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SUMMARY

Cysteine string protein (CSP) is a member of the
DnaJ/Hsp40 chaperone family that localizes to
neuronal synaptic vesicles. Impaired CSP function
leads to neurodegeneration in humans andmodel or-
ganisms as a result of misfolding of client proteins
involved in neurotransmission. Mammalian CSP is
phosphorylated in vivo on Ser10, and this modulates
its protein interactions and effects on neurotrans-
mitter release. However, there are no data on the
structural consequences of CSP phosphorylation to
explain these functional effects. We show that
Ser10 phosphorylation causes an order-to-disorder
transition that disrupts CSP’s extreme N-terminal a
helix. This triggers the concomitant formation of a
hairpin loop stabilized by ionic interactions between
phosphoSer10 and the highly conserved J-domain
residue, Lys58. These phosphorylation-induced ef-
fects result in significant changes to CSP conforma-
tion and surface charge distribution. The phospho-
switch revealed here provides structural insight into
how Ser10 phosphorylation modulates CSP function
and also has potential implications for other DnaJ
phosphoproteins.

INTRODUCTION

CSP is a member of the DnaJ/Hsp40 family of molecular chap-

erone proteins. It is highly expressed in all neurons, where it local-

izes to synaptic vesicle membranes (Chamberlain and Burgoyne,

2000). Mammals express three CSP isoforms (a, b, g), but CSPa

is the major brain isoform and is the ortholog of the single CSP

expressed in invertebrates. Human CSPa is encoded by the

DNAJC5 gene, mutations in which cause the neurodegenerative

disorder, adult-onset dominant neuronal ceroid lipofuscinosis

(Noskova et al., 2011). As mutations in CSP-encoding genes

also cause neurodegeneration in flies (Zinsmaier et al., 1994),

worms (Kashyap et al., 2014), and mice (Fernandez-Chacon

et al., 2004), it is clear that CSP performs a universal neuroprotec-

tive function (Burgoyne andMorgan, 2015). CSP is widely thought

topreventneurodegenerationbypromoting thecorrect conforma-
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tion of presynaptic proteins involved in synaptic exo/endocytosis.

Compelling evidence suggests that the SNARE protein SNAP-25

is one suchprotein,whosemisfolding in the absence ofCSP leads

toneurodegeneration (BurgoyneandMorgan, 2011;Sharmaetal.,

2011, 2012). However, numerous other CSP-binding proteins

havebeen suggestedas functionally relevant client proteins for re-

folding, including the SNARE protein syntaxin (Chamberlain et al.,

2001; Evans et al., 2001; Nie et al., 1999; Swayne et al., 2006); the

calcium sensor synaptotagmin (Boal et al., 2011; Evans and Mor-

gan, 2002); G protein subunits (Magga et al., 2000); and the endo-

cytic protein dynamin (Zhang et al., 2012).

CSP has an evolutionarily conserved domain structure (Fig-

ure 1A). The J domain is a signature of the DnaJ/Hsp40 family

of molecular chaperones, which bind misfolded proteins and re-

cruit/activate the 70 kDa heat shock cognate protein (Hsc70/

Hsp70) to regulate protein folding (Hennessy et al., 2005).

Indeed, CSP binds Hsc70 and stimulates its ATPase activity,

and prevents aggregation of denatured proteins (Braun et al.,

1996; Chamberlain and Burgoyne, 1997a, 1997b). All other do-

mains are unique to CSP homologs. The cysteine string domain

comprises 13–15 cysteine residues in an approximately 25-

amino-acid motif, most of which are palmitoylated (Gundersen

et al., 1994). This domain is essential for targeting CSP to synap-

tic vesicles and for neurotransmitter release in vivo (Arnold et al.,

2004; Chamberlain and Burgoyne, 1998; Greaves and Chamber-

lain, 2006; Ohyama et al., 2007; Stowers and Isacoff, 2007). The

function of the linker region connecting the J domain to the

cysteine string is unclear, as mutation of this domain has rela-

tively mild effects on CSP phenotypes (Arnold et al., 2004; Bronk

et al., 2005; Zhang et al., 1999), although it may regulate binding

to synaptotagmin (Boal et al., 2011). The C-terminal domain dis-

plays relatively low sequence conservation among CSP homo-

logs from various species; and its function is poorly understood.

Finally, CSPs contain a short N-terminal polypeptide sequence

that is phosphorylated in vivo from worms to humans (Collins

et al., 2005; Evans and Morgan, 2005; Evans et al., 2001; Hilger

et al., 2009; Zielinska et al., 2009). Phosphorylation of mamma-

lian CSPa on Ser10 inhibits binding to syntaxin and synaptotag-

min, but not Hsc70, (Evans andMorgan, 2002; Evans et al., 2001)

andmodulates cellular exocytosis release kinetics (Chiang et al.,

2014; Evans et al., 2001). However, there are no data on how

Ser10 phosphorylation affects CSP structure to bring about

these functional changes. Here we report the nuclear magnetic

resonance (NMR) structures of the CSP N terminus in both the

unphosphorylated and phosphorylated states.
Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. NMR Analysis of Unphosphorylated and Phosphorylated

CSP1-100

(A) Domain structure of CSP.

(B) 1H-15N HSQC spectra of CSP1-100 (red) and pCSP1-100 (black). The HSQC

spectra shows well-resolved, non-overlapping peaks indicating both CSP1-100

and pCSP1-100 are folded. Upon phosphorylation, chemical shift dispersion

can be observed for the indicated residues around Ser10 and Ser81.

(C) Chemical shift differences (Dd) between CSP1-100 and pCSP1-100 amide

resonances, calculated using Dd = [(dH)
2 + (dHN*0.15)

2]1/2.The amino acid

sequence and secondary structure elements of CSP1-100 obtained from the

NMR structure are shown at the top of the figure.

Table 1. NMR and Refinement Statistics for Protein Structures

CSP 1-100 pCSP 1-100

NMR Distance and Dihedral Constraints

Distance constraints

Total NOE 2,450 3,120

Intra-residue 851 968

Inter-residue 1,599 2,152

Sequential (ji – jj = 1) 655 839

Medium-range

(2 % ji – jj % 4)

530 758

Long-range (ji – jj R 5) 414 555

Total dihedral angle

restraints

187 181

f 92 90

c 95 91

Structure Statistics

Violations (mean and SD)

Distance constraints (Å) 0.08 ± 0.06 0.07 ± 0.07

Dihedral angle constraints (�) 1.15 ± 0.88 1.44 ± 1.10

Max. dihedral angle

violation (�)
4.79 5.57

Max. distance constraint

violation (Å)

0.72 1.13

Deviations from idealized geometry

Bond lengths (Å) 0.0041 ± 0.00013 0.0050 ± 0.0001

Bond angles (�) 0.59 ± 0.012 0.65 ± 0.016

Impropers (�) 1.54 ± 0.056 1.59 ± 0.067

Average pairwise root-mean-square deviationa (Å)

Heavy 0.47 0.49

Backbone 0.14 0.20

Ramachandran statisticsb

Most favored/additionally

allowed/generously allowed (%)

88.2/11.8/0.0 80.6/18.3/1.1

aStatistics are calculated and averaged over an ensemble of the 20

lowest-energy water-refined structures out of 100 calculated structures.
bRamachandran statistics calculated using PROCHECK.
RESULTS

Generation of Soluble, Monomeric CSP Constructs
for NMR
To investigate the structural consequences of phosphorylation

on mammalian CSPa, we purified bacterially expressed re-

combinant proteins for analysis. Full-length CSP1-198 formed

mixed oligomers of >239 kDa, based on analytical ultracen-

trifugation (AUC) analysis (Figure S1A), representing at least
ten subunits based on the predicted monomeric mass of

23.5 kDa. In contrast, the C-terminal domain construct

CSP137-198 was monodisperse with an estimated molecular

mass of 9.0 kDa, close to its predicted monomeric mass of

8.2 kDa (Figure S1B). The heteronuclear single quantum

coherence (HSQC) spectrum for 15N-labeled CSP137-198 shows

poor 1H chemical shift dispersion, with most resonances ap-

pearing between 7.9 and 8.6 ppm, indicating that the C-termi-

nal domain is essentially unstructured (Figure S1C). It has been

suggested that CSP’s tendency to aggregate may be due to

the cysteine string domain (Swayne et al., 2003). However,

mutation of all 14 cysteines to serines in full-length CSP1-198

did not reduce oligomerization (Figure S1D), and a CSP1-112

construct that lacks the entire cysteine string precipitated

into visible aggregates. In contrast, CSP1-100 was monomeric

with well-dispersed resonances in the 1H-15N HSQC spectra

(Figure 1B). Further structural work was therefore performed

using CSP1-100.
Structure 24, 1380–1386, August 2, 2016 1381



Figure 2. Structures of Unphosphorylated

and Phosphorylated CSP1-100

Ensembles (A and C) and ribbon representations

(B and D) of the lowest-energy conformers of

CSP1-100 (A and B) and pCSP1-100 (C and D); two

different views differing by 90� are shown for each,

with Ser10 represented as sticks. For the ensem-

bles, all main-chain heavy atoms for 20 structures

are displayed (see also Figure S2 for Ca backbone

ensembles). For the ribbon representations, heli-

ces are highlighted in purple (a1), red (a2–a5), or

cyan (a6–a7).
Solution Structure of CSP1-100 in the
Non-phosphorylated State
Using conventional triple-resonance NMR spectra, the back-

bone resonances for 99 of 100 residues of CSP1-100 were as-

signed, and the structure was determined with 2,637 distance

and dihedral angle restraints (Table 1). This revealed a secondary

structure consisting of seven a helices, a1(7–10), a2(16–20),

a3(28–42), a4(52–68), a5(70–78), a6(83–90), and a7(93–98) (Fig-

ure 1C). These secondary structure elements are well defined,

although helices a1, a6, and a7 are much less converged than

helices a2–a5 due to the lack of stabilizing helix-helix interac-

tions in the tertiary structure (Figures 2A, 2B, and S2A). Helix

a1 is a short a helix located in an otherwise highly flexible, un-

structured N-terminal region; helices a2–a5 comprise the auton-

omously folded J domain; and helices a6 and a7 are located in

the linker region C-terminal to the J domain. The secondary

structure and overall fold of helices a2–a5 strongly resemble

other previously determined J-domain structures, such as yeast

Sis1p (PDB: 4RWU; Figure S3A). Our CSP1-100 structure is also

similar to the structure deposited by the RIKEN Structural

Genomics Consortium of a CSP5-100 construct (PDB: 2CTW;

Figure S3B), although clear differences are apparent in the

non-J-domain helices: a1, a6, and a7. This is especially evident

in theN-terminal a1 helix, which is not helical in any of the 20 sub-

mitted 2CTW structures. It is likely that the first four residues of

CSP, which are absent in the 2CTW construct, are important

for a1 helix formation.

A Phosphorylation-Induced Conformational Switch
The a1 helix contains the Ser10 residue, which is phosphory-

lated in vivo and which modulates CSP’s cellular functions

(Collins et al., 2005; Evans and Morgan, 2005; Evans et al.,

2001). To gain insight into how phosphorylation affects CSP

structure, purified 13C/15N CSP1-100 was incubated with

MgATP and protein kinase A (PKA). Parallel incubation using

unlabeled proteins showed that under these conditions, rapid

and efficient phosphorylation on only Ser10 was achieved,

as determined by g32-ATP incorporation and mass spectrom-

etry (Figure S4). The incubation mixture containing 13C/15N

CSP1-100, MgATP, and PKA was used without further purifica-

tion for structure determination. Triple-resonance heteronu-

clear NMR spectroscopy with non-uniform sampling (NUS)
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was then performed, allowing full data

collection for spectral assignment in a

short space of time. The spectra re-

vealed significant changes to the chem-

ical shifts for various residues, notably those around Ser10 and

Ser81 (Figures 1B and 1C). Based on the mass spectrometry

data, the chemical shift effects around S10 are a direct result

of Ser10 phosphorylation, whereas those around Ser81 indi-

cate a possible structural change in the loop connecting heli-

ces a5 and a6. Backbone resonance assignments for all 100

assignable amino acid residues were obtained, and the struc-

ture of pCSP1-100 was calculated using 3,301 distance and

dihedral angle restraints. Strikingly, the structure of serine10-

phosphorylated CSP1-100 reveals an order-to-disorder transi-

tion in the conformation of helix a1, which in turn triggers

the interaction of the newly disordered N terminus with the

J-domain helix a4 (Figures 2C, 2D, and S2B). This conforma-

tional phospho-switch results in a more compact overall

structure of pCSP1-100 with significantly altered surface charge

distribution (Figures 3A and 3B). Notably, the ionic interaction

between the negatively charged phosphate group on phos-

pho-Ser10 and the positively charged 3-amino group of

Lys58 stabilizes and sequesters the N-terminal region of

CSP (Figures 3C and 3D), which also brings the N-terminal re-

gion into much closer proximity to Ser81, hence, explaining the

significant chemical shift changes in this region. The interac-

tion between phospho-Ser10 and Lys58 is corroborated by

the observation of a network of nuclear Overhauser effects

(NOEs) involving the surrounding residues, including phos-

pho-Ser10 to Ser81/Leu82, and Val19 to Glu59/Ile60/Ala63.

Unambiguous direct NOEs between phospho-Ser10 and

Lys58 are not observed, as the distances between the non-

exchangeable protons in the two residues are over 5 Å and,

hence, expected to give rise to very weak NOEs. The relatively

small chemical shift change in the 15N-HSQC spectrum around

residue Lys58 compared with Ser81 is explained by the lack of

conformational change in helix a4.

DISCUSSION

The conformational phospho-switch reported here provides a

structural basis for the previously established effects of Ser10

phosphorylation on CSP function. By destabilizing the N-termi-

nal a1 helix and reducing its accessibility, phosphorylation

would weaken protein-protein interactions involving this region,

potentially explaining how Ser10 phosphorylation reduces CSP



Figure 3. Phosphorylation of Ser10 Triggers

a Conformational Switch

(A and B) Surface representation of the lowest-

energy conformers of CSP1-100 and pCSP1-100.

(C) Close-up view of Lys58, represented as sticks,

showing the surface-exposed positively charged

patch in CSP1-100.

(D) Phosphorylation triggers the interaction of

phospho-Ser10 and Lys58, altering the surface

charge distribution in this region.
binding to syntaxin and synaptotagmin (Evans and Morgan,

2002; Evans et al., 2001). In contrast, the structure of the J

domain and the accessibility of the HPD motif required for

Hsp70 activation are unaffected by Ser10 phosphorylation (Fig-

ure 4A), thus revealing why CSP phosphorylation has no

effect on Hsp70 interactions (Evans et al., 2001). Finally, the

new interface created jointly by the phosphorylated N terminus

and a4 helix (Figure 3B) provides a novel scaffold for protein

and/or lipid interactions that could explain the effects of Ser10

phosphorylation on fusion pore expansion during exocytosis

(Chiang et al., 2014; Evans and Morgan, 2002; Evans et al.,

2001; Prescott et al., 2008).

Phosphorylation-induced order/disorder transitions, as shown

here for CSP, are becoming increasingly recognized as regulato-

ry switches that control protein function. For example, phos-

phorylation of retinoblastoma protein on Ser608 causes the

disordered loop containing this residue to interact with the bind-

ing pocket for the E2F transactivation domain, thus inhibiting E2F

binding (Burke et al., 2012). In addition, multi-site phosphoryla-

tion of folded pentameric nucleophosmin has been shown to

cause electrostatic repulsion between the protomers and a tran-

sition to unfolded monomers, thereby destabilizing binding sites

that exist in the oligomeric protein (Mitrea et al., 2014). Finally, a

phosphorylation-induced disorder-to-order transition in 4E-BP2

has recently been shown to reduce eIF4E binding by seques-

tering a helical binding motif into a b strand (Bah et al., 2015).

The N-terminal domain of CSP is phosphorylated in vivo in hu-

mans, rodents, flies, and worms (Collins et al., 2005; Evans and

Morgan, 2005; Evans et al., 2001; Hilger et al., 2009; Zielinska

et al., 2009), indicating that phospho-regulation of CSP is as
Stru
evolutionarily conserved as its role in pre-

venting neurodegeneration. Given that 36

of the 41 DnaJ proteins encoded by the

human genome are serine/threonine

phosphorylated (Hornbeck et al., 2015),

the CSP phospho-switch revealed here

could be a general mechanism for confor-

mational regulation of DnaJ/Hsp40 chap-

erones. Indeed, the Lys58 residue that in-

teracts with phospho-Ser10 in CSP has

long been recognized to be among the

most highly conserved residues in DnaJ

proteins (Hennessy et al., 2005) (Fig-

ure 4B), although the reason for this con-

servation has been unclear. Furthermore,

Lys58 in CSP is a ubiquitination site (Wag-

ner et al., 2011), as are the orthologous
Lys residues in human DNAJA1 and DNAJB1. The close interac-

tion of phospho-Ser10 with Lys58 revealed here would likely

impede access by E3 ligases, thereby antagonizing CSP ubiqui-

tination. Given that phosphorylation of 4E-BP2 has recently been

shown to inhibit Lys57 ubiquitination by triggering a disorder-to-

order transition (Bah et al., 2015), the phospho-switch reported

here may represent an alternative mechanism for regulating pro-

tein conformation by reciprocally antagonistic posttranslational

modifications.

EXPERIMENTAL PROCEDURES

Expression and Purification of CSP

Full-length CSP1-198 in the pQE30 vector (QIAGEN) has been previously

described (Evans et al., 2001) and was used to prepare the CSP14CS,

CSP137-198, and CSP1-112 constructs via site-directed mutagenesis. CSP1-100

was synthesized (Geneart; Life Technologies) based on the human coding

sequence and codon optimized for expression in Escherichia coli and subcl-

oned into the pE-Sumopro Kan expression vector (LifeSensors). Expression

of recombinant CSP was induced in E. coli BL21 Star (Invitrogen) competent

cells using 1 mM isopropyl b�D-1-thiogalactopyranoside at 18�C for 18 hr.

Uniformly isotope-labeled CSP was expressed in M9 minimal media with
15NH4Cl and/or

13C6-glucose as the sole nitrogen and carbon sources, respec-

tively. Cells were harvested by centrifugation and resuspended in lysis buffer

containing 20 mM Tris (pH 7.5), 500 mM NaCl, 20 mM imidazole with protease

inhibitors (completemini EDTA-free protease inhibitor cocktail tablets; Roche).

After lysis by cell disruption, the soluble fraction was isolated by centrifugation

at 27,0003 g for 45min. The supernatant was applied to a charged HisTrap FF

5ml affinity column (GEHealthcare), washed with 20mMTris (pH 7.5), 500mM

NaCl, 50 mM imidazole, and purified protein eluted with a linear imidazole

gradient from 50mM to 500mM. The His-SUMO tag onCSP1-100 was removed

by incubation with recombinant ULP-1 overnight at 4�C. The CSP1-100 protein

was subjected to gel filtration through a Superdex-75 column (GE Healthcare)
cture 24, 1380–1386, August 2, 2016 1383



Figure 4. Implications of CSP Phosphorylation for Interactions with

Hsc70 and Ubiquitin Ligases

(A) Overlay of CSP1-100 (blue) and pCSP1-100 (red), with the conserved HPD

motif represented as sticks.

(B) Overlay of E. coli DnaJ (PDB: 1BQ0; blue) with human pCSP1-100 (red), with

the conserved Lys58 and Lys48 residues, respectively, and HPD motifs rep-

resented as sticks.
equilibrated with 20 mM 2-(N-morpholino)ethanesulfonic acid (pH 6.5),

150 mM NaCl.

In Vitro Phosphorylation

Purified CSP1-100 was phosphorylated by mixing in a 340:1 molar ratio with

protein kinase A catalytic subunit (Sigma-Aldrich), 1 mM DTT, 10 mM MgCl2,

0.5 mM EDTA, and 1 mM ATP. For analysis of phosphorylation kinetics, mix-

tures were supplemented with 3 mCi of radiolabeled g32-ATP per 50 ml reaction

and incubated for various times before stopping the reaction by addition of

boiling 23 Laemmli buffer (Sigma-Aldrich). Samples were run on pre-cast No-

vex SDS-PAGE gels (Invitrogen), stained with Coomassie blue, dried, and

exposed to phosphor screens overnight before imaging on a Phosphorimager

Si (GE Healthcare). For NMR spectroscopy and mass spectrometry analyses,

in vitro phosphorylation mixtures were prepared using non-radiolabeled ATP

and incubated for 4 hr to ensure the reaction was complete.
1384 Structure 24, 1380–1386, August 2, 2016
Estimation of Native Molecular Mass

Analytical ultracentrifugation was performed at the Astbury Center for Struc-

tural Molecular Biology, University of Leeds. CSP protein samples were

spun at 50,000 rpm at 20.1�C for 9 hr for sedimentation velocity analysis,

during which 98 absorbance scans at 279 nm were performed and used to

estimate the native molecular mass. Size-exclusion chromatography-multi-

ple-angle laser light scattering analysis was performed using a Dawn Heleos

instrument at a laser wavelength of 658 nm.

Mass Spectrometry

Phosphorylation site mapping was performed at the FingerPrints’ Proteomics

Facility, University of Dundee. PKA-phosphorylated CSP1-100 protein was

separated by SDS-PAGE, digested with trypsin, and then extracted before be-

ing applied to an nLC liquid chromatography system (Dionex/LC Packings)

coupled to a 4000 QTRAP mass spectrometer (Applied Biosystems/Sciex).

Mass spectrometry data were filtered by removing missed cleavages and em-

ploying a 1% false discovery rate.

NMR Spectroscopy

All spectra were acquired at 298 K on Bruker Avance III 600 MHz and 800MHz

spectrometers. For non-phosphorylated CSP1-100, sequence-specific back-

bone resonance assignment was obtained using standard multidimensional

heteronuclear NMR experiments: HNCA, HN(CO)CA, HNCACB, CBCA(CO)

NH, HNCO, HNCACO, HBHANH, HBHA(CO)NH. Side-chain assignments

were obtained from a 3D HCCH total correlation spectroscopy (HCCH-

TOCSY) experiment. NOEs were derived from 3D 15N- and 13C-edited

NOE spectroscopy (NOESY)-HSQC experiments with 130 ms mixing time.

For pCSP1-100, sequence-specific backbone resonance assignment was

obtained using the multidimensional heteronuclear NMR experiments as

described above, with NUS. Side-chain assignments were obtained from a

3D HCCH-TOCSY experiment. NOEs were derived from 3D 15N- and 13C-edi-

ted NOESY-HSQC experiments with 140 ms mixing time.

NMR Assignments and Structure Calculations

All NMR spectra were processedwith TopSpin (Bruker) and analyzed using the

CCPN Analysis package (Vranken et al., 2005). Backbone torsion angles were

derived from analysis of Ha, Ca, Cb, and C0 chemical shifts using the DANGLE

program (Cheung et al., 2010). All structure calculations were carried out using

the Aria package (Rieping et al., 2007) with the IUPAC PARALLHDGv5.3

and TOPALLHDGv5.3 parameter sets. Structural statistics are summarized

in Table 1.

ACCESSION NUMBERS

Coordinates and chemical shifts have been deposited in the PDB and Biolog-

ical Magnetic Resonance Bank under accession codes PDB: 2N05 and

BMRB: 25515 for CSP1-100, and PDB: 2N04 and BMRB: 25514 for pCSP1-100.
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