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Abstract

This article investigates the relation between the level of publicness of digital goods –
i.e. their degree of non-excludability and non-rivalness – and the pirating behaviour
of the consumers. The main focus is put on the difference between the ex-ante level
of publicness – determined by the anti-piracy strategies of the firms – and the ex-post
level of publicness – which is a consequence of external factors such as the consumers
network structure, the consumers sharing behaviour, etc. The two models developed
in the article detail the required conditions for anti-piracy strategies to be successful
and show the influence of the economic environment on these conditions.
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Introduction

The industry of digital goods (music, movies, documents, software, etc.) stands
among the most innovative industries. However, the growth and viability of the
companies in this industry are seriously undermined by the extent of consumers
piracy, which seems to be – in addition to innovation – the main characteristics
of this sector. It is therefore of the first importance to understand the reasons
behind such a widespread piracy phenomenon, and the factors that influence it,
in order to be able to control it.

We think that the reason for which so many consumers adopt a piracy be-
haviour lies in the fact that digital goods have common characteristics with
public goods. Indeed, since digital goods can be easily cloned – i.e. copied
perfectly – they tend to be both non-rival an non-excludable. Thus the piracy
behaviour of consumers is nothing else but the rational individual behaviour
stated in the literature: when consumers are asked to contribute to the provi-
sion of a public good, the rational behaviour is to free-ride and not to contribute
at all. Empirical studies show that in the case of digital goods, this rational
behaviour has indeed been adopted by lots of consumers.

∗Address: Department of Economics, University of Bristol, 8 Woodland Road, Bristol
BS8 1TN, United Kingdom. Email Address: thierry.rayna@bristol.ac.uk.
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However, the publicness of digital goods – e.g. the degree of non-excludability
and non-rivalness of these goods – is not always total. In addition to the ob-
vious role of technology, other factors influence the degree of publicness of the
digital goods: the connectivity of the consumers network, the behaviour of the
consumers, the laws and public policies. Last but not least, the actions of the
firms plays a determinant role. Indeed, the anti-piracy strategies adopted by
the firms have an important impact on the degree of publicness of the digital
goods.

Therefore the extent of the anti-piracy effort of the firms determines, for a
given technology, the ex-ante level of publicness of the digital goods. However,
other factors, such as the structure of the consumers’ networks, the behaviour
of the consumers and their ability to avoid or disable anti-piracy protections,
change the initial publicness level and lead to an ex-post level of publicness.
This ex-post level of publicness will, in turn, influence the piracy behaviour of
the consumers: a high level of publicness will lead to a high level of piracy
whereas a low level of publicness will push the consumers to purchase the good
instead.

The aim of this article is to build a model analysing the piracy and the
sharing behaviour of the consumers, based on the factors influencing both the
ex-ante and ex-post publicness of the digital goods.

After discussing briefly the publicness of digital goods in Section 1, Section 2
introduces the model. Section 3 looks at the individual behaviour of consumers
and presents the pre-conditions that are required for them to pirate and share.
Section 4, investigates the issue of pirating and sharing in a non-repeated game.
Building on the results of this previous section, Section 5 examines the condi-
tions required for a cooperative equilibrium to exist in an infinitely repeated
game. Finally, based on the results obtained in the previous sections, Section 6
analyses the anti-piracy strategies of the firms and discusses the issue of network
structure, anonymity and cooperation.

1 The publicness of digital goods

Digital goods are goods that are distributed in a digital format – i.e. encoded
in binary form, as a succession of 0s and 1s. Due to this digital nature, digital
goods are independent from the medium used to distribute them since the binary
form used to encode them ensures that these goods can be transferred from one
medium to another without loss of quality or information. Thus digital goods
are “clonable”: any digital good can be duplicated (on the same type of medium,
or any medium able to store digital data), and the duplicate of the digital good
is then the exact replica – a clone – of the digital good itself.

As digital goods can be cloned easily and for a very low cost, they can be
considered as non-rival: several consumers can consume the same unit of digital
good simultaneously, provided that each of the consumers made a copy of the
digital good. Ultimately, only one unit of the digital good has to be purchased
for all the consumers to enjoy simultaneously the digital good. Likewise, the
ability of cloning digital goods make them also non-excludable, since the produc-
ers, once the first unit of the good was sold, are not able to exclude consumers
from the consumption of the good since consumers can copy the good from each
other. Therefore, the digital nature of digital goods make them non-rival and
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non-excudable, and as such, we can consider that digital goods are public goods.
We can therefore expect digital goods, as any other public good, to be subject

to free-riding behaviour. And this is indeed the case: the high degree of adoption
of the piracy behaviour among the consumers can be explained by the fact that
pirating a digital good is in fact the strict equivalent to free-riding. Instead
of buying the digital goods, consumers prefer to wait for somebody else to
contribute/buy the digital good, as they can subsequently copy the digital good
from this person.

Thus we can consider that piracy is actually based on a rational behaviour:
pirating digital goods is in fact free-riding. Leaving aside the questions of ethics
and moral, it is difficult to blame the consumers for adopting such a behaviour
since this is, according to the theory, the adequate individual rational behaviour
when facing a public good. From this point of view, the problem of piracy is
not caused by the consumers but is instead due to the nature of digital goods:
if these goods were private, the piracy phenomenon would not exist.

However, the publicness of digital goods depends on a several factors and is
not always total1. Indeed, the factors that influence the level of rivalness and
excludability of digital goods are2:

• The available technology

• The structure of the consumers’ network

• The behaviour/strategies of the consumers

• The strategies of the firms

• The policies of the governments

As all these factors evolve over time, the levels of rivalness and excludability
– and hence the level of publicness of digital goods – also evolve over time.
Therefore, free-riding/pirating is not necessarily the only rational behaviour for
consumers: if the publicness for a particular digital good is low, consumers are
more likely to buy it instead.

It is thus common for the firms producing digital goods to adopt anti-piracy
strategies aiming at decreasing the publicness of digital goods. By doing so, they
decrease the likelihood of consumers pirating. Rayna (2002) shows that all the
strategies the firms can adopt to fight against piracy consist in either an increase
of excludability or an increase of rivalness – or both – of the digital good. DRM,
serial numbers or Microsoft’s Windows Product Activation, for example, aim
at increasing the excludability of the digital good, since they – theoretically –
prevent consumers who did not obtain the digital good legitimately from using
it. On the contrary, dongles, compulsory use of the original medium (floppy disk,
CD, DVD), network scans for identical serial numbers, etc. aim at increasing
the rivalness since they ensure that only one unit of the digital good is being
used at the same time 3.

1See Rayna (2002) for a detailed discussion of this topic.
2The structure of consumers’ network, the behaviour of the consumers and the strategies of

the firms are considered explicitly in the models developed in the next sections. The available
technology is implicitly taken into in the cost of searching and copying, as well as in the
network connectivity. The influence of public policies is discussed in section 6.

3These technologies do not however verify that the unit of digital good being used is used
by a legitimate user. Thus they do not increase – directly – the excludability.
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As an intrinsic property of the digital good – anti-piracy systems are most
of the time embedded in the software, music file, etc. – the anti-piracy strate-
gies of the firms determine the ex-ante level of publicness. However, the other
determinants of the publicness, which are all external factors, also play an im-
portant role, and lead to what we define as ex-post publicness. For example, it
is possible that the firms do not adopt any anti-piracy behaviour. In this case,
the ex-ante publicness of the digital good is total. Nevertheless, if consumers
are not connected to any network, if copying the digital good is very costly, or if
consumers never share their digital goods, the ex-post publicness of the digital
good is null since in any of these cases the producers remains the sole supplier
of the good.

On the contrary, it is possible that the firms design a – theoretically – per-
fect anti-piracy system such that the ex-ante publicness is null. However, if
a program allowing to remove the anti-piracy system from the digital good is
available for the consumers, or if one of the consumers got hold of a protection-
free version of the digital good, the ex-post publicness may be total in spite of
an initial null ex-ante publicness.

More interestingly, it is possible that the external determinants of public-
ness are such that a positive ex-ante publicness will lead to a to a null ex-post
publicness – e.g. depending on the external determinant, it is possible that
the anti-piracy systems designed by the firms, although not perfect, may be
“annoying” enough to deter consumers from pirating.

This is precisely this type of problems that the models developed in the next
sections aim at analysing.

2 Description of the model

In this model, we assume a homogeneous population of consumers. There is
only one homogeneous digital good available for their consumption. The digital
good is “short-lived” as the consumers do not wish to consume the same digital
good for more than one period. A new homogeneous digital good is produced
at the beginning of each period.

The goal pursued by each consumer is to consume exactly one unit of digital
good per period. At the beginning of each period, the consumers have the choice
between purchasing the digital good from the producer and pirating the good.
If they decide to purchase the good from the producer they obtain the good
and their payoff corresponds to the utility brought by the consumption of the
digital good minus the cost of purchasing the good (i.e. the market price of the
digital good).

On the other hand, if the consumers decide to pirate the good – i.e. to obtain
a copy of the digital good through pirate channels4 – their access to the good
becomes uncertain. A few conditions are indeed required for a piracy decision
to be successful. First, the consumer must part of a network of consumers
who already own the digital good. If the consumer is not connected to any
network, or if none of the consumers on the network possesses the digital good,

4The main focus of this model is put on the online piracy, we therefore assume that the
consumers pirate the digital good by downloading it. Nevertheless, this model could also
describe – with minor changes – “hand-to-hand” offline piracy, and black market piracy.
Most of the results of this model can in fact be generalised to other forms of piracy.
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the choice of piracy will lead to a failure since the consumer will not be able
to obtain a copy of the digital good. Assuming that the consumer is able to
find on the network another consumer who owns a copy of the the digital good,
she then has to convince this consumer to let her copy the digital good. If the
consumer refuses to share the digital good, the piracy behaviour will be, once
again, unsuccessful. If the consumer accepts to share the digital good, the first
stage of the piracy behaviour is successful and the consumer is able to make a
copy of the digital good5 6.

However, the firms supplying the digital goods are usually not passive in
regards to piracy and try to prevent consumers from pirating the digital goods.
Thus, once the consumer obtains a pirated copy of the digital good, she can
actually enjoy the consumption of the digital good only if neither exclusion nor
rivalness take place. If either exclusion or rivalness take place, the pirating
consumer is unable to consume the good and gains no utility from possessing
a copy of the digital good while still bearing the costs associated with pirating
the digital good – i.e. the search cost and the cost of copying7. What is more,
if rivalness takes place, the consumer who shared the digital good with the
pirating consumer also looses the ability to consume the digital good and is
thus left with a loss equivalent to the utility this good has for her.

2.1 Timeline

We assume that each consumer plays once per period:

1. The consumer chooses between purchasing and pirating the digital good.
If the consumer chooses to purchase the good, she pays the price for this
good and obtains the utility associated with the consumption of the good.
The consumer then waits for the next period.

2. If the consumer decides to pirate, she has to find somebody on the network
who owns a copy of the digital good. If the network is not sufficiently
connected, the consumer may not find a source for digital good. In this
case, the consumer does not get any utility, as no digital good is consumed,
but still has to bear the cost of searching for the good on the network.

3. If the consumer is able to find a source – i.e. another consumer who owns
a copy of the digital good – she obtains a copy of the digital good only if
the “source” consumer allows for the digital good to be copied. If this is
not the case, the consumer does not get any utility, as no digital good is
consumed, but still has to bear the cost of searching for the good.

4. If the consumer manages to obtain a copy of the digital good, she can
consume it if and only if the original producer of the digital good is not
able to exclude from the consumption of the good the consumers who

5We assume, as it is usually the case, that the cost of obtaining a pirated copy of the digital
good, including the cost of the copy and the opportunity cost of searching and copying the
good, is lower than the cost of purchasing a legitimate copy of the digital good.

6We assume that the quality of the digital good is the same regardless of its origin – bought
or pirated – and thus gives the same level of utility to the consumer.

7It is worth noticing that firms are, in general, not able to destroy the pirated copy of the
good. Thus despite the fact that the consumer is unable to use the digital copy, this copy can
still be used a source of copies for other consumers trying to pirate the good.
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did not pay for it. If the producer can exclude the consumer from the
consumption of the good, the consumer does not get any utility, as no
digital good is consumed, but still has to bear the cost of searching for the
good and copying the digital good.

5. If the consumer is not excluded from the consumption of the good, she
can still be prevented form consuming the good if the producer is able to
introduce some rivalness in the consumption of the good. In this case, the
consumer is able to consume the good if and only if no other consumer
who made a copy from the same original unit of digital good (including
the consumer owning the original unit of the digital good) is consuming
the good at the same time. Thus, as the number of consumers pirating
grows, the probability that any of the consumers is able to consume the
digital good decreases. Ultimately, it is impossible to consume the digital
good when there is rivalness, and the consumer does not get any utility,
as no digital good is consumed, but still has to bear the cost of searching
for the good and copying the digital good8.

6. If there is no rivalness, the consumer consumes the pirated digital good
and obtains the utility associated with this consumption. In this case the
cost borne by the consumer is the cost of searching and copying the digital
good. The consumer then waits for the next period.

2.2 The environment

The environment in which the consumers evolve is described by the following
variables:

The network : Ni ∈ [0, 1] describes the connectivity of the network for the
consumer i. This is the probability that consumer i will find a source
for the digital good once she has decided to pirate the good. If Ni = 0
the consumer is not connected to any other consumer and any attempt to
pirate will be unsuccessful. If Ni = 1 the consumer who decides to pirate
will always find another consumer who owns a copy of the digital good.

Excludability : E ∈ [0, 1] represents the level of excludability of the digital
good. This is the probability that the producer will be able to exclude
a consumer who obtained a pirated copy of the good. If E = 1, the ex-
cludability is total and no consumer who did not legitimately purchase
the digital good is able to consume it. If E = 0, the digital good is
non-excludable and the producers are unable to monitor and prevent ille-
gitimate users from consuming the good.

Rivalness : R ∈ [0, 1] represents the level of rivalness of the digital good. If
R = 1, the rivalness is total and only one unit/copy of the digital good can
be used at the same time. Practically, as the number of copies becomes
large, the consumers are prevented from using the digital good, including
the legitimate owner of the digital good as long as they let other consumers
copy their unit of digital good. If R = 0, the digital good is non-rival,

8Likewise, the consumer who shared the good is also prevented from consuming the good
and faces a loss equal to the utility brought by the consumption of the digital good.
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and an infinite number of consumers can consume simultaneously copies
of the same original unit of digital good.

2.3 The payoffs

If the consumer is able to obtain a unit of digital good (legitimate or pirate)
and is able to consume it, she receives a utility ui

9; she receives 0 otherwise. In
order to calculate the consumers’ payoffs, the cost incurred are deducted from
the utility obtained by the consumer:

• The price p if the consumer purchases the good from the producer.

• The search/opportunity cost s if the the consumer attempts to find the
good on the network.

• The copying cost c if the consumer makes a copy of the digital good.

Thus the payoff brought by the consumption activity of the consumer i
during period t, U c

i,t is:

• U c
i,t = ui − p if the consumer purchases the good.

• U c
i,t = −s if the consumer decides to pirate the good but did not find a

source.

• U c
i,t = −s− c if the consumer pirates the good but is not able to consume

it due to rivalness or excludability.

• U c
i,t = ui− (s+ c) if the consumer pirates the good and is able to consume

it.

In addition, each consumer can be contacted by another consumer willing
to make a pirate copy of the digital good she owns. If consumer i accepts to let
another consumer make a copy of a digital good, she gets a reward gi – positive
or negative. However, if a consumer lets another consumer copy her own unit
of digital good and if rivalness occurs10, she is not able to consume her unit of
digital good anymore. Thus her payoff decreases by ui. So if a consumer i is
contacted by another consumer j 6= i asking her to copy the digital good, she
obtains the following sharing payoff, Us

i,t:

• Us
i,t = 0 if she refuses to share the good and does not let the other consumer

copy it.

• Us
i,t = gi if she accepts to let the other consumer make a copy and rivalness

does not take place.

