 

level. In spite of the modest role of the mother-specific heterogeneity terms that we saw 

in the benchmark model (Table 5), this creates some significant changes. The most 

salient one is the effect of lagged mortality on current mortality, which is 77% larger in 

Model 4 than in the benchmark model (and 66% larger than in the model that allows 

mother-specific but not community-specific unobserved heterogeneity, i.e. Model 3). 

This is consistent with the traditional argument that ignoring heterogeneity leads to 

overestimation of state-dependence effects (Heckman 1981). There is little change in the 

effect of mortality on the next birth interval, probably because the correlation between the 

total unobserved heterogeneity terms is very close to zero in the benchmark model.  

 Model 5 combines the restrictions imposed in arriving at Models 2 and 4. The two 

positive biases on the effect of lagged mortality on mortality together lead to an estimate 

that is almost 95% larger than in the benchmark model. There is no bias on the 

coefficient of mortality in the birth interval equation, for the same reason as in Model 4. 

 A challenging finding is that the effect of lagged mortality on mortality in 

equation (1) is strong even when the length of the preceding birth interval is controlled 

for. We now consider if this might reflect a specification error. For example, the family 

may have suffered a temporary shock (a poor harvest, maternal illness) that spans two or 

more births, resulting in greater vulnerability of two successive children. This was 

investigated by including the second lag of the neonatal mortality dummy in equation (1) 

(Model 6). The coefficient on the second lag is positive and statistically significant (0.246 

with standard error 0.062). Instead of reducing the effect of the first lag (as would be 

expected if Mij-2 were in fact an omitted variable),33 it limits the role of unobserved 

heterogeneity: the standard deviation of the unobserved heterogeneity term in the 

mortality equation falls from 0.38 to 0.24 (standard error 0.062). Thus it seems that the 

                                                                                                                                                 
Similarly, Model 3 shows significant effects of maternal education on birth spacing that, in the 
benchmark case, are insignificant. 
33 It may be better to compare the state dependence estimate of 0.482 to the estimate of the same 
coefficient in a model without second lag but with a separate equation for mortality of the second 
child. Such a model gives a coefficient of 0.419 (with standard error 0.069).   
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results suggested by our benchmark model cannot be attributed to misspecification of the 

lag structure.34,35  

We now discuss some additional sensitivity checks that were conducted, results 

for which are not presented in Table 6 since they were virtually identical to those of the 

benchmark model. The results presented so far are based on 50 random draws for each 

observation (R=50). Extending this to 75 draws hardly changes the results.36 We found 

higher neonatal mortality amongst children with a shorter preceding birth interval. In 

order to ensure that this is not simply the result of a selective over-representation of 

premature births (as noted by Eastman 1944, cited in Cleland and Sathar 1984, p406), we 

re-estimated the model after removing from the sample all mothers with at least one birth 

interval under 9 months. This resulted in a loss of 40 mothers (0.6% of all mothers). The 

estimates of the main parameters are virtually the same as when the short birth intervals 

are included. As already mentioned above, adding an interaction term of the log birth 

interval and lagged mortality in the mortality equation does not lead to a significant 

improvement.37 Similar minimal deviations compared to the benchmark model are found 

when the square of the log birth interval is added to the mortality equation. The point 

estimate on this is 0.013 with t-value 0.27. We also investigated a specification that is 

piecewise linear in the log birth interval (with four brackets given by the quartiles of the 

birth interval distribution) but, again, we were unable to reject the reported specification 

                                                 
34 An alternative would be to allow for autocorrelation between the error terms in the mortality 
equation. We experimented with this in a single equation framework (using the GHK algorithm to 
obtain the simulated likelihood) but found an insignificant (negative) autocorrelation coefficient 
rather than the positive coefficient that would be expected under the hypothesis that the 
significance of Mij-1 reflects a temporary shock. Also, there is, again, an increase in the coefficient 
on the lagged dependent variable. 
35 For computational convenience and given the similarity of the results for models 1 and 3, we 
did not incorporate community clusters in this variant of the model. To do this would require 
specification of a separate equation not only for the first but also for the second child (for whom 
the second lag cannot be included). See Heckman (1981); details available upon request. 
36 The effect of lagged mortality on mortality is 0.337 (s.e. 0.066), the effect of the log birth 
interval on mortality is �0.486 (s.e. 0.048), and the effect of mortality on the log birth interval is �
0.230 (s.e. 0.018). 
37 The interaction term has coefficient 0.058 with t-value 0.47. At the median log birth interval 
value (3.258), this gives a coefficient 0.360 on the birth interval, similar to the benchmark model 
value. The coefficient on the log birth interval is -0.491 if the previous child did not die, similar 
to the benchmark value of �0.481. The estimates of the birth interval equation are virtually 
identical to those in the benchmark model. 
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against this more general specification. This seems in line with the simple association 

shown in Figure 1. 

