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The Valuation of Volatility Options*

Jérôme DetempleH, Carlton OsakweI

Résumé / Abstract

Cet article examine l’évaluation des options sur volatilité, de type européen
ou américain, dans le cadre d'un modèle d'équilibre général avec volatilité
stochastique. Certaines propriétés de la région d'exercise optimal et du prix de
l'option sont établies lorsque la volatilité suit un processus général de diffusion.
Des formules d'évaluation explicites sont ensuite dérivées dans quatre cas
particuliers. Nous étudions en détail le cas d'un processus de volatilité de type
MRLP (mean-reverting in the log) qui semble être conforme à l'évidence
empirique. Les propriétés et le comportement de couverture des options sur
volatilité sont examinées dans ce cadre. À l'opposeé d'une option d'achat
américaine, le prix d'une option d'achat européenne sur volatilité s'avère être une
fonction concave lorsque le niveau de volatilité s'élève.

This paper examines the valuation of European- and American-style
volatility options based on a general equilibrium stochastic volatility framework.
Properties of the optimal exercise region and of the option price are provided
when volatility follows a general diffusion process. Explicit valuation formulas
are derived in four particular cases. Emphasis is placed on the MRLP (mean-
reverting in the log) volatility model which has received considerable empirical
support. In this context we examine the properties and hedging behavior of
volatility options. Unlike American options, European call options on volatility
are found to display concavity at high levels of volatility.
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1 Introduction

One well known conclusion of empirical studies pertaining to security markets is that the volatility

of asset returns tends to change over time. Changing volatility is apparent in bond and foreign

currency markets, but is perhaps most evident in stock markets. The prevalence of volatility

uctuations has prompted the CBOE to introduce, in February 1993, a Market Volatility Index,

the VIX, to assist investors in tracking the volatility risk in the stock market. This index provides

market participants with minute by minute estimates of the expected volatility of the S&P 100

index (OEX) by averaging the implied volatilities of at-the-money put and call OEX options.

Since the introduction of the VIX, exchanges in several other countries have also launched

volatility indices.2 The usefulness of such indices is predicated on the understanding of the risk

of changing volatility in �nancial assets' returns, risk that may not be spanned by asset returns.

As a result, positions in these assets, or in derivative products based on these assets, may not

be su�cient to hedge away all the uncertainty embedded in volatility. Contingent claims on

the volatility of assets may well be needed to increase the set of hedging instruments available

to investors. This is perhaps what prompted several exchanges around the world to consider

introducing derivatives written on volatility indices. The CBOE and the AMEX, for instance,

have pending options on volatility. The German Futures and Options Exchange has already

innovated and markets a futures contract on the VDAX.

In this paper we study the valuation of options on volatility in a general equilibrium stochastic

volatility framework. Our starting point is a general class of volatility processes which are known

to be viable (see, for instance, Broadie, Detemple, Ghysels and Torres (2000)). Popular mem-

bers of this class include the geometric Brownian motion process (GBMP), the mean-reverting

Gaussian process (MRGP), the mean-reverting square-root process (MRSRP) and the mean-

reverting log process (MRLP). We �rst discuss the structure of the exercise set and the valuation

of American volatility options for a general volatility process. Explicit valuation formulas, both

for European- and American-style options, are then provided for each of the four popular spec-

i�cations listed above. Following Bakshi and Madan (1999) we present a uni�ed derivation of

some of the components of these option values across models. This uni�ed derivation relies on

the explicit formula for the truncated characteristic function of the normal distribution which is

the common building block underlying each of the four volatility models.

We then devote more speci�c attention to the MRLP volatility speci�cation, which has not,

heretofore, been explored in the option's literature. The relevance of this model is motivated by

(i) substantial empirical evidence supporting the EGARCH model of Nelson (1991) (see Engle

and Ng (1993), Danielsson (1994), Hentschel (1995)) and (ii) the fact that EGARCH converges to

a gaussian process that is mean reverting in the log and thus matches our MRLP speci�cation.3

In this context we show that the hedging behaviors of European- and American-style options

di�er quite drastically. It is of particular interest to note that the European call option, unlike its

2For example, in December 1995, a volatility index, the VDAX was introduced by the German Futures and

Options Exchange.
3Some of the most common choices of volatility speci�cation display mean reversion in volatility levels. Recent

empirical studies, however, indicate that such models may be misspeci�ed (Nandi (1998)). Related empirical

evidence is also reported in Ait-Sahalia and Lo (1998), Bakshi, Cao and Chen (1997), Bates (1996) and Dumas,

Fleming and Whaley (1998).
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American counterpart, displays concavity at high levels of volatility. This property which seems

to contradict established results on the convexity of European call option prices (e.g. Bergman,

Grundy and Wiener (1996)) is due to the particular dependence of the distribution of the rate of

change of volatility on the current level of volatility. Concavity is also a new feature which had

not been identi�ed in the prior literature on volatility options. Furthermore its impact proves to

be quite important since high volatility tends to occur precisely when stock returns are low.

The idea of derivative securities on volatility is not new. Brenner and Galai (1989), Whaley

(1993), and Grunbichler and Longsta� (1996) propose valuation formulas for futures and options

on volatility using di�erent models and measures of volatility. So far, e�orts have focused on

European-style derivatives assuming volatility processes of the GBMP, MRGP and MRSRP types.

Grunbichler and Longsta� (1996), in particular, use a CIR model which is a MRSRP.4 This

speci�cation choice has important consequences for the valuation of volatility options, the most

notable of which is the implied convexity of the European call price. As discussed above the

MRLP speci�cation leads to drastically di�erent behavior since call prices display concavity when

volatility becomes large. Evidently, this feature has important consequences for risk management.

Moreover, in contrast to the prior literature, we also focus on American options. Considering that

traded options are often American-style contracts such emphasis is relevant.

The paper is organized as follows. Section 2 describes several models incorporating stochastic

volatility. Section 3 provides valuation formulas for European- and American-style options for

each of these models. Section 4 examines the properties of volatility options when the underlying

follows an MRLP model. Concluding remarks are formulated in section 5. All proofs are collected

in the appendix.

