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A Probabilistic Theory of the
 Coherence of an Information Set

Stephan Hartmann and Luc Bovens

1. The Riddle

Bonjour (1985: 101 and 1999: 124) and other coherence theorists of justifi-

cation before him (e.g. Ewing, 1934: 246) have complained that we do not

have a satisfactory analysis of the notion of coherence. The problem with

existing accounts of coherence is that they try to bring precision to our in-

tuitive notion of coherence independently of the particular role that it is

meant to play within the coherence theory of justification (e.g Lewis, 1946:

338). This is a mistake: it does not make any sense to ask what precisely

makes for a more coherent information set independently of the particular

role that coherence is supposed to play within the context in question. What

is this context and what is this role? The coherence theory of justification

rides on a particular common sense intuition: when we gather information

from less than fully reliable sources, then the more coherent the story that

materializes is, the more confident we may be, ceteris paribus. Within the

context of information gathering from certain types of sources, coherence is

a property of stories which plays a confidence boosting role. But what fea-

tures should the information sources have, so that the coherence of the in-

formation set is indeed a determinant of our degree of confidence in ques-

tion? And what goes into the ceteris paribus clause? In other words, what

other factors affect our confidence in the information set in question?

Suppose that one receives information from independent and relatively

unreliable sources. What determines our degree of confidence in the infor-

mation set?  Intuitively, we can see three distinct factors: (i) How surprising

is the information? (ii) How reliable are the sources? (iii) How coherent is

the information? Each of these factors has an independent impact on our de-

gree of confidence.
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First, suppose that the sources are halfway reliable and the information is

halfway coherent. Then certainly our degree of confidence will be greater

when the reported information is less rather than more surprising, or in other

words, is more rather than less expected. Second, suppose that the informa-

tion is halfway surprising and is halfway coherent. Then certainly our de-

gree of confidence will be greater when we know our sources to be more

like truth-tellers than when we know them to be more like randomizers.

Third, consider a scientist who runs two independent tests to determine the

locus of a genetic disease on the human genome. In the first case, the tests

respectively point to two fairly narrow regions that almost completely

overlap in a particular section s. In the second case, the tests respectively

point to fairly broad regions that overlap in the very same section s. Suppose

that the tests are halfway reliable and this section is a somewhat surprising

locus for the disease. Then certainly the degree of confidence that the locus

of the disease is in this region is greater in the former case, in which the in-

formation is more coherent, than in the latter case, in which the information

is less coherent.

We will construct a model in order to define measures for each of these

determinants. It is easy to construct an expectance measure and a reliability

measure. As to coherence, the matter is more complex: there does not exist a

quantitative coherence measure as such, but we will be able to define a

measure that yields a partial coherence ordering over information sets.

2. The Model

Suppose that there are n independent and relatively unreliable sources and

each source i informs us of a proposition Ri, for i=1,...,n, so that the infor-

mation set is {R1,...,Rn}. For each proposition Ri (in roman script) in the in-

formation set, let us define a propositional variable Ri (in italic script) which

can take on two values, viz. Ri and iR (i.e. not-Ri), for i=1,...,n. Let REPRi

be a propositional variable which can take on two values, viz. REPRi, i.e.

after consultation with the proper source, there is a report to the effect that
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Ri is the case, and iREPR , i.e. after consultation with the proper source,

there is no report to the effect that Ri is the case. We construct a joint prob-

ability distribution P over R1,..., Rn, REPR1,..., REPRn, satisfying the con-

straint that the sources are independent and relatively unreliable.

We model the independence of the sources by stipulating that P respects

the following conditional independences:

(1) I({REPRi}, {R1, REPR1,..., Ri-1, REPRi-1, Ri+1, REPRi+1,..., Rn,
REPRn}|Ri ) for i=1,...,n

or, in words, REPRi is probabilistically independent of R1, REPR1,..., Ri-1,

REPRi-1, Ri+1, REPRi+1,..., Rn, REPRn, given Ri, for i=1,..., n. What this

means is that the probability that we will receive a report that Ri given that

Ri is the case (or is not the case), is not affected by any additional informa-

tion about whether any other propositions are the case or whether there is a

report to the effect that any other proposition is the case.