 

6    Conclusions 
Using retrospective fertility histories from a large sample of Indian mothers, a 

dynamic panel data model is estimated that describes the complete process of child 

survival and birth spacing (and thus also fertility), allowing for endowment 

heterogeneity, input endogeneity, right-censoring and the initial conditions problem. It 

offers the first rigorous estimates of the causal effect of mortality on subsequent birth 

spacing, and of the extent to which death clustering amongst siblings can be explained by 

endogenously determined short birth intervals. 

We find evidence that childhood mortality risk is influenced by the pattern of 

childbearing, that is, by the timing and spacing of births, and that birth-spacing (and 

continued fertility) are, in turn, a function of realized mortality. Together, these recursive 

causal effects suggest multiplier effects of policies that reduce mortality or lengthen birth 

intervals. They also suggest that the full impact of family planning interventions extends 

to reducing mortality and, similarly, that mortality-reducing interventions like provision 

of piped water will tend to impact also on birth spacing and fertility.  

Our results show that unobserved heterogeneity in the form of mother or 

community specific effects explains part of the correlation between neonatal mortality of 

successive children observed in the data. Another part is explained through birth spacing. 

The largest part of the correlation, however, is explained by neither the birth interval 

mechanism nor unobserved heterogeneity and could, for example, be due to a mental 

health shock induced by the death of a child, leading to maternal behaviour that increases 

the chances of subsequent mortality. This is a striking result, especially as previous 

demographic research has restricted attention to the birth spacing mechanism. 

Using data on sterilization to estimate an equation for the decision to have another 

child at each birth, we find that women who have many children also tend to choose 

shorter birth intervals, a result that has some intuitive appeal. We find evidence consistent 

with son-preference. The probability of having another birth is much larger if there are no 

surviving boys as compared with girls, and it decreases more quickly in the number of 
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surviving boys. Furthermore, birth intervals are shorter following the death of a boy 

rather than a girl.  

Mortality and fertility are U-shaped in maternal age at birth, although most of the 

sample points lie in the region with a negative slope. Birth spacing is hump-shaped in 

maternal age, with most sample points lying in the region with a positive slope. Maternal 

education decreases mortality and fertility but has no effect on birth spacing. Paternal 

education depresses the probability of another birth but has no significant effect on the 

other endogenous variables. Being Muslim lowers mortality and, at the same time, 

reduces birth spacing, while belonging to a backward caste tends to raise mortality and 

fertility, while having no effect on birth spacing. Conditional upon the other covariates, 

we estimate a trend reduction in mortality of 0.15%-points p.a., which is almost 2% of 

the benchmark probability. We find that birth intervals have got shorter in the last two 

decades (1978-98), even as fertility has been declining. 

 Future work could extend the framework to analyze infant or child (under-5) 

mortality. This creates the additional complication that mortality events and births can 

take place in overlapping time periods, requiring a different modeling approach. Other 

extensions could make explicit use of data on breastfeeding, although this would mean 

restricting the analysis to recent births as these data are not available in most DHS 

surveys for children born more than five years before the survey. Finally, these results are 

for one Indian state, albeit a state with a population estimated at more than 166 million in 

2001. Extension of the analysis to consider other Indian states or other developing 

countries will lend important insight into the extent to which the key relationships 

analysed here are altered by socio-economic development.  
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Table 1: Neonatal Mortality (equation 1) 
 

