
Automatically Generating Streamlined
Constraint Models with Essence and Conjure

James Wetter, Özgür Akgün, and Ian Miguel

School of Computer Science, University of St Andrews, St Andrews, UK
{jpw3, ozgur.akgun, ijm}@st-andrews.ac.uk

Abstract. Streamlined constraint reasoning is the addition of unin-
ferred constraints to a constraint model to reduce the search space, while
retaining at least one solution. Previously, effective streamlined models
have been constructed by hand, requiring an expert to examine closely so-
lutions to small instances of a problem class and identify regularities. We
present a system that automatically generates many conjectured regular-
ities for a given Essence specification of a problem class by examining
the domains of decision variables present in the problem specification.
These conjectures are evaluated independently and in conjunction with
one another on a set of instances from the specified class via an auto-
mated modelling tool-chain comprising of Conjure, Savile Row and
Minion. Once the system has identified effective conjectures they are
used to generate streamlined models that allow instances of much larger
scale to be solved. Our results demonstrate good models can be identified
for problems in combinatorial design, Ramsey theory, graph theory and
group theory - often resulting in order of magnitude speed-ups.

1 Introduction

The search space defined by a constraint satisfaction problem can be vast, which
can lead to impractically long search times as the size of the problem instance
considered grows. An approach to mitigating this problem is to narrow the focus
of the search onto promising areas of the search space using streamliners [11].
Streamliners take the form of uninferred additional constraints (i.e. constraints
not proven to follow from the original problem statement) that rule out a sub-
stantial portion of the search space. If a solution lies in the remainder then it can
typically be found more easily than when searching the full space. Previously,
streamlined models have been produced by hand [11,13,15,16], which is both
difficult and time-consuming. The principal contribution of this paper is to show
how a powerful range of streamliners can be generated automatically.

Our approach is situated in the automated constraint modelling system Con-
jure [2]. This system takes as input a specification in the abstract constraint
specification language Essence [7,8]. Figure 1 presents an example specifica-
tion, which asks us to partition the integers 1 . . . n into k parts subject to a set
of constraints. Essence supports a powerful set of type constructors, such as set,
multi set, function and relation, hence Essence specifications are concise and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/73346222?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 James Wetter, Özgür Akgün, and Ian Miguel

language Essence 1.3

given k, l, n : int (1..)

find p: partition (numParts k) from int (1..n)
such that
forAll s in parts(p) .
forAll start : int (1..n-l+1) .
forAll width : int (1..(n-start +1)/(l-1)) .
!(forAll i : int (0..l-1) .

(start + i*width) in s)

Fig. 1: Essence specification of the Van Der Waerden Number Problem [24] (see
Appendix A). The specification describes a certificate for the lower bound on
W (k, l), and will be unsatisfiable if n is equal to W (k, l).

highly structured. Existing constraint solvers do not support these abstract deci-
sion variables directly. Therefore we use Conjure to refine abstract constraint
specifications into concrete constraint models, using constrained collections of
primitive variables (e.g. integer, Boolean) to represent the abstract structure.

Our method exploits the structure in an Essence specification to produce
streamlined models automatically, for example by imposing streamlining con-
straints on or between the parts of the partition in the specification in Figure 1.
The modified specification is refined automatically into a streamlined constraint
model by Conjure. Identifying and adding the streamlining constraints at this
level of abstraction is considerably easier than working directly with the con-
straint model, which would involve first recognising (for example) that a certain
collection of primitive variables and constraints together represent a partition
— a potentially very costly step.

Our system contains a set of rules that fire when their preconditions match a
given Essence specification to produce candidate streamliners. Using Conjure
to refine the streamlined specifications into constraint models, solved with Sav-
ile Row1 [19] and Minion2 [10], candidates are evaluated against instances of
the specified class. Effective streamliners are combined to produce more powerful
candidates. As we will show, high quality streamlined models can be produced
in this way, in some cases resulting in a substantial reduction in search effort.

Herein we focus on satisfaction problems. Optimisation is an important future
consideration but requires different treatment: streamliners may allow us to find
good solutions quickly but exclude the optimal solution to the original model.

The rest of this paper is structured as follows. Following a summary of related
work, we give some background on the Essence language. Section 4 describes
in detail our approach to generating streamliners automatically, then Section

1 http://savilerow.cs.st-andrews.ac.uk
2 http://constraintmodelling.org/minion/

Automatically Generating Streamlined Constraint Models 3

5 discusses combining streamliners to produce yet more effective models. We
conclude following a discussion of discovering streamliners in practice.

2 Related Work

Colton and Miguel [5] and Charnley et al [4] used Colton’s HR system [6] to con-
jecture the presence of implied constraints from the solutions to small instances
of several problem classes, including quasigroups and moufang loops. The Otter
theorem prover3 was used to prove the soundness of these conjectures. If proven
sound, the implied constraints were added to the model to aid in the solution of
larger instances of the same problem class.