We make the simplifying assumption that our relatively unreliable

sources are all equally reliable. We specify the following two parameters:

P(REPRi|Ri) = p and P(REPRi| iR ) = q for i=1,...,n. If the information

sources would be truth-tellers, then q=0, while if they would be randomiz-

ers, then p=q. Since relatively unreliable information sources are more reli-

able than randomizers, but less reliable than truth-tellers, we impose the

following constraint on P:

(2) p > q > 0

The degree of confidence in the information set is the posterior joint prob-

ability of the propositions in the information set after all the reports have

come in:

(3) P*(R1,...,Rn) = P(R1,...,Rn|REPR1,..., REPRn).

It can be shown1 that, given the constraints on P in (1) and (2),
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(4) P*(R1,...,Rn) = 
∑
=

n

0i

i
i

0

xa

a  ,

in which the likelihood ratio x:= q/p and ai is the sum of the joint prob-

abilties of all combinations of values of the variables R1,..., Rn that have i

negative values and n-i positive values. For example, for an information tri-

ple containing the propositions R1, R2, and R3,

a2=P )R,R,R( 321 +P )R,R,R( 321 +P )R,R,(R 321 . Figure 1 contains the prob-

ability space which represents a joint probability distribution over the pro-

positional variables R1, R2, R3 and contains the corresponding values for ai,

for i=0,..., 3. Note that ∑
=

n

i
ia

0
= 1. Suppose that the sources are twice as likely

to report that Ri is the case, when it is the case, as then, when it is not the

case, so that x = 1/2. Then our degree of confidence after we have received

the reports from the sources is

(5) P*(R1,...,Rn) = 
3210 .5.20.5.45.5.30.5.05

.05
×+×+×+×

 ≈  .15

R1 R2

R3

.15  .10 .15

 .10 .10
 .05

 .15
.20

a0=.05

a1=3 × .10 = .30

a2=3 × .15 = .45

a3=.20

Figure 1
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3. Expectance, Reliability and Coherence

We can directly identify the first determinant of the degree of confidence in

the information set. Note that a0 = P(R1,...,Rn) is the prior joint probability of

the propositions in the information set, i.e. the probability before any infor-

mation was received. This prior probability is lower for more surprising in-

formation and higher for less surprising information. Since more surprising

information is tantamount to less expected information, let us call this prior

probability the expectance measure.

We can also directly identify the second determinant, i.e. the reliability of

the sources. Note that P*(R1,...,Rn) in (4) is a monotonically decreasing

function of the likelihood ratio x=q/p. Hence, let us call r:=1-x the reliability

measure, since P*(R1,...,Rn) is a monotonically increasing function of r and

the limits of this measure are 0 for sources that are randomizers and 1 for

sources that are truth-tellers.2

Let us now turn to the third determinant, viz. the coherence of the infor-

mation set. The coherence of the information set is some function of the se-

ries <a0,..., an> that is associated with the joint probability distribution over

R1,..., Rn. A maximally coherent information set has the associated series

<a0, 0, ..., 0, 1-a0>: in this case, all items of information R1,..., Rn are coex-

tensive. If a1,..., or an-1 exceed 0, then the information set loses this maximal

coherence. But it is not clear yet what function of <a0,..., an> determines the

coherence of the information set.

Let us first construct a normalized measure. Consider the following anal-

ogy: to assess the impact of a training program, we measure the rate of a

student’s actual performance level after training in the program over the per-

formance level that he would have reached after training in an ideal pro-

gram, ceteris paribus. Similarly, to assess the impact of coherence, we con-

sider the rate of the actual degree of confidence over the degree of confi-

dence that would have obtained had the information set been maximally co-

herent, ceteris paribus. The information set would have been maximally co-

herent, ceteris paribus, if and only if each information source i would have
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provided precisely the information �
n

1i
iR

=
. The idea is simple: in our earlier

example of independent tests that identify sections on the human genome

that contain the locus of a genetic disease, we consider the counterfactual

situation in which both tests would have identified precisely the section s. In

this case, the tests would have yielded maximally coherent information. So

what would our degree of confidence have been, had the information been

maximally coherent, ceteris paribus? Let P be the actual joint probability

distribution for R1,..., Rn. Construct a joint probability distribution Pmax with

the same expectance measure and the same reliability measure as P, but on

Pmax, R1,..., and Rn are all coextensive and coincide precisely with �
n

1i
iR

=
on

P—i.e. Pmax(Ri|Rj)=1 for i,j = 1,..., n and Pmax(R1) = ... = Pmax(Rn) =

P( �
n

1i
iR

=
). Then a0

max= a0 and an
max= 1-a0, so that ai

max= 0, for all i=1,..., n-1.