  
 Parameter Std error ME Std.err(ME)

 
lagged mortality      0.346* 0.067 4.321 1.173
log birth interval      -0.481* 0.050 -4.404 0.576
Religion:  
Muslim      -0.201* 0.068 -1.553 0.482
Other     -0.083 0.363 0.431 3.941
Caste:  
scheduled caste      0.057 0.056 0.560 0.528
scheduled tribe      0.166 0.129 1.964 1.595
other backward caste        0.149* 0.045 1.589 0.494
Maternal education:  
incomplete primary    -0.092 0.100 -0.690 0.768
complete primary    -0.184 0.095 -1.383 0.684
incomplete secondary    -0.132 0.100 -1.033 0.761
secondary & higher      -0.313* 0.144 -2.063 0.840
Paternal education:  
incomplete primary    -0.002 0.091 0.050 0.848
complete primary    -0.097 0.072 -0.810 0.600
incomplete secondary    -0.114 0.060 -0.981 0.493
complete secondary    -0.134 0.074 -1.112 0.579
higher than secondary    -0.016 0.066 -0.141 0.612
Gender:  
Female    -0.039 0.038 -0.340 0.320
Trend effects:  
year of birth of child/10     0.232 0.675 2.805 6.503
(year/10) squared     -0.023 0.040 -0.252 0.383
 -0.151 
Maternal age:  0.032
maternal age at birth/10      -0.849* 0.350 -8.067 3.233
(age/10) squared       0.161* 0.064 1.522 0.583
 -0.172 0.100
Child birth-order  
birth-order     0.042 0.055 0.383 0.498
square of birth-order   -0.002 0.005 -0.016 0.046
Constant        0.574 2.870  
  

Notes: *: parameter (and marginal effect) significant at the two-sided 5% level. ME denotes 
marginal effects. These are computed for a benchmark child, defined in section 5.1.  The 
(omitted) reference cases for the categorical variables (religion, caste, maternal and paternal 
education, gender) are defined in Appendix Table 1. 
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Table 2. Neonatal Mortality of the first-born child (equation 3) 
 

  
 Parameter Std error t-value 
Religion:  
Muslim -0.272 0.217 -1.25 
Other -0.039 0.843 -0.05 
Caste:  
scheduled caste 0.070 0.180 0.39 
scheduled tribe 0.457 0.437 1.05 
other backward caste 0.331 0.180 1.84 
Maternal education:  
incomplete primary 0.197 0.283 0.70 
complete primary -0.186 0.279 -0.67 
incomplete secondary 0.039 0.264 0.15 
secondary & higher -0.489 0.319 -1.53 
Paternal education:  
incomplete primary -0.429 0.316 -1.36 
complete primary 0.043 0.220 0.19 
incomplete secondary -0.162 0.190 -0.85 
complete secondary -0.162 0.219 -0.74 
higher than secondary -0.288 0.234 -1.23 
Gender:  
female -0.262 0.149 -1.76 
Trend effects:  
year of birth of child/10 -1.137 1.627 -0.70 
(year/10) squared 0.055 0.098 0.56 
Maternal age:  
maternal age at birth/10 -2.977 1.986 -1.50 
(age/10) squared 0.588 0.484 1.21 
Constant 6.178 7.024 0.88 
  

See Notes to Table 1. 
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Table 3. Log Birth Interval (equation 2) 
 

 Parameter Std error t-value 
lagged mortality -0.230* 0.017 -13.40 
Religion:  
Muslim -0.080* 0.014 -5.81 
Other      -0.109 0.065 -1.68 
Caste:  
scheduled caste       0.003 0.013 0.25 
scheduled tribe       0.039 0.033 1.17 
other backward caste       0.006 0.010 0.61 
Maternal education:  
Incomplete primary       0.008 0.024 0.31 
complete primary       0.035 0.021 1.69 
Incomplete secondary       0.013 0.024 0.53 
secondary & higher       0.033 0.023 1.48 
Paternal education:  
Incomplete primary       0.023 0.021 1.10 
complete primary      -0.001 0.016 -0.06 
Incomplete secondary       0.002 0.015 0.16 
complete secondary      -0.003 0.017 -0.19 
higher than secondary        0.017 0.018 0.94 
Gender:  
Female -0.029* 0.009 -3.38 
Trend effects:  
year of birth of child/10 1.082* 0.138 7.82 
(year/10) squared -0.069* 0.008 -8.35 
Maternal age:  
maternal age at birth/10 0.265* 0.070 3.76 
(age/10) squared -0.047* 0.015 -3.15 
Child birth-order  
birth-order -0.024* 0.008 -2.93 
square of birth-order 0.003* 0.001 2.72 
Constant -1.130* 0.570 -1.98 
sigma error 0.452* 0.003 164.85 