• Us
i,t = gi − ui if she accepts to let the other consumer make a copy and

rivalness occurs
9We assume that the quality of the digital good is the same regardless of its origin. However,

a difference of quality could be taken into account in the price/costs of the digital goods.
10We assume here that the consumer who is used as a source for the copy of the digital

good is left unaffected by excludability, if excludability occurs after a consumer copied the
digital good from her. This is either due to the fact that she is a legitimate user, or because
the imperfect monitoring of the firms only allow them to exclude some illegitimate users.
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The payoff of a consumer i for a period t, Ui,t is the sum of the payoffs
obtained due to the consumption and, possibly, the sharing of the digital good.

Ui,t = U c
i,t + Us

i,t

2.4 Assumptions on the payoffs

We assume that the consumer would be better off pirating the good rather than
buying it. Thus, by assuming that the quality and the characteristics of the
digital goods are the same regardless of their origin, we assume that the price
that the consumer would have to pay to purchase the good is higher than the
cost of pirating the good:

p > si + c

Thus:
ui − p < ui − (si + c)

In order to discuss this problem thoroughly, no prior assumptions are made
about the value of gi, which is a combination of the costs and rewards of sharing
the good. Depending on the situation, gi can be positive, negative or null. All
three cases will be discussed in the next sections.

3 Individual Behaviour

3.1 Sharing or not sharing?

The first element to determine is the consumers’ willingness to share. Indeed,
regardless of the nature of the digital goods, and of the behaviour of the firms,
piracy can not take place if none of the consumers is sharing: in this case the
good is fully excludable as the producer is the sole supplier/source of digital
good.

The game and the payoffs faced by a consumer asked to share are described in
Figure 2. By combining the outcomes linked to independent events (exclusion
and rivalness) leading to the same payoff, the game can be simplified as in
Figure 3.

Looking at Figure 3, it becomes clear that the decision whether to share the
digital good or not depends on the difference between the “Not sharing” payoff
(0) and the expected value of the sharing payoff:

(1− E)R(gi − ui) + 1− (1− E)Rgi ≡ gi − (1− E)Rui

As the payoff when the consumer does not share is zero, the consumer will
agree to share the good in a single stage game if and only if the payoff of sharing
is greater than zero:

gi − (1− E)Rui ≥ 0 ⇔ gi ≥ (1− E)Rui

Provided that E and R are probabilities, and ui ≥ 0, a necessary condition
for the consumer to share is gi ≥ 0. These results are summarised in Proposi-
tion 1.
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Proposition 1. In a non-repeated game without sharing constraint, a necessary
condition for the consumer to share is that the reward of sharing is positive:

gi ≥ 0

Additionally, a consumer will share if and only if the reward of sharing exceeds
the expected loss of utility caused by rivalness:

gi ≥ (1− E)Rui

(Proof in the text above)

If the excludability is total (E = 1) the consumer is always willing to share,
as long as gi ≥ 0. This is due to the fact that the producer is always able to
monitor and exclude the illegitimate users of the digital good. Consequently,
the consumer is always willing to share as long as it is not costly, since there is
no risk that rivalness will take place11. The same situation occurs when there
is no rivalness (R = 0).

If we leave aside the internal benefit/cost of sharing, gi – which depends
on the preferences/position of each agent and not on the publicness – and only
consider the external cost of sharing, (1 − E)Rui, we can notice that this ex-
ternal cost of sharing increases when the rivalness increases and decreases when
excludability increases. The external cost also increases when the potential loss
of utility, ui increases, thus the consumer is more likely to share if the utility
brought by the digital good is low since, in this case, the potential loss in case
of rivalness is also low.

As excludability and rivalness influence the external cost of sharing in op-
posite ways, it is interesting to investigate which of these effects is stronger.
Starting from a point with no rivalness and excludability, if rivalness and ex-
cludability are increased at the same rate (i.e. E ≡ R), the increase in rivalness
has a stronger effect on the external cost of sharing – which will thus increase
– up to the point where R = E = 1/2. After this point, if rivalness and exclud-
ability continue to increase at the same rate, excludability has a larger effect
than rivalness and the cost of sharing diminishes up to the point where it is
equal to zero when both R and E are equal to 1. Thus if the firms are aiming
at decreasing piracy by increasing the cost of sharing, it is not necessarily the
case that they should simultaneously increase excludability and rivalness.

Likewise, if the firms are able to have complete control over who is using
the good (E = 1), they could, by setting the rivalness equal to zero, use the
consumers as a mean of distribution of the digital good. When E = 1, the
external cost of sharing is zero, and as long as gi is greater than zero, the
consumers will be willing to let other consumers copy the good.

An opposite strategy also exists. Firms that fear that they will not be able
to control closely enough who is using their product, could instead opt for a
strategy with no excludability but a total rivalness. In this case, the firms would
hand over the control of the digital good – but also the risks of loss due to piracy
– to the consumers. As the digital good is completely rival, sharing consumers

11If a legitimate consumer lets another consumer copy the digital good, rivalness will not
take place, even if rivalness techniques are used, since the producer will be able to detect
the illegitimate user, and prevent her from using the good. In this case, the legitimate user
remains the sole user of the good.
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have potentially a lot to loose and will certainly refuse to share unless they are
compensated for the potential loss of utility – e.g. unless the other consumer
buys the good from them. In this case, the digital good becomes quite similar
to a private good and only consumers potentially suffer from piracy.

It is also worth noticing that this last type of strategy is likely to restrain
the distribution of the digital good over the network and hence decrease the
probability that a pirate consumer will find a source of digital good12. This
phenomenon is particularly interesting when firms are able to have, at first, a
high excludability level, but then tend to loose control over the good, resulting
in a decrease of the level of excludability over the time.

3.2 Pirating or not pirating?

Assuming that the digital good is valuable for the consumer (ui ≥ 0), that it is
worth buying (ui − p ≥ 0) and that it is actually costly to search for a pirate
source (s ≥ 0), a consumer i will never choose to pirate in two cases:

• If the consumer is not part of any network (Ni = 0).

• If none of the consumers is willing to share.

If the consumer is certain that all the other consumers will be willing to
share , the net payoff for consumer i when pirating is (c.f. Figures 4 and 5):

Ni(1− E)(1−R)ui −Nic− s

Where Ni(1−E)(1−R)ui is the expected utility gained when pirating and
Nic − s is the expected cost of this activity. We can immediately notice that
there is another case when the consumer will never pirate: when the expected
utility of pirating is lower than the cost of pirating 13:

Ni(1− E)(1−R)ui < Nic + s

3.2.1 Pirating in a perfectly connected network

If the network is fully connected (Ni = 1, ∀i), the net payoff of pirating is:

(1− E)(1−R)ui − c− s

Thus the consumer will pirate only if (1 − E)(1 − R)ui ≥ c − s. This
definition of the pirating payoff gives some interesting insights about the piracy
phenomenon. Indeed, this means that in the “best of the worlds” – e.g. the
network is fully connected and other consumers are always willing to share –
the piracy decision is essentially based on the difference between the expected
utility obtained when pirating and the utility obtained when buying, and on the

12If rivalness does not take place, consumers are more likely to share the good. As a
consequence, a lot of consumers may be able to get a copy of the good. Even if we assume
that they are excluded – and can not use the good – they can nevertheless share the good as
well and become a source for other consumers. If at any point the excludability decreases, the
piracy will be important, as the number of sources is high.

13We will assume in the following paragraphs that this is not the case, and that piracy is
always a worthwhile option, e.g. the expected utility gained from pirating always exceeds the
expected cost of pirating (Ni(1− E)(1−R)ui ≥ Nic + s).
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difference between the cost of legal purchasing and the cost of pirating. Indeed,
the consumer decides to pirate if:

(1− E)(1−R)ui − c− s ≥ ui − p ⇔ (1− E)(1−R)ui − ui ≥ c + s− p

As (1−E)(1−R)ui ≤ ui, the consumer will pirate if and only if c+s ≤ p, i.e.
if the cost of pirating is lower than the cost of purchasing the digital good legally.
However, although c+s ≤ p is always a necessary condition for the consumer to
pirate, it is a sufficient condition only when the publicness is total (R = 0 and
E = 0). If there is no rivalness but excludability exists (R = 0 and E ∈]0, 1]),
a sufficient condition for the consumer to pirate is: c + s + Eui ≤ p. Thus,
pirating for piracy to occur the price of the digital good should be greater than
the sum of the total cost of pirating and the expected loss of utility when the
consumer pirates and is excluded. Intuitively, it means that if the excludability
is very high, the firms will be able to charge a higher price without pushing
consumers to pirate. On the contrary, if the excludability is very low, a price
slightly above the cost of pirating will trigger a piracy behaviour.

The same kind of reasoning applies when both rivalness and excludability
are present (R ∈]0, 1] and E ∈]0, 1]). In this case, a sufficient condition for the
consumer to pirate is: c + s + (E + R − ER)ui ≤ p. Thus the consumer will
not pirate unless the official price is higher than the sum of the costs of pirating
and the expected loss of utility when pirating and “losing” the good (due to
exclusion or rivalness).

Let’s assume that the firms choose as a price the highest price that does not
cause the consumers to pirate:

p = c + s + (E + R− ER)ui − ε ' c + s + (E + R− ER)ui

We can notice that the impact of increasing excludability (resp. rivalness)
on the price depends on the level of rivalness (resp. excludability):

∂p

∂E
= (1−R)ui

∂p

∂R
= (1− E)ui

Thus, increasing rivalness (resp. excludability) when excludability (resp.
rivalness) is high will only have a small impact on the highest price that can
be charged by the firms. Therefore it is probably more efficient for the firms, if
we assume that increasing rivalness or excludability is costly, to adopt a “pure
strategy” and to either increase excludability or rivalness, rather than both at
the same time.

Formally, a sufficient condition for the consumer not to pirate is when either
the rivalness or the excludability level is above an absolute critical value equal
to p−s−c

ui
. If the level of rivalness (resp. excludability) reaches the critical value

R∗ (resp. E∗), the consumer will never choose to pirate, regardless of the value
of the level of excludability (resp. rivalness).

However, if neither of these levels reaches its absolute critical value, a second
condition is required for the consumer not to pirate. For example, if the level of
excludability is below the critical value (E < p−s−c

ui
), then the level or rivalness
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would have to be at least equal to R > p−s−c−Eui

(1−E)ui
for the consumer not to

pirate. Let’s denote these two relative critical values E∗(R) and R∗(E).
Thus the sufficient conditions for the consumer not to pirate are:

• R > R∗ and E ∈ [0, 1]

• E > E∗ and R ∈ [0, 1]

• R < R∗ and E > p−s−c−Rui

(1−R)ui

• E < E∗ and R > p−s−c−Eui

(1−E)ui

With:

E∗ =
p− s− c

ui
(1)

R∗ =
p− s− c

ui
(2)

E∗(R) =
p− s− c−Rui

(1−R)ui
(3)

R∗(E) =
p− s− c− Eui

(1− E)ui
(4)

It is interesting to note that the absolute critical values E∗ and R∗ decrease
with ui, c and s and increase with p. Thus from the firms’ point of view, it is
easier to deter piracy when the good is very valuable (u is high), or when the
costs associated with piracy (s and c) are high. On the contrary, the higher the
price of the digital good, p is, the more difficult it will be to deter piracy, since
the levels of rivalness or excludability will have to be higher in order to reach
their critical value.

Likewise, if the first sufficient condition – i.e. E > E∗ or R > R∗ – is not
met, the value of the minimum levels of the rivalness and excludability for the
second set of sufficient conditions, E∗(R) and R∗(E), also depends negatively
on u, s, and c. This means that the higher these three values are, the easier it is
for the firms to prevent piracy since the level of excludability/rivalness required
will be lower. On the contrary, the two critical values E∗(R) and R∗(E) depend
positively on p, and thus when firms charge a higher price, higher levels of
excludability or rivalness are required to prevent piracy. In addition, E∗(R) and
R∗(E) depend negatively on each other (∂E∗(R)/∂R < 0 and ∂R∗(E)/∂E < 0)
which means that a lower level of rivalness (resp. excludability) will be required
to prevent piracy when the level of excludability (resp. rivalness) is high.

3.2.2 Pirating in an imperfectly connected network

Similar reasoning applies when the consumer is not in a fully connected network
(Ni ∈ [0, 1[). In this case the consumer will pirate if and only if (c.f. Figures 4
and 5):

Ni(1− E)(1−R)ui −Nic− s ≥ ui − p

In this case, a necessary condition for the consumer to pirate is:

Ni(1− E)(1−R)ui > Nic + s
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Which means, as we assumed before that the expected utility of pirating should
be equal to or greater than the expected cost of pirating for the piracy behaviour
to be worthwhile.

Therefore, a sufficient condition for the consumer to pirate is:

p > (1−Ni(1− E)(1−R))ui + s + Nic

So if the official market price is higher than the expected cost – including the
expected loss of utility – of piracy, then the consumer will decide to pirate. If
we assume, as we did above, that the firms will charge a price just below the
expected cost of pirating:

p = (1−Ni(1−E)(1−R))ui + s+Nic− ε ' (1−Ni(1−E)(1−R))ui + s+Nic

We can notice that:

• Firms can charge a higher price when the good is more valuable for the
consumers (∂p/∂ui > 0).

• Firms can charge a higher price when the cost of pirating increases
(∂p/∂c > 0 and ∂p/∂s > 0).

• Firms can charge a higher price when excludability and rivalness are high
(∂p/∂E > 0 and ∂p/∂R > 0).

More interestingly, the impact of the connectivity of the network depends
on the relative cost of copying and the expected utility of pirating:

∂p

∂Ni
> 0 ⇔ c > (1− E)(1−R)ui

However, in this case, piracy would not be worthwhile since the cost of copying
would outweigh the expected gain of utility. We can thus reasonably assume
that c < (1−E)(1−R)ui and thus the impact of the connectivity of the network
on the price is negative (∂p/∂Ni < 0). As a consequence, the less the network
is connected, the higher the price charged by the firms can be.

In terms of network connectivity, it is possible to define a threshold level of
network connectivity, N∗

i , below which, regardless of the level of publicness, the
consumer will never pirate. This absolute critical value of network connectivity
can be defined as:

N∗
i =

ui − p + s

ui − c
(5)

Thus if Ni < N∗
i , the consumer will never pirate. However if the network is

sufficiently connected (Ni ≥ N∗
i ), the consumer may choose to pirate, but this

decision also depends on the levels of excludability and rivalness. If Ni ≥ N∗
i ,

a sufficient condition for the consumer not to pirate is that either the level of
excludability or the level of rivalness reaches a relative critical value, E∗(Ni) for
the excludability, and R∗(Ni) for the rivalness:

E∗(Ni) = R∗(Ni) =
p− s−Nic− (1−Ni)ui

Niui
(6)
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Thus as long as Ni ≥ N∗
i , a sufficient condition for the consumer not to pirate

is that the level of rivalness (resp. excludability) is greater than R∗(Ni) (resp.
greater than E∗(Ni)). In this case, the level of excludability (resp. rivalness)
can take any value between zero and one.

If this second condition is not met, it is possible to define a third sufficient
condition based on the three levels (network, excludability and rivalness). If
the network is sufficiently connected (Ni ≥ N∗

i ) and rivalness and excludability
are rather low (E ≤ E∗(Ni) and R ≤ R∗(Ni)) a sufficient condition for the
consumer not to pirate is either:

E >
p− s−Nic− (1−Ni(1−R))ui

Ni(1−R)ui

Or:

R >
p− s−Nic− (1−Ni(1− E))ui

Ni(1− E)ui

This allows us to define a second set of relative critical values for the rivalness
and excludability:

E∗(Ni, R) =
p− s−Nic− (1−Ni(1−R))ui

Ni(1−R)ui
(7)

R∗(Ni, E) =
p− s−Nic− (1−Ni(1− E))ui

Ni(1− E)ui
(8)

It is also worth noticing that, regardless of the value of network connectiv-
ity, the consumer will also never pirate if one of the publicness level – either
excludability or rivalness – is greater than the absolute critical value E∗ and R∗

defined in the Equations (1) and (2).
It means that in order for the consumer to adopt a piracy behaviour, the

network should be sufficiently connected and the excludability and the rivalness
should not be too high.