Pmax for the information triple in our earlier example is presented in figure 2.

We define 0a  := 1-a0. It follows directly from (4) that

(6) Pmax*(R1,...,Rn)= 
n

00

0

xaa
a
+

= 
30 .5.95.5.05

.05
×+×

 .30≈ .

Hence, for a0 ≠ 0, the ratio

(7) cx(R1,...,Rn) = 
∑
=

+= n

i

i
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P
P

is a measure of the impact of the coherence of the information set on the de-

gree of confidence in the information set.
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Note that the measure in (7) is contingent on x, and hence on the reliability

of the sources. This is unwelcome: our pretheoretical notion of the coher-

ence of an information set has nothing to do with the reliability of the

sources that provides us with its content. On the other hand, this pretheoreti-

cal notion is an ordinal rather than a cardinal notion. And furthermore, re-

specting vagueness, we would expect a partial rather than a complete or-

dering over information sets: for certain, though not for all pairs of informa-

tion sets, a judgment of relative coherence is in order.

The measure in (7) permits us to construct a partial ordering over infor-

mation sets which is not contingent on the reliability of the sources. For

some pairs of information sets {S,S’}, cx(S) will always be greater than

cx(S’), no matter what value we choose for x. In this case, S is more coher-

ent than S’.  For other pairs of information sets {T,T’}, cx(T) is greater than

the measure for cx(T’) for some values of x and smaller for other values of

x. In this case, there is no fact of the matter which is the more coherent set.

We will see that this distinction squares with our willingness to make intui-

tive judgments about which of two information sets is more coherent.

Formally, consider two information sets S={R1,..., Rm} and S’={R1’,...,

Rn’} and let P be the joint probability distribution for R1,..., Rm and P’ the

joint probability distribution for R1’,..., Rn’. We calculate the series

R1 R2

R3

 0   0  0

 0  0
   .05

  0
.95

a0=.05

a1=3 × 0 = 0

a2=3 × 0 = 0

a3=.95

Figure 2
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<a0,...,am> for P and <a0’,...,an’> for P’ and construct the following differ-

ence function:

(8) fx(S,S’) = cx(S) - cx(S’)

fx(S,S’) has the same sign for all values of x ranging over the open interval

(0,1) if and only if the measure cx(S) is always greater than or is always

smaller than the measure cx(S’), for any value of x in this interval. We de-

fine an ordinal measure for coherence:

(9) For two information sets S and S’, S � S’ if and only if fx(S,S’) ≥  0
for all values of x ∈ (0,1)

for ‘�’ denoting the binary relation of being more coherent than or equally

coherent as, defined over information sets. This relation induces a partial

ordering over a set of information sets.

If the information sets S and S’ are of equal size, then it is also possible

to determine whether there exists a coherence ordering over these sets di-

rectly from the joint probability distributions P (with the associated series

<a0,...,an>) and P’ (with the associated series <a0’,..., an’>): one needs to

evaluate the conditions under which the sign of the difference function is

invariable for all values of x ∈ (0,1). It can be shown that

(10) (i) ai’ ≥ ai & a0’/a0 ≤ ai’/ai, ∀ i=1,...,n-1, or,
(ii) ai’ ≤ ai & a0’/a0 ≥ ai’/ai, ∀ i=1,...,n-1

is a sufficient condition for the existence of a coherence ordering over {S,

S’} for n>2 and a necessary and sufficient condition for n=2. Furthermore,

we can also determine the direction of this ordering. It can be shown that

(11) (i) a0’≤ a0 & ai’≥ ai, ∀ i=1,...,n-1, or,
(ii) a0’≥ a0 & ai’/ai ≥ a0’/a0, ∀ i=1,...,n-1,

is a sufficient condition for S � S’ for n>2 and necessary and sufficient con-

dition for n=2.
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4. A Corpse in Tokyo

Does our analysis yield the correct results for some intuitively obvious

cases? We will restrict ourselves here to a comparison of two information

sets of size 2. Suppose that we are trying to locate a corpse of a murder

somewhere in Tokyo. We draw a grid of 100 squares over the map of the

city so that it is equally probable that the corpse is hidden in each square.