Notes: See Notes to Table 1. 
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Table 4. Fertility: Probability of another birth (equation 4) 
 
 Parameter Std error ME Std.err(ME) 
Religion:  
Muslim          1.223* 0.111 22.201 1.711
Other       -0.628 0.334 -23.419 12.371
Caste:  
scheduled caste          0.209* 0.060 6.203 1.779
scheduled tribe          0.329* 0.132 9.191 3.405
other backward caste          0.299* 0.049 8.548 1.416
Maternal education:  
incomplete primary       -0.213 0.110 -7.309 3.852
complete primary       -0.164 0.087 -5.696 3.025
incomplete secondary         -0.298* 0.093 -10.824 3.544
secondary & higher         -0.520* 0.105 -19.111 3.990
Paternal education:  
incomplete primary           0.232* 0.097 6.768 2.547
complete primary        -0.133 0.082 -4.496 2.779
incomplete secondary          -0.192* 0.060 -6.458 2.063
complete secondary          -0.448* 0.079 -15.883 2.979
higher than secondary          -0.362* 0.085 -12.597 3.126
Trend effects:   
year of birth of child/10           5.520* 1.200 177.148 40.961
(year/10) squared         -0.351* 0.070 -11.260 2.391
  -2.439 0.261
Maternal age:   
maternal age at birth/10          -3.164* 0.412 -100.263 14.044
(age/10) squared           0.515* 0.073 16.287 2.463
 0.012 0.277
Surviving children   
1 if no boys          1.073* 0.173 34.303 5.847
1 if no girls           0.220* 0.075 7.017 2.358
number of boys         -0.329* 0.029 -10.497 1.080
number of girls         -0.069* 0.024 -2.234 0.781
Constant       -14.584* 4.996  
Notes: See Notes to Table 1. The marginal effects are given for the benchmark case after the birth 
of the seventh child, with probability almost 75% of having another child. The reason for taking 
the 7th child is that probabilities of having another child after an earlier birth are larger, giving 
rather small marginal effects. 
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Table 5. Unobserved Heterogeneity 
 

Mother-specific effects: 
Covariance matrix  
 Mortality Birth interval Fertility 
Mortality 0.032  
Birth interval 0.003 0.019  
Fertility 0.016 -0.039 0.096 
  
Correlation matrix 
 Mortality Birth interval Fertility 
Mortality 1.000  
Birth interval 0.111 1.000  
Fertility 0.286 -0.921 1.000 
  
Community-specific effects: 
Covariance matrix  
 Mortality Birth interval Fertility 
Mortality 0.136  
Birth interval -0.003 0.003  
Fertility -0.031 0.015 0.089 
  
Correlation matrix 
 Mortality Birth interval Fertility 
Mortality 1.000  
Birth interval -0.144 1.000  
Fertility -0.285 0.689 1.000 
  
Mother plus community effects: 
Covariance matrix 
 Mortality Birth interval Fertility 
Mortality 0.167  
Birth interval 0.000 0.022  
Fertility -0.016 -0.028 0.185 
  
Correlation matrix 
 Mortality Birth interval Fertility 
Mortality 1.000  
Birth interval -0.004 1.000  
Fertility -0.089 -0.437 1.000 
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Table 5 continued 
Underlying parameter estimates: 
 

Parameter Std error t-value 
  
πmm       0.178* 0.054 3.32 
πbm     0.015 0.017 0.91 
πbb       0.137* 0.012 11.93 
πfm     0.089 0.090 0.99 
πfb      -0.297* 0.074 -4.02 
πff    -0.005 0.140 -0.04 
  
π0m       1.755* 0.624 2.81 
π0b    -0.205 0.196 -1.04 
π0f       0.995* 0.360 2.76 
  
τmm         0.369* 0.046 8.06 
τbm     -0.008   0.014 -0.56 
τbb        0.055* 0.024 2.32 
τfm     -0.085 0.082 -1.04 
τfb      0.195 0.150 1.30 
τff      0.209 0.108 1.94 
  
τ0m      0.077 0.188 0.41 
τ0b     -0.007 0.252 -0.03 
τ0f     -0.223 0.189 -1.18 
  

Notes: Refer section 5.4 of the text. 
*: parameter (and marginal effect) significant at the two-sided 5% level 

 Mother-specific effects are parameterized as follows:    
Mortality:  αmi = πmmumi;  
Birth interval:   αbi = πbmumi + πbbubi;  
Fertility:  αfi = πfmumi + πfbubi + πffufi;  

umi, ubi, ufi independent standard normal, independent of exogenous variables and 
error terms. The parameters π0m, π0b, and π0f are the coefficients of umi, ubi, and 
ufi in the equation for neonatal mortality of the first child. 
 