As all these critical levels depend on the value of the good for the consumers
(u), the price (p), and the costs of pirating (c and s), it is possible to describe
the influence of these factors on the critical values (Table 1).

Table 1: Impact of the variables on the absolute and relative critical values

ui p s c
N∗

i + − + +
E∗ and R∗ − + − −

E∗(Ni) and R∗(Ni) − + − −
E∗(Ni, R) − + − −
R∗(Ni, E) − + − −

Unsurprisingly, the presence of a more valuable good increases the critical
value for the network connectivity, N∗

i , and decreases the critical values for
excludability (E∗, E∗(Ni), E∗(R) and E∗(Ni, R)) and rivalness (R∗, R∗(Ni),
R∗(E) and R∗(Ni, E)). This means that if the good is very valuable to the
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consumer, the network connectivity has to be greater and the excludability and
rivalness lower for the consumer to pirate. The same phenomenon occurs if the
cost of pirating (either the search cost s or the copying cost c) increases. In
this case, the network connectivity also has to be higher – and rivalness and
excludability lower – for the consumer to pirate. On the contrary, a higher price
of the digital good will push the consumers to pirate even when the pirating
conditions are “harsh”, e.g. when the network connectivity is low and the
rivalness and excludability are high.

Likewise, it is possible to analyse the impact that the level of connectivity
of the network, the level of rivalness and the level of excludability have on each
other (Table 2). It allows us to see that an increase in the network connectivity
increases the relative critical values for excludability and rivalness (E∗(Ni),
E∗(Ni, R), R∗(Ni) and R∗(Ni, R)). This means that a consumer placed in
a more connected network is more likely to pirate, even if the rivalness and
excludability are high.

Table 2: Impact of the environmental variables on the relative critical values

N E R
E∗(Ni) and R∗(Ni) +

R∗(Ni, E) + −
E∗(Ni, R) + −

The excludability and rivalness levels both have a negative effect (in terms
of value) on each other’s relative critical values. If the level of excludability
increases, the relative critical values for rivalness R∗(E) and R∗(Ni, R) will
decrease, which means that for the consumer to pirate when the level of exclud-
ability increases, the level of rivalness has to decrease. Likewise, an increase in
rivalness will lead to a decrease in the relative critical values of excludability
E∗(R) and E∗(Ni, R).

Proposition 2. In a non-repeated game without sharing constraint, any of the
following conditions are sufficient conditions for the consumer not to pirate:

• The consumer i is not part of a network (Ni = 0).

• The consumer i is not connected to any consumer willing to share.

If the none of the above conditions are met, another sufficient condition for the
consumer not to pirate is when either the network connectivity, excludability or
rivalness reach an absolute critical value:

• The connectivity of the network, Ni, is below the absolute critical level
N∗

i ( Ni < N∗
i ) and the levels of excludability (E) and rivalness (R) are

between zero and one.

• The level of excludability, E, is above the absolute critical level E∗ (E >
E∗) and the level of network connectivity (Ni) and the level of rivalness
(R) are between zero and one.
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• The level of rivalness, R, is above the absolute critical level R∗ (R > R∗)
and the level of network connectivity (Ni) and the level of excludability
(E) are between zero and one.

These absolute critical values are defined by the equations (1), (2) and (5).
If the above conditions are not met and the network connectivity is rather

high (Ni ≥ N∗
i ), the following conditions are sufficient for the consumer not to

pirate:

• The level of excludability, E, is above a relative critical level E∗(Ni) (E >
E∗(Ni)) and the level of rivalness (R) is between zero and one.

• The level of rivalness, R, is above a relative critical level R∗(Ni) (R >
R∗(Ni)) and the level of excludibility (E) is between zero and one.

• The level of excludability, E, is above a relative critical level E∗(Ni, R)
(E > E∗(Ni, R)).

• The level of rivalness, R, is above a relative critical level R∗(Ni, E) (R >
R∗(Ni, E)).

These relative critical values are defined by the equations (6), (7) and (8). (Proof
given in Appendix)

Corollary (1). The critical values N∗
i , E∗(Ni), E∗ (Ni, R), R∗(Ni), R∗(Ni, E),

depend on the utility brought by the digital good (ui), on the cost of copying (c),
on the search cost (s), and on the price of the digital good (p) as follows:

• The absolute critical value for network connectivity, N∗
i , increases with

the utility brought by the digital good (ui), and with the search cost (s).
This critical value decreases with the price of the digital good (p) and with
the cost of copying (c).

• The critical values for excludability (E∗, E∗(Ni) and E∗(Ni, R)), and ri-
valness (R∗, R∗(Ni) and R∗(Ni, E)), decrease with the utility brought by
the digital good (ui), with the cost of copying (c), and with the search cost
(s). These critical values increase with the price of the digital good (p).

Corollary (2). The relative critical values for excludability, E∗(Ni) and E∗

(Ni, R), and rivalness, R∗(Ni) and R∗(Ni, E), change depending on the envi-
ronmental variables Ni, E and R as follows:

• The relative critical values for excludability, E∗(Ni) and E∗(Ni, R), in-
crease with the level of network connectivity Ni and decrease with the level
of rivalness R.

• The relative critical values for rivalness, R∗(Ni) and R∗(Ni, E), increase
with the level of network connectivity Ni and decrease with the level of
excludability E.

4 Non-repeated game

In this section we analyse the equilibria existing in a non-repeated game with
two players. The following results can be generalised in a non-repeated n-player
game.
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4.1 Equilibria in the simple model

The strategies of each player have two components based on whether they pirate
(P ) or not (P̄ ) and whether they share (S) or not (S̄). There are thus four
different strategies available to each player: {PS, P S̄, P̄S, P̄ S̄}. Table 3 shows
the payoff matrix for two players.

Table 3: Payoffs Matrix

PS PS̄ P̄S P̄ S̄

PS GP + GS , GP + GS −s + GS , GP GP , GB + GS −s,GB

PS̄ GP ,−s + GS −s,−s GP , GB + GS −s,GB

P̄S GB + GS , GP GB + GS , GP GB , GB GB , GB

P̄ S̄ GB ,−s GB ,−s GB , GB GB , GB

With:
GP = Ni(1− E)(1−R)ui −Nic− s
GS = gi − (1− E)Rui

GB = ui − p

4.1.1 Simultaneous game

Assuming that these two players are playing once and simultaneously, we can
notice that in the case where sharing is costly – e.g. when the expected payoff
of sharing, GS is negative – all the strategies involving sharing (PS and P̄S)
are weakly dominated. In this case, and as long as the good is “worth the price”
(GB ≥ 0)14, the consumer will choose not to pirate. Thus when GS < 0 and
GB > 0, (P̄ S̄, P̄ S̄) is a dominant strategy equilibrium.

However, as long as the expected payoff of pirating, GP , is higher than the
payoff of buying, GB , this equilibrium is not Pareto optimal. Both consumers
would be better off if they were both pirating and sharing (PS, PS). However,
this situation is not achievable due to the presence of a “temptation payoff”:
the payoff of both consumers is the highest when they pirate and do not share
while the other one shares (GP > GP + GS). This is due to the fact that
sharing is overall costly (GS < 0). In this case, the players are in a prisoners’
dilemma situation. They would both be better off cooperating (i.e. pirating
and sharing), however they tend to free-ride on each other and end up in a
sub-optimal situation.

If we assume, on the contrary, that there is a net benefit of sharing, GS > 0,
the non-sharing strategies, PS̄ and P̄ S̄, are weakly dominated. In this case, the
choice of strategy solely depends on the relative values of the pirating (GP ) and
buying (GB) payoffs:

• If GP > GB , both consumers will decide to pirate and (PS, PS) is a
(weakly) dominant strategy equilibrium.

• If GP < GB , both consumers will decide not to pirate and (P̄S, P̄S) is a
(weakly) dominant strategy equilibrium.

14When GB ≥ 0, GB ≥ −s since by assumption s ≥ 0.
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It is also possible to find Nash equilibria, in addition to the dominant strat-
egy equilibria described above, in this game. The situation where none of the
consumers pirate and none of the consumers share, (P̄ S̄, P̄ S̄), is always a Nash
equilibrium. What is more, if there is a net benefit of sharing (GS > 0), three
additional Nash equilibria exist:

• (P̄S, P S̄) and (PS̄, P̄S): One of the consumers pirates and does not share
whereas the other one does not pirate and shares.

• (PS, PS): provided that GP + GS > GB , there is a Nash equilibrium
where both consumers share and pirate.

Also, if the benefits of buying are higher than the benefits of pirating (GP <
GB), then two other Nash equilibria exist:

• (P̄S, P̄S): since it is not worth pirating, nobody does. Since nobody
pirates, everybody is willing to share even when sharing is costly (GS < 0).

• (P̄S, P̄ S̄) and (P̄ S̄, P̄ S): when nobody pirates, consumers are indifferent
between sharing or not sharing. In this case, they either both share, both
do not share, or one of them shares and the other does not.

All these results are summarised in the proposition below:

Proposition 3. When two consumers have the choice between pirating or not,
and sharing or not, and when these choices are made only once and simultane-
ously, the following equilibria exist:

• When the expected payoff of sharing is negative (GS < 0), there is only
one equilibrium: (P̄ S̄, P̄ S̄) where both consumers do not pirate and do not
share. This equilibrium is a dominant strategy equilibrium.

• When the expected payoff of sharing is positive (GS ≥ 0), several equilibria
exist as follows:

– (P̄ S̄, P̄ S̄) is a Nash equilibrium.

– (PS, PS) is a (weakly) dominant strategy equilibrium when GP >
GB. In this case, both consumers pirate and share.

– (P̄S, P̄S) is a (weakly) dominant strategy equilibrium when GP <
GB. In this case both consumers decide not to pirate and share. The
following additional Nash equilibria also exist: (P̄S, P̄S), (P̄S, P̄ S̄)
and (P̄ S̄, P̄ S). This is due to the fact that as nobody pirates, con-
sumers are indifferent between sharing or not sharing. (Proof in the
text above)

Corollary. When GS < 0 and GP + GS > GB, the dominant strategy equilib-
rium (P̄ S̄, P̄ S̄) is not Pareto optimal. In this case, the Pareto optimal outcome
is when both consumers pirate and share: (PS, PS). However this outcome can
never be achieved due to the fact that strategies involving sharing are always
dominated. (Proof in the text above)
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4.1.2 Sequential game

Quite similar results are obtained when the game is played sequentially instead
of simultaneously. When the benefits of piracy exceed the benefits of buying
(GP > GB) and sharing is costly (GS < 0), the player placed in second position
will never share, regardless of the decision of the first player. Also, the second
player is always aware of whether the first player decided to share or not, and
will decide to pirate only if the first player shares. The first player would prefer
to pirate, but knows that, as sharing is costly, the second player will never decide
to share15. As the game is not repeated, it is not possible for the first player
to incite the second player to share, as even if the first player decides to share,
not sharing is a dominant strategy for the second player. A simple backward
induction reasoning shows that, in this situation, the first player will choose
not to pirate and not to share (P̄ S̄). As a consequence the second player will
never choose to pirate, and – since the first player does not pirate – is indifferent
between sharing or not. Thus when the payoff of pirating is higher than the
payoff of buying, and when sharing is costly, there are two possible equilibria:
(P̄ S̄, P̄ S) and (P̄ S̄, P̄ S̄).

If, on the contrary, sharing gives a positive payoff (GS > 0), the second
player will always choose to share, and will choose to pirate if she sees that the
first consumer is sharing. Since sharing is beneficial, the first player will choose
to share as well and, knowing that the second player is always sharing, will
also decide to pirate. Consequently, as the first consumer shares, the second
player will also decide to pirate. Thus when the payoff of pirating is higher than
the payoff of buying, and when sharing is beneficial, the unique equilibrium is
(PS, PS).

If the benefits of piracy are lower than the benefits of buying (GP < GB),
both the first and second players will never choose to pirate. As such, regardless
whether sharing is costly or not, they are indifferent between sharing and not
sharing. Therefore in this case, there are four possible equilibria: (P̄ S̄, P̄ S̄),
(P̄S, P̄S), (P̄S, P̄ S̄) and (P̄ S̄, P̄ S).

Proposition 4. When two consumers have the choice between pirating or not,
and sharing or not, and when choices are made only once and sequentially, the
following equilibria exist:

• (P̄ S̄, P̄ S) and (P̄ S̄, P̄ S̄), when GP > GB and GS < 0.

• (PS, PS), when GP > GB and GS > 0.

• (P̄ S̄, P̄ S̄), (P̄S, P̄S), (P̄S, P̄ S̄) and (P̄ S̄, P̄ S), when GP < GB.

(Proof in the text above)

Corollary. When GS < 0 and GP + GS > GB, the equilibria in the sequential
game, (P̄ S̄, P̄ S) and (P̄ S̄, P̄ S̄) are not Pareto optimal. In this case, the Pareto
optimal outcome is when both consumers pirate and share: (PS, PS). (Proof in
the text above)

15Unless the first player decides not to pirate, in which case the second player is indifferent
between sharing and not sharing.
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4.2 Impact of forced cooperation

Following the corollary of Proposition 3 and 4, it is obvious that, from the
consumers’ point of view, one of the main problems with piracy is the free-riding
occurring among consumers. As we can reasonably assume that in general the
benefits of sharing for most of the people are, at best, null, and in most cases
negative, this problem is very likely to arise. For this very reason, most of the
pirate channels and peer-to-peer networks include mechanisms encouraging or
even forcing cooperation among users. In this case, consumers that choose to
pirate also necessarily have to share.

The game is thus simplified since the PS̄ strategy does not exist anymore.
If the expected payoff of sharing, GS is negative, the following equilibria exist:

• If GB > GP + GS , e.g. the payoff of buying exceeds the total payoff of
pirating and sharing, (P̄ S̄, P̄ S̄) is a dominant strategy equilibrium. In
this case none of the consumers pirate nor share. The equilibrium is also
the Pareto optimal outcome.

• If GB < GP + GS , there is no dominant strategy equilibrium. However,
(P̄ S̄, P̄ S̄) and (PS, PS) are both Nash equilibria. The Pareto optimal
outcome is (PS, PS) and is therefore achievable.

If the expected payoff of sharing, GS is positive, the possible equilibria are:

• (PS, PS) if GP > GB : the consumers both pirate and share if the payoff
of pirating is higher.

• (P̄S, P̄S) if GP < GB : the consumers both buy the good and share when
the payoff of buying the good is higher.

All these results are summarised in Proposition 5.

Proposition 5. In a non-repeated simultaneous game, if a mechanism, forcing
the consumers who decide to pirate to share, is introduced the following equilibria
are obtained:

• (P̄ S̄, P̄ S̄) when GS < 0 and GB > GP + GS.

• (P̄ S̄, P̄ S̄) and (PS, PS)when GS < 0 and GB < GP + GS.

• (PS, PS) when GS > 0 and GP > GB.

• (P̄S, P̄S) when GS > 0 and GP < GB.

(Proof in the text above)

Corollary. When GS < 0 and GP + GS > GB, the Pareto optimal outcome
(PS, PS) can be achieved as (PS, PS) is a Nash equilibrium. This is due to
the fact that, as pirating consumers are forced to share, there is no possible
free-riding among consumers.

There is little change in these results when the game is played sequentially
instead of simultaneously. As in the case of the simultaneous game, forcing coop-
eration allows the consumer to achieve the Pareto optimal equilibrium (PS, PS)
when pirating is more advantageous (GP > GB), sharing costly (GS < 0), and
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pirating and sharing is overall more advantageous (GP +GS > GB). However, it
is worth noticing that, on the contrary to the simultaneous game, a “cheating”
option still exists for the second player, despite the forced cooperation, when
the cost of sharing outweighs the benefit of pirating (GP + GS < GB). The
second player can observe when the first player decides not to pirate, and in
this case can himself choose to pirate without bearing the cost of sharing. For
this reason, on the contrary to the simultaneous game with forced cooperation
in which both players are usually indifferent between sharing or not in this case,
the first player will necessarily choose not to share in order to avoid the loss
caused by this behaviour of the second player.

Proposition 6. In a non-repeated sequential game, if a mechanism, forcing the
consumers who decide to pirate to share, is introduced the following equilibria
are obtained:

• (P̄ S̄, P̄ S̄), (P̄S, P̄S), (P̄S, P̄ S̄), (P̄ S̄, P̄ S) when GB > GP .

• (P̄ S̄, P̄ S̄) and (P̄ S̄, P̄ S) when GB < GP and GB −GP < GS < 0.

• (PS, PS) otherwise.

(Proof in the text above)

Corollary. When GS < 0 and GP + GS > GB, the Pareto optimal outcome
(PS, PS) can be achieved since it is a Nash equilibrium.

As shown in Propositions 5 and 6, a pirate network with forced cooperation
can lead to an equilibrium where both consumers pirate and share even when
sharing is costly. This is typically the case when the total benefits of pirating
and sharing outweigh the payoff of buying – e.g. when GP + GS > GB .

For this condition to be true, the total cost of sharing GS = gi− (1−E)Rui

should not be too high. Indeed, if gi ≤ −p + s + c, the intrinsic cost of sharing,
gi, is such that it exceeds the difference between the price of the good, p, and
the total cost of pirating, s + c. In this case, the benefits of pirating will never
outweigh the cost of sharing, even when the environmental conditions are the
best for the consumer – i.e. when the network is fully connected (Ni = 1) and
the ex-ante publicness is total (E = 0 and R = 0).

If the intrinsic cost of sharing is rather low ( gi > −p + c + s), another con-
dition is required. The network needs to be sufficiently connected, as otherwise
the consumer would pay the cost of sharing, but would not be rewarded as suc-
cessful pirating would be quite unlikely. Thus if the connectivity of the network
is below a critical value N∗∗

i , the consumer will never choose to pirate and share
as the benefits of pirating and sharing, GP + GS are in this case smaller than
the benefit of buying, GB . This critical value N∗∗

i is defined as:

N∗∗
i =

ui − p + s− gi

ui − c
(9)

Ni < N∗∗
i is a sufficient condition for the consumer not to pirate in the case

of forced cooperation. However, if Ni ≥ N∗∗
i , other conditions are required.

Indeed, when the network connectivity is rather large, the consumer will choose
not to pirate only if the excludability and rivalness reach a sufficient level. As
we did in the case without forced cooperation (Proposition 2), it is possible to
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define a relative critical level for the excludability, E∗∗(Ni), and the rivalness,
R∗∗(Ni), such as if any of these two levels is reached, the consumer will never
choose to pirate and share. These critical levels are defined as follows:

E∗∗(Ni) = R∗∗(Ni) =
p− s−Nic− (1−Ni)ui + gi

Niui
(10)

Thus, E > E∗∗(Ni) is a sufficient condition for the consumer not to pirate.
In this case, the level of excludability can take any value between zero and one.
Likewise, R > R∗∗(Ni) is also a sufficient condition for the consumer not to
pirate.

If this second condition is not reached – i.e. neither the level of excludability
E nor the level of rivalness R reaches the critical value defined above – it is
possible to define a third sufficient condition for the consumer not to pirate.
As in this case the network connectivity is too high and both excludability and
rivalness levels are too low, this third condition relies on two relative critical
values for excludability and rivalness defined as follows:

E∗∗(Ni, R) =
p− s−Nic + gi − (1−Ni(1−R) + R)ui

(Ni(1−R)−R)ui
(11)

R∗∗(Ni, E) =
p− s−Nic + gi − (1−Ni(1− E) + E)ui

(Ni(1− E)− E)ui
(12)

Thus, in the case of forced cooperation, E > E∗∗(Ni, R) or R > R∗∗(Ni, E)
are sufficient conditions to deter consumers from pirating and sharing. These
results are summarised in the proposition below.

Proposition 7. In a non-repeated simultaneous game with forced cooperation,
a cooperative equilibrium, (PS, PS), where both consumers pirate and share is
obtained if and only if the total payoff of pirating and sharing, GP + GS, is
greater than the payoff of buying, GB. The following conditions are sufficient
conditions for this former condition not to be true – i.e. are sufficient conditions
for GP + GS < GB:

• gi < −p + s + c and Ni, E, R ∈ [0, 1]

If this condition is not met, one of the following conditions is required:

• Ni < N∗∗
i and E,R ∈ [0, 1]

• Ni ≥ N∗∗
i and E > E∗∗(Ni) and R ∈ [0, 1]

• Ni ≥ N∗∗
i and R > R∗∗(Ni) and E ∈ [0, 1]

• Ni ≥ N∗∗
i and E ≤ E∗∗(Ni) and R > R∗∗(Ni, E)

• Ni ≥ N∗∗
i and R ≤ R∗∗(Ni) and E > E∗∗(Ni, R)

The critical values N∗∗
i , E∗∗(Ni), R∗∗(Ni), E∗∗(Ni, R) and R∗∗(Ni, E) are de-

fined by the Equations (9), (10), (11) and (12).

Corollary (1). The critical values N∗∗
i , E∗∗(Ni), R∗∗(Ni), E∗∗(Ni, R) and

R∗∗(Ni, E) depend on the utility brought by the digital good (ui), on the cost of
copying (c), on the search cost (s), on the price of the digital good (p), and on
the net benefit/cost of sharing (gi) as follows:
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• The absolute critical value for network connectivity, N∗∗
i , increases with

the utility brought by the digital good (ui), with the search cost (s), and
with the cost of copying (c). This critical value decreases with the price of
the digital good (p) and with the net benefit/cost of sharing (gi).

• The critical values for excludability, E∗∗(Ni) and E∗∗(Ni, R), and rival-
ness, R∗∗(Ni) and R∗∗(Ni, E), decrease with the utility brought by the
digital good (ui), with the cost of copying (c), and with the search cost
(s). These critical values increase with the price of the digital good (p)
and with the benefit of sharing (gi).

Corollary (2). The relative critical values for excludability, E∗∗(Ni) and E∗∗

(Ni, R), and rivalness, R∗∗(Ni) and R∗∗(Ni, E), change depending on the envi-
ronmental variables Ni, E and R as follows:

• The relative critical values for excludability, E∗∗(Ni) and E∗∗(Ni, R), in-
crease with the level of network connectivity Ni and decrease with the level
of rivalness R.

• The relative critical values for rivalness, R∗∗(Ni) and R∗∗(Ni, E), increase
with the level of network connectivity Ni and decrease with the level of
excludability E.

It is useful to compare the critical value defined in Proposition 7, which
defines the critical values of network connectivity, excludability and rivalness
when forced cooperation exists, with the critical values without forced coopera-
tion defined in Proposition 2. We find that, although forced cooperation allows
to obtain a pirating-sharing equilibrium, it is also more sensitive to the environ-
mental conditions. Indeed, as long as sharing is intrinsically costly (gi < 0), the
critical level of network connectivity below which the consumer will decide not
to pirate is higher in the case of forced cooperation (N∗∗

i > N∗
i , ∀gi < 0), and

the critical levels of excludability and rivalness above which the consumer will
never pirate are both lower in the case of forced cooperation (E∗∗(Ni) > E∗(Ni)
and R∗∗(Ni) > R∗(Ni), ∀gi < 0).

We can reasonably assume that for most of the consumers nowadays, the
payoff of sharing is negative (GS < 0) and the payoff of piracy usually outweighs
the payoff of buying (GP > GB). What is more, the cost of sharing is usually
rather small, and we can assume that in most cases, the combined benefits of
pirating and sharing are greater than the benefit of buying (GP + GS > GB).
Nevertheless, the prospect of avoiding the cost of sharing certainly represents a
serious temptation payoff for the individuals, especially once taken into account
the fact that the cost of sharing includes the expected cost of some, unlikely
but nevertheless potentially very high, criminal and civil charges. As most
individuals are risk averse, they will try as much as possible to avoid sharing.
In this case, regardless of the strategies of the firms, the pirate network would
collapse. It is therefore very important for the creators of the network to insure
that this does not happen by forcing the cooperation among users. As such,
most of the peer-to-peer protocols nowadays include mechanisms preventing the
users from downloading digital goods if they are not sharing. As shown in this
section, such mechanisms prevent the free-riding behaviour among consumers
and maximise the consumers’ global welfare.
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However, in the real life, such mechanisms may not be sufficient. This is due
to the fact that the speed at which consumers download (pirate) and upload
(share) are often asymmetrical. It is thus possible that a consumer would finish
downloading the sought digital good before she finishes to upload a single unit
of the shared digital good. A consumer in this situation would be placed in
a position similar to the second player in the sequential game without forced
cooperation and will therefore immediately stop sharing. The other users will
thus be harmed since they shared and did not obtain the pirated good16. This
is a problem, since the most efficient users for the network – e.g. the ones
with the highest sharing speed – are also the most likely to be harmed by such
behaviour. In a small network, this problem can be solved by the repeated
interactions among users.

5 Repeated game

We now assume that the game between the two players is repeated an infinite
number of times T (T = ∞). δ ∈ [0, 1] is the discount factor used by the two
players. We assume furthermore that sharing is intrinsically costly (gi < 0) and
that there is no forced cooperation mechanism.

The first, obvious, non-cooperative, equilibrium of such a game is the one
that consists in playing the stage-game Nash equilibrium repeatedly:

Proposition 8. In an infinitely repeated game without forced cooperation and
with a discount factor δ ∈ [0, 1], the infinitely repeated stage-game Nash equi-
librium – where both consumers do not pirate and do not share – is a subgame
perfect Nash equilibrium (SPNE).

Corollary. The payoffs of the players at the stage-game Nash equilibrium are
the minmax payoffs of the game. Each of these payoffs represents for each
player the reservation utility as it is the worst outcome this player can be forced
to take. Thus the repeated stage-game Nash equilibrium is the worst subgame
perfect equilibrium (WSPE) (Fudenberg and Levine, 1983; Abreu, 1988) of the
game and can be used as a punishment in order to incite cooperation. Grim-
trigger, a.k.a. Nash reversion, based strategies use the payoffs of the WSPE as
punishment payoffs.

5.1 Sustainable piracy

Using the previous corollary, we define a cooperative equilibrium, based on a
simple grim-trigger punishment scheme, as follows:

• The player cooperates – e.g. pirates and shares – all the time as long as
the other player cooperates – e.g. pirates and shares – as well.

• If the other player defects by pirating without sharing, the player subse-
quently stops pirating and sharing, and buys the good without sharing it
in all subsequent periods.

1699.99% of a software or a movie is, in general, as unusable as 0% of the same software or
movie. This is actually the case with most of the binary files.
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Thus, in each subgame, the players have the choice between the following
strategies17:

• Cooperating: The consumer pirates and shares in each subsequent period.

• Defecting: The consumer pirates without sharing. As a grim-trigger pun-
ishment is used by both players, the other player will then refuse to share
in each subsequent period, thus the consumer will buy the good in each
subsequent period.

• Buying: The consumer buys the good and does not share in this period
or any subsequent one.

A cooperative strategy with grim-trigger punishment, σc
t , during the stage

t = k of the game can be defined as follows:

σc
t =

{
PS If (PS, PS) was played at t− 1 or if t = 1
P̄ S̄ otherwise (13)

Likewise, a defecting strategy at time T = t, σd
t , is defined as:

σd
t =

{
PS̄ If (PS, PS) was played at t− 1 or if t = 1
P̄ S̄ otherwise (14)

Finally, a “safe” strategy at time T = t, σs
t – which consists in buying

without sharing – is defined as:

σs
t = P̄ S̄ ∀t ∈ [1,+∞[ (15)

Assuming that the other player is cooperating and playing σc
t at time T = k,

the continuation payoff obtained when cooperating and playing σc
t , πc

t , is defined
as follows:

πc
t =

∞∑
t=k

δt−k(GP + GS) =
GP + GS

1− δ
(16)

The continuation payoff of defecting and playing σd
t at time T = k , πd

t , is:

πd
t = GP +

∞∑
t=k+1

δt−kGB = GP +
δ

1− δ
GB (17)

These two payoffs need to be compared with the continuation payoff of the
“safe” strategy, σs

t , at time T = k , πs
t , which is the infinitely discounted sum

of the stage-game minmax payoff GB :

πs
t =

∞∑
t=k

δt−kGB =
GB

1− δ
(18)

Thus for a cooperating equilibrium with a grim-trigger punishment, (σc
t , σ

c
t ),

to be sustainable at time t = k, the two following conditions need to be true:

1. πc
t ≥ πd

t

17The other strategies are ignored as all of them are dominated
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2. πc
t ≥ πb

t

Condition 2 simply requires that the combined payoff of pirating and sharing
exceeds the payoff of buying:

πc
t ≥ πs

t ⇔ GP + GS ≥ GB

Condition 1 is true if and only if:

πc
t ≥ πd

t ⇔


GP + GS ≥ GB

and
δ ≥ −GS

GB−GP

Thus, in fact only two conditions are required for a cooperative equilibrium
with grim-trigger punishment to be sustainable:

1. GP + GS ≥ GB

2. δ ≥ −GS

GB−GP

The requirements for the first condition, GP + GS ≥ GB , to be true were
discussed in detail in Proposition 7. However, it would be interesting to know
the impact of the variables on the second condition. Based on this second
condition, we define a critical value for the discount factor, δ∗, above which the
cooperative equilibrium will be sustainable:

δ∗ =
−GS

GB −GP
(19)

In regards to the environmental variables, we find that δ∗ increases with the
excludability E and rivalness R, and thus decreases with the level of publicness.
This makes sense as a decrease in publicness means more risk for the pirating and
sharing consumers. Thus a higher discount ratio is required for them to commit
to a cooperating equilibrium where they both pirate and share. An increase
of network connectivity N leads, on the contrary to a decrease of the critical
discount ratio δ∗. This result is not surprising since more network connectivity
increases the chance for piracy to be successful and thus increases the expected
utility of piracy-based strategies. As such, a lower discount ratio is required
when more network connectivity is present in order for a pirating and sharing
strategy to be sustainable.

The critical discount ratio δ∗ is also increasing when the value of the good ui

increases. As the potential loss due to exclusion or rivalness becomes higher, this
higher loss needs to be compensated by a longer expected cooperation between
the players. Likewise, an increase of the search costs, s, and the copy cost, c,
also tend to increase δ∗. This is logical since these two variables are part of the
cost of pirating. Thus, when they increase, they make the cooperating strategy
– which involves sharing and pirating – less interesting for the consumers unless
the fruits of this strategy are collected during more periods. Contrariwise, both
an increase in the official price of the good, p, and in the intrinsic benefit/cost
of sharing will lead to a decrease of δ∗. Quite trivially, the more the price of the
digital good increases, the more pirating is an interesting option for the con-
sumers. Thus, the more the price increases, the shorter the interaction between
players can be, since even a few interactions will make worthwhile cooperating
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and pirating in order to avoid paying the very high official price. An increase
in gi

18 also decreases the requirement in terms of duration of cooperation as
it decreases the cost of sharing, thereby making the cooperating strategy more
interesting even when cooperation does not last. These results are summarised
in the proposition below:

Proposition 9. In an infinitely repeated game without forced cooperation and
with a discount factor δ ∈ [0, 1], the strongly symetric cooperative equilibrium
(σc, σc) – where consumers both pirate and share – based on a cooperative strat-
egy profile with grim-trigger punishment σc is sustainable if and only if the two
following conditions are met:

• The combined payoff of pirating and sharing once is higher than the payoff
of buying once: GP + GS > GB.

• The discount ratio δ is higher than a critical value δ∗: δ ≥ δ∗

When these two conditions are met, the cooperative equilibrium (σc, σc) is a
subgame perfect Nash equilibrium (SPNE) of the infinitely repeated game.

The cooperative strategy with grim-trigger punishment σc is defined by the
Equation (13) and the critical value δ∗ is defined by the Equation (19).
(Proof in the text above)

Corollary (1). The critical value of the discount factor δ∗ depends on the utility
brought by the digital good (ui), the cost of copying (c), the search cost (s), the
price of the digital good (p) and the benefit/cost of sharing (gi) as follows:

• δ∗ increases with the utility ui, the cost of copying c, and the search cost
s.

• δ∗ decreases with the price p and the benefit/cost of sharing gi.

(Proof given in Appendix)

Corollary (2). The critical value of the discount factor δ∗ change depending
on the environmental variables Ni, E and R as follows:

• δ∗ increases with the excludability E and the rivalness R.

• δ∗ decreases with the network connectivity Ni.

(Proof given in Appendix)

Proposition 9 shows that it is possible, even when sharing is costly, to obtain
a cooperative equilibrium, where consumers pirate and share at the same time,
as long as the benefits of pirating and sharing outweigh the benefits of buying,
and as long as the discount ratio – which represents the probability for the game
to be repeated or the patience19 of the consumers – exceeds a critical level δ∗.

18gi represents the intrinsic benefit or cost of sharing. It is a cost when gi < 0. In this case,
when gi increases, it means that the cost of sharing is decreasing.

19When σ is close to one, the consumer is infinitely patient, since all the gains in a future
are worth as much that the gains in the present. On the contrary, is σ is close to zero, it means
that the consumers is highly impatient, since all the gains in the future are worth nothing and
only the gains in the present count.
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5.2 Sustainable piracies

The cooperative equilibrium described by Proposition 9 is the simplest coop-
erative equilibrium (consumers pirate and share all the time) triggered by the
simplest form of punishment (in case of defection consumers punish each other
forever by not cooperating) of the repeated games. Other types of subgame
perfect Nash equlibrium, involving more complex cooperative equilibrium be-
haviours – e.g. consumers mix strategies and are not always pirating and sharing
– and/or more complex punishments – for example, the cheating consumer may
be forgiven after some time – may also exist. Last but not least, the simple co-
operative equilibrium of Proposition 9 is a symmetric equilibrium in the sense
that the strategies of the players are identical and, at the equilibrium, their
payoffs are identical. This section will show that sustainable non-symetrical
subgame perfect Nash equilibria also exit.

Proposition 9 shows that a cooperative equilibrium with constant cooper-
ation can be a SPNE. However cooperating all the time is not a necessary
condition in order to get a SPNE. The well-known Folk Theorem (Friedman
(1971), Fudenberg and Maskin (1986), Rubinstein (1979)) shows that as long
as the discount factor is close to one – e.g. as long as the players are patient
enough – many SPNE exist. In fact all pairs of strategies leading to an av-
erage discounted payoff greater than the repeated stage-game Nash equilibria
minmax payoff can be SPNE when the discount ratio is high. The proposition
below details this result:

Proposition 10 (The Folk Theorem). Let ν∞i ≡ ν0
i , ν1

i , . . . be an infinite stream
of feasible and individually rational stage-game payoffs for player i. ν̂∞i is the
average discounted payoff of this infinite stream of payoffs and is defined as
follows:

ν̂∞i = (1− δ)
∞∑

t=0

δtνt
i (20)

If ν̂∞i is greater for all players i than the stage payoff of the infinitely repeated
stage-game Nash equilibrium (σs, σs) – e.g. if:

ν̂∞i > GB , ∀i

and if the combined payoff of pirating and sharing, GP + GS, is higher than the
payoff of buying, GB, there exists a δ < 1 such that, for all δ > δ, (ν̂1, ν̂2) is the
pair of average payoffs for players 1 and 2 arising in an SPNE. (Proof given in
Appendix).

Corollary (1). As long as the combined payoff of pirating and sharing, GP +GS

is higher than the payoff of buying, GB, and provided that the discount factor
δ is sufficiently close to 1, any pair of strategies (σ̂, σ̂) containing at least one
episode of cooperative piracy (when both consumers pirate and share during the
same period) is a SPNE. (Proof given in Appendix).

Corollary (2). As long as the payoff of pirating and sharing, GP + GS is
higher than the payoff of buying, GB, and provided that the discount factor δ is
sufficiently close to 1, any pair of strategies (σ̂, σ̂) based on infinitely repeated
sequences of actions containing at least one planned episode of reciprocal cooper-
ative defection (when both players defect once in turn) is a SPNE. (Proof given
in Appendix).
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Corollary (1) of Proposition 10, is a very important result since it shows that
any pair of strategies containing at least one episode of cooperative piracy is
sustainable as long as the discount ratio is high. This means that if players are
expecting cooperation to last long, there is no need for them to pirate all the time
for a cooperative equilibrium to be sustainable: they can agree to pirate and
share only from time to time. This is particularly relevant in nowadays situation
where firms, government or internet service providers (ISP) are monitoring the
networks in order to find and to take pirating consumers to court. Consumers
can devise strategies which are more difficult to detect than if they were pirating
and sharing all the time. This also shows that the “punishment” strategies
designed by some governments and ISP consisting in temporarily interrupting
the internet access of pirating consumers – or threatening to do so – may not be
a sufficient deterrent since consumers can still buy the good during a few periods
and then resume pirating: preventing one way or another the consumers from
pirating during a period of time (even when this period lasts for a long time)
does not prevent the consumers from establishing cooperative pirating strategies
since all the strategies containing at least one episode of cooperative piracy are
sustainable.

Last but not least, this first Corollary is very important because it shows
that there is not a unique piracy behaviour consisting in pirating and sharing
all the time, but instead an whole range of pirating behaviours exist, from the
very casual one to the most intensive one. This explains why, in industrialised
countries, nearly all consumers pirated at least once in their life, and why some
of them pirate very rarely while others pirate all the time. The problem for the
firms supplying digital goods is that the behaviours – e.g. the frequency and
the occurrence of cooperative piracy episodes – as well as their distribution in
the consumers’ population, is essentially unpredictable. This obviously makes
it even more difficult to devise anti-piracy strategies.

Corollary (2) goes a step further in the direction of unpredictability, since it
shows that the consumers do not even need to pirate at the same time for a co-
operative equilibrium to be sustainable. It is indeed possible for the consumers
to plan some episodes of reciprocal cooperative defection, when consumers alter-
natively defect in turn – e.g. one consumer is pirating without sharing, and the
other one is sharing and buying, and then the roles are reversed – and include
these episodes in their strategies. Corollary (2) shows that when at least one of
these episodes is included in the strategies, they lead to a sustainable coopera-
tive equilibrium. This result is particularly relevant in the – quite realistic – case
when firms, governments or ISP are not able to monitor all the consumers at
the same time, and/or are not able to monitor all the activities of the consumers
at the same time (e.g. they can detect sharing but not pirating, for example),
since consumers can adapt their piracy behaviour in function of the monitoring.
What is more, it is quite common that, depending on the country considered,
only one type of activities – e.g. pirating or sharing – is illegal. In all cases,
this result shows that the consumers have even more options available in the
way they design their pirating strategies. It is also worthwhile noticing that the
two defections of the planned episode of reciprocal cooperative defection do not
even need to be consecutive, which makes the whole set of possible strategies
even less predictable by the firms or governments.

In addition, Corollaries (1) and (2) only consider sustainable equilibria with
symmetrical payoffs. However, Proposition 10 shows that the payoffs of the
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players do not have to be identical: as long as each player earns on average at
least as much as the WSPE stage-game payoff, the equilibrium is enforceable.
Figure 6 shows the set of all the payoffs which are supportable as SNPE average
payoffs when δ is close to one.

G B

Achievable Payoffs

Unachievable Payoffs

Figure 6: The Folk Theorem – set of supportable SPNE average payoffs when
δ → 1

In order to find the set of supportable cooperative payoffs – and more par-
ticularly the set of maximum supportable cooperative payoffs – we assume that
the two players are mixing the two strategies20:

• PS: pirate and share

• P̄S: buy and share

The strategy PS is played by the player i with probability λi and the strategy
P̄S with probability 1 − λi. The more player i shares without pirating – e.g.
when λi → 0 – the higher the average discounted payoff of player j is, since
she can pirate without having to bear the cost of sharing. However, one should
notice that the player i will never choose a value of λi that would lead to an
average discounted payoff lower than the minmax payoff GB . By minimising
λi for a λj = 1 and under the constraint that the average discounted payoff

20Mixing the two strategies P̄S and PS is equivalent to mixing the three strategies PS̄, P̄S
and PS. P̄ S̄ is used in both cases as a punishment.
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of player i should be at least equal to the minmax payoff GB , it is possible to
define the maximum supportable SNPE average discounted payoff for player j.

Proposition 11 (Maximum supportable SPNE average payoff). The maxi-
mum supportable SPNE average payoff of the infinitely repeated game when the
discount factor δ is close enough to one is:

ν̂max
i = GP −

GS
2

GP −GB
(21)

This maximum supportable SPNE average payoff is achieved for player i when
both players i = 1, 2 play PS with probability λiand P̄S with probability (1−λi)
and: {

λi = 1
λj = λ∗

With:
λ∗ =

−GS

GP −GS
(22)

(Proof given in Appendix).

Corollary. When the difference between the payoff of pirating and the payoff
of buying is large, or when cost of sharing is sufficiently small, the payoff of
pirating, GP , is the Maximum supportable SPNE average payoff:

ν̂max
i ' GP when

 (GP −GB) → ∞
or
GS → 0

(Proof given in Appendix).

Proposition 11 shows that the maximum supportable average discounted
payoff for player i, νmax

i , depends negatively on the cost of sharing, GS , and
positively on the difference between the gains of piracy and the gains of buying,
GP −GS . The corollary shows that when the cost of sharing is proportionally
very low, or when the difference between the payoff of pirating and the payoff of
sharing is proportionally very large, this maximum supportable average payoff
gets close to GP which is the highest possible payoff. Thus when the consumers
are patient enough, and when they feel that pirating is much more advantageous
than buying – or if the total cost of sharing is null – an equilibrium for which
one of the players gets on average the pirating payoff is sustainable.In this
equilibrium, one of the players always shares and virtually never pirates. As
such, the payoff of the other player is on average equal to the pirating payoff. In
this case, the full range of possible sustainable payoffs21 and possible sustainable
strategies is available.

As for the non-repeated version of the game, it is important to determine
which of the payoffs are Pareto optimal. The Proposition 12 below shows that
the payoffs situated on the outer boundary of the set of possible average payoffs
shown in Figure 6 are Pareto optimal payoffs. Any possible pair of payoffs
situated inside the set is Pareto dominated by at least one other pair of payoffs
situated on the outer boundary. Quite trivially, any inner pair of payoff can

21In this case the “unachievable payoffs” zone shown on Figure 6 becomes very small.
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not be Pareto optimal as it is possible to increase the payoff of player i by
increasing λi without decreasing the payoff of player j, since λj can be increased
to compensate the raise in λi. On the contrary, for any pair of payoff situated
on the outer boundary, it is not possible to compensate an increase of λi (resp.
λj) by an increase of λj (resp. λi) since, by definition, a pair of payoff is situated
on the boundary if and only if λj (resp. λi) is equal to one. Therefore, for any
pair of payoff situated on the outer boundary, it is not possible to increase the
payoff of one of the consumers without decreasing the payoff of the other one.
Payoffs on the outer boundary are thus Pareto optimal payoffs.

Proposition 12 (Pareto Optimality). When the discount factor δ is close
enough to one, and the players i = 1, 2 play the following cooperative mixed
strategy σi:

• Play PS with probability λi

• Play P̄S with probability (1− λi)

The average discounted payoffs (ν̂i, ν̂j) brought by the pair of strategies (σi, σj)
such as λi = 1 and λj ∈ [0, 1] or λi ∈ [0, 1] and λj = 1 are the Pareto optimal
payoffs of the game.
(Proof given in Appendix)

Corollary. A pair of average discounted payoffs (ν̂i, ν̂j) is a pair of Pareto
optimal payoffs if and only if:{

ν̂i = GS

GP−GB
ν̂j + (GP−GB−GS)(GP +GS)

GP−GB
∀ ν̂j ∈ [GB + GS , GP + GS ]

ν̂i = GP−GB

GS
ν̂j + (GP−GB−GS)(GP +GS)

−GS
∀ ν̂j ∈ [GP + GS , GP ]

(Proof given in Appendix)

However, not all the Pareto optimal payoffs of the game are supportable as
average subgame perfect Nash equilibria. The results of Proposition 10 and 12
are used to define the set of Pareto optimal SPNE of the infinitely repeated
game. As achievable payoffs should be based on mixed strategies such as λi ≥
λ∗, i = 1, 2, this necessary condition is used in Proposition 13 to identify Pareto
optimal payoffs that are supportable as equilibria, and thus the SPNE that are
Pareto optimal.

Proposition 13 (Pareto Optimal SPNE). When the discount factor δ is close
enough to one, and the players i = 1, 2 play PS with probability λi and P̄S with
probability (1− λi), the Pareto optimal payoffs brought by the pair of strategies
(σ∗i , σ∗j ) such as λi = 1 and λj ∈ [λ∗, 1] or λi ∈ [λ∗, 1] and λj = 1 are supportable
as average discounted subgame perfect Nash equilibrium payoffs. Thus all the
subgame Nash equilibria (σ∗i , σ∗j ) are Pareto optimal equilibria.
(Proof given in Appendix).

Corollary (1). A subgame perfect Nash equilibrium based on the strategy profiles
(σ∗i , σ∗j ) is Pareto optimal if an only if the equilibrium average discounted payoffs
(ν̂∗i , ν̂j)∗ are such as:{

ν̂∗i = GS

GP−GB
ν̂∗j + (GP−GB−GS)(GP +GS)

GP−GB
∀ ν̂∗j ∈ [GB , GP + GS ]

ν̂∗i = GP−GB

GS
ν̂∗j + (GP−GB−GS)(GP +GS)

−GS
∀ ν̂∗j ∈

[
GP + GS , GP − GS

2

GP−GB

]
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(Proof given in Appendix)

Corollary (2) (Pareto Perfection and Renegotiation-Proofness). The Pareto
optimal subgame perfect Nash equilibria defined in Proposition 13 are renegotia-
tion-proof. As such, they are Pareto perfect equilibria.
(Proof given in Appendix)

Proposition 13 shows that, when the consumers are patient enough, an ex-
tensive and varied range of Pareto optimal payoffs can be obtained as average
payoffs of a subgame perfect Nash equilibrium. What is more, these Pareto
optimal outcomes do not require to be symmetric. Indeed, Corollary (2) shows
that any of the Pareto subgame perfect Nash equilibria are renegotiation-proof.
Thus, these outcomes are stable even if they involve quite unequal equilibrium
average payoffs. Hence, a situation where one of the players pirates all the
time, while the other one shares all the time and buys and nearly all the time
(and thus nearly never pirates) is an achievable, stable, and optimal cooperative
equilibrium.

As a summary, this section shows that as long as consumers are patient
and/or are expecting the game to last for a long time, an large number of
cooperative pirating strategies exist. In addition to the nearly infinite number
of sequences of cooperative piracy that can be designed, a very large number
of Pareto optimal payoffs can be supportable as equilibria. All this shows that
there is certainly not only one piracy behaviour that the firms producing digital
goods should be afraid of, but instead that many different piracy behaviours are
likely to exist. As such, monitoring, detecting and forecasting piracy behaviours
is certainly unachievable.

6 Analysis

6.1 Impact of the anti-piracy strategies

If we assume that the consumers’ pirating activity is based on simple non-
repeated interactions, as described in Sections 4.1.1 and 4.1.2, it should be
relatively easy for the firms to prevent piracy. Indeed, they only have to ensure
that the payoff of sharing, GS is negative. In this case, as shown in Propositions
3 and 4, even when the combined benefits of pirating and sharing are higher
than the benefits of buying the digital good (GP + GS > GB), the consumers
are placed in a prisoner’s dilemma situation and will refuse to share.

The conditions required for GS to be negative are described in section 3.1.
If we assume that sharing is intrinsically costly for the consumers – i.e. gi < 0
– the firms actually do not have to do anything in order to prevent piracy.
Indeed, in this case, the payoff of pirating GS is negative even when the levels
of excludability and rivalness are null – i.e. when the ex-ante level of publicness
is total. In this situation, the ex-post level of publicness is null since none of the
consumers are sharing. As a logical consequence, none of the consumers would
be pirating.

On the contrary, if consumers get a direct reward from sharing – i.e. gi > 0
– the payoff of sharing, GS is positive when the rivalness and excludability are
null. Thus, when the ex-ante publicness is total and the intrinsic gain of sharing
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is positive, the ex-post publicness – for a sufficiently connected network – is also
total. As shown in Proposition 3, consumers in this situation are likely to both
share and pirate. In this case, the firms need to adopt anti-piracy strategies so
that consumers stop pirating and/or sharing.

In order to prevent consumers from sharing, firms should decrease the ex-
ante publicness by increasing the level of rivalness. We can reasonably assume
that for most of the consumers, and in most cases, the intrinsic reward brought
by the sharing activity is likely to be small, and as such, a small increase of
rivalness should be sufficient to deter the consumers from sharing. However,
in some particular cases – for example when large network externalities are
present on the consumers side, when sharing brings high monetary (through
direct payment or advertisement banners) or non-monetary (reputation, glory,
self-estime) gains22 – the intrinsic gain of sharing, gi, can be large. What is
more, it takes only one sharing consumer for thousands of others to be able to
pirate. As a consequence, the firms will have to adopt more aggressive anti-
piracy strategies in order to prevent consumers from sharing.

As mentioned in Proposition 1, the consumers will share if and only if the
intrinsic gain of sharing, gi exceeds the expected loss due to rivalness, (1−E)Rui.
Thus, the more valuable the shared good is for the consumer, and the easier it
is for the firms to hinder sharing. On the contrary, it will be very difficult for
the firms to discourage consumers whose valuation of the good is close to zero
from sharing, since these are not harmed when rivalness takes place. It is also
worth noticing that anti-piracy strategies aiming at preventing consumers from
sharing should be based on an increase of rivalness only. Indeed, any increase
of excludability will decrease the expected loss due to rivalness, and thus the
impact of an increase of rivalness.

Instead of trying to prevent consumers from sharing, by decreasing GS below
zero, firms could target pirating consumers. Propositions 2, 3 and 4 show that
consumers do not pirate when the gain of pirating, GP , is smaller than the gain
of buying, GB . The conditions required for GP > GS are detailed in Proposition
2. Depending on the network connectivity, the value of the digital good for the
consumers, and the different costs involved in the pirating and buying activities,
it is possible to define values for the levels of excludability and rivalness that
will be high enough to impede piracy. It is also interesting to observe that these
sufficient levels do not usually involve a zero publicness (i.e. E = R = 1). Thus,
it is possible for the firms, without reaching a null ex-ante publicness, to achieve
a null ex-post publicness.

However, it is not necessarily the case that the anti-piracy strategies of the
firms are efficient enough to achieve the required levels of excludability and
rivalness. As a consequence, another strategy worth considering consists in
decreasing the price of the digital good. Indeed, no consumer will pirate if
the price of the digital good is below the total cost of pirating. Unfortunately,
although this strategy would probably achieve the targeted goal23, firms are
usually reluctant to decrease their prices. Nevertheless, such a strategy could
be used as a support for the more traditional anti-piracy strategies based on
increasing excludability and rivalness. Indeed, from Proposition 2, we can notice

22See Rayna (2002) for more details on the motivations of sharing consumers.
23It is important to notice that the anti-piracy strategies based on increasing excludability

and rivalness can be quite costly. Thus, decreasing the price of the digital good instead may
not be a worse strategy.

37



that a strategy involving both a decrease in publicness and a decrease in price is
likely to be very efficient, since a decrease in price allows to achieve more easily
the levels of excludability and rivalness required to deter piracy. It is also worth
noticing that strategies based on increasing excludability should be used with
caution since, as discussed above, increasing the excludability can also increase
the payoff of sharing and increase the number of consumers sharing the good.

Different anti-piracy strategies are required when mechanisms allowing to
encourage, or to force, the cooperation among consumers exist. In this case,
as shown in Propositions 5 and 6, an equilibrium involving both sharing and
pirating can exist, even when sharing is costly. These forced cooperation mech-
anisms are not fail-proof however, and Proposition 7 shows that there are some
critical values of excludability and rivalness above which the consumers will
never choose to pirate (and share). Thus, firms facing pirate networks involving
forced cooperation should decrease the ex-ante publicness of the digital good
by increasing either the level of excludability, or the level of rivalness, or both.
Proposition 7 shows that, if the firms can reach high levels of either excludability
or rivalness, it is possible for the firms to adopt a “pure” strategy by increasing
only one of these two level. However, if the critical values for excludability and
rivalness are out of reach, the firms will need to adopt a “mixed” strategy and
to increase both levels. As in the case when forced cooperation does not exist,
it is thus possible for the firms to achieve a null ex-post publicness in spite of a
positive ex-ante publicness.

It is worthwhile noticing that, in the case of forced cooperation, an increase
in the level of rivalness always has a negative impact on the combined profit of
pirating and sharing, GP + GS . However, this is not necessarily the case for an
increase in the excludability level. Indeed, an increase in excludability has two
opposite effects on the combined gain of pirating and sharing. As mentioned
in Proposition 2, it unambiguously decreases the payoff of pirating. However,
as shown in section 3.1, the impact of an increase of excludability can either
increase or decrease the payoff of sharing. The overall effect of the impact of an
increase of excludability on the combined payoff of pirating and sharing depends
on the level of rivalness. If the level of rivalness is rather low, an increase in the
level of excludability will lead to a decrease of the combined payoff of pirating
and sharing. On the contrary, if the level of rivalness is high, an increase in
the level of excludability will lead to a raise of the combined payoff. This is
due to the fact that a high level of rivalness leads to a high loss for the sharing
consumers. However, when the excludability increases, sharing consumers are
less penalised since the other consumers who copied the digital good from them
have more chances to be excluded, and therefore rivalness is less likely to take
place. These results are detailed in the proposition below:

Proposition 14. The anti-piracy strategies consisting in increasing excludabil-
ity (E) or rivalness (R) have the following effects on the combined payoff of
pirating and sharing, GP + GS:

• An increase in the level of rivalness, R, always lead to a decrease in the
combined payoff GP + GS.

• An increase in the level of excludability, E, can either:

– Lead to a decrease in the combined payoff GP + GS if the level of
rivalness, R is below Ni

Ni+1 .
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– Lead to an increase in the combined payoff GP + GS if the level of
rivalness, R is above Ni

Ni+1 .

(Proof given in Appendix)

H(GP + GS)(E,R) =
[

0 ui(1 + Ni)
ui(1 + Ni) 0

]
(23)

In addition, from the Hessian matrix of the combined gain GP + GS given
by Equation (23), we can notice that the second derivatives are constant and
are the same for both the excludability and the rivalness. Thus, both types of
strategies – increasing either excludability or rivalness – have the same relative
impact. However, as stated above in Proposition 14, increasing excludability
only has a positive impact if rivalness is rather low. As it may not be possible
for the firms to precisely measure and evaluate the exact levels of excludability
and rivalness, it would be advisable for the firms to consider “pure” strategies
– e.g. increasing only one of the levels – instead of a mixed one. However, it
is also possible that none of the critical values – as defined in Proposition 7 –
for excludability or rivalness are achievable, in which case the firms will have
to consider a mixed strategy in spite of the risk that this strategy might be
counter-productive.

The results of Proposition 7 and 14 can also be used when the pirating inter-
actions of the consumers is based on repeated interactions. Indeed, Proposition
10 shows that GP + GS > GB is one of the required conditions of the existence
of repeated cooperative pirating strategies among consumers. As such, as in
the case of non-repeated interactions with forced cooperation, it is possible for
the firms to achieve a null ex-post publicness by adopting policies increasing
excludability and/or rivalness.

What is more, Proposition 9 shows that the required discount ratio for a
simple cooperative piracy behaviour – where all consumers share and pirate –
to be sustainable depends positively on the levels of excludability and rivalness.
Therefore, the lower the ex-ante publicness is, the more the consumers have
to be patient – i.e. the higher the discount ratio has to be – in order for a
cooperative piracy strategy to be successful. Nevertheless, when consumers are
very patient, Proposition 10 shows that a wide range of cooperative pirating
strategies can be devised and sustained by the consumers.

This is particularly important since the firms often use, in addition to strate-
gies aiming at decreasing the publicness of digital goods, other anti-piracy strate-
gies based on the legal system. Indeed, in the countries where piracy and/or
sharing is illegal, firms can deter consumers’ piracy by monitoring the con-
sumers and suing the offenders for copyright infringement. Alternatively, the
firms can also request from the internet service providers that the internet ac-
cess of the offenders is interrupted. In both cases, the potential loss faced by the
offending consumers is expected to be high enough to hinder pirating or sharing
behaviours.

In a “perfect world” – where piracy and sharing could always be detected
and the offending consumers always prosecuted – this type of strategies would be
sufficient to deter sharing, and would thus, even with a total ex-ante publicness,
lead to a null ex-post publicness. However, nowadays, it is very unlikely that
perfect monitoring exists, and, practically, it is certainly far from being achiev-
able, at least in the near future. In this case, Proposition 10 hints that it is
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very unlikely that firms will be able to create, through an imperfect monitoring,
a sufficient deterrent, since the nearly infinite range of supportable cooperative
equilibria makes it likely that consumers will be able to avoid detection and
punishment. Indeed Proposition 10 shows that sustainable cooperative strate-
gies can include long periods without piracy, or periods when only one consumer
pirates, etc.

6.2 Network structure, anonymity and cooperation

The results developed in the previous sections show that very different outcomes
are obtained depending on the type game considered – e.g. whether the game
is repeated or not, or whether forced cooperation exists. This section aims at
establishing a link between the type of consumers’ network structure – i.e. the
type of interactions consumers have between each other – and what we think is
the most appropriate model to analyse this structure.

As far as consumers are concerned, the key element regarding their interac-
tions with other consumers certainly lies in the size of the consumers’ network.
Indeed, in most cases, a larger network means more anonymity for the consumers
part of the network: as the network is large, it is more difficult for consumers to
identify and “recognise” each other. What is more, as the size of the network
is large, the probability of interacting more than once with the same consumer
becomes very low.

For these two reasons, in very large networks – which most of the peer-to-
peer networks (Napster, GNUTella, Kazaa, eMule/eDonkey, BitTorrent) are –
the interactions between consumers are similar to a non-repeated game, as the
one introduced in Section 4.1.1. Thus free-riding among consumers is very likely
to occur in these large peer-to-peer networks and indeed most of these networks
introduced mechanisms aiming at increasing, or even forcing the cooperation
among consumers. Kazaa, for example, uses a priority mechanism based on the
sharing history of each consumer of the network. The more a consumer shared
in the past, the faster this consumer can access to, and download, digital goods.
Consumers who are not sharing can still download digital goods, but it is then
likely to take a very long time since they will always be the last ones to be
allocated network resources24.

Likewise, eMule/eDonkey, BitTorrent, and recent versions of GNUTella, re-
quire the consumers to continuously upload while they are downloading25. What
is more, the consumers who upload with a higher speed – i.e. who share more
– are given a higher priority on the network, and are thus able to download
faster, which means that they can get more digital goods in the same time than
consumers who share less. With this type of mechanism, total free-riding is not
feasible, since consumers are forced to share at least a bit in order to get access
to the network. However, this usually does not mean that each consumer shares
as much as they pirate, and therefore a weaker form of free-riding may exist.
As mentioned earlier, a consumer downloading faster than she is uploading will
have no incentive to continue sharing after she finishes downloading her copy of

24They might ultimately have to wait forever, which is equivalent to forbidding them from
downloading without sharing.

25Usually consumers are only required to share parts of the goods that they are currently
downloading. However, there is no requirement that they should share other digital goods.
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the digital good. As such she will probably stop sharing before the quantity of
digital goods she shared equals the quantity she downloaded.

It is illusory, to expect free-riding to disappear completely in large peer-to-
peer networks since this would require either a control of the network over the
consumers’ computers (to prevent consumers from disconnecting before their
pirating/sharing ratio is equal to one), or a precise and formal identification
of each consumers in order to be able to punish the cheaters. The former is
certainly not technically feasible at the moment, while the latter is certainly
not desirable since it would also allow the firms to easily identify and sue the
infringing consumers.

Nevertheless, Proposition 10 shows that a cooperative strategy could even
occur when interactions are rare and spread in time. This means that a repeated
game framework can also be used to analyse very large consumers networks.
Thus consumers would be likely to pirate and share, and not free-ride at all, as
long as they are patient enough, or as long as the pirating game is likely to be
repeated. Such situation occurs usually in countries where government policies
do not support or enforce IPR: in these countries consumers both pirate and
share and little free-riding occurs. However, the situation is usually different in
developed countries. Indeed, the law in most of these countries defines higher
punishment, for sharing than pirating. This in turns encourages consumers to
free-ride and to share as little as possible, while in the meantime consumers
try to download as much as possible. Nevertheless, this does not necessarily
endangers the viability of the network. Proposition 10 states that a cooperative
pirating equilibrium among consumers does not require all consumers to share
as much as they pirate. We can thus consider an equilibrium where consumers
in countries not enforcing IPR share more than consumers in countries enforcing
IPR, and where the situation is more beneficial for all the consumers than if
they where buying the digital goods instead.

What is more, Propositions 10 and 11 could be modified in order to take into
account the fact that the consumers’ payoffs, GP , GS and GB , are likely to be
different across consumers of one country, and even more across consumers of
different countries. In this case, a cooperative equilibrium between consumers
in countries enforcing IPR and consumers in countries not enforcing IPR, where
consumers in countries not enforcing IPR always share and nearly never pirate
(and reciprocally where consumers in countries enforcing IPR pirate and seldom
share) can be sustainable. Indeed, we can reasonably assume that in countries
not enforcing IPR, the cost of sharing, GS , is likely to be close to zero26. As
such, according to the Corollary of Proposition 11, equilibria where consumers
in countries enforcing IPR pirate all the time, and where consumers in countries
not enforcing IPR share and virtually never pirate, are sustainable.

In addition to large peer-to-peer networks, consumers are also using smaller
scale peer-to-peer networks (e.g. private BitTorrent servers), centralised services
(FTP or Hotline servers), or chat services (IRC, MSN, etc.). The smaller size
of these networks, their centralised structure, or their interactions at a personal
level, make it easier to monitor precisely the contribution of each consumer.
For example, pirate FTP servers often contain a bit-for-bit rule preventing the
users to download more than they upload. Likewise, private BitTorrent servers

26In addition, in developing countries, the difference GP − GB is also likely to be larger
than in developed countries if the firms are charging the same price in all countries.
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often require, as a rule, that each member of the network should maintain a
pirating/sharing ratio close to 1. Failure to comply with this rule usually leads
to the consumer being barred from accessing the private server. The interactions
among consumers in these networks are very much alike the repeated game
developed in Section 5. As such, the Folk theorem developed in Proposition 10
applies, and the consumers in these networks are able, assuming they are patient
enough, to develop and sustain many types of cooperative pirating strategies.

Conclusion

The aim of this article was to investigate the relation between the level of
publicness of the digital goods and the pirating and sharing behaviour of the
consumers. In order to do so we developed a model – introduced in Section
2 – of pirating and sharing behaviours based on the the determinants of the
publicness of digital goods. The main focus of this article was put on the anti-
piracy strategies of the firms which – by their positive effect on the excludability
and the rivalness of the digital good – define the ex-ante level of publicness. The
pirating and sharing behaviour of the consumers was then used to discuss the
ex-post of publicness of the digital goods.

In Section 3, we shed light upon the pre-conditions, based on the determi-
nants of publicness, which are required for the consumers to pirate and to share.
Absolute and relative critical values of network connectivity, excludability and
rivalness – such as the consumer never chooses to pirate once these values are
reached – are defined. The impact of all the variables on these critical values is
then analysed.

A two-player non-repeated version of the model is developed in Section 4 and
the possible equilibria characterised. The results obtained show that, both when
the game is played simultaneously and sequentially, sub-optimal equilibria may
exist when sharing is costly. In this case, the consumers are prone to free-ride
among each other and consequently, at the equilibrium, the consumers neither
pirate nor share. Provided that the combined payoff of pirating and sharing
exceeds the payoff of buying – as it is usually the case nowadays – this situation
is sub-optimal. We show that this problem can be solved by introducing a forced-
cooperation mechanism, which forces the consumer who pirate to share as well.
With such mechanism, the Pareto optimal equilibrium where consumers both
pirate and share can be achieved. However, depending on the level of publicness
and the other determinants, the consumers can be deterred from pirating and
sharing. As we did in Section 3, we define the absolute and relative critical values
of network connectivity, excludability and rivalness – such as the consumer never
chooses to pirate once these values are reached – when forced cooperation exist.
The impact of all the variables on these critical values is also stated.

Section 5 provides a study of an infinitely repeated variant of the model. We
first discuss, based on a simple grim-trigger cooperative pirating strategy, the
level of discount ratio required for a cooperative equilibrium to be sustainable.
The impact of the variables on this critical value of discount ratio is then eval-
uated. A Folk Theorem, stating all the cooperative sustainable subgame Nash
perfect equilibria of the model, is then elaborated. The maximum – and min-
imum – supportable average SPNE payoffs are stated and the Pareto optimal
equilibria are defined.
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The last section of this article is devoted to the analysis of the results ob-
tained in the previous sections. The first part of this section discusses the likely
impact of the anti-piracy strategies of the firms depending on the type of pi-
rate network considered. Finally, the question of the network structure and its
impact on the anonymity and on the cooperation among consumers is raised.

Overall, we believe that this article gives a good overview of the importance
and the role of both ex-ante and ex-post publicness in the pirating and sharing
behaviours of the consumers. More importantly, the traditional debate among
economists about whether digital goods are private or public goods is brought
one step further, since we acknowledge the variability of the publicness of the
digital goods and show the impact of this very variability on the consumers’
behaviour and on the firms’ strategies. Also, our models show that, even in
a very homogenous environment, the pirating behaviour of the consumers is
likely to be very heterogeneous. Last but not least, this article demonstrates
that governments interventions aiming at tackling piracy are – due to imperfect
monitoring – very likely to have a small impact on piracy. In addition, the
anti-piracy strategies of the firms are usually very costly, and have been unable,
so far, to reduce durably the publicness of digital goods. Therefore a decrease
in the price of the digital goods seems to be the only remaining option for the
digital goods industry.
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Appendix

Proof of Proposition 2

Preliminary conditions. The consumers will never pirate if the payoff of pirating
is smaller than the payoff of buying:

Ni(1− E)(1−R)ui −Nic− s ≤ ui − p

As the payoff of buying is always postitive (ui > p), this is the case when:

• The consumer is not connected to any network:

Ni = 0 ⇒ Ni(1− E)(1−R)ui −Nic− s = −s

s > 0 ⇒ −s < ui − p

• No other consumer is willing to share (equivalent to the result above):

−s < ui − p

Apart from these two rather obvious conditions, it is possible to define some
absolute critical values for the environmental variables E, R, Ni that will deter
the consumer from pirating.

Absolute critical value for network connectivity. Let N∗
i be the absolute critical

value for network connectivity level below which the consumer will never pirate,
even when the other conditions are perfect (e.g. E = 0 and R = 0). When
E = 0 and R = 0, the payoff of pirating is:

Niui −Nic− s ≤ ui − p ⇔ Ni ≤
ui − p + s

ui − c

Thus:
N∗

i =
ui − p + s

ui − c

And when Ni < N∗
i the consumer will never pirate ∀ E,R ∈ [0, 1]

Absolute critical value for excludability. Let E∗ be the absolute critical value
for excludability level above which the consumer will never pirate, even when
the other conditions are perfect (e.g. Ni = 1 and R = 0). When Ni = 1 and
R = 0, the payoff of pirating is:

(1− E)ui − c− s ≤ ui − p ⇔ E ≥ p− s− c

ui

Thus:
E∗ =

p− s− c

ui

And when E > E∗ the consumer will never pirate ∀ Ni, R ∈ [0, 1]
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Absolute critical value for rivalness. Using the same method as above, we show
that the absolute critical value for rivalness is:

R∗ =
p− s− c

ui

And when R > R∗ the consumer will never pirate ∀ Ni, E ∈ [0, 1]

If the absolute critical for network connectivity, N∗
i is not reached, it is

possible to define relative critical values for excludability and rivalness based on
the value of the network connectivity.

Relative critical value for excludability as a function of Ni. Let E∗(Ni) be the
relative critical value for excludability level, based on the current network con-
nectivity, above which the consumer will never pirate, even when the rivalness
is null (R = 0). When R = 0, the payoff of pirating is:

Ni(1− E)ui −Nic− s ≤ ui − p ⇔ E ≥ p− s−Nic− (1−Ni)ui

Niui

Thus:

E∗(Ni) =
p− s−Nic− (1−Ni)ui

Niui

And when E > E∗(Ni) the consumer will never pirate ∀ R ∈ [0, 1]

Relative critical value for rivalness as a function of Ni. Using the same meth-
od as above, we show that the relative critical value for rivalness as a function
of network connectivity is:

R∗(Ni) =
p− s−Nic− (1−Ni)ui

Niui

And when R > R∗(Ni) the consumer will never pirate ∀ E ∈ [0, 1]

If none of the relative critical values defined above are reached, it is possible
to define relative critical values for excludability and rivalness based on one-
another and on the value of the network connectivity.

Relative critical value for excludability as a function of Ni and R. E∗(Ni, R)
is the relative critical value for excludability level, based on the current network
connectivity and on the current level of rivalness, above which the consumer
will never pirate:

Ni(1−E)(1−R)ui−Nic− s ≤ ui− p ⇔ E ≥ p− s−Nic− (1−Ni(1−R))ui

N(1−R)ui

Thus:

E∗(Ni, R) =
p− s−Nic− (1−Ni(1−R))ui

N(1−R)ui

And when E > E∗(Ni, R) the consumer will never pirate.
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Relative critical value for rivalness as a function of Ni and E. Using the same
method as above, we show that the relative critical value for rivalness as a
function of network connectivity is:

R∗(Ni, E) =
p− s−Nic− (1−Ni(1− E))ui

N(1− E)ui

And when R > R∗(Ni, E) the consumer will never pirate.

Corollary (1).

∂N∗
i

∂ui
=

p− s− c

(ui − c)2
> 0

(By assumption, p > s + c)

∂N∗
i

∂p
= − 1

ui − c
< 0

(By assumption, u > c)
∂N∗

i

∂s
=

1
ui − c

> 0

∂N∗
i

∂c
= −p− s− c

(ui − c)2
< 0

∂E∗

∂ui
=

∂R∗

∂ui
= −p− s− c

(ui)2
< 0

∂E∗

∂p
=

∂R∗

∂p
=

1
(ui)

> 0

∂E∗

∂s
=

∂R∗

∂s
= − 1

(ui)
< 0

∂E∗

∂c
=

∂R∗

∂c
= − 1

(ui)
< 0

Similar calculations show that E∗(Ni), E∗(Ni, R), R∗(Ni) and R∗(Ni, E)
evolve in the same way as E∗ and R∗ do.

Corollary (2).

∂E∗(Ni, R)
∂Ni

=
ui + s− p

Ni
2(1−R)ui

> 0

∂E∗(Ni, R)
∂R

= − ui + s− p

Ni
2(1−R)ui

< 0

∂R∗(Ni, E)
∂Ni

=
ui + s− p

Ni
2(1− E)ui

> 0

∂R∗(Ni, E)
∂E

= − ui + s− p

Ni
2(1− E)ui

< 0
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Proof of Proposition 7

When a forced cooperation mechanism exists, the consumers will never pirate if
the combined payoff of pirating and sharing, GP +GS is smaller than the payoff
of buying, GB . This is the case when:

Ni(1− E)(1−R)ui −Nic− s + gi − (1− E)Rui < ui − p

Intrinsic benefit/cost of sharing. A first reason for the consumer not to pirate
is when the benefit/cost of sharing, gi is so (negatively) low that pirating and
sharing is never the best option, even when the environmental conditions are
perfect – e.g. Ni = 1, E = 0, R = 0. When Ni = 1, E = 0, R = 0, the combined
payoff of pirating and sharing is:

ui − c− s + gi < ui − p ⇔ gi < −p + s + c

When gi < −p + s + c, the consumer will never pirate and share ∀{Ni, E, R} ∈
[0, 1]3

Absolute critical value of network connectivity. N∗∗
i is the absolute value of net-

work connectivity, when there is forced cooperation, below which the consumer
will never choose to pirate and share, even when the other environmental con-
ditions are perfect – i.e. E = 0, R = 0. In this case, the combined payoff of
pirating and sharing is:

Niui −Nic− s + gi < ui − p ⇔ Ni <
ui − p + s− gi

ui − c

When Ni < N∗∗
i = ui−p+s−gi

ui−c , the consumer will never pirate and share for any
{E,R} ∈ [0, 1]

If the absolute critical for network connectivity, N∗∗
i is not reached, it is

possible to define relative critical values for excludability and rivalness based on
the value of the network connectivity.

Relative critical value for excludability as a function of Ni. Let E∗∗(Ni) be the
relative critical value for excludability level, based on the current network con-
nectivity, above which the consumer will never pirate, even when the rivalness
is null (R = 0). When R = 0, the payoff of pirating is:

Ni(1− E)ui −Nic− s + gi < ui − p ⇔ E >
p− s−Nic− (1−Ni)ui + gi

Niui

Thus:

E∗∗(Ni) =
p− s−Nic− (1−Ni)ui + gi

Niui

And when E > E∗∗(Ni) the consumer will never pirate ∀R ∈ [0, 1]

Relative critical value for rivalness as a function of Ni. Using the same meth-
od as above, we show that the relative critical value for rivalness as a function
of network connectivity is:

R∗∗(Ni) =
p− s−Nic− (1−Ni)ui + gi

Niui

And when R > R∗∗(Ni) the consumer will never pirate ∀E ∈ [0, 1]
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If none of the relative critical values defined above are reached, it is possible
to define relative critical values for excludability and rivalness based on one-
another and on the value of the network connectivity.

Relative critical value for excludability as a function of Ni and R. E∗∗(Ni, R)
is the relative critical value for excludability level, based on the current network
connectivity and on the current level of rivalness, above which the consumer
will never pirate:

Ni(1− E)(1−R)ui −Nic− s + gi − (1− E)Rui < ui − p

⇔ E >
p− s−Nic + gi − (1−Ni(1−R) + R)ui

(Ni(1−R)−R)ui

Thus:

E∗∗(Ni, R) =
p− s−Nic + gi − (1−Ni(1−R) + R)ui

(Ni(1−R)−R)ui

And when E > E∗∗(Ni, R) the consumer will never pirate.

Relative critical value for rivalness as a function of Ni and E. Using the same
method as above, we show that the relative critical value for rivalness as a
function of network connectivity is:

R∗∗(Ni, E) =
p− s−Nic + gi − (1−Ni(1− E) + E)ui

(Ni(1− E)− E)ui

And when R > R∗∗(Ni, E) the consumer will never pirate.

Corollary (1). Assuming that gi < 0 and 0 > gi > −p+s+c ⇔ p−s−c+gi > 0

∂N∗∗
i

∂ui
=

p− s− c + gi

(ui − c)2
> 0

∂N∗∗
i

∂p
= − 1

ui − c
< 0

∂N∗∗
i

∂s
=

1
ui − c

> 0

∂N∗∗
i

∂c
=

ui − p + s− gi

(ui − c)2
> 0

∂N∗∗
i

∂gi
= − 1

ui − c
< 0

∂E∗∗(Ni)
∂ui

=
∂R∗∗(Ni)

∂ui
=

−p + s + Nic− gi

(Niui)2
< 0

∂E∗∗(Ni)
∂p

=
∂R∗∗(Ni)

∂p
=

1
(Niui)

> 0

∂E∗∗(Ni)
∂s

=
∂R∗∗(Ni)

∂s
= − 1

(Niui)
< 0

∂E∗∗(Ni)
∂c

=
∂R∗∗(Ni)

∂c
= − 1

(ui)
< 0

∂E∗∗(Ni)
∂gi

=
∂R∗∗(Ni)

∂gi
=

1
(Niui)

> 0
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Similar calculations show that E∗∗(Ni, R) and R∗∗(Ni, E) evolve in the same
way as E∗∗(Ni) and R∗∗(Ni) do.

Corollary (2). Given that ui > p and gi < 0:

∂E∗∗(Ni, R)
∂Ni

=
(1−R)(u− p + s− gi) + cR)

(R− (1−R)Ni)2ui
> 0

∂E∗∗(Ni, R)
∂R

= − (1 + Ni)(ui − p + s + Nic− gi)
(R− (1−R)Ni)2ui

< 0

∂R∗∗(Ni, E)
∂Ni

=
(1− E)(u− p + s− gi) + cE)

(E − (1− E)Ni)2ui
> 0

∂R∗∗(Ni, E)
∂E

= − (1 + Ni)(ui − p + s + Nic− gi)
(E − (1− E)Ni)2ui

< 0

Proof of Corollaries 1 and 2 of Proposition 9

Impact of utility.

∂δ∗

∂ui
=
−∂ui

GS(GP −GB)− (−GS)∂ui
(GP −GB)

(GP −GB)2

−∂uiGS = (1− E)R ≥ 0

By assumption, GP ≥ GB . Thus:

−∂ui
GS(GP −GB) ≥ 0

∂ui
(GP −GB) = −1 + (1− E)N(1−R) ≤ 0

By assumption, GS < 0. Thus:

−(−GS)∂ui
(GP −GB) ≥ 0

Therefore, −∂ui
GS(GP −GB)− (−GS)∂ui

(GP −GB) ≥ 0 and:

∂δ∗

∂ui
≥ 0

Impact of the search costs.

∂δ∗

∂s
=
−∂sGS(GP −GB)− (−GS)∂s(GP −GB)

(GP −GB)2

−∂sGS = 0

∂s(GP −GB) = −1

By assumption, GS < 0. Thus:

−(−GS)∂s(GP −GB) = −GS ≥ 0

Therefore, −∂sGS(GP −GB)− (−GS)∂s(GP −GB) ≥ 0 and:

∂δ∗

∂s
≥ 0
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Impact of the copy cost.

∂δ∗

∂c
=
−∂cGS(GP −GB)− (−GS)∂c(GP −GB)

(GP −GB)2

−∂cGS = 0

∂c(GP −GB) = −Ni

By assumption, GS < 0. Thus:

−(−GS)∂c(GP −GB) = −NiGS ≥ 0

Therefore, −∂cGS(GP −GB)− (−GS)∂c(GP −GB) ≥ 0 and:

∂δ∗

∂c
≥ 0

Impact of the price.

∂δ∗

∂p
=
−∂pGS(GP −GB)− (−GS)∂p(GP −GB)

(GP −GB)2

−∂pGS = 0

∂p(GP −GB) = 1

By assumption, GS < 0. Thus:

−(−GS)∂p(GP −GB) = GS < 0

Therefore, −∂pGS(GP −GB)− (−GS)∂p(GP −GB) < 0 and:

∂δ∗

∂p
< 0

Impact of the sharing cost.

∂δ∗

∂g
=
−∂gGS(GP −GB)− (−GS)∂g(GP −GB)

(GP −GB)2

−∂gGS = −1

By assumption, GP ≥ GB . Thus:

−∂gGS(GP −GB) < 0

∂g(GP −GB) = 0

Therefore, −∂gGS(GP −GB)− (−GS)∂g(GP −GB) < 0 and:

∂δ∗

∂g
< 0
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Impact of the excludability.

∂δ∗

∂E
=
−∂EGS(GP −GB)− (−GS)∂E(GP −GB)

(GP −GB)2

−∂EGS(GP −GB)− (−GS)∂E(GP −GB) = ui (R(ui + s + Nic− p)
−Nigi(1−R))

∂δ∗

∂E
> 0 ⇔ R(ui + s + Nic− p)−Nig(1−R) > 0

By assumption, ui > p, thus:

R(ui + s + Nic− p) > 0

By assumption, gi < 0, thus:

−Nig(1−R) > 0

Therefore R(ui + s + Nic− p)−Nig(1−R) > 0 and:

∂δ∗

∂E
> 0

Impact of the rivalness.

∂δ∗

∂R
=
−∂RGS(GP −GB)− (−GS)∂R(GP −GB)

(GP −GB)2

−∂RGS = (1− E)ui > 0

By assumption, GP > GB . Thus:

−∂RGS(GP −GB) > 0

∂R(GP −GB) = −(1− E)Niui < 0

By assumption, GS < 0. Thus:

−(−GS)∂R(GP −GB) > 0

Therefore, −∂RGS(GP −GB)− (−GS)∂R(GP −GB) > 0 and:

∂δ∗

∂R
> 0

Impact of network connectivity.

∂δ∗

∂Ni
=
−∂Ni

GS(GP −GB)− (−GS)∂Ni
(GP −GB)

(GP −GB)2
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−∂Ni
GS(GP−GB)−(−GS)∂Ni

(GP−GB) = ((1−E)(1−R)ui−c)(g−(1−E)Rui)

∂δ∗

∂Ni
> 0 if and only if:

(1− E)(1−R)ui − c > 0 and g − (1− E)Rui > 0

Or:
(1− E)(1−R)ui − c < 0 and g − (1− E)Rui < 0

Under the usual assumptions, g − (1− E)Rui < 0, and:

(1− E)(1−R)ui − c < 0 ⇔ (1− E)(1−R)ui < c

As this would mean that the expected utility of the good, (1 − E)(1 − R)ui

is lower than the cost of copying, c, we assume that this is not the case, as
otherwise the consumer would certainly not choose to pirate.

As we assume that (1− E)(1−R)ui > c:

((1− E)(1−R)ui − c)(g − (1− E)Rui) < 0

and:
∂δ∗

∂Ni
< 0

Proof of Proposition 10

The Folk Theorem. Let σ̂i be a strategy leading to the discounted average payoff
ν̂∞i greater than the minmax payoff GB for all player i. Specify the following
behaviour: each players i plays the strategy σ̂i as long as all the players have
played σ̂i before. All players use the Nash reversion strategy: if someone has
deviated in the past, all the players play the safe strategy σs forever.

Due to the Nash reversion strategy, a player defecting at time t = k gains at
most a one-time bounded payoff Ct

27, but looses the gain from future coopera-
tion equal to:

(ν̂∞i −GB)(
∞∑

t=k

δt−k+1)

and:

lim
δ→1

[
(ν̂∞i −GB)(

∞∑
t=k

δt−k+1)

]
= ∞

Thus, there exist a δ < 1 such as, for t = k:

(ν̂∞i −GB)(
∞∑

t=k

δt−k+1) > Ct

27in this particular game, the defecting gain is at most GP .
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Corollary 1. A pair of strategies (σi, σi) for all players i = 1, 2, involving one
episode of cooperative piracy, when both consumers pirate and share during the
same period and get a payoff of GP + GS , and the buying action giving the
minmax payoff GB otherwise, has for discounted average payoff:

ν̂∞i = (1− δ)(GB + δGB + . . . + δk(GP + GS) + . . . + δnGB + . . .)

As long as GP + GS > GB ,
ν̂∞i > GB

Thus, following the Folk Theorem, for all δ sufficiently close to one, (σi, σi) is
a SPNE. By extension, every pair of strategies involving more than one episode
of cooperative piracy is a SPNE when δ is sufficiently close to one.

Corollary 2. Let (σ1, σ2) be a pair of strategies consisting in infinitely repeated
sequences of actions28. Each sequence lasts for T1 periods and includes one
episode of planned reciprocal cooperative defection and buying actions other-
wise. A planned reciprocal cooperative defection episode is defined as follows:
one of the player pirates without sharing and gets a payoff equal to GP ; as this
is a planned defection, the other player shares and chooses not to pirate and
gets a payoff equal to GB +GS ; each player then does the opposite action during
the next period. The average discounted payoff for this sequence of actions for
each player is then:

ν̂T1
1 = (1− δ)(GB + δGB + . . . + δk(GP ) + δk+1(GB + GS) + . . . + δT1)

ν̂T1
2 = (1− δ)(GB + δGB + . . . + δk(GB + GS) + δk+1(GP ) + . . . + δT1)

As long as GP + GS > GB ,

ν̂T1
1 > GB

ν̂T1
2 > GB

If this sequences are repeated infinitely, the average discounted payoff for each
player is:

ν̂∞1 = ν̂T1
1 + δT1ν̂T1

1 + . . .

ν̂∞2 = ν̂T1
2 + δT1ν̂T1

2 + . . .

And:

ν̂∞1 > GB

ν̂∞2 > GB

Thus, following the Folk Theorem, for all δ sufficiently close to one, (σ1, σ2) is
a SPNE. By extension, every pair of strategies involving sequences with more
than one episode of planned reciprocal cooperative defection is a SPNE when δ
is sufficiently close to one.

28A similar type of demonstration, involving repeated sequences of actions, can also be
used to prove Corollary (1). When the duration of the sequence T1 is large (T1 → ∞), both
methods of demonstration are in fact equivalent.
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Proof of Proposition 11

Maximum supportable SPNE average payoff. The theoretical maximum avera-
ge discounted payoff that can be achieved by a player i, ν̂maxT

i , equal to the
payoff of pirating GP , since that is when the consumer pirates all the time
without sharing that she gets the highest payoff:

ν̂maxT
i = GP (A1)

However, this payoff ν̂maxT
i can be a supportable average SPNE payoff if and

only if the corresponding average discounted payoff of the other player is at least
equal to the reservation utility GB . For one of the player to get an average dis-
counted payoff equal to ν̂maxT

i , the other player should share without pirating,
and thus would get an average discounted payoff equal to the combined payoff of
buying and sharing: GB +GS . Thus, as long as sharing is costly, the theoretical
maximum average discounted payoff ν̂maxT

i can not be the maximum support-
able SPNE average payoff as the corresponding average discounted payoff for
the other player is in this case lower than the reservation utility:

GS < 0 ⇒ ν̂max
i < νmaxT

i

Let the two players i = 1, 2 play a mixed strategy where the pure strategy
PS – pirate and share – is played with the probability λi and the pure strategy
P̄S – buy and share – is played with the probability (1 − λi). The expected
average discounted payoff of player i is then:

ν̂i(λi) = λiGP + (1− λi)GB + λjGS (A2)

In order to find the maximum supportable SPNE average payoff, let’s assume
that, aiming at reaching the highest possible payoff, player 1 chooses λ1 = 1
and always pirates and shares. The highest payoff for player 1 will be reached
when player 2 chooses the smallest possible λ2 – e.g. shares without pirating as
often as possible – under the constraint that the the average discounted payoff
for player 2 is higher than the reservation utility:

ν̂2(λ2) ≥ GB ⇔ λ2 ≥
−λ1GS

GP −GS

Thus, the smallest possible value of λi leading to a discounted average payoff
equal to the reservation utility for player i, and to the highest possible average
discounted payoff for player j is:

λmin
i (λj) =

−λjGS

GP −GS
(A3)

Accordingly, if player 1 plays λ1 = 1 and if player 2 plays λ2 = λmin
2 (1) =, the

payoff of player 1 is:

ν̂1 = GP +
−GS

GP −GS
GS = GP −

GS
2

GP −GS

Therefore, the maximum supportable SPNE average payoff for player i is:

ν̂max
i = GP −

GS
2

GP −GS
(A4)
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This maximum supportable SPNE average payoff is achieved when λi = 1 and
λj = −GS

GP−GS
.

Corollary. The maximum supportable SPNE average discounted payoff, ν̂max
i

goes to ν̂maxT
i = GP when the cost of sharing becomes very small or when the

difference between the payoff of pirating and the payoff of buying becomes large:

lim
GS→0

ν̂max
i = GP = ν̂maxT

i

lim
(GB−GP )→∞

ν̂max
i = GP = ν̂maxT

i

Proof of Proposition 12

Pareto Optimality. (σi, σj) is a pair of strategies such that each player i = 1, 2
plays PS with probability λi and P̄S with probability (1− λi) and λi = 1 and
λj ∈ [0, 1] or λi ∈ [0, 1] and λj = 1. (ν̂i, ν̂j) are the average discounted payoffs
resulting from these pair of strategies. (ν̂i, ν̂j) are Pareto optimal payoffs if no
other payoffs (ν̂′i, ν̂

′
j) such as:

ν̂′i > ν̂i and ν̂′j ≥ ν̂j

or
ν̂′i ≥ ν̂i and ν̂′j > ν̂j

Let (λ′i, λ
′
j) be the mixed strategies leading to the payoffs (ν̂′i, ν̂

′
j). From Equa-

tion (A2):
ν̂i = λiGP + (1− λi)GB + λjGS

ν̂′i = λ′iGP + (1− λi)GB + λ′jGS

ν̂′i > ν̂i ⇔


λ′i > λi

or
λ′j < λj

When λi = 1 and λj ∈ [0, 1], λ′i ≤ λi. Thus:

ν̂′i > ν̂i ⇔


λ′i = λi = 1

and
λ′j < λj

(A5)

If λ′j < λj ,
ν̂′j = ν̂j ⇔ λ′i < λi (A6)

Equations (A5) and (A6) are mutually exclusive. Thus, there are no (λ′i, λ
′
j)

such as ν̂′i > ν̂i and ν̂′j ≥ ν̂j , or ν̂′i ≥ ν̂i and ν̂′j > ν̂j . Therefore (ν̂i, ν̂j) are
Pareto optimal payoffs.
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Corollary. (ν̂i, ν̂j) are Pareto optimal payoffs if λi = 1 and λj ∈ [0, 1] or λi ∈
[0, 1] and λj = 1.
When λi = 1 and λj ∈ [0, 1]:

ν̂i = GP + λjGS (A7)
ν̂j = λjGP + (1− λj)GB + GS (A8)

By combining Equations (A7) and (A8):

ν̂i =
GS

GP −GB
ν̂j +

(GP −GB −GS)(GP + GS)
GP −GB

(A9)

When λi ∈ [0, 1] and λj = 1:

ν̂i = λiGP + (1− λi)GB + GS (A10)
ν̂j = GP + λiGS (A11)

By combining Equations (A10) and (A11):

ν̂i =
GP −GB

GS
ν̂j +

(GP −GB −GS) (GP + GS)
−GS

(A12)

When λi = 1 and λj = 0, ν̂j = GB + GS . When λi = 1 and λj = 1, ν̂j =
GP + GS . When λi = 0 and λj = 1, ν̂j = GP . Thus:{

ν̂i = GS

GP−GB
ν̂j + (GP−GB−GS)(GP +GS)

GP−GB
∀ ν̂j ∈ [GB + GS , GP + GS ]

ν̂i = GP−GB

GS
ν̂j + (GP−GB−GS)(GP +GS)

−GS
∀ ν̂j ∈ [GP + GS , GP ]

Proof of Proposition 13

Pareto Optimal SPNE. This proposition is a combination of Propositions 10,
11 and 12. Proposition 12 shows that all payoffs (ν̂i, ν̂j) are Pareto optimal
payoffs as long as the strategies (σi, σj) supporting them are such that λi = 1
and λj ∈ [0, 1] or λi ∈ [0, 1] and λj = 1.

However, some of these pairs of payoffs (ν̂i, ν̂j) give for one of the players a
payoff smaller than the minmax payoff GB . According to Proposition 10, these
pairs of payoff are not supportable as average discounted payoffs of a subgame
perfect Nash equilibria.

Proposition 11 shows that the minimum supportable payoff for player i is
reached when λj = 1 and λi = λ∗. Hence, all the payoffs involving a pair of
mixed strategies (λi, λj) such that λi = 1 and λj ∈ [0, λ∗[ or λi ∈ [0, λ∗[ and
λj = 1 are Pareto optimal but are not supportable as SPNE payoffs.

Therefore only the Pareto optimal payoff brought by the pair of strategies
(σ∗i , σ∗j ) such as λi = 1 and λj ∈ [λ∗, 1] or λi ∈ [λ∗, 1] and λj = 1 are sup-
portable as average discounted subgame perfect Nash equilibrium payoffs. As
a consequence, all the subgame Nash equilibria based on the strategies (σ∗i , σ∗j )
as defined above are Pareto optimal equilibria.
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Corollary (1). This corollary is a combination of the results of the corollary of
Proposition 12 and of Proposition 13. The same methods used for the proof of
the corollary of Proposition 12 is applied. In addition, the restrictions imposed
on λi in Proposition 13 are used. Thus the lowest value for ν̂i is GB and the
highest value is ν̂max

i , as defined in Proposition 11.
Therefore, a subgame perfect Nash equilibrium based on the strategy profiles

(σ∗i , σ∗j ) is Pareto optimal if an only if the equilibrium average discounted payoffs
(ν̂i, ν̂j) are such as:{

ν̂i = GS

GP−GB
ν̂j + (GP−GB−GS)(GP +GS)

GP−GB
∀ ν̂j ∈ [GB , GP + GS ]

ν̂i = GP−GB

GS
ν̂j + (GP−GB−GS)(GP +GS)

−GS
∀ ν̂j ∈

[
GP + GS , GP − GS

2

GP−GB

]

Corollary (2) Pareto Perfection and Renegotiation-Proofness. A renegotiation-
proof equilibrium is defined by Fudenberg and Tirole (1993) as an equilibrium
that can not be renegotiated by any of the players. Renegotiation means
that a player decides to play temporarily the WSPE in order to get another
equilibrium, in which all the players would be better off, to be adopted. A
renegotiation-proof equilibrium is also called “Pareto perfect” as it is not Pareto
dominated by any other equilibria.

Two forms of renegotiation-proofness are discussed in the literature. Farrell
and Maskin (1989) introduce the concept of weakly renegotiation-proof (WRP)
equilibria which tests the internal Pareto consistency – e.g. none of the con-
tinuation payoffs of the strategies used in the equilibrium should be dominated
by any of the continuation payoffs of another equilibrium. However the WRP
concept, although useful for some games, leads to some problems in the case of
repeated games where non-optimal stage-game dominant strategies exist29.

Pearce (1987), on the contrary, develops an alternative concept of renego-
tiation proofness based on the external Pareto consistency. This means that an
equilibrium is renegotiation-proof if none of its continuation payoffs are domi-
nated by all the continuation payoffs of another equilibrium. This is the concept
of renegotiation-proofness we decided to use in this article.

Let (σ∗i , σ∗j ) be a Pareto optimal SPNE as defined in Proposition 13. The
strategy profile σ∗i is based on the mixed strategy λ∗i , where PS is played with
probability λ∗i and P̄S with probability 1 − λ∗i , with a minmax payoff based
grim-trigger punishment:

σ∗i =
{

Play λ∗i if (λ∗i , λ
∗
j ) was played during the precedent stage-game

Play P̄ S̄ otherwise

All the punishment continuation payoffs of (σ∗i , σ∗j ) are dominated by the
cooperative continuation payoffs of other cooperative equilibria, since the pun-
ishment continuation payoffs are those of the WSPE30. However, as by assump-
tion λ∗i = 1 and λ∗j ∈ [λ∗, 1] or λ∗i ∈ [λ∗, 1] and λ∗j = 1, there are no equilibria
involving continuation payoffs higher for both of the players than the cooperative
continuation payoffs – based on the pair (λ∗i , λ

∗
j ) – of the (σ∗i , σ∗j ) equilibrium31.

29See discussion in Fudenberg and Tirole (1993).
30Hence, this equilibrium does not satisfy the weakly renegotiation-proof condition.
31See proof of Proposition 12.
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Therefore the (σ∗i , σ∗j ) equilibrium is externally renegotiation-proof and is Pareto
perfect.

Proof of Proposition 14

Impact of Rivalness.

∂(GP + GS)
∂R

= −(1− E)(1 + Ni)ui

Thus for all E ∈ [0, 1], Ni ∈ [0, 1] and ui ≥ 0:

∂(GP + GS)
∂R

≤ 0

Impact of excludability.

∂(GP + GS)
∂E

= Rui(Ni + 1)−Niui

Thus for all R ∈ [0, 1], Ni ∈ [0, 1] and ui ≥ 0:

∂(GP + GS)
∂E

< 0 ⇔ R <
Ni

Ni + 1

And:
∂(GP + GS)

∂E
> 0 ⇔ R >

Ni

Ni + 1
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