We interview two relatively unreliable sources. In the base case a, source 1

reports that the corpse is somewhere in squares 50 to 60 and source 2 re-

ports that the corpse is somewhere in squares 51 to 61. We include this in-

formation in the information set Sa. For this information set, a0
a=.10 and

a1
a=.02.

Let us now alter the information from the sources. In the alternate case b,

source 1 reports squares 20 to 55 and source 2 reports squares 55 to 90. We

include this information in Sb. The overlapping area shrinks to a0
b=.01 and

the non-overlapping area expands to a1
b=.70. In the alternate case c, source

1 reports squares 20 to 61 and source 2 reports squares 50 to 91. Again we

include this information in Sc. The overlapping area expands to a0
c=.12 and

the non-overlapping area expands to a1
c=.60. On condition (11), Sb and Sc

are more coherent than Sa. In these alternate scenarios, the information sets

are clearly less coherent than the information set in the base case a.  In al-

ternate case b, the overlap is minimal, and in alternate case c, the overlap is

only slightly greater than in the base case a, while in both cases the sources

are making a much broader sweep over the grid.

But now consider a pair of cases in which no ordering of the information

sets is possible. In case d, source 1 reports squares 41 to 60 and source 2 re-

ports squares 51 to 70: a0
d=.10 and a1

d=.20. In case e, source 1 reports

squares 26 to 60 and source 2 reports 41 to 75: a0
e=.20 and a1

e=.30. Is the

information set in case d more or less coherent than in case e? Notice that,

on condition (11), Sd is neither more nor less coherent than Se. This is in line

with our intuitions: In cases like these, we are not tempted to make any pro-

nouncements about the relative coherence of the information set. On the one

hand, the proportions of the areas of overlap within the total reported areas
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is greater in case e than in case d, which seems to favor Se as the more co-

herent set, while, on the other hand, the overlap in Sd is more narrow and

both sources have provided more accurate information, which seems to fa-

vor Sd as the more coherent set: There simply is no fact of the matter which

information set is more coherent.

We have reached these results by applying the special conditions in (11)

for comparing information pairs. The same results can be obtained by using

our general method in (9). Construct the following difference functions and

examine the sign of these functions for all values of x ∈ (0,1):

(12) fx(Si,Sj) = cx(Si) - cx(Sj) = 
2

210

2
00

2
210

2
00

xaxaa
xaa

xaxaa
xaa

jjj

jj

iii

ii

++
+

−
++

+

for i=a and j=b; for i=a and j=c; for i=d and j=e. As we can see in figure 3,

the fx(Sa,Sb) and fx(Sa,Sc) are positive for all values of x ∈ (0,1): Sa is more

coherent than Sb and Sc. But fx(Sd,Se) is positive for some values and nega-

tive for other values of x ∈ (0,1): there is no fact of the matter whether Sd is

more or less coherent than Se.

This is only one illustration of how our criterion in (9) yields results that

are in line with our intuitive judgments of coherence. In this case, we com-

pared information sets of size n=2. In subsequent work, we have investi-

gated how our criterion performs for information sets of equal size for n>2.

For instance, Bonjour poses the challenge to provide a principled account

that the information set {[All Ravens are black], [This bird is a raven], [This

bird is black]} is more coherent than {[This chair is brown], [Electrons are

negatively charged], [Today is Thursday]} (1985: 96). We specified plausi-

ble probability distributions for these information sets and show how our

analysis provides results that meet Bonjour’s challenge. Furthermore, we

have also tested our criterion for information sets of unequal size and again

our results were very much in line with our intuitive judgments of coher-

ence.3
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Notes
1 The proof is straightforward: Apply Bayes Theorem to the right-hand

side of (3); simplify on grounds of the conditional independences in (1)
and substitute in the parameters p and q as defined in (2); the resulting
expression will be well-defined, since, by (2), p>0 and q>0; divide nu-
merator and denominator by pn; substitute in the parameters x and ai for
i=1,...n as defined underneath.

2 Bovens and Olsson (2000) investigate under what interpretations of rela-
tively unreliability the degree of confidence in the content of the infor-
mation set is raised by its coherence.

3 The research was supported by a grant of the National Science Founda-
tion, Science and Technology Studies (SES 00-80580) and grants of the
Transcoop Program and of the Feodor Lynen Program of the Alexander
von Humboldt Foundation.
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