2 Stochastic volatility models

2.1 A class of viable stochastic volatility models.

Suppose that the underlying asset price satis�es

dSt = St

h
(r � �)dt+ �1(Yt; t)

�
� dZ

�
t +

p
1� �2 dB

�
t

�i
(1)

dYt =
�
�
Y (Yt; t)� �

Y (Yt; t)��1(Yt; t)
�
dt+ �

Y (Yt; t) dZ
�
t (2)

where Y represents a volatility state variable, r is the constant interest rate, � the constant

dividend rate and � the constant instantaneous correlation between S and Y . The stock price

volatility is �1(Yt; t). The dynamics of (S; Y ) in (1)-(2) are written directly under the risk neutral

measure Q. Thus, Z� and B� are independent Brownian motion processes under Q. The state

variable process has drift �Y (Yt; t) and volatility �Y (Yt; t) under the original probability measure;

under the risk neutral measure it involves the risk premium correction �Y (Yt; t)��1(Yt; t).

4Brenner and Galai (1989) show how to construct a binomial tree to price volatility options. In their setting the

asset price lives on a binomial (non-recombining) lattice with random up and down returns un; dn. Volatility, which

is de�ned as the di�erence un � dn, is shown to follow a binomial expansion as well. Standard pricing methods

can then be applied to price volatility options. Whaley (1993) prices volatility options assuming (i) that volatility

follows a lognormal process and (ii) the existence of a futures contract on volatility with futures price equal to the

current index level.
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This model for (S; Y ); with a constant interest rate r and constant dividend rate �; can

be supported in a general equilibrium setting (see, for instance, Broadie, Detemple, Ghysels

and Torres (2000)). Note that the volatility structure is very general. Any triplet of functions

(�1(Yt; t); �
Y (Yt; t); �

Y (Yt; t)) can be selected provided (1)-(2) has a solution. In other words the

only restrictions that are required are Lipschitz and Growth conditions on these functions and a

regularity condition which ensures the existence of the risk neutral measure. This leaves us with

a large class of viable stochastic volatility models out of which empirically relevant candidates

can be selected and used to value volatility option.

2.2 General properties of European options.

As we shall see further one of the interesting properties of European volatility options relates to

their behavior relative to the underlying, namely volatility. Global properties of European options

have been of long-standing interest in the literature. For instance, results of Merton (1973) and

Jagannathan (1984) have established that a call price is increasing and convex with respect to

the underlying asset price s if the risk-neutralized process

dst = st[r(t)dt+ �(t)dZ�t ] (3)

has deterministic coe�cients, i.e. if r(t); �(t) are functions of time alone. In fact, as shown by Cox

and Ross (1976), this result applies to any contingent claim with increasing and convex payo�

function. Recent results of Bergman, Grundy and Wiener (BGW) (1996) extend these properties

to more general (univariate or multivariate) di�usion processes modulo certain restrictions. For

the univariate case, which is the relevant context for the volatility option models investigated

in this paper, they show that the option is increasing and convex if the risk-neutralized process

solves the stochastic di�erential equation (see eq. (4) in BGW)

dst = st[r(t)dt+ �(st; t)dZ
�
t ] (4)

where r(t) is a function of time and �(st; t) is an arbitrary function of s; t, which satis�es required

conditions for the existence of a solution to (4). Note that the drift of the underlying variable

retains the proportional structure. If the volatility process under consideration here satis�es (4)

then monotonicity and convexity of the volatility call price follow directly from BGW. It bears

emphasizing, however, that the volatility models described in (2) may not belong to the same

class of processes. This is clear from the general speci�cation (2) and is illustrated in the next set

of examples.

2.3 Examples of volatility speci�cations.

Several useful volatility models are obtained by combining various assumptions for the components

of (�1(Yt; t); �
Y (Yt; t); �

Y (Yt; t)). We focus on four speci�c volatility models. Two of these (the

mean reverting gaussian process (MRGP) and the mean reverting square root process (MRSRP))

are popular volatility speci�cations in the option valuation literature. The other two (the geo-

metric Brownian motion process (GBMP) and the log mean reverting gaussian process (MRLP))

are considered to be reasonable descriptors of U.S. stock prices and stock indices.
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Let Vt = �1(Yt; t) denote the volatility of the underlying asset. Our focal models are

Type Volatility process

Model 1 Geometric Brownian motion: GBMP dVt = Vt
�
(2�+ �2)dt+ 2�dZ�t

�
Model 2 Mean-reverting Gaussian: MRGP dVt = (�� �Vt) dt+ �dZ�t
Model 3 Mean-reverting square root: MRSRP dVt =

�
�2 � 2�Vt

�
dt+ 2�

p
VtdZ

�
t

Model 4 Mean-reverting log: MRLP d ln(Vt) = (� � � ln(Vt))dt+ �dZ�t

Note that model 1 has a proportional structure. On the other hand models 2-4 have volatility-

dependent drifts and therefore lie outside the class of processes covered by the results of BGW

(1996). For model 4 it can be veri�ed that dVt = Vt[(� � � ln(Vt))dt+ �dZ�t ] where � = �+ 1

2
�2:

Models 2 and 3 have drifts that are given by

Vt

�
�
Vt
� �

�
and Vt

�
�2

Vt
� 2�

�
respectively. The drift in model 4 in contrast is

Vt(� � � ln(Vt)):

Inspection of these expressions shows an important di�erence in drift structure across these mod-

els. For models 2 and 3 the drift becomes proportional to a constant as V tends to in�nity. For

model 4 the drift remains proportional to a function of V as V becomes large and in fact the

factor of proportionality, (� � � ln(Vt)), tends to �1 as V tends to in�nity. This aspect of the

MRLP model distinguishes it from the other models above and in particular from model 3 which

has been used in prior studies such as Grunbichler and Longsta� (1996).