Streamlined constraint reasoning differs from the approach of Charnley et
al in that the conjectured constraints are not typically proven to follow from a
given constraint model. Rather, they are added in the hope that they narrow
the focus of the search onto an area containing solutions. When first introduced
by Gomes and Sellmann [11] streamlined constraint reasoning was used to help
construct diagonally ordered magic squares and spatially balanced experiment
designs. For the magic squares the additional structure enforced was regularity
in the distribution of numbers in the square. That is, the small numbers are
not all similarly located, and likewise for large numbers. The spatially balanced
experiment designs were forced to be self-symmetric: the permutations repre-
sented by the rows of the square must commute with each other. For both of
these problems streamlining led to huge improvements in solve time, allowing
much larger instances to be solved.

Kouril et al. refer to streamlining as “tunneling" [13]. They describe the ad-
ditional constraints as tunnels that allow a SAT solver to tunnel under the great
width seen early in the search tree when computing bounds on Van de Waerden
numbers. They used simple constraints that force or disallow certain sequences
of values to occur in the solutions. Again this led to a dramatic improvement in
run time of the solver, allowing much tighter bounds to be computed.

Le Bras et al. used streamlining to help construct graceful double wheel
graphs [15]. Constraints forcing certain parts of the colouring to form arithmetic
sequences allowed for the construction of colourings for much larger graphs.
These constraints led to the discovery of a polynomial time construction for
such colourings, proving that all double wheel graphs are graceful.

Finally Le Bras et. al. made use of streamlining constraints to compute new
bounds on the Erdős discrepancy problem [16]. Here constraints enforcing pe-
riodicity in the solution, the occurrence of the improved Walters sequence, and
a partially multiplicative property improved solver performance, allowing the
discovery of new bounds.

In all of these examples streamliners proved very valuable, but were generated
by hand following significant effort by human experts. In what follows, we will
show that the structure recognised and exploited by these experts is often present
in abstract constraint specifications.
3 http://www.cs.unm.edu/˜mccune/otter/

4 James Wetter, Özgür Akgün, and Ian Miguel

language Essence 1.3

given v, b, r, k, lambda : int (1..)
where v = b, r = k
letting Obj be new type of size v,

Block be new type of size b

find bibd : relation (symmetric) of (Obj * Block)

such that
forAll o : Obj . |bibd(o,_)| = r,
forAll bl : Block . |bibd(_,bl)| = k,
forAll o1, o2 : Obj .

o1 != o2 -> |bibd(o1,_) intersect bibd(o2 ,_)| = lambda

Fig. 2: Essence specification of the square (ensured by the where statement)
Balanced Incomplete Block Design Problem [20]. Streamliner added as an
Essence annotation shown underlined.

3 Background: Essence

The motivation for abstract constraint specification languages, such as Zinc [18]
and Essence is to address the modelling bottleneck: the difficulty of formulating
a problem of interest as a constraint model suitable for input to a constraint
solver. An abstract constraint specification describes a problem above the level
at which constraint modelling decisions are made. An automated refinement
system, such as Conjure, can then be used to produce a constraint model from
the specification automatically.

An Essence specification, such as those given in Figures 1 and 2, identifies:
the input parameters of the problem class (given), whose values define a prob-
lem instance; the combinatorial objects to be found (find); and the constraints
the objects must satisfy (such that). In addition, an objective function may
be specified (min/maximising — not shown in these examples) and identifiers
declared (letting). Abstract constraint specifications must be refined into con-
crete constraint models for existing constraint solvers. Our Conjure system
employs refinement rules to convert an Essence specification into the solver-
independent constraint modelling language Essence′. From Essence′ we use
Savile Row to translate the model into input for a particular solver while
performing solver-specific model optimisations.

A key feature of abstract constraint specification languages is the support for
abstract decision variables with types such as set, multiset, relation and function,
as well as nested types, such as set of sets and multiset of relations. This allows
the problem structure to be captured very concisely. As explained below, this
clarity of structure is a good basis for the conjecture of streamlining constraints.

Automatically Generating Streamlined Constraint Models 5

4 From Conjectures to Streamlined Specifications

This section presents the methods used to generate streamlined models automat-
ically. The process is driven by the decision variables in an Essence specification,
such as the partition in Figure 1. For each variable, the system forms conjec-
tures of possible regularities that impose additional restrictions on the values of
that variable’s domain. Since the domains of Essence decision variables have
complex, nested types, these restrictions can have far-reaching consequences for
constraint models refined from the modified specification. The intention is that
the search space is reduced considerably, while retaining at least one solution.
Multiple conjectures found to produce successful streamlined specifications indi-
vidually can be combined in an attempt to produce a single more sophisticated
streamliner. Currently conjectures are formed about each variable independently;
an important future direction is to make conjectures across multiple variables.

4.1 Exploiting Essence Domain Annotations

Essence allows domains to be annotated to restrict the set of acceptable values.
For example, a function variable domain may be restricted to injective functions,
or a partition variable domain may be restricted to regular partitions. Hence, the
simplest source of streamliners is the systematic annotation of the decision vari-
ables in an input specification. This sometimes retains solutions to the original
problem while improving solver performance. Consider the Balanced Incomplete
Block Design problem (BIBD, Figure 2), where the decision variable is a rela-
tion. For square BIBDs we might consider a streamliner requiring a symmetric
relation, achieved simply by adding the symmetric annotation as shown.

Figure 3 summarises an experiment with this streamliner on a set of satisfi-
able square BIBD instances. Original and streamlined specifications were refined
with Conjure, using the Compact heuristic [1] to select one model. For each
instance Savile Row was used to prepare the resulting model for Minion,
which was used to find a solution. Streamlining uniformly resulted in a solvable
instance, and as seen in Figure 3a in all but one instance search size is equiv-
alent or reduced and as seen in Figure 3b the corresponding execution time is
sometimes reduced.

4.2 Conjecture-forming Rules

The existing Essence domain annotations are, however, of limited value. They
are very strong restrictions and so often remove all solutions to the original
problem when added to a specification. In order to generate a larger variety of
useful conjectures we employ a small set of rules, categorised into two classes:

1. First-order rules add constraints to reduce the domain of a decision variable
directly.

2. Higher-order rules take other rules as arguments and use them to reduce the
domain of a decision variable.

6 James Wetter, Özgür Akgün, and Ian Miguel

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

Sy
m

m
et

ric
 R

el
at

io
n

Se
ar

ch
 N

od
es

Original Specification Search Nodes

(a) Search nodes.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.001 0.01 0.1 1 10 100 1000

Sy
m

m
et

ric
 R

el
at

io
n

Se
ar

ch
 T

im
e

Original Specification Search Time

(b) Search time.

Fig. 3: Search effort to find the first solution to satisfiable square BIBD instances
where v = b ≤ 40: original vs streamlined specification.

The full list of rules is shown in Table 1. A selection of the first-order rules is
given in Figure 4, and a selection of the higher-order rules are given in Figure 5.

We define four first-order rules that operate on integer domains directly:
‘odd’, ‘even’, ‘lowerHalf’ and ‘upperHalf’. Each restricts an integer domain to
an appropriate subset of its values. We define six first-order rules for function
domains. Two of these constrain the function to be monotonically increasing
(or decreasing). The other four place the largest (or smallest) element first (or
last). Functions mapping a pair of objects to a third object of the same type

Class Trigger Domain Name Softness

First-order

int
odd{even} no

lower{upper}Half no

function int –> int
monotonicIncreasing{Decreasing} no

largest{smallest}First{Last} no

function (X,X) –> X
commutative no
associative no

non-commutative no
partition from X quasi-regular yes

Higher-order

set of X

all no
most yes
half no

approxHalf yes

function X –> Y

range no
defined no

pre{post}fix yes
allBut yes

function (X,X) –> Y diagonal no
partition from X parts no

Table 1: The rules used to generate conjectures. Rows with a softness parameter
specify a family of rules each member of which is defined by an integer parameter.

Automatically Generating Streamlined Constraint Models 7

Name odd
Input X: int
Output X % 2 = 1

Name lowerHalf
Input X: int(l..u)
Output X < l + (u - l) / 2

Name monotonicIncreasing
Input X: function int --> int
Output

forAll i in defined(X) .
forAll j in defined(X) .
i < j -> X(i) <= X(j)

Name largestFirst
Input X: function int(l..u) --> int
Output

forAll i in defined(X) .
X(min(defined(X)) <= X(i)

Name commutative
Input X: function (D, D) --> D
Output

forAll (i,j) in defined(X) .
X((i,j)) = X((j,i))

Name quasi-regular
Input X: partition from _
Output

minPartSize(X,
|participants(X)|/|parts(X)| - k)

/\
maxPartSize(X,
|participants(X)|/|parts(X)| + k)

Fig. 4: A selection of the first-order streamlining rules.

Name all
Parameter R (another rule)
Input X: set of _
Output forAll i in X . R(i)

Name most
Parameter R (another rule)
Parameter k (softness)
Input X: set of _
Output

k >= sum i in X . toInt(!R(i))

Name range
Parameter R (another rule)
Input X: function _ --> _
Output R(range(X))

Name prefix
Parameter R (another rule)
Parameter k (softness)
Input X: function int(l..h) --> _
Output R(restrict(X, ‘int(l..h-k)‘))

Name parts
Parameter R (another rule)
Input X: partition of _
Output R(parts(X))

Name diagonal
Parameter R (another rule)
Input X: function (D1, D1) --> D2
Output

{ R(X′)
@ find X′ : function D1 --> D2
such that
forAll i : D1 .
(i,i) in defined(X) -> X′(i) = X((i,i)),
forAll i : D1 .
i in defined(X′) -> X′(i) = X((i,i))

}

Fig. 5: A selection of the higher-order streamlining rules.

