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Abstract

We consider a principal-agent model of adverse selection where, in order to trade with the prin-
cipal, the agent must undertake a relationship-speci…c investment which a¤ects his outside option
to trade, i.e. the payo¤ that he can obtain by trading with an alternative principal. This creates a
distinction between the agent’s ex ante (before investment) and ex post (after investment) outside
options to trade. We investigate the consequences of this distinction, and show that whenever an
agent’s ex ante and ex post outside options di¤er, this equips the principal with an additional tool
for screening among di¤erent agent types, by randomizing over the probability with which trade
occurs once the agent has undertaken the investment. In turn, this may enhance the e¢ciency of the
optimal second-best contract.
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1 Introduction

In many forms of bilateral exchange, one party often has to undertake relationship-speci…c investments
before trade can occur with their partner. An important consequence of such speci…c investments is
that they typically change the investing party’s outside option to trade, namely the payo¤ that he would
obtain by trading with an alternative partner. For example, a …rm that tailors its machinery in order
to produce a speci…c widget required by a certain buyer, will change its production possibilities when
trading with alternative buyers whose requirements need not be the same.1

A key distinction therefore exists between the …rm’s ex ante outside option, before the relationship-
speci…c investment is undertaken, and their ex post outside option, after the investment has occurred.
This paper investigates the consequences of this distinction in principal-agent models of adverse selec-
tion, where the agent’s type is his private information, and both parties are risk neutral. We show
that whenever an agent’s ex ante and ex post outside options di¤er, this may equip the principal with
an additional tool for screening among di¤erent agent types, by randomizing over the probability with
which trade occurs once the agent has undertaken the speci…c investment. In turn, this may enhance
the e¢ciency of the optimal second-best contracts.

This paper contributes to the literature on mechanism design when agents have type-dependent
outside options (Lewis and Sappington 1989, Maggi and Rodriguez-Clare 1995, Jullien 2000). The
earlier literature on adverse selection identi…es several cases in which the optimal mechanism can in-
volve randomization, such as when agents have di¤erent levels of risk aversion (Stiglitz 1982, Arnott
and Stiglitz 1988, Brito et al 1995), when the agent’s type-space is multi-dimensional (Baron and My-
erson 1982, Rochet 1984 and Thanassoulis 2004), or when randomization might allow non-monotonic
allocation schedules to become incentive compatible (Strausz 2006). We add to this literature by con-
sidering situations where relationship-speci…c investments a¤ect the agent’s future prospects, so that
his type-dependent ex ante and ex post outside options di¤er. This provides a novel rationale of why
randomization may be optimal in principal-agent settings.

The remainder of the paper is organized as follows. In Section 2 wedevelop the principal-agent model.
Section 3 solves for the optimal second best contracts. Section 4 discusses the e¢ciency consequences
of having both types of outside option. All proofs are in the Appendix.

2 Model

Preliminaries We consider a principal-agent model with a principal P and an agent A, who
contract over the production of output, q. Production is assumed to be observable and veri…able. The

1 This phenomenon is not con…ned to bilateral exchange between …rms. Consider a traveller who wants to travel from A
to B at 8pm on a given day. The traveller can choose whether to travel by train or bus. The speci…c investment undertaken
by the traveller in order to access a certain type of travel takes the form of him being physically present at a particular
location – the bus or train station – at a particular time. While from an ex ante perspective the traveller’s outside option
to catching the 8pm bus would be to take the 8pm train, once he has made the speci…c investment of arriving at the bus
station prior to 8pm, his ex post outside option to catching the 8pm bus will be quite di¤erent. While he may for example
catch the 9pm train, the 8pm train has been ruled infeasible by his earlier speci…c investment.
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agent’s marginal cost of production, θ, which de…nes his type, is not observed by the principal, and we
assume θ 2 fθH ,θLg, where θH > θL > 0, and prob(θ = θH) = λ. In order to trade with the principal,
the agent must undertake a relationship-speci…c investment, with cost normalized to zero. The agent’s
decision to undertake the investment is observable and veri…able. A contract between the principal
and the agent is denoted fφ,π,q, Tg, where φ 2 f0,1g speci…es whether the agent must undertake the
investment2 , π 2 [0, 1] denotes the probability with which trade occurs between the parties, q 2 [0, q]
denotes the output that the agent must produce in case of trade, and T 2 R+ indicates the payment
from the principal to the agent (independent of whether trade actually occurs or not). We assume trade
can only occur if the agent has made the relationship-speci…c investment so that if φi = 0, πi = 0.3

The principal’s problem consists of designing the optimal menu of contracts from which the agent
makes his preferred choice. The revelation principle states this search can be con…ned to the set of direct
revelation mechanisms, whereby the agent is requested to report his type and is o¤ered a contract that
is contingent upon this report. The timing of actions is then as follows.
t=0 P o¤ers A a menu of contracts M = fMH ,MLg, where Mi = fφi, πi, qi, Tig is the contract o¤ered
to the agent when his reported type is θi, i = H,L.
t=0.5 If A accepts Mi and Mi speci…es φi = 1, A undertakes the relationship-speci…c investment.
t=1 Conditional on φi = 1, trade occurs with probability πi, in which case A produces qi. With
probability 1 ¡ πi trade between A and P does not occur. If φi = 0, trade between A and P does not
occur with certainty.
t=1.5 Provided that he has respected the terms of the contract, A receives Ti.

Without loss of generality we restrict attention to contracts that always induce truthtelling and
participation by the agent.

Agent’s Ex ante and Ex post Outside Options If the agent does not accept the principal’s
contract, or if his contract prescribes φ = 0, then the agent does not undertake any relationship-speci…c
investment, and obtains a payo¤ Bi ¸ 0 from alternative trade, where i = H,L. This de…nes the
agent’s ex ante outside option. Importantly, we allow for the possibility that ex ante outside options
di¤er across types, so that BH 6= BL. If the agent undertakes the relationship-speci…c investment, but
trade between the parties does not occur, then the agent obtains a payo¤ Ci < Bi from alternative
trade. Ci captures the agent’s ex post outside option, namely the value of him trading prospects with
alternative principals, after having undertaken the relationship-speci…c investment with the previous
principal. Ex post outside options may also be type-dependent, so that CH 6= CL. The expression
Bi ¡ Ci > 0 re‡ects the loss in terms of the agent’s alternative trading prospects from undertaking the
relationship-speci…c investment, which tailors his production to the principal’s needs. We refer to this
as the opportunity cost of randomization, since this cost is only incurred when π < 1.

2 Allowing the contract to specify φ enables us to restrict attention to contracts that are always accepted by the agent.
We thank an anonymous referee for providing this suggestion.

3 By restricting attention to φ 2 f0,1g we rule out the possibility of the principal randomizing over φ. This is done to
shorten the exposition of our results. The reader may readily verify that randomization over φ is never optimal for the
principal.
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Payo¤s Both parties are assumed to be risk neutral with respect to monetary transfers and pro-
duction. If a type θi agent accepts a contract fφ,π, q,Tg, his net expected utility is,

u (θi) = T + φf¡θiπq + (1 ¡π)Ci ¡ Big . (1)

The principal’s expected payo¤ is UP = πvq ¡T , where v > θH. ui denotes the utility obtained by a
type θi agent when he truthfully declares his type. From (1), the value of T is determined for any given
values of ui, φ, π and q. In what follows we will therefore characterize a contract as Mi = fφi,πi, qi,uig.
Finally, we denote θH ¡ θL as ¢θ, CH ¡CL as ¢C, BH ¡ BL as ¢B and uH ¡ uL as ¢u.

3 Results

The participation constraint for a type θi agent is ui = Ti + φi [¡θiπiqi +(1 ¡πi)Ci ¡ Bi] ¸ 0. The
incentive compatibility constraints which ensure agents …nd it optimal to declare their true type are,

ICH : uH ¸ uL +φL [¡πLqL¢θ +(1 ¡ πL)¢C ¡¢B] .
ICL : uL ¸ uH + φH [πHqH¢θ ¡ (1 ¡πH)¢C + ¢B] .

Suppose full information contracts are o¤ered so that φi = πi = 1, qi = q, and ui = 0 for i = H,L.
Constraint ICH becomes, 0 ¸ ¡q¢θ ¡ ¢B, and ICL becomes, 0 ¸ q¢θ + ¢B. We focus on the more
intuitive case in which q¢θ+¢B > 0 so θL types have incentives to overstate their costs and mimic θH

types. This is embodied in assumption A1 below.4 To ensure that under full information the optimal
contract prescribes φi = πi = 1, qi = q for both types, assumption A2 below is required. Assumptions
A3 and A4 ensure that if πH = 0 and/or qH = 0, the principal cannot gain from asking type θH

to undertake the relationship-speci…c investment. To summarize, the assumptions on the exogenous
parameters are,

A1: q¢θ + ¢B > 0
A2: q (v ¡ θi) ¸ Bi, i = H, L
A3: λ (CH ¡BH) ¡ (1 ¡λ) (¢B ¡ ¢C) < 0
A4: λBH + (1 ¡λ)¢B > 0

Our …rst result provides a partial characterization of type θH ’s optimal contract whenever θH agents
are required to undertake the relationship-speci…c investment.

Lemma 1: It is never optimal for the principal to o¤er φH = 1 in conjunction with πH and qH

satisfying,
πHqH¢θ ¡ (1 ¡ πH)¢C +¢B < 0. (2)

4 For completeness, in the Appendix, we state the main results for the case in which the parameter values are such
that high types have incentives to understate their type and mimic low cost types. These two cases arise because of the
existence of the type-dependent ex ante outside options, Bi, as has been analyzed in detail by Maggi and Rodriguez-Clare
(1995). Note that in the knife-edge case where q¢θ +¢B = 0 the principal can o¤er the full information contract to both
types without inducing either to mimic the other, so this is clearly her favored course of action.
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Under A1 the full information contracts would violate ICL. By o¤ering type θH agents a contract such
that πHqH¢θ ¡ (1 ¡ πH)¢C + ¢B = 0, the principal ensures both that ICL is satis…ed and that no
rents are o¤ered to θL agents. O¤ering θH agents a contract such that (2) holds would only increase the
distortions of πH and/or qH from their full information values (1 and q respectively) without generating
any gain for the principal. This is essentially the rationale for Lemma 1.

An implication of Lemma 1 is that the participation constraint of type θL will not bind at the
optimum because given type θH ’s participation, ICL implies uL > uH ¸ 0. In what follows, we
therefore allow ICL to hold with equality, let uH = 0, and ignore constraint ICH. We then later verify
that the solution of the relaxed problem indeed satis…es ICH . The principal’s problem then is,

max
qi2[0,q], πi2[0,1],
φi2f0,1g, i=H,L

UP =
λφH [πHqH(v ¡ θH) + (1 ¡πH)CH ¡BH ] +
(1 ¡ λ)φL [πLqL(v ¡ θL) + (1 ¡ πL)CL ¡BL] ¡
(1 ¡ λ)φH [πHqH¢θ ¡ (1 ¡πH)¢C + ¢B]

(P)

subject to φH [πHqH¢θ ¡ (1 ¡πH)¢C + ¢B] ¸ 0. (C1)

where (C1) derives from Lemma 1. We …rst solve (P) ignoring (C1). If this solution satis…es (C1), it
is the solution to the overall problem. Otherwise (C1) binds.

The principal faces a standard trade-o¤ between e¢ciency and informational rents. If she o¤ers θH

types the e¢cient (full-information) contract where φH = πH = 1, qH = q, then she must also o¤er
positive rents to θL types to prevent mimicking. In this case (C1) is slack. If the principal wishes to
eliminate θL’s rents, then she must distort type θH ’s contract away from the e¢cient contract.5 In this
case (C1) binds so, conditional on φH = 1, we have,

qH =
(1 ¡πH)¢C ¡ ¢B

πH¢θ
. (3)

As qH 2 [0, q], condition (3) may restrict the range of values of πH the principal can o¤er. As a result,
the optimal contract may prescribe randomization so πH 2 (0, 1). Our main result fully describes the
optimal second best contracts.6

Proposition 1: For type θL, the optimal contract always prescribes φL = πL = 1, qL = q. If

λ ¸ max
½

¢C + q¢θ
q (v ¡ θL) ¡CL

,
¢θ

v ¡ θL
,

¢B + q¢θ
q (v ¡ θL) ¡ BL

¾
, (4)

then ( C1) is slack, and the optimal contract for type θH has φH = πH = 1, qH = q. If (4) does not
hold, then (C1) binds, and the optimal contract for type θH is,

(i) if CH > CL(v¡θH)
v¡θL

and ¢C ¡¢B > (BH¡CH)(q¢θ+¢C)
q(v¡θH)¡CH

> 0: φH = 1, πH = ¢C¡¢B
q¢θ+¢C and qH = q.

(ii) if CH < CL(v¡θH)
v¡θL

and ¢B < ¡BH¢θ
v¡θH

< 0: φH = πH = 1 and qH = ¡¢B
¢θ .

(iii) in all the other cases: φH = 0.
5 Given the linearity of her payo¤, the principal would never select contracts between these extremes.
6 We adopt the convention that if P is indi¤erent between setting φi = 1 or φi = 0 for i = H, L, then she selects φi = 0.
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If prob(θ = θH) = λ is su¢ciently high, then the principal …nds it optimal to o¤er θH types the
e¢cient contract, so as to maximize her pro…t when trading with θH types, even if this implies that
positive rents are relinquished to agents of type θL. Conversely, if λ is su¢ciently low, then the principal
prefers to allow (C1) to bind and so eliminate any rents to θL types.

Proposition 1 makes precise the optimal contract for θH types will prescribe randomization if two
conditions hold – (a) CH > CL(v¡θH)

v¡θL
; (b) ¢C ¡¢B > 0. The intuition why these conditions lead the

optimal second best contract to involve randomization is as follows.
Condition (a) requires that CH should not be too low. If CH is low, then the transfer needed by θH

types to accept a contract that involves randomization is high and the principal prefers to set πH = 1
even if this implies a lower prescribed qH .

Condition (b) requires the opportunity cost of randomization to be higher for θL types than for θH.
Hence, by o¤ering θH types a contract involving randomization, the principal can lower the incentives
of θL types to overstate their costs and mimic θH types. In contrast, if ¢C ¡ ¢B · 0, then θH types
stand to lose more from randomization than θL types, and so randomization would not help deter θH

from mimicking θL. Condition (b) also requires ¢C ¡ ¢B to be su¢ciently large, which ensures the
principal can obtain a positive expected pro…t when trading with type θL.

A Numerical Example Suppose θH = 0.75, θL = 0.25, q = v = 2, and agent’s ex ante and
ex post outside options are BH = 1.85, BL = 2.35, CH = 1.75, and CL = 1.95. For (4) to hold we
require λ ¸ 2/7. If λ < 2/7, then (C1) must bind in the optimal contract. From (3), this implies
qH = 2

5 + 3
5πH

, and to ensure qH · q = 2, we require πH ¸ 0.375. Conditional on φH = 1, the
principal then selects πH 2 [0.375,1] to maximize her expected payo¤ when dealing with a type θH

agent, UP = πH

h³
2/5 + 3

5πH

´
1.25 ¡ 1.75

i
¡ 0.1. This is decreasing in πH – a lower πH decreases the

probability of trade, but it also increases qH , and hence the value of trade. In this numerical example,
the latter e¤ect is stronger than the former, so the principal selects the lowest πH compatible with (C1).
The optimal contract for θH then is, φH = 1,πH = 0.375, qH = q = 2, and when dealing with type θH

agents, the principal’s expected payo¤ is 0.18.

4 Discussion

E¢ciency Proposition 1 highlights the impact of having two type-dependent outside options on
the optimal second best contracts. Suppose that, on the contrary, Ci = Bi for both i = H,L, so
¢C = ¢B. From (3), the only for (C1) to then bind is to set qH = ¡¢B

¢θ . If (4) does not hold and
¢B ¸ ¡ BH¢θ

(v¡θH) , then the optimal contract prescribes φH = 0, i.e. no trade between the principal and
agents of type θH , since with qH = ¡¢B

¢θ the principal would never obtain a non-negative pro…t when
dealing with type θH . In contrast when Bi 6= Ci, trade between the principal and agents of type θH

may occur with positive probability even if ¢B ¸ ¡ BH¢θ
(v¡θH) .

7

7 This is the case for example in the numerical example, where ¢B = ¡0.5 > ¡ BH¢θ
(v¡θH ) =¡0.74.
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Hence, in a complete contracting environment, the need for agents to undertake relationship-speci…c
investments ex ante that decrease the agent’s outside option, can result in greater ex post e¢ciency,
that is, at the production stage. This is because such investments enable the principal to utilize
randomization as a tool to screen between agent types. To our knowledge, the earlier literature has
not noted this potentially useful role for ex ante relationship-speci…c investments to improve on ex post
e¢ciency. The literature has emphasized rather, that in the presence of contractual incompleteness,
investment speci…city results in ex ante ine¢ciencies, i.e. ine¢ciencies at the investment stage (Grout
1984, Grossman and Hart 1986, Hart and Moore 1990).

Relaxing the Linearity Assumption The restriction to linear payo¤ functions allows us to
abstract from risk-aversion considerations, and to di¤erentiate our results from the existing literature
on randomization in mechanism design (Stiglitz 1982, Arnott and Stiglitz 1988, Brito et al 1995).
However, our results extend also to non-linear settings. To see one particular example of this, suppose
agents have quadratic production costs, so the net utility of an type θi agent when accepting a contract
fφ,π,q, Tg is,

T + φ
£
¡0.5πθiq2 + (1 ¡π)Ci ¡Bi

¤
. (5)

The full-information contracts prescribe φi = πi = 1, qi = v
θi

and ui = 0 for i = H,L. Suppose
0.5v2¢θ

θ2H
+ ¢B > 0 so that if o¤ered the full-information contract, a type θL agent would overstate his

cost and mimic type θH , as was the case throughout Section 3. Condition (C1) then is,

φH
£
0.5πHq2H¢θ ¡ (1 ¡ πH)¢C + ¢B

¤
¸ 0. (C10)

Following the same argument as in Proposition 1, for λ su¢ciently low, the optimal contract for type
θH agents is such that C10 binds. Then, conditional on φH = 1, we have,

qH =

s
2 [(1 ¡ πH)¢C ¡¢B]

πH¢θ
. (6)

As in the linear case, whether randomization is optimal or not depends on the precise parameter
values. To see this we continue the numerical example discussed above but where the restriction that q
may not exceed q is relaxed – as we no longer have linear payo¤s it is not necessary to impose an upper
bound on q.

Expression (6) then becomes qH =
q

0.8 + 1.2
πH

. Conditional on φH = 1, the principal’s expected

payo¤ when dealing with a type θH agent is UP = πH

h
2
q

0.8 + 1.2
πH

¡ 0.75
³
0.4 + 0.6

πH

´
¡ 1.75

i
¡ 0.1,

which is concave in πH . The optimal contract for θH is φH = 1, πH = 0.78, and qH = 1.53, and when
dealing with type θH , the principal’s expected pro…t is 0.23. Hence in this numerical example, for λ
su¢ciently low the optimal contract for θH may again prescribe randomization, although in contrast
with the linear case, the optimal qH is below its …rst-best value.
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5 Appendix

5.1 Proofs

Proof of Lemma 1: We show that any menu of contracts in which φH = 1 and (2) holds is necessarily
dominated, as P could o¤er a menu that, whilst violating (2), satis…es both ICH and ICL and yields him
a strictly higher expected payo¤. Consider a menu M = fMH, MLg = f(φH, πH, qH , uH) , (φL,πL, qL,uL)g
such that φH = 1 and (2) holds. P ’s expected payo¤ from M is,

λ fπH [qH(v ¡ θH) ¡ CH ] + CH ¡ BH ¡uHg +(1¡λ)φL fπL [qL(v ¡ θL) ¡ CL] +CL ¡ BL ¡uLg . (7)

Now consider an alternative menu cM =
n

cMH , cML

o
, where cMH = (1, bπH , bqH ,0) and cML = (1,1, q,0).

Under A1, cM satis…es ICH . It also satis…es ICL provided,

bπHbqH¢θ ¡ (1 ¡ bπH)¢C +¢B · 0 (8)

Since we are interested in a menu cM that violates condition (2), we restrict attention to bπH and bqH

that satisfy (8) with equality. We now show that there exist values of bπH and bqH which satisfy (8) with
equality (i.e., violate (2)) and which are such that cM yields P a greater expected payo¤ than M . P ’s
expected payo¤ from cM is,

λfbπH [bqH(v ¡ θH) ¡CH ] +CH ¡BHg +(1 ¡ λ) [q(v ¡ θL) ¡ BL] . (9)

A su¢cient condition for (9) to exceed (7) is,

bπH [bqH(v ¡ θH) ¡ CH ] ¡ πH [qH(v ¡ θH) ¡CH] > 0. (10)

Condition (10) ensures that P prefers cM to M. We distinguish between two cases. First, suppose that
(1¡πH)¢C¡¢B

πH¢θ · q. Hence setting bπH = πH and bqH = (1¡πH)¢C¡¢B
πH¢θ ensures (8) holds with equality.

Contract cMH =
³
1, πH , (1¡πH)¢C¡¢B

πH¢θ ,0
´

is feasible because, if (2) holds, then qH < (1¡πH)¢C¡¢B
πH¢θ

which implies (1 ¡πH)¢C ¡¢B > 0. With bπH = πH the LHS of (10) is πH (bqH ¡ qH) (v ¡ θH), which
is strictly positive. Hence, cMH dominates MH and so cM dominates M .
Second, suppose (1¡πH)¢C¡¢B

πH¢θ > q. Note that since q¢θ+¢B > 0 under A1, -¢B
¢θ < q < (1¡πH)¢C¡¢B

πH¢θ ,
so ¢C ¡ ¢B > 0. There are then two possibilities to consider.
In the …rst case, qH¢θ +¢C > 0. Inequality (2) can be rewritten as πH < ¢C¡¢B

qH¢θ+¢C . By setting bπH =
¢C¡¢B

qH¢θ+¢C , bqH = qH we ensure (8) holds with equality. The LHS of (10) becomes (bπH ¡πH) [qH(v ¡ θH) ¡ CH ],

which is strictly positive. Hence, cMH =
³
1, ¢C¡¢B

qH¢θ+¢C , qH , 0
´

dominates MH and so cM dominates M .
In the second case, qH¢θ + ¢C · 0. For this to hold, we require ¢C < 0. As ¢C ¡ ¢B > 0, this
implies ¢B < 0. By setting bπH = 1, bqH = ¡¢B

¢θ we ensure (8) holds with equality. The LHS of (10)
becomes

£
¡¢B

¢θ (v ¡ θH) ¡ CH
¤
¡πH [qH(v ¡ θH) ¡ CH ]. Under (2), a su¢cient condition for this to be

8



positive is that,
CH(v ¡ θL) ¡ CL(v ¡ θH) < 0. (11)

Note however that as qH¢θ + ¢C · 0 in this second case, if (11) does not hold then contract MH is
dominated by a contract that sets φH = 0. To see this, note that, by setting φH = 1, the extra pro…t
obtained by the principal is non-negative only if qH ¸ uH+BH¡CH(1¡πH)

(v¡θH)πH
. For this to be consistent

with qH¢θ + ¢C · 0 it is necessarily required that BH¡CH(1¡πH)
(v¡θH)πH

· ¡¢C
¢θ . In turn, this requires

CH(v ¡ θL) ¡ CL(v ¡ θH) < 0. We therefore conclude that contract M is surely dominated.¥
Proof of Proposition 1: Consider …rst the solution of (P) ignoring (C1). It is straightforward to see
the optimal ML prescribes φL = πL = 1, qL = q and this satis…es ICH . The FOCs for MH are,

∂UP
∂πH

= φHqH [λ (v ¡ θH) ¡ (1 ¡λ)¢θ] ¡ φH [λCH +(1 ¡ λ) ¢C] (12)

∂UP

∂qH
= φHπH [λ (v ¡ θH) ¡ (1 ¡ λ)¢θ] (13)

∂UP

∂φH
= λ [πHqH(v ¡ θH) + (1 ¡ πH)CH ¡BH ] ¡ (1 ¡λ) [πHqH¢θ ¡ (1 ¡ πH)¢C +¢B] (14)

Note that IC1 holds only if φH = 1. Hence, the solution to the unconstrained problem satis…es IC1
only if ∂UP

∂φH
¸ 0. If ∂UP

∂πH
· 0, to then have ∂UP

∂φH
¸ 0 requires λ (CH ¡ BH) ¡ (1 ¡λ) (¢B ¡¢C) ¸ 0,

which violates A3. Similarly, if ∂UP
∂qH

· 0, to then have ∂UP
∂φH

¸ 0 requires λ [(1 ¡πH)CH ¡ BH] ¡
(1 ¡λ) [¢B ¡ (1 ¡πH)¢C] ¸ 0, which is never true under A3 and A4.8 We therefore conclude that if
the solution to the unconstrained problem satis…es IC1, then we must have πH = φH = 1, qH = q, and
all the …rst order conditions above strictly positive so that,

λ ¸ max
½

¢C + q¢θ
q (v ¡ θL) ¡CL

,
¢θ

v ¡ θL
,

¢B + q¢θ
q (v ¡ θL) ¡ BL

¾
.

This establishes the …rst part of the proposition.
Consider now the second part. When IC1 binds, qH = (1¡πH)¢C¡¢B

πH¢θ , and P ’s expected payo¤ is,

UP = λφH

·
πH

µ
(1 ¡πH)¢C ¡ ¢B

πH¢θ
(v ¡ θH) ¡ CH

¶
+CH ¡BH

¸
+(1¡λ)φL [πLqL(v ¡ θL)+ (1 ¡ πL)CL ¡

(15)
It is straightforward to see the optimal ML in this case also prescribes φL = πL = 1, qL = q and satis…es
ICH. The optimal MH maximizes (15) subject to qH 2 [0, q]. The FOCs are,

8 To see this, note that λ [(1¡ πH)CH ¡BH] ¡ (1¡ λ) [¢B¡ (1¡ πH)¢C ] ¸ 0 implies λ(CH¡BH)¡(1¡λ)(¢B¡¢C)
πH

¸
λCH + (1¡ λ)¢C > λBH+(1¡λ)¢B

1¡πH
. Under A3 and A4, λBH + (1¡ λ)¢B > λ (CH ¡ BH) ¡ (1¡ λ) (¢B¡ ¢C) so the

previous inequality cannot hold.
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∂UP

∂πH
= λφH

µ¡¢C(v ¡ θH)
¢θ

¡ CH

¶
= λφH [CL(v ¡ θH) ¡ CH(v ¡ θL)] (16)

∂UP
∂φH

= λ
·
πH

µ
(1 ¡πH)¢C ¡ ¢B

πH¢θ
(v ¡ θH) ¡ CH

¶
+CH ¡BH

¸
(17)

Two cases can arise. In the …rst CL(v ¡ θH) ¡ CH(v ¡ θL) < 0, so conditional on φH = 1, ∂UP
∂πH

< 0
and P sets πH as low as possible. If ¢C > ¢B then ∂qH

∂πH
< 0 and the lowest feasible πH solves

q = (1¡πH )¢C¡¢B
πH¢θ , so πH = ¢C¡¢B

q¢θ+¢C . Provided ¢C¡¢B
q¢θ+¢C (q(v ¡ θH) ¡ CH) +CH ¡BH > 0, the optimal

φH is 1. If ¢C < ¢B then ∂qH
∂πH

> 0 and the lowest feasible πH is qH = 0. However, from A3 and A4,
φH = 0 is preferred by P in this case.
In the second case, CL(v ¡ θH) ¡ CH(v ¡ θL) > 0, so conditional on φH = 1, ∂UP

∂πH
> 0 and P sets πH

as high as possible. If ¢B < 0, then πH = 1 and qH = ¡¢B
¢θ . Provided ¡¢B

¢θ (v ¡ θH) ¡ BH > 0, it
is then optimal to set φH = 1. If ¢B > 0, it is then optimal to set φH = 0 as this is the only way to
ensure (C1) binds. To see this, note that we can only be in the case CL(v ¡ θH) ¡ CH(v ¡ θL) > 0 if
¢C < 0 so that, if ¢B > 0, then ¢C < ¢B. This implies (1¡πH)¢C¡¢B

πH¢θ < 0 for all πH , and therefore
(C1) never binds unless φH = 0.¥

5.2 Assumption A1 Does Not Hold

For completeness, we consider the case in which 0 ¸ q¢θ + ¢B and so θH types have incentives to
understate their costs and mimic θL types. The remaining assumptions A2 to A4 are assumed to still
hold. The counterparts for the main results are as follows,

Lemma 1B: It is never optimal for the principal to o¤er φL = 1 in conjunction with πL and qL

satisfying,
¡πLqL¢θ +(1 ¡πL)¢C ¡¢B < 0. (18)

An implication is that the participation constraint of type θH will not bind at the optimum. The
optimal contracts are now found by letting ICH hold with equality, setting let uL = 0, and ignoring
ICL. The counterpart to (C1) is,

φL [¡πLqL¢θ +(1 ¡ πL)¢C ¡¢B] ¸ 0. (C1B)

Proposition 2B: For type θH , the optimal contract always prescribes φH = πH = 1, qH = q. If

λ · min
½

q (v ¡ θL) ¡CL
q (v ¡ θH) ¡CH

, v ¡ θL
v ¡ θH

, q (v ¡ θL) ¡BL
q (v ¡ θH) ¡BH

¾
(19)

then ( C1B) is slack, and the optimal contract for type θL has φL = πL = 1, qL = q. If (19) doesn’t
hold, then (C1B) binds, and the optimal contract for type θL is,

(i) if CH > CL(v¡θH)
v¡θL

and ¢C ¡¢B < (BL¡CL)(q¢θ+¢C)
q(v¡θL)¡CL

< 0: φL = 1, πL = ¢C¡¢B
q¢θ+¢C and qL = q.

(ii) if CH < CL(v¡θH)
v¡θL

and ¢B < ¡BH¢θ
v¡θH

< 0: φL = πL = 1 and qL = ¡¢B
¢θ .

(iii) in all the other cases: φL = 0.
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