Community-specific effects are parameterized as follows:    

Mortality:  (mi = τmmv mi;  
Birth interval:   (bi = τbmvmi + τbbvbi;  
Fertility:  (fi = τfmvmi + τfbvbi + τffvfi;  

vmi, vbi, vfi independent standard normal, independent of umi, ubi, ufi, exogenous variables, 
and error terms. The parameters τ0m, τ0b, and τ0f are the coefficients of vmi, vbi, and vfi in 
the equation for neonatal mortality of the first child.    
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Table 6. Sensitivity Analysis: 
Endogenous coefficients in alternative specifications 

 
Mortality equation Birth interval eq.

Mi,j-1 ln Bi,j Mi,j-1
 
Model 1 
Benchmark model 0.346 -0.481 -0.230
 (0.067) (0.050) (0.017)
Model 2 
No lagged birth interval 0.444 -0.198
 (0.067) (0.017)
Model 3 
No cluster effects 0.369 -0.480 -0.234
 (0.055) (0.039) (0.014)
Model 4 
No unobserved heterogeneity 0.614 -0.444 -0.236
 (0.036) (0.034) (0.012)
Model 5 
No lagged birth interval & 0.673 -0.236
no unobserved heterogeneity (0.036) (0.012)
 
Model 6 
2nd lag in mortality equation & 0.482 -0.505 -0.234
no cluster effects (0.068) (0.044) (0.014)
 

Notes: See section 5.5 of the text for explanation. Figures are parameter values, 
with standard errors in parentheses. 
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Appendix Table 1: 
Variable Definitions and Summary Statistics 

 
Variable Mean Std. Dev. Min Max
  
neonatal mortality 0.070 0.0 1.0
lagged neonatal mortality 0.060 0.0 1.0
log birth interval* 3.293 0.484 2.1 5.7
Hindu 0.825 0.0 1.0
Muslim 0.167 0.0 1.0
other religions 0.007 0.0 1.0
not backward caste 0.454 0.0 1.0
scheduled caste 0.196 0.0 1.0
scheduled tribe 0.021 0.0 1.0
other backward caste 0.276 0.0 1.0
mother has no education 0.755 0.0 1.0
ma has incomplete primary 0.045 0.0 1.0
ma has completed primary 0.076 0.0 1.0
ma has incomplete secondary 0.060 0.0 1.0
ma has secondary or higher 0.064 0.0 1.0
father has no education 0.335 0.0 1.0
pa has incomplete primary 0.068 0.0 1.0
pa has completed primary 0.111 0.0 1.0
pa has incomplete secondary 0.193 0.0 1.0
pa has completed secondary 0.125 0.0 1.0
pa has higher than secondary 0.164 0.0 1.0
female 0.475 0.0 1.0
year of birth of child* 86.510 7.173 63.0 98.0
maternal age at birth* 23.140 5.507 12.0 47.0
birth-order* 3.160 2.040 1.0 14.0
no surviving boys 0.122 0.0 1.0
no surviving girls 0.188 0.0 1.0
number of surviving boys* 1.962 1.386 0.0 8.0
number of surviving girls* 1.782 1.461 0.0 10.0
  
Notes: All variables other than those with a * are dummies. Lagged mortality refers to the 
mortality status of the preceding sibling. Italics indicate reference category omitted in the 
regressions. The number of children is 28668 except for log birth interval, for which it is 21567. 
The number of mothers is 6716.  
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Figure 1 
Nonparametric (lowess) relation of (predicted) neonatal mortality and 

the preceding birth interval 
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Notes: The top 1% of observations were deleted. 
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Figure 2 
Density of log birth interval by survival status of preceding sibling 
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