8 James Wetter, Özgür Akgün, and Ian Miguel

can be viewed as binary operators on these objects. We define three first-order
rules to enforce such functions to be commutative, non-commutative, and as-
sociative respectively. Finally, we define a first-order rule for partitions called
‘quasi-regular’. Partition domains in Essence can have a regular annotation,
however this can be too strong. The ‘quasi-regular’ streamlining rule posts a
soft version of the regularity constraint, which takes an integer parameter, k, to
control the softness of the constraint. In our experiments we varied the value of
k between 1 and 3. Larger values of k will make the constraint softer as they
allow the sizes of parts in the partition to be k-apart.

Higher-order rules take another rule as an argument and lift its operation
to a decision variable with a nested domain. For example, the ‘all’ rule for sets
applies a given streamlining rule to all members of a set, if it is applicable.
We define three other higher-order rules that operate on set variables: ‘half’,
‘most’ and ‘approxHalf’, the last two with softness parameters. For a set of
integers, applying the ‘half’ rule with the ‘even’ rule as the parameter – denoted
‘half(even)’ – forces half of the values in the set to be even. The parameter to the
higher-order rule can itself be a higher order rule, so for a set of set of integers
‘all(half(even))’ constrains half of the members of all inner sets to be even.

The ‘defined’ and ‘range’ rules for functions use the defined and range oper-
ators of Essence to extract the corresponding sets from the function variable.
Once the set is extracted the parameter rule R can be directly applied to it. The
‘prefix’ and ‘postfix’ rules work on functions that map from integers by focusing
on a prefix or postfix of the integer domain. The ‘parts’ rule views a partition
as a set of sets and opens up the possibility of applying set rules to a partition.

The ‘diagonal’ rule introduces an auxiliary function variable. The auxiliary
variable represents the diagonal of the original variable, and it is channelled into
the original variable. Once this variable is constructed the streamlining rule taken
as a parameter, R, can be applied directly to the auxiliary variable. Similarly the
‘allBut’ rule introduces an auxiliary function variable that represents the original
variable restricted to an arbitrary subset (of fixed size) of its domain. This is
similar to the ‘prefix’ rule but allows the ignored mappings of the function to
fall anywhere in the function’s domain rather than only at the end.

It is important to note that allowing higher-order rules to take other higher-
order rules as parameters naively can lead to infinite recursion; such as ‘pre-
fix(prefix(prefix(...)))’ or ‘prefix(postfix(prefix(..)))’. We considered two ways of
mitigating this problem: 1) using a hard-coded recursion limit 2) only allow-
ing one application of the same higher-order rule in a chain of rule applications
and at the same level. Using a hard-coded recursion limit has two drawbacks.
It still allows long lists of useless rule applications like applying ‘prefix’ repeat-
edly. It can also disallow useful but long sequences of rule applications. Instead,
we implemented a mechanism where the same higher-order rule can only be
applied once at the same level; that is, a rule can only be applied more than
once if the domain of its input is a subcomponent of the domain of the input
of the previous application. This disallows ‘prefix(prefix(...))’, but allows ‘pre-

Automatically Generating Streamlined Constraint Models 9

fix(range(half(prefix(even),1)),1)’ which works on a decision with the following
type function int –> (function int –> int).

In order to apply these rules to Essence problem specifications, we extract
a list of domains from the top level decision variables. For each domain, we find
the list of all applicable rules. Each application of a streamlining rule results in
a conjecture that can be used to streamline the original specification.

To see an example of an effective constraint generated by this system consider
the problem of generating certificates for lower bounds on Van Der Waerden
numbers shown in Figure 1. Here only one decision variable is present, a partition
of integers, p. First the rule parts is triggered so p is treated as a set of set of
integers. Next, the rule all is triggered such that all the members of the outer
set are restricted, then another rule approxHalf is triggered so approximately
half the members of each inner set are restricted. Finally lowerHalf is triggered
so the domain of the integer has its upper bound halved. The complete rule
that is being applied is ‘parts(all(approxHalf(lowerHalf, i)))’, and the resulting
constraint is:

forAll s in parts(p) .
|s|/2 + i >= sum x in s . toInt(x <= n/2) /\
|s|/2 - i <= sum x in s . toInt(x <= n/2)

where i is the parameter given to approxHalf. This constraint enforces that
each part of the partition consists of approximately half ‘small’ numbers and
half ‘large’ numbers. Figure 8 shows that this constraint with i = 2 drastically
reduces the number of search nodes explored when finding a single solution to
the problem.

Initially these rules were applied to the variable domains declared as finds in
the original specification. It was observed that the wheel like structures in the
graceful graph labeling problems were not exposed in the function variables used
to represent the labeling. In order to extract such structures a preprocessing step
is performed that introduces restricted function variables to the rule system in
order to generate a wider range of streamlining constraints.

This preprocessing step is triggered when a function variable, f : A → B,
is present in the find declarations. For each such variable the constraints are
checked for an application of the function, f(a), quantified over a strict subset
of the domain, a ∈ A′ ⊂ A. The quantification can be

∑
, ∀ or ∃. If such an

expression is present in the constraints the conjecture generation rules are also
applied to a restricted version of the function, f |A′ .

This system is capable of generating novel streamliners that have not been
previously reported, such as the ‘quasi-regular’ rule. In addition it generates
some streamliners very similar to some of those previously seen in the literature.
For example appliying ‘restrict(range(all(odd)),C1)’ to the colouring function in
the gracful double wheel labelling specification defines the same solution set as
‘C1 is odd’ in La Bras et. al. [16]. Although it should be noted that the rules
presented here do not generate all streamliners previously reported.

10 James Wetter, Özgür Akgün, and Ian Miguel

Problem Class Total Retain Improve

Graceful Graph Colouring [21]

Wheel Graphs [9] 1479 1299 136
Double Wheel Graphs [15] 2142 1942 466

Helm Graphs [3] 1428 1296 85
Gear Graphs [17] 1428 1214 70

Quasigroup Existence [23]

QGE3 593 570 51
QGE4 593 572 34
QGE5 593 582 24
QGE6 593 569 44
QGE7 593 555 32

Equidistant Frequency Permutation Arrays [12] 560 377 2
Van Der Waerden Numbers [24] 433 364 14

Schur Numbers [22] 437 419 0
Langfords Problem [14] 357 228 24

Table 2: Number of conjectures generated for a set of problem classes. The Total
column lists all conjectures generated for each class, the Retain column lists the
number of conjectures that retain at least one solution and the Improve column
lists the number of conjectures that improve solver performance.

4.3 Experimental Analysis

To evaluate this system it was used to streamline several different problem
classes, consisting of graceful graph colouring problems [21], quasigroup exis-
tence problems [23], equidistant frequency permutation arrays [12], Van Der
Waerden numbers [24] with k = 3 and l = 4, Schur numbers [22] and Langford’s
problem [14] (see Appendix A). The instances used to evaluate the performance
of the streamlined models were obtained by increasing the size of the integer pa-
rameters until the original specification was unable to compute one solution in
under 100,000 search nodes. Experiments were run on a 32-core AMD Opteron
6272 at 2.1 GHz and took around 5 hours per problem class to complete.

Table 2 shows the total number of conjectures generated, the number of
conjectures that retain solutions to the original problem and the number of
conjectures that reduce the total number of search nodes explored after the
specification is refined, tailored and solved for all instances.

Figure 6 shows the search nodes and solve time to find the first solution for
the original specification vs the best streamlined model, where the quality metric
compares the number of instances solved in under 100,000 search nodes and
breaks ties by comparing the total number of search nodes across all instances.
Both the size of the search and search time are often reduced by orders of
magnitude by the streamlining constraints.

5 Identifying Effective Combinations of Conjectures

It has previously been observed that applying several streamlining constraints
to a model simultaneously can result in larger performance gains that any of the

Automatically Generating Streamlined Constraint Models 11

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000B
e
st

 S
tr

e
a
m

lin
e
d

 S
p

e
ci
fi
ca

ti
o
n
 S

e
a
rc

h
 N

o
d

e
s

Original Specification Search Nodes

 0.001

 0.01

 0.1

 1

 10

 100

 0.001 0.01 0.1 1 10 100

B
e
st

 S
tr

e
a
m

lin
e
d

 S
p

e
ci
fi
ca

ti
o
n
 s

o
lv

e
 T

im
e

Original Specification Solve Time

Wheels
Double Wheels

Gears
Helms

EFPA
Langford

VdW
QGE3
QGE4
QGE5
QGE6
QGE7

Fig. 6: The size and execution time of search required to find the first solution
for a collection of problem classes for both the original specification and the
streamlined specification that resulted in the smallest cumulative search size
across instances. The generated conjectures often result in order of magnitude
reduction in search size for harder problem instances.

constraints in isolation [15]. In order to find such combinations of constraints we
must consider the power set of constraints that retain solutions to the original
problem. In this section we investigate finding powerful combinations of con-
straints automatically with the use of pruning and make a comparison between
depth first search and breadth first search of the lattice of constraints.

For many of the problems considered here a large number of singleton con-
jectures that retain solutions are generated (see Table 2) resulting in power sets
too large to be exhaustively explored in practice. Two forms of pruning were
used to reduce the number of combinations to be considered:

1. if a set of conjectures fails all supersets are excluded from consideration (see
Figure 7),

2. trivially conflicting conjectures are not combined, for example we avoid forc-
ing a set to simultaneously contain only odd numbers and contain only even
numbers. We associate a set of tags with each of the rules in order to im-
plement this pruning. Rules applied to the same variable that share tags are
not combined. This also removes the possibility of combining two different
conjectures that differ only by a softness parameter.

These pruning rules only remove combinations that are sure to fail, or are equiv-
alent to a smaller set of conjectures.

Even with this pruning the number of combinations to consider was found
to be too large to allow exhaustive enumeration. Therefore a traversal of the
lattice allowing good combinations to be identified rapidly is desired. Here we
experimented with depth first search (DFS) and breadth first search (BFS) of the
lattice. In order to guide both the searches the singleton conjectures were ordered
from best to worst, where the quality metric compared the number of instances

12 James Wetter, Özgür Akgün, and Ian Miguel

AB AC AD BC BD CD

ABC ABD ACD BCD

ABCD

A C DB

Fig. 7: The power set of singleton conjectures can be explored to identify com-
binations that result in powerful streamlined specifications. If small sets of con-
jectures that fail to retain solutions are identified all super sets can be pruned
from the search vastly reducing the number of vertices to be explored.

solved in under 100,000 search nodes and ties were broken by comparing the
total search nodes across all instances.

In order to compare the two approaches they were each allowed to evaluate
500 combinations of conjectures in addition to the singleton conjectures already
evaluated for three problem classes (Van der Waerden numbers, graceful helms
graphs and graceful double wheel graphs). The set of instances used for evalua-
tion was augmented by increasing the integer parameters until the best singleton
streamliner was unable to solve the instance in under 100,000 search nodes. Each
combination of conjectures was evaluated by refining, tailoring and solving for
the first solution using Conjure’s compact heuristic and default settings for
Savile Row and Minion. The experiments were performed on 32-core AMD
Opteron 6272 at 2.1 GHz taking approximately 6 hours for each problem class.

Figures 8 to 10 show the best set of conjectures found by this process, where
the quality metric compares the number of instances solved and ties were broken
by comparing the total number of search nodes.

Figure 8 shows three singleton conjectures that were found to produce an
effective streamlined specification of the Van Der Waerden numbers problem,
one of which results from the chained application of four rules, whereas another
results directly from a single rule. Figure 9 shows two conjectures being combined
for the graceful helm graph problem, one of which results from the chained
application of three rules. Figure 10 shows the combination of two conjectures
for the graceful colouring of double wheel graphs. In all cases the combination
of streamliners results in better performance than any of the streamliners in
isolation.

Automatically Generating Streamlined Constraint Models 13

 10

 100

 1000

 10000

 100000

 35 40 45 50 55 60

N
od

es

n

basic
parts(all(half(odd))) p

parts(all(approxHalf(lowerHalf,2) p
quasiRegular(3) p

combined
 0.001

 0.01

 0.1

 1

 10

 35 40 45 50 55 60

Ti
m

e
(s

)

n

basic
parts(all(half(odd))) p

parts(all(approxHalf(lowerHalf,2) p
quasiRegular(3) p

combined

Fig. 8: Combining singleton conjectures to produce a more effective streamlined
model for Van der Waerden numbers. The instances have k = 3, l = 4 and n
varies. The first conjecture ensures odd number are evenly distributed between
the parts of the partition. The second conjecture ensures the ‘small’ numbers
are evenly distributed between the parts of the partition. The third conjecture
ensures the sizes of the partition vary from each other by at most three.

On one problem, Van Der Waerden numbers, DFS performed very well, reach-
ing a powerful set of three conjectures within the first three models evaluated.
On the other problems DFS performed poorly, unable to beat the best pair found
by BFS within the allotted resource budget. In all three cases DFS failed to find
an improved model after the first five models it considered.

The poor performance of DFS can be attributed to two factors. First, the two
best singleton conjectures do not always produce the best pair of conjectures,
even when they retain solutions in combination. A better heuristic would need
some notion of complementary conjectures. Second, far more combinations are
pruned from the search space if failing sets are detected early. Consider the
lattice of conjecture sets shown in Figure 7. If conjecture C and D fail to retain
solutions when used in combination so will {A,C,D}, {B,C,D} and {A,B,C,D}.
A breadth first traversal would be guaranteed to detected this failure early and
would consequently never evaluate these three models. Alternatively a depth
first traversal would detect this failure late, and would therefore waste time
evaluating the supersets of {C,D}, all of which fail to retain solutions.

6 Discussion: Generating Streamliners in Practice

In this section, we consider the process of generating and selecting streamliners
when presented with a new problem class of interest. Our methodology is a close
analogue of that adopted by human experts in manual streamliner generation.
Given an Essence specification of the problem class, we begin by identifying
suitable instances with which to evaluate candidate streamliners. These instances
must be satisfiable and solvable in reasonable time so that they can be used in
the evaluation of a large set of candidate streamlined specifications. This set of
instances can be selected manually, or generated automatically by attempting

14 James Wetter, Özgür Akgün, and Ian Miguel

 10

 100

 1000

 10000

 100000

 5 10 15 20 25

N
od

es

n

basic
restrict(prefix(monotonicDecreasing,3),W1) e

restrict(smallestLast,W1) c
combined

 0.001

 0.01

 0.1

 1

 10

 5 10 15 20 25

Ti
m

e
(s

)

n

basic
restrict(prefix(monotonicDecreasing,3),W1) e

restrict(smallestLast,W1) c
combined

Fig. 9: Combining singleton conjectures to produce a more effective streamlined
model for Graceful Helm Graphs. The parameter n is the size of the wheel. The
first conjecture requires that the differences between the labels of the vertices
on the inner loop are in decreasing order, except the last 3. The second requires
that the smallest label occurring on the inner loop is the last vertex.

 100

 1000

 10000

 100000

 4 5 6 7 8 9

N
od

es

n

basic
prefix(smallestLast,1) c

restrict(prefix(range(all(odd)),3),W1) c
combined

 0.001

 0.01

 0.1

 1

 10

 4 5 6 7 8 9

Ti
m

e
(s

)

n

basic
prefix(smallestLast,1) c

restrict(prefix(range(all(odd)),3),W1) c
combined

Fig. 10: Combining singleton conjectures to produce a more effective streamlined
model for Graceful Double Wheel Graphs. The parameter n defines the size of
single wheel. The first conjecture requires that the last vertex in the outer loop
of the graph takes the largest value. The second requires that the difference
between adjacent vertices on the inner loop are odd numbers, except the last 3.

to solve candidates using the basic specification — satisfiable instances solved
within a budget are kept for streamliner evaluation.

Streamliners are then generated, combined and evaluated against the set of
test instances, as described in Sections 4 and 5. This is a costly process, in the
same way that a considerable effort is expended by human experts in manual
streamliner generation. However, streamliners are generated for use over the
entire problem class. Under the assumption that our problem class has infinitely
many elements, the cost of streamliner discovery is amortised over all instances
not used in the streamliner evaluation process and becomes negligible.

7 Conclusion

Streamliner generation has been the exclusive province of human experts, requir-
ing substantial effort in examining the solutions to instances of a problem class,

Automatically Generating Streamlined Constraint Models 15

manually forming conjectures as to good streamliners, and then testing their
efficacy in practice. In this paper we have demonstrated for the first time the
automated generation of effective streamliners, achieved through the exploitation
of the structure present in abstract constraint specifications written in Essence.
In future work we will expand our set of streamliner generation methods and
explore streamliner generation in further, more complex problem classes.

Acknowledgements This work is supported by UK EPSRC grant EP/K015745/1.
We thank Ian Gent, Chris Jefferson and Peter Nightingale for helpful comments.

A Problem Descriptions

Van Der Waerden Numbers Van Der Waerden’s theorem states that given
any positive integers k and l, there exists a positive integer n such that for any
partition of the integers 1 to n into k parts at least one of the parts contains an
arithmetic sequence of length l. The Van Der Waerden number, W (k, l), is the
lowest such n [24]. The Essence specification studied here describes a certificate
that the given n 6=W (k, l).

Schur Numbers Given a positive integer r, there exists a positive integer s such
that for any partition of the integers 1 to s at least one part is not sum free.
Alternatively at least one part is a super set of {x, y, z} such that x + y = z.
Schur’s number, S(r), is the smallest such s [22]. The Essence specification
studied here describes a certificate that the given s 6= S(r)

Graceful Graphs Given a graph with n edges a graceful labelling assigns each
node in the graph a label between 0 and n such that no label is used more
than once and that every pair of adjacent nodes can be uniquely identified by
the absolute difference of their labels. A graceful graph is a graph that permits
a graceful labelling [21]. Several classes of graph have been investigate in this
context including wheels [9], double wheels [15], helms [3] and gears [17].

Quasigroup Existsence Given a positive integer n, does there exist a quasi-
group (latin square) of size n such that an additional side constraint is met.
These side constraints are: QGE3 - ∀a, b ∈ g (a · b) · (b · a) = a, QGE4 -
∀a, b ∈ g (b · a) · (a · b) = a, QGE5 - ∀a, b ∈ g ((b · a) · b) · b = a, QGE6 -
∀a, b ∈ g (a · b) · b = a · (a · b), QGE7 - ∀a, b ∈ g (b · a) · b = a · (b · a) [23].
Equidistant Frequency Permutation Arrays Given v, q, λ and d, construct
a set of v codewords such that each code word is of length q · λ and contains λ
occurrence of each symbol in the set {1, 2, . . . , q}. Each pair of code words must
be of hamming distance d [12].

Langford’s Problem Given any positive integer n, arrange copies of the num-
bers between 1 and n such that for all k in {1 . . . n} there are k digits between
occurrences of k [14].

16 James Wetter, Özgür Akgün, and Ian Miguel

References

1. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L.,
Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in
Conjure, vol. 8124 LNCS, pp. 107–116 (2013)

2. Akgun, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated
constraint modelling. In: AAAI-11: Twenty-Fifth Conference on Artificial Intelli-
gence (2011)

3. Ayel, J., Favaron, O.: Helms are graceful. Progress in Graph Theory (Waterloo,
Ont., 1982), Academic Press, Toronto, Ont pp. 89–92 (1984)

4. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints.
In: ECAI. vol. 141, pp. 73–77 (2006)

5. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In:
Walsh, T. (ed.) Proceedings of the Seventh International Conference on Principles
and Practice of Constraint Programming. pp. 575–579 (2001)

6. Colton, S.: Automated Theory Formation in Pure Mathematics. Ph.D. thesis, Uni-
versity of Edinburgh (2001)

7. Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint
modelling. In: Proc. of the IJCAI 2005. pp. 109–116 (2005)

8. Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.:
Essence: A constraint language for specifying combinatorial problems. Constraints
13(3) pp. 268–306 (2008), http://dx.doi.org/10.1007/s10601-008-9047-y

9. Frucht, R.: Graceful numbering of wheels and related graphs. Annals of the New
York Academy of Sciences 319(1), 219–229 (1979)

10. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
ECAI. vol. 141, pp. 98–102 (2006)

11. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Principles and
Practice of Constraint Programming - CP 2004, pp. 274–289. Springer (2004)

12. Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant fre-
quency permutation arrays: An application of constraints to mathematics. In:
Principles and Practice of Constraint Programming-CP 2009, pp. 50–64. Springer
(2009)

13. Kouril, M., Franco, J.: Resolution tunnels for improved sat solver performance. In:
Theory and Applications of Satisfiability Testing. pp. 143–157. Springer (2005)

14. Langford, C.D.: Problem. The Mathematical Gazette pp. 287–287 (1958)
15. Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Pro-

ceedings of the Twenty-Third international joint conference on Artificial Intelli-
gence. pp. 587–593. AAAI Press (2013)

16. Le Bras, R., Gomes, C.P., Selman, B.: On the erdos discrepancy problem. In:
Principles and Practice of Constraint Programming: 20th International Conference,
CP 2014, Lyon, France, September 8-12, 2014. Proceedings. vol. 8656, p. 440.
Springer (2014)

17. Ma, K., Feng, C.: On the gracefulness of gear graphs. Math. Practice Theory 4,
72–73 (1984)

18. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace,
M.: The design of the zinc modelling language. Constraints 13(3) (2008), http:
//dx.doi.org/10.1007/s10601-008-9041-4

19. Nightingale, P., Akgun, O., Gent, I.P., Jefferson, C., Miguel, I.: Automatically im-
proving constraint models in savile row through associative-commutative common
subexpression elimination. In: Principles and Practice of Constraint Programming
- CP 2014. Springer (2014)

http://dx.doi.org/10.1007/s10601-008-9047-y
http://dx.doi.org/10.1007/s10601-008-9041-4
http://dx.doi.org/10.1007/s10601-008-9041-4

Automatically Generating Streamlined Constraint Models 17

20. Prestwich, S.: CSPLib problem 028: Balanced incomplete block designs. http:
//www.csplib.org/Problems/prob028

21. Rosa, A.: On certain valuations of the vertices of a graph. In: Theory of Graphs
(Internat. Symposium, Rome. pp. 349–355 (1966)

22. Schur, I.: Über die kongruenz xm + ym ≡ zm (mod p). Jahresber. Deutsch. Math.
Verein 25, 114–117 (1916)

23. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search:
Quasigroup existence problems. Computers & mathematics with applications
29(2), 115–132 (1995)

24. Van der Waerden, B.L.: Beweis einer baudetschen vermutung. Nieuw Arch. Wisk
15(2), 212–216 (1927)

http://www.csplib.org/Problems/prob028
http://www.csplib.org/Problems/prob028

	Automatically Generating Streamlined Constraint Models with Essence and Conjure
	Introduction
	Related Work
	Background: Essence
	From Conjectures to Streamlined Specifications
	Exploiting Essence Domain Annotations
	Conjecture-forming Rules
	Experimental Analysis

	Identifying Effective Combinations of Conjectures
	Discussion: Generating Streamliners in Practice
	Conclusion
	Problem Descriptions