Assumptions on the primitives underlying these speci�cations are detailed in Appendix A. Let

us de�ne the coe�cients

�t = e
��t

At = �

Z t

0

e
��(t�s)

ds =
�

�
(1� �t)

at = �

�Z t

0

e
�2�(t�s)

ds

�1=2
=

�p
2�

�
1� �

2

t

�1=2
wt � a

�1
t �

�Z t

0

e
��(t�s)

dZ
�
s

�
:

Our next table summarizes the solutions for the volatility processes and lists their distributional

properties.

Solution Distribution of random term

Model 1 Vt = V0 exp
�
(2�� �2)t+ 2�Z�t

�
Z�t ; normal(0; t)

Model 2 Vt = V0�t +At + atwt wt ; normal(0; 1)

Model 3 Vt = [
p
V0�t + atwt]

2 wt ; normal(0; 1)

Model 4 Vt = V
�t
0

exp (At + atwt) wt ; normal(0; 1):
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Note that the distribution of the normalized volatility V=a2 in model 3 is a non-central chi-square

with non-centrality parameter t and � degrees of freedom given by

t =
2�

�2(1� e�2�t)
e
�2�t

V0

� = 1:

However, since V can be written as a function of Yt = V0�t + atwt it can be computationally

bene�cial to view it as a quadratic transformation a standard normal random variable. The fact

that a normal distribution underlies all the models above enables us to present a uni�ed derivation

of some of the components arising in the valuation of options across speci�cations (see Lemma 9

in Appendix B).

Option pricing models involving stochastic volatility generally assume one or the other of the

above speci�cations. Hull and White (1987) and Johnson and Shanno (1987) adopt model 1, Stein

and Stein (1991) and Scott (1992) focus on model 2, Heston (1993) on model 3, and Wiggins(1987)

and Melino and Turnbull (1990) on model 4. In one of the few papers seeking to price volatility

options, Grunbichler and Longsta� (1996) also use model 3.

3 Valuation of volatility options.

Our volatility models can all be summarized by a risk neutralized process taking the form

dVt = Vt[(r � �
V
t )dt+ �

V
t dZ

�
t ]

for appropriate choices of the coe�cients (�V ; �V ). Here �Vt can be interpreted as an implicit

"dividend" rate on the underlying volatility. Let EQ[�] denote the expectation under the risk

neutral measure. The value of a European call option c0 written on the volatility V; with a strike

X and maturity T is

c0(V0) = E
Q
�
e
�rt(VT �X)+

�
:

Standard results state that the value of an American option can be written as the European

option value plus an early exercise premium (Kim (1990), Jacka (1991), Carr, Jarrow and Myneni

(1992), Rutkowski (1994)). The early exercise premium is the present value of the gains from

early exercise. When the underlying process is the volatility of an asset these gains are given by

r(Vt �X)� Vt(r � �
V
t ) = �

V
t Vt � rX:

The �rst term of this expression, r(Vt �X); captures the time value of money (savings realized

by reinvesting the exercise proceeds at the riskfree rate) while the second term, Vt(r � �Vt );

is the loss incurred by forgoing the natural appreciation of the payo�. The gains from early

exercise are naturally collected when immediate exercise is optimal, i.e. in the exercise region

E . Standard results can be invoked to show that the exercise region is a closed set for all the
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models under consideration (see appendix B). Letting B (�) denote the optimal exercise boundary
(or boundaries) we can write

C
A
0
(V0; B(�)) = c0(V0) + �0(V0; B(�)) (5)

where

�0(V0; B(�)) = E
Q

�Z T

0

e
�rv(�Vv Vv � rX)1fVv2Evgdv

�
(6)

represents the early exercise premium. The set Ev is the time v-section of the exercise set.

The next four theorems describe the values of volatility options for the models under consider-

ation. For the GBMP model the exercise region is up-connected and thus, the exercise boundary

is unique, if the condition r � 2� � �2 � 0 is satis�ed (see Lemma 8 in appendix B). Since the

implicit dividend yield equals � = r � 2�� �2 it is also evident that early exercise is suboptimal

when r � 2�� �2 < 0. Our next valuation result follows.

Theorem 1 (GBMP) Consider the geometric Brownian motion volatility speci�cation (Model 1).

The value of an American call volatility option is given by (5) with

c0(V0;X) = V0e
��T

N(d1T )�Xe
�rT

N(d1T � 2�
p
T )

�0(V0; B(�)) =
Z T

0

h
�V0e

�� v
N (d1v)�Xe

�r v
N(d1v � 2�

p
v)
i
dv:

where � � r � 2�� �2. In these expressions d1T = d1(V0;X; T ) and d1v = d1(V0; Bv ; v) with

d1(V0; x; v) �
1

2�
p
v

�
ln(

V0

x
) + (r � � + 2�2)v

�
:

The immediate exercise boundary B solves the recursive nonlinear integral equation

Bt �X = C
A
t (Bt; B(�))

subject to the boundary condition BT = maxfX; r
� Xg:

The MRGP model satis�es Ee�rt�t � 1. This condition ensures up-connectedness of the

exercise region and uniqueness of the optimal exercise boundary. The value of an American

option is then as follows.

Theorem 2 (MRGP) Consider the mean reverting gaussian volatility speci�cation (Model 2).

The value of an American call volatility option is given by (5) with

c0(V0;X) = e
�rT [(V0�T +AT �X)N(�d2T ) + aT n(d2T )]

�0(V0; B(�)) =

Z T

0

e
�rv [(r + �) (V0�v +Av)� (�+ rX)]N (�d2v) dv

+

Z T

0

e
�rv(r + �)avn (d2v) dv
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where d2T = d2(V0;X; T ), d2v = d2(V0; Bv; v) and

d2(V0; x; v) � a
�1
v [x� V0�v �Av ] :

The immediate exercise boundary B solves the recursive nonlinear integral equation

Bt �X = C
A
t (Bt; B(�))

subject to the boundary condition BT = max
n
X; �+rXr+�

o
:

As with the MRGP model above the MRSRP model satis�es Ee�rt�t � 1. Uniqueness of the

optimal exercise boundary follows and enables us to conclude

Theorem 3 (MRSRP) For the mean reverting square root volatility process (Model 3) the value

of an American call volatility option is given by (5) with

c0(V0;X) = e
�rT

a
2

T

�
d
+

3Tn(d
+

3T )� d
�
3Tn(d

�
3T )
�

+2e�rT
p
V0�TaT

�
n(d+

3T )� n(d�
3T )
�

+e�rT
�
V0�

2

T + a
2

T �X
� �
N(d�

3T ) +N(�d+
3T )
�

�0(V0; B (�)) =

Z T

0

e
�rv �(r + 2�) (V0�

2

v + a
2

v)� (� + rX)
� �
N(d�

3v) +N(�d+
3v)
�
dv

+(r + 2�)

Z T

0

e
�rv

a
2

v

�
d
+

3vn(d
+

3v)� d
�
3tn(d

�
3v)
�
dv

+2
p
V0 (r + 2�)

Z T

0

e
�rv

�vav
�
n(d+

3v)� n(d�
3v)
�
dv:

where d
�
3T = d

�
3
(V0;X; T ), d�

3v = d
�
3
(V0; Bv ; v) and

d
�
3
(V0; x; t) = a

�1
t

�
�px�

p
V0�t

�
:

The immediate exercise boundary B solves the recursive nonlinear integral equation

Bt �X = C
A
t (Bt; B(�))

subject to the boundary condition BT = maxfX; �+rX
r+2� g:

For our last speci�cation, the MRLP model, up-connectedness is obtained under the condition

r � �� 1

2
�2 � 0; the exercise boundary is again unique.

Theorem 4 (MRLP) Consider the log mean reverting gaussian volatility speci�cation (Model 4)

and suppose that r � � � 0 where � � �+ 1

2
�2. The value of the American call volatility option

is given by (5) with

c0(V0;X) = e
�rT

�
V
�T
0

exp

�
�

�
(1� �T ) +

1

2
a
2

T

�
N(d4T + aT )�XN(d4T )

�

8



�0(V0; B (�)) = (r � �)

Z T

0

V
�v
0

ef�� (1��v)+ 1

2
a2v�rvgN(d4v + av)dv

+�

Z T

0

V
�v
0

ef�� (1��v)+ 1

2
a2v�rvg

�
�v ln(V0) +

�

�
(1� �v) + a

2

v

�
N(d4v + av)dv

+�

Z T

0

V
�v
0

ef�� (1��v)+ 1

2
a2v�rvgavn(d4v + av)dv

�rX
Z T

0

e
�rv

N (d4v) dv

where d4T = d4(V0;X; T ), d4v = d4(V0; Bv; v) and

d4 (V0; x; v) �
1

av

h
�v ln(V0)� ln(x) +

�

�
(1� �v)

i
:

The immediate exercise boundary B solves the recursive nonlinear integral equation

Bt �X = C
A
t (Bt; B(�))

subject to the boundary condition BT = max fX; B�g, where B� solves

r (B� �X) �B
�
�
�+

1

2
�
2 � � ln(B�)

�
= 0:

The option pricing formulas given in theorems 1-4 illustrate the dependence on the speci�cation

of the volatility process. This is clearly not only true of option prices, but also of the comparative

statics and hedging behavior associated with these di�erent prices. Empirical evidence, however,

suggests that an EGARCH volatility speci�cation provides a good description of stock returns

(Engle and Ng (1993), Danielson (1994), Hentschel (1995)). Since the MRLP volatility process

is the continuous time limit of a discrete time EGARCH this is the model that we focus upon in

the next section.

4 The MRLP volatility option model.

Let t denote the current time. Recall from model 4 that for a mean reverting log process, the

time T volatility is related to current volatility by

VT = V
�T�t
t exp

n
�

�
(1� �T�t) + aT�twT�t

o
(7)

where 8>><
>>:

�T�t � e��(T�t)

aT�t � �

hR T
t
e�2�(T�s)ds

i
1=2

= �p
2�

�
1� �2T�t

�
1=2

wT�t � a
�1
T�t�

hR T
t
e��(T�s)dZ�s

i
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The long run mean of volatility is expf(� + 1

4
�2)=�g. The speed of reversion � impacts the

volatility levels through the log of volatility. As evidenced by the volatility formula above this

means that future volatility is a multiplier of a power function of current volatility. Moreover,

since �T�t � 1; the relationship is concave. Our next results will illustrate the importance of this

feature for the properties of call options.

4.1 Properties of European options.

The MRLP volatility European call option has the following limiting properties.

Proposition 5 The European call option price ct(Vt) satis�es

(i) lim
t!T

ct(Vt) = max(VT �X; 0)

(ii) lim
T!1

ct(Vt) = 0

(iii) lim
Vt!0

ct(Vt) = 0:

The �rst part of the proposition is the usual convergence of the option price to the payo�

at maturity. The second part says that an in�nite maturity European option on volatility will

be worthless. The third part says that the value of the option approaches zero as volatility goes

to zero. This is in contrast to the model of Grunbichler and Longsta� in which such an option

still has value. The reason for this di�erence is the multiplicative impact of uncertainty on future

volatility. Empirical evidence suggests that this impact is more representative of asset returns'

volatility than the additive impact of mean reversion implied by the mean reverting square root

process.

Our next proposition details some key derivatives of the pricing function.

Proposition 6 The European volatility option price satis�es

@ct(Vt)

@Vt
= e

�r(T�t)
�
T�t

V
�
T�t

�1
t e

�

�
(1��

T�t
)+

1

2
a2
T�tN(d4T+aT�t) � 0

@2ct(Vt)

(@Vt)2
= e

�r(T�t)
�
T�t

V
�
T�t

�2
t e

�

�
(1��

T�t
)+

1

2
a2
T�t

�
(�

T�t
� 1)N(d4T + aT�t) + n(d4T + aT�t)

�
T�t

a
T�t

�

@ct(Vt)

@(T � t)
= �rct(Vt)

+e�r(T�t)V
�
T�t

t e
�

�
(1��

T�t
)+

1

2
a2
T�t

�
�
T�t

(�� �

Vt
) +

1

2
�
2

T�t
�
2

�
N(d4T + aT�t)

+e�r(T�t)V
�
T�t

t e
�

�
(1��

T�t
)+

1

2
a2
T�tn(d4T + aT�t)

0
@� �p

2�

��2T�tq
1� �2T�t

1
A :

Note that the second derivative of the option may be positive or negative. When V is large

the �rst component in bracket dominates and the derivative is negative, i.e. the price is concave.

The underlying reason for price concavity is the mean reversion behavior embedded in the MRLP

model. In the limit as V !1 the probability of a decrease in volatility approaches 1. The option

is then worth signi�cantly less than its intrinsic value.
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4.2 Model calibration.

We calibrate the MRLP model by estimating the corresponding EGARCH model and then taking

the limit. Let �t denote the risk premium of the stock and consider an EGARCH-M model

adjusted by �t for a positive shift in the news impact curve (see Hentschel 1995)

ln

�
St

St�1

�
= �� � � 1

2
�
2

t + �t"t

"t � N(0; 1)

ln(�2t ) = �0 + �1 ln(�
2

t�1) + �2 (j"t�1 + �t�1j+ �1("t�1 + �t�1)) :

The weak limit of this model converges to the unique strong solution of the MRLP stochastic

volatility di�usion model (Model 4). Represented under the Q�measure the limiting process is

d ln(St) =

�
r � � � 1

2
V
2

t

�
dt+ Vt

�
�dZ

�
t +

p
(1� �2)dB�

t

�
d ln(Vt) = (�� � ln(Vt)) dt+ �dZ

�
t

where the parameters �; �; �, and � are functions of the parameters of the EGARCH process and

are given by (see Nelson (1990) or Duan (1997))

� =
�0

2
+

�2p
2�

� = 1� �1

� =
j�2j
2

s
�2
1
+

�
� � 2

�

�

� =

�
�2�
2

�
�

:

Here � represents the correlation between Z1 and Z2. Table 1 (appendix C) gives the results

of the estimated parameters of the above EGARCH-M model �tted to the S&P 500 daily index

series from July 2 ,1962 to December 29, 1989. The resulting stochastic volatility parameters are

� = �0:1020, � = 0:0215, � = 0:1031, and � = �0:3544. Note that negative correlation between

Z1 and Z2 corresponds to the asymmetric relationship between returns and changes in volatility,

that is, the leverage e�ect. Also, � being negative implies mean reversion with a long run mean

for log(V ) of �=� = �4:7442 which in turn implies a long run mean annualized volatility (based

on 365 days) of 16:63 percent. The speed of reversion �, is small, indicating strong autocorrelation

in volatility which in turn implies volatility clustering. Parameter values are therefore consistent

with observed empirical regularities regarding the volatility of asset returns.

4.3 Numerical results and discussion.

Using the estimated parameters from above, Figures 1 and 2 show how the price of the European

call option changes as volatility and maturity change. The non-tradedness of volatility suggests

11



that the usual rational restrictions of Merton (1973) may not always hold since arbitrage strategies

involving positions in volatility cannot be constructed. Thus we observe from Figure 1 that

European option prices are not bounded below by V �X. This result is similar to that obtained by

Grunbichler and Longsta� and will be true for options on any variable that cannot be duplicated.

An interesting aspect of these volatility call options is that at times of low (high) volatility, long

maturity options have a higher (lower) value than short maturity options. The sources of this

behavior can be traced to the mean reversion and the volatility clustering properties. Indeed,

when volatility is low, it is likely to remain low in the short-term and increase toward the long-

run mean in the long-term, and conversely. We can also see from Proposition 5(iii), that contrary

to Grunbichler and Longsta�, the value of European volatility call options converge to zero as

volatility goes to zero.

Figure 1 also shows that at (relatively) high volatilities the European option displays concavity

with respect to current volatility levels. This turns out to be an important result which, on the

surface, appears to contradict BGW (1996). This property will be discussed further below and

also when we examine American options.

From Figure 2, we observe that for European volatility call options of all moneyness, as

maturity increases option prices initially increase, and then decrease. In fact, as maturity goes to

in�nity, the price of the option will again converge to zero, as long as the riskfree rate is positive.

The intuitive explanation for this behavior is that due to mean reversion, the drift of the volatility

process cannot su�ciently compensate for discounting over time.

The hedging properties of volatility options are closely related to the delta of the option

i.e. the partial derivative of the option with respect to the underlying variable (in this case

delta = @c(V )=@V ). Let �V , �S, and �S be respectively the delta of a volatility option, the

delta of a stock option, and the vega of the same stock option (�S = @c (S; V ) =@V ). Then it is

easy to show that a portfolio consisting of �S shares of the stock long, one stock option short,

and n = �S=�V volatility options long, will be immune to risk. An investor wishing to hedge

volatility risk can do so by buying or selling n = �S=�V volatility options depending on the

direction of his exposure.5,6

Figures 3 and 4 show how �V changes as initial volatility and maturity change. For European

volatility options of all three maturities, delta �rst increases then decreases. Again, this implies

that the option is convex at low levels of volatility, and concave at high levels of volatility. As

maturity increases, this e�ect is reduced as the curvature attens out. Three regions can be

identi�ed from Figure 3 in which the delta of each maturity is highest. The implication is that

at low levels of volatility, the long maturity option has the highest delta and will be the most

e�ective hedging tool, at medium levels of volatility, the intermediate maturity option has the

highest delta and will be most e�ective, and at high levels of volatility, the short maturity option

has the highest delta and will be most e�ective.7

5An alternative hedging strategy is to use the bond, the risky asset and an option written on the risky asset. In

fact any pair of securities with nondegenerate di�usion matrix will su�ce to hedge all the uncertainty in the model.
6Volatility options can also be used to span other derivatives with volatility-based payo�s. In fact, as shown by

Bakshi and Madan (1999), any L1-integrable payo� written on a given state variable can be written as an integral

(in�nite sum) of call and put options written on the same underlying state variable.
7This is particularly true in the presence of transaction costs where high deltas mean small hedge ratios and

lower hedging cost.
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Why does concavity occur, and of what importance is it? As discussed earlier BGW have

shown that convexity holds in univariate models with stochastic volatility when the drift is pro-

portional to the process underlying the call option contract. Merton (1973), however, pointed

out that if the distribution of the (stochastic) rate of change through time of a random process is

not independent of the current value, then convexity of an option on this random variable (with

respect to this variable) is not assured. Indeed, for volatility dynamics described by any mean

reverting process, the distribution of the volatility rate of change (dV=V ) will depend on current

volatility. This, however, does not necessarily imply concavity in call option prices. Loosely

speaking, concavity in option prices will only occur when the distribution is not just dependent

but such that the incremental upside potential becomes smaller and smaller as the underlying

increases. This is precisely the situation with the MRLP process (see (7)). As volatility increases

there is a stronger pull toward the mean. In fact, in the limit, the expected rate of growth of

volatility converges to negative in�nity. This means that the call option gains less and less value

from a unit increase in volatility as volatility increases. Concavity of the price formula naturally

results. This feature of the volatility process is unique to the MRLP model, among the speci�-

cations that have been analyzed here and elsewhere in the options' literature. For instance, the

MRSRP model of Grunbichler and Longsta� (1996) has �nite expected rate of volatility growth

as volatility increases and therefore implies convexity of call option prices, as predicted by the

theoretical results of BGW.

The importance of concavity at high levels of volatility is twofold. First, mispricing resulting

from the use of another model failing to embed su�cient mean-reversion will be more severe,

and second, hedge ratios obtained from that mispriced formula will be incorrect. The negative

correlation between volatility and stock returns (the leverage e�ect) means that this will tend to

occur precisely at those times when volatility options become important as hedging tools.

As Figure 4 shows, at very long maturities, deltas of options of all moneyness approach zero,

implying that they become less and less responsive to volatility changes and lose their e�ectiveness

as hedging tools.

4.4 American-style options.

4.4.1 Numerical implementation.

The numerical scheme that we implement follows Kim (1990) and is based on the EEP repre-

sentation and the recursive equation for the boundary displayed in Theorem 4. It involves the

following steps:

1. Discretize the time horizon [0; T ] by dividing it into n subintervals of length h = T=n. Let

t0; :::; tn denote the set of time points straddling these intervals. In steps 3-5 below we use

the standard approximation of integrals of the form
R T
0
f(t)dt by

Pn�1
k=0 f(tk)h.

2. Starting at time T = hn solve for B� using (say) Newton's method applied to the boundary

condition. Set B(nh) = max(X;B�).

3. At time tn�1 = h� (n� 1) the boundary point B((n� 1)h) is obtained by using Newton's

method on the equationB((n�1)h)�X = c(B((n�1)h); (n�1)h)+�(B((n�1)h;B(nh); (n�
1)h).
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4. Proceed recursively through the set of time points. At time tk the estimate of the boundary is

determined by solvingB(tk)�X = c(B(tk); tk)+�
n(B(tk); B(�); tk) where �n(B(tk); B(�); tk)

represents the approximated value of the EEP (using the approximation of integrals de-

scribed in step 1). Newton's method is used to solve this nonlinear equation.

5. The American option value at date 0 is computed based on the approximated boundary.

It is easy to show that this procedure converges to the true boundary as the number of time

points increases. Note also that alternative approaches are available to compute estimates of

the exercise boundary. Examples that have been discussed in the literature include piecewise-

exponential approximations (Ju (1998)) and approximations derived by optimizing over a class of

(simple) suboptimal stopping times (Broadie and Detemple (1996)).

The numerical results reported below are based on a discretization involving 100 time points.

Experiments involving 500 time points were also performed and were found to have little e�ect

on the results.

4.4.2 Properties.

Figure 5 provides an illustration of the immediate exercise boundary and the corresponding ex-

ercise region. A volatility realization which lies in the exercise region implies that immediate

exercise of the volatility option is optimal. The immediate exercise boundary increases as matu-

rity increases, for all strike prices. The exercise boundary is seen to be lower as the strike price

increases, which can be explained by the lower payo� at exercise of higher strike options.

The price function displays the following properties.

Proposition 7 The American option price has the following properties

(i) CA(V; t) is continuous on R
+ � [0; T ]:

(ii) CA(�; t) is nondecreasing on R
+ and CA(V; t) = V �X for V � Bt; for all t 2 [0; T ];

(iii)
@CA

(V;t)
@V is continuous on R

+ for all t 2 [0; T ].

Figure 6 demonstrates that early exercise has value, as seen by the fact that CA(V; t) �
c(V; t) for allV 2 R

+ ; t 2 [0; T ]. In addition, CA, unlike c is bounded below by V �X. Evidently,

the lower bound is a consequence of the possibility of immediate exercise.

Figure 7 shows that the early exercise premium not only increases with volatility but also

that it is higher, at all levels of volatility, for options with lower strike prices. In addition, it

is convex for large values of volatility. Figure 6 illustrates the linearity of the American call

price above the exercise boundary (property (ii) in the proposition above). This implies that the

convexity of the early exercise premium compensates exactly for the concavity of the European

option and illustrates a major di�erence in hedging behavior between European and American

options. Figure 7 is also indication that long maturity American options are still responsive to

changing levels in volatility as opposed to long maturity European options and are therefore still

useful hedging tools.
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5 Conclusion

Empirical studies demonstrate that the volatility of stock prices changes over time. This suggests

a need for �nancial instruments that can be used to manage this type of risk. As a result indices of

volatility are springing up around the world and so are volatility option contracts. In this paper,

we have valued European- and American-style options on volatility in the context of a general

equilibrium model incorporating stochastic volatility. Explicit formulas have been proposed for a

set of popular volatility speci�cations. Special attention has been devoted to the MRLP model

based on its empirical appeal. In this context we have demonstrated an unusual property of the

European call option, which unlike its American counterpart, displays concavity at high levels of

volatility. These and other results provide important guidelines for volatility risk management

engineered through the use of volatility options.

6 Appendix.

6.1 Appendix A: model speci�cations.

The volatility models in section 2.3 are obtained from the following assumptions on the primitives:

�1(Yt; t) �Y (Yt; t) �Y (Yt; t)

Model 1 Y 2

t �Yt �Yt + ��Y 3

t

Model 2 Yt � �+ ��Yt � �Yt

Model 3 Y 2

t � ��Y 2

t � �Yt

Model 4 eYt � �+ ��eYt � �Yt:

Note that the associated state variable processes are

Model 1 dYt = Yt [�dt + �dZ�t ]
Models 2, 3 and 4 dYt = (�� �Yt) dt+ �dZ�t

with � = 0 in the case of model 3.

6.2 Appendix B: proofs.

Let E = f(V; t) : C(V; t) = V � Kg denote the exercise region. Continuity of the option price

with respect to V implies that E is a closed set. To establish certain properties of E we are led to

consider the following condition

Ee
�rt(V 0

t � Vt) � V
0
0
� V0 for all V

0
0
� V0: (8)

The following are important features of the exercise region.

Lemma 8 The exercise region E has the following properties

(i) right-connectedness: for all s � t; (V; t) 2 E =) (V; s) 2 E :
(ii) up-connectedness: suppose that condition (8) holds. Then (V; t) 2 E =) (V 0; t) 2 E for

all V 0 � V .
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Proof of Lemma 8: Property (i) follows from the fact that the holder of a long maturity option

can implement any exercise policy chosen by the holder of a shorter maturity option. For property

(ii) note that

C(V 0
; t) � C(V; t) + sup

�2S(t;T )
Ete

�r� (V 0
� � V� )

where S(t; T ) denotes the set of stopping times of the �ltration with values in [t; T ], which follows
from the inequality (a + b)+ � a+ + b+. Under condition (8) the expectation on the right hand

side is bounded above by V 0�V . Now let V 0 � V and suppose that immediate exercise is optimal

at (V; t) but not at (V 0; t). The inequality above then implies

V
0 �X < C(V 0

; t) � V �X + V
0 � V = V

0 �X;

a contradiction. Thus we must have (V 0; t) 2 E .

For the GBMP model condition (8) holds if r � (2�+ �2) � 0 since

Ee
�r�

V� = V0Ee
�(r�(2�+�2))�� 1

2
(2�)2�+2�Z�� � V0Ee

� 1

2
(2�)2�+2�Z�� = V0

under this condition. Furthermore, inspection of the volatility process shows that r � (2� + �2)

is the implicit dividend rate �. Standard results can be invoked to conclude that exercise prior to

maturity is suboptimal when � < 0.

For the MRGP model (8) follows from Ee�rt�t � 1. For the MRSRP model we can use Ito's

lemma to write

d
�
e
�rt(V 0

t � Vt)
�
= �(r + 2�)e�rt(V 0

t � Vt)dt+ 2�e�rt
�q

V 0
t �

p
Vt

�
dZ

�
t

where Vt and V 0
t are the solutions associated respectively with the initial conditions V0 and V 0

0

with V 0
0
� V0: It follows that

Ee
�rt(V 0

t � Vt)

= V
0
0
� V0 � (r + 2�)E

Z t

0

e
�rs(V 0

s � Vs)ds+ 2�E

Z t

0

e
�rs

�p
V 0
s �

p
Vs

�
dZ

�
s

� V
0
0
� V0

where the inequality in the second line is obtained by using the martingale property of the sto-

chastic integral and the pathwise inequality V 0
s � Vs which follows from the comparison theorem

for solutions of SDEs.

For the MRLP process we can write

d(V 0
t � Vt) =

�
(�+

1

2
�
2)(V 0

t � Vt)� �
�
ln(V 0

t )V
0
t � ln(Vt)Vt

��
dt+ �(V 0

t � Vt)dZ
�
t

Using Ito's lemma we then obtain

Ee
�rt(V 0

t � Vt) = V
0
0
� V0 + (�r + �+

1

2
�
2)E

Z t

0

e
�rs(V 0

s � Vs)ds
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��E
Z t

0

e
�rs �ln(V 0

s )V
0
s � ln(Vs)Vs

�
ds+E

Z t

0

e
�rs

�(V 0
s � Vs)dZ

�
s

� V
0
0
� V0 + (�r + �+

1

2
�
2)E

Z t

0

e
�rs(V 0

s � Vs)ds

where the inequality uses the comparison theorem and the fact that the function log(V )V is

increasing. Condition (8) holds if r � �� 1

2
�2 � 0.

Under property (ii) of lemma 8 the optimal exercise boundary is unique and can be de�ned as

Bt = inffV : (V; t) 2 Eg = inffV : C(V; t) = V �Xg:

We can then use the early exercise representation formula (5)-(6) substituting the event fVv � Bvg
in place of fVv 2 Evg in the expression for (6). With this representation we now prove Theorems

1-4.

In order to unify the derivations of the formulas in Theorems 1-4 we follow Bakshi and Madan

(1999) and use the characteristic function of the state variables under the risk neutral measure.

Since all of our models involve transformations of normally distributed random variables the

relevant characteristic function is particularly simple.

Lemma 9 Let I = [a; b] denote an arbitrary closed interval in R and consider a normally dis-

tributed random variable w. The I-truncated characteristic function f(k; I) =
R
I
eikwn(w)dw

is

f(k; I) = e
� 1

2
k2 [N(b� ik)�N(a� ik)]

where n(w); N(w) are respectively the standard normal density and the cumulative normal distri-

bution function. The truncated moments of the distribution areZ
I

w
n
n(w)dw = i

�n @n

@kn
f(k; I)jk=0

for n 2 N. In particular Z
I

n(w)dw = N(b)�N(a)

Z
I

wn(w)dw = �n(b) + n(a)

Z
I

w
2
n(w)dw = N(b)�N(a)� bn(b) + an(a)

Z
I

e
cw
n(w)dw = e

1

2
c2 [N(b� c)�N(a� c)]

Z
I

e
cw
wn(w)dw = ce

1

2
c2 [N(b� c)�N(a� c)] + e

1

2
c2 [n(a� c)� n(b� c)] :

The results above also hold for open and semi-open intervals.
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Proof of Lemma 9: Straightforward computations give

f(k; I) =

Z
I

e
ikw

n(w)dw

= e
� 1

2
k2 1p

2�

Z
I

e
� 1

2
(w�ik)2

dw

= e
� 1

2
k2
Z
I�ik

e
� 1

2
z2
dw

= e
� 1

2
k2 [N(b� ik)�N(a� ik)] :

Since
@n

@kn
f(k; I)jk=0 =

Z
I

(iw)neikwn(w)dwjk=0 = i
n

Z
I

w
n
n(w)dw

the expression for the truncated moments follows.

In order to derive the last two moments de�ne the function g(k; I) = f(k + c=i; I) and note

that

g(k; I) = f(k + c=i; I) =

Z
I

e
i(k+c=i)w

n(w)dw =

Z
I

e
ikw

e
cw
n(w)dw

@n

@kn
g(k; I) =

@n

@kn
f(k + c=i; I) = i

n

Z
I

e
ikw

e
cw
w
n
n(w)dw

which implies

g(k; I)jk=0 =
Z
I

e
cw
n(w)dw

@n

@kn
g(k; I)jk=0 = i

n

Z
I

e
cw
w
n
n(w)dw:

Using the expressions for f(�; I) gives

g(k; I) = f(k + c=i; I) = e
� 1

2
(k+c=i)2 [N(b� i(k + c=i)) �N(a� i(k + c=i))]

@

@k
g(k; I) = � (k + c=i) e�

1

2
(k+c=i)2 [N(b� i(k + c=i)) �N(a� i(k + c=i))]

�ie� 1

2
(k+c=i)2 [n(b� i(k + c=i)) � n(a� i(k + c=i))]

and therefore Z
I

e
cw
n(w)dw = g(k; I)jk=0 = e

1

2
c2 [N(b� c)�N(a� c)]

Z
I

e
cw
wn(w)dw =

1

i

@

@k
g(k; I)jk=0

= ce
1

2
c2 [N(b� c)�N(a� c)] + e

1

2
c2 [n(a� c)� n(b� c)] :

A limiting argument can be used to prove the results for arbitrary intervals in R:
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Proof of Theorem 1: When the underlying volatility follows the GMBP model and the interest

rate is constant we are back in the Black-Scholes framework. De�ning the implicit dividend rate

� � r�(2�+�2) and using the standard formulas (or the results of Lemma 9) leads to the results.

Proof of Theorem 2: For the MRGP speci�cation let

d2t � d2(V0;X ; t) � a
�1
t [X � V0�t �At] :

Since VT = V0�T + AT +aTw where w has a standard normal distribution the event fVT � Xg is
equivalent to I = fw � d2(V0;X; T )g. Using Lemma 9 enables us to write the value of a European
call option as

c0 =

Z 1

d2T

e
�rT (V0�T +AT + aTw �X)n(w)dw

= e
�rT (V0�T +AT �X)

Z 1

d2T

n(w)dw + e
�rT

aT

Z 1

d2T

wn(w)dw

= e
�rT [(V0�T +AT �X)N(�d2T ) + aTn(d2T )]

For this volatility speci�cation the implicit dividend rate is

�
V
t = r + �� �

Vt
:

Taking I = fw � d2(V0; Bv; v)g gives the early exercise premium

�0(V0; B (�)) = E
Q

�Z T

0

e
�rv ((r + �)Vv � (�+ rX)) 1fVv�Bvgdv

�

=

Z T

0

e
�rv

�Z 1

d2v

((r + �)(V0�v +Av + avw)� (�+ rX))n(w)dw

�
dv

=

Z T

0

e
�rv ((r + �)(V0�v +Av)� (�+ rX))

Z
I

n(w)dwdv

+

Z T

0

e
�rv(r + �)av

Z
I

wn(w)dwdv:

Substituting f(k; I)jk=0 = N(�d2v) and @
@kf(k; I)jk=0 = n(d2v) gives the formula in the theorem.

To get the equation for the exercise boundary use the fact that immediate exercise is optimal at

the point V = B. The boundary condition follows since the limiting value of the exercise premium

as t! T; equals (r + �)V � (�+ rX): Setting this expression equal to zero and solving for V at

the point V = B leads to the condition stated.

Proof of Theorem 3: For the MRSRP the event fVT � Xg is equivalent to fpV0�T + aTwT �p
Xg [ fpV0�T + aTwT � �

p
Xg. Taking
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d
�
3t = d

�
3
(V0; X; T ) = a

�1
t

�
�
p
X �

p
V0�T

�
we get I � fwt � d

+

3T g [ fwt � d
�
3T g. The European call option value is

c0 =

Z
I

e
�rT

h
V0�

2

T + a
2

Tw
2 + 2

p
V0�T aTw �X

i
n(w)dw

= e
�rT

�
a
2

T

Z
I

w
2
n(w)dw + 2

p
V0�T aT

Z
I

wn(w)dw +
�
V0�

2

T �X
� Z

I

n(w)dw

�

where, from Lemma 9, Z
I

n(w)dw = N(�d+
3t) +N(d�

3t)Z
I

wn(w)dw = n(d+
3t)� n(d�

3t)Z
I

w
2
n(w)dw = d

+

3tn(d
+

3t)� d
�
3tn(d

�
3t) +N(�d+

3
) +N(d�

3
)

Substituting gives

c0 = e
�rT

a
2

T

�
d
+

3Tn(d
+

3T )� d
�
3Tn(d

�
3T )
�
+ 2e�rT

p
V0�TaT

�
n(d+

3T )� n(d�
3T )
�

+e�rT
�
V0�

2

T + a
2

T �X
� �
N(d�

3T ) +N(�d+
3T )
�

For the American option, we can write the early exercise premium as

�0(V0; B (�)) = E
Q

�Z T

0

e
�rv �(r + 2�)Vv � (�2 + rX)

�
1fVv�Bvgdv

�

=

Z T

0

e
�rv �(r + 2�) (V0�

2

v �
�
�
2 + rX

�� