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Abstract

For a multivariate time series model with structural breaks, explicit rep-
resentations of the Beveridge-Nelson and Granger-Gonzalo-Proietti perma-
nent trends are derived from the Johansen maximum likelihood estimates.
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1 Introduction

A good deal of recent research in econometric time series modelling is concerned
with the impact of structural breaks - breaks in mean and trends - in cointegrating
systems (e.g., Johansen et al [10, 2000], Banerjee et al [2, 1998], Gregory and
Hansen [9, 1996], Bai and Perron [3, 1998] and Bai and Perron [4, 2001]). Models
of permanent stochastic trends which rely on the notion of cointegration and
vector error correction are obviously acected by structural breaks and the object
of this paper is to derive permanent trends in the presence of breaks. \\e consider
amaximum of two breaks and obtain explicit expressions for the permanent trend
de..nitions of Beveridge and Nelson [1, 1981], hereafter B-N, as extended in a
multivariate context by King et al [11, 1991] and for the Granger and Gonzalo
[8, 1995], hereafter G-G, de..nition as interpreted by Proietti [13, 1997]. The
next section de..nes the model and derives the permanent trends for the case of
structural breaks with the main algebraic results in an appendix.

2 The Multivariate Model with Structural Breaks

Suppose z; isa (px 1) vector of 1(1) variables with cointegrating rank r. Suppose
further that there are two breaks in the sample with 77 observations in the
.rst period, and 7> — 77 observations in the second period, and 7" observations
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altogether so that there are 7'— T» observations in the third period. Johansen et
al [10, (2000)] derive a likelihood ratio test for cointegration in the presence of
breaks in trend and mean at known points. In general the model can be written:

k+1 3
Amt—eo—t+20 Ax_ J"’ﬁ( 77 < ) Zzﬁjz jt— Z"’Ct (1)

7j=1 =1 j=

where z; = (x, x2t, ..., xpt)’, Djy = 1 for t = TJ 1, with 7;, = 0, and Dj; =0
otherwise and = = (_’1t,_2t,_3t) with = = 1for T 1 +k+2 =t ST
and zero otherwise and where 7, = 0. This speci..cation allows for shifts in
the intercepts of both the VECM and cointegrating equations (although they
cannot be identi..ed individually), in the term 6,=; and shifts in the trend in
the cointegrating equations only, in the term ~/t=; with gy = 0. The =Zj;’s
are dummies for the ecective sample period for each sub-period and the D;,_;’s
have the ecect of eliminating the ..rst £ 4+ 1 residuals of each period from the
likelihood, thereby producing the conditional likelihood function given the initial
values in each period.

2.1 Permanent Stochastic Trends

2.1.1 Beveridge-Nelson

The de..nition of the B-N permanent trend component in a multivariate context
IS:

1=00

PN = a4y + Z Ei(Axiri — pag) @)

i=1
see, for example, Cochrane [7, 1994]. To determine a solution for (2), write the
VECM in (1) as

k
Axy = K, Hy + Z QjA:z:t,j + ﬁvt,l + Ct' (3)
j=1

where K, = (6,, ») where ¢ contains the x;; vectors, and:

n= 5,

where D; contains the Dj;_;s, and v;—1 = o/x4—1 +7't=;. It follows that:
v = wg + A (4 1)E = o/ Az + By + vy
and then:
vy = KooHt + &/ 018z 1 + -+ a'0pAzy g+ (I +'B) ver + /¢, (4)
where:
Koo = (a0 +7',a ).
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k
De..ning 0(L) = I, — Zejlﬂ', the model in (3) can also be written:
j=1

O(L)Azy = KoHt + Boe—1 + (- ®)

Appending (4) to the system in (3) we have a ..rst order stationary vector au-
toregression of the form:

2 =AcHt+A12¢1+ (¢, t=1,...,T 6)
where 2, is the (1 x pk + r) vector:
2= (Axy, Az, .., Axy_p i, 0)).

The matrices A, and A; are de..ned as:

Ko
0
0
Ao - .
0
_lCOO_
and: } )
01 6 Or—1 Ok B
I 0 --- 0 0 0
0 I 0 0 0
A= : : : : : Q)
o o0 --- I 0 0
/01003 /0100, a/B+ 1T
and: L
I
0
U=
0
a/
From (6) it follows that:
BE(z) = p, = (I — A) "t AoH; ®)
so that;
2 — e = (I— ALL) 7 WG, ©)
De..ne the matrix:
IP
0
G=|.
0



Then G’z selects out Az; and it follows from (6) that:
Awy—pipng = Gz —p,) =G (I = ALL) " 0¢, = O(L), (10)

which is the moving average representation. Inverting [/ — A;], see Appendix,
it is straightforward to show that?:

C()=G'I—- A =01)"t —0(1)B0'0(1) 13 ta/0(1) 72

k
where (1) = I, — ZQi.
1
The expectations term in equation (2), can then be written:

=00

> Ei(Axrii — pag) = G AT — A1) (2 — o) - (11)
=1

Some algebra, see Appendix, produces:

G'Ay (I—A) = {0(1)21;91-,0(1)22;91, 0(1)23;0,-,- SO0, —Ql. (12)

where Q = 0(1)~13(c’0(1)~15) L.
Let:
0 (L) = 0i+ > 0L+ ..+ 0L
1 2

then from (11) obtain:
:E?N*P =x+ C(1)0" (L) (Axt — pp,) — Q (ve — p1y) - (13)

Substituting 6*(L)(1 — L) = 0(L) — 0(1) and v; = &/ ++/(t + 1)Z; into (13)
gives:

wfNP = — Qalwy — QY (t +1)E: + C(1) [0(L) — 0(1)] 2 — C(1)0* (1) g + Qpto
=C()(1)zr — QY (t+ 1)Ee + C(1)0(L)xe — C(1)0(L)ay — C(1)0" (1)pae + Qb
L afNTP = C()O(L)x, — QY (t + 1), + 6, (14)

with 8, = —C(1)0* (1) pup, + Qfty-
i, and g, are the means of stationary variables and can be estimated from
sample counterparts. Explicit formulae can be deduced from (8), i.e.:

G//’Lz = HAz = G’ (I - Al)_l AoHy

! Proietti [13, 1997] obtains the same result using the Kalman ..Iter except that instead of
©(1)~! he has (©(1) — /6’0/)71 but it is easy to show that the two forms give exactly the same
C(1).



and:

Ty =y =J (I— A1) AH;
where J' = (0,0, ...,0,I) selects out the rows of p, associated with p,. Multi-
plying out the matrices using the results in the appendix yields:

pne =G (I — A1) " AH,
= (C(1)8, — 0(1) 1 B0'0(1)18) 1Y) Zy + C(1)D;
=C()KoHy — QY=
and:
py = T (1= A)) ™ AgH, = ~(@/0(1) 71 8)7" [(0(1) 0+ ), + /0(1) "' 5D)]
As a ..rst dizerence:
AxPN=P = C(1)0(L) Ary — QY'E (15)
and substituting the VECM in (5) into (15) we obtain:
AzPNTF = C(1) (KoHy + Bur—1 + () — QY=
but, since C(1)5 =0, it follows that:
AzPNF = O()K,H, + C(1)¢, — QY
= ba, + C(1)¢ (16)

so that the trends have no long run impact on the permanent component. The
equivalent de..nitions of trend growth in (15) and (16) derived from the B-N
decomposition are used by King et al [11, 1991] and Cochrane [7, 1994] for the
case of no structural breaks.

The de..nition of trend from the B-N decomposition can be justi..ed on the
grounds that it is only permanent shocks which impact on the trend. That is,
suppose, without any loss of generality that the non-singular matrix I", decom-
poses the error term ¢, into permanent and transitory shocks, i.e.:

cP
rci—e= (). an
€t
We can then decompose (16) into the model:
Az = pp, + C(0, TG,
=fiay T F(l)st

and since it is only permanent shocks that have an impact on the trend, it must
be the case that:
C()T,t =1(1) =[I'y,0] (18)

where 'y is (p x p—r) and 0 is (p x r), where p is the number of variables in the
system and r is the dimension of the cointegrating space. It follows that:

AxpNF = ppg + C(1)¢, = paw + Tiet - (19)
and so it is only permanent shocks which have a long run impact on the trend.
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2.1.2 Gonzalo and Granger

The B-N de..nition of trend has been criticised by Quah [6, 1989] and Lippi
and Reichlin [12, 1994] because it does not contain any changes in permanent
and transitory shocks. Gonzalo and Granger, hereafter G-G, [8, 1995] suggest
a method of decomposing the series into permanent and transitory components
to incorporate some shock dynamics into the permanent component which, in
essence, allows CHANGES in the transitory component to have an impact on
CHANGES in the permanent component and thus a transitory impact on the
LEVEL of the permanent component. Their procedure is to decompose z; into a
permanent component, th G-p , which is a linear function of the common factors

in the model, f;, and a stationary transitory component, :rtGG’T, ie.:

Ty = LL’?GiP + JL'tGGiT = Al ft + ft.
In a model without intercepts or trends they de..ne the common factors as:

ft= 51%

where 3, represents the orthogonal complement of 3, such that 5,3 = 0, and
the transitory component as a linear function of the stationary error correction
terms:
29T =3, = Ayday
which ensures that the only linear combinations of z; on which z; has no long
run impact will be 3, z;. To see this multiply through equation (1) by /5',.
Since:

zy = A 2y + Asdzy

+

(A1, Ay) = (ar(Bra) AR

where « is the orthogonal complement of a.
Adding a broken trend in the cointegrating vector yields a transitory compo-
nent of the form:

inverting the matrix:

yields:

289 T = B/ B) /a4 B’ B) M (t+ 1) 2
so the permanent component becomes:
2767 = ay(BLa) T Ba — B B) Tt + 1)
so that, in ..rst dicerences:

AzCE=P = o (BLal) B Ay — B(d/B) Ly E (20)



Substitute the moving average representation in (10), i.e.:
Azy = pp, + C(L)G
into equation (20) to obtain:
Az99P = o (B an) Bnas + o (Flan) IO~ BlaB) 'S (21)
Then, since:
aL(Bron) " Biua, = ar(Bran) "B (CHKH: — Qv'Er)
and o (3 )71 C(1)=C(1) and:
a(Bla) '8 Q= (I ﬁ *10/) Q

it follows that:
ar(Brar) B pas=C()KeH; — Qv'Es + B(o’B) /2
= f1as + B/ B) 1 Ee.
Substituting this result into (21) yields:
AzCEP =, + o) (B )T B C(L),.

Then using:
C(L)y=C(1)+ (1 -L)C*(L)

we obtain:

AzCET =pp, +ay (Bla) 7B (C1) + (1= L)CH(L)) ¢,
=tipg +O(N)¢; +ay(Fa) ' BCHL)(1 - L)L, e,
=ping +T1ef +wi(L)Ae] + wo(L)Aet. (22)
using the results in (17) and (18).
Comparing (22) with (19) we see that AzCE—F = AxBN=P 4 ) (L) AP +
wa (L) Ael" so that short run dynamics in both permanent and transitory compo-
nents have a short run impact in the Granger-Gonzalo formulation.

Proietti [13, 1997] noticed that the B-N decomposition can be amended to
form a G-G decomposition by replacing the term 6(L) in equation (14) with:

(L) =60(1)+ (1 —L)o*(L)
to give:

PN = 0Lz, + C 1) (L) Az, — Q' (t +1)Z; + 6, (23)



Adding the term -C(1)0*(L)Ax; to (23) results in:
2P = C()0()a, — QY (t+ 1)E + 6, (24)
which includes error dynamics. To see this, take ..rst dicerences:
AzFEPF = C(10(1) Az, — Qv
and substitute the moving average representation to give:

Az = C(1)0(1) pa, + C(HIM)C(L)C, — Q7' Ee
=C(1)0(1) [C(KoH, — QYE] + C(1)O(1)C(L)S, — QVEr
=C()KoH; — Qv'E¢ + C(1)0(1)C(L)S,
= fin, + C(HO)C(L)C,

since C(1)#(1)C(1) = C(1) and C(1)6(1)Q = 0. Then using C(L) = C(1) +
(1 —L)C*(L) we obtain:

AzfOPF = pa, +C1)0(1) (C(1) + (1 — L)CHL)) ¢4
= pag +C ()¢ +0(1) (1 — L)CH(L)T, et
= piaz +T1e] +wi(L)Ael + wi(L)Aef (25)

where we have used the same decomposition of the equation error ¢, into transi-
tory and permanent shocks as in (17). The expression in (25) contains changes
in both permanent and transitory shocks and is only dicerent from (22) by the
weights on these short run dynamic components.



Appendix

Theorem 1 If

[ 01 0y Op1 O B ]
I 0 0 0 0
o I - 0 0 0
Ay = . . . .
o o0 --- I 0 0
| /0103 /01’0, a'B+ 1T |
and:
Iﬂ
0
G=| .
o]
then:

G'(I—A)""=0) =) H (X 0:0()7 ), (0(1)~ - 0) L HO) L) 05, - -
1 2
S (0() T =0 TTHO(L) ) b1, —0 (1) B(a/0(1) 1 B)

k
where H = 3(c/0(1)718) "1/ and 6(1) = I, — > _ 6;.
1

Proof
Let ) }
010203051 04
I,00--- 0 O
0L0--- 0 O
©=lo0L--- 0 0
| 000 1, 0]
B = [5’0...0]
o = [a/0---0]
Then:
Alz |:@/ ﬁk ! ]
a; O I, + a6
and so: -8
_ |k —© =0
I(pk?-i-T) _Al = |:—Oé§€@ _azﬂk:| .

By direct inversion:

B = BB ) kOB —B (ol B 6y

-1 _
A= oy B18) af0 B (0B 1)
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where B = Iy, —©. We require the ..rst p rows of (1 — A;) ', ie. G' (I — 4;) " .
By direct inversion we obtain:

Bl=(I

k—O) ' =E+F

where:
k k

_9(1)—1 O~ 6; 6(1)71Y 6 --9(1)—19,;
3

where:

It follows that:

G (I-A) " '=G(E+F)=G(E+F)By(cdi(E+ F)B,) Lo, O(E + F),
~G/(E + F)Br(af(E + F)By) "
(A1)
or

G'(I-A) " =0) " —o() T H (0007, (01) - 0)tHI() ) 05, -

gy tHe) ) 6y, —9(1)‘16(0/9&)2‘)16)‘1

| -

where H = 3(/0(1)713) 1.
Corollary 1. It follows that:
C) =G (I—-A)"'v
=0()~ —0(1) ' Ao IB) (Z 9i9(1)‘1> —0(1) 1 Bdo(1) B e

1
and so:

Cl) =G (I-A) U =001)""—0(1)"Ba’'01)'B)a/0(1) !

Corollary 2. Noting that G’A; (I — A1) = G’ (I — A1)~ — @ from (A2) we
obtain:

G'AL (I —A) P=0(1) ;9,-,0(1) ;9 - C(1)0r, —0(1)15(a’0(1)"13) !
(A3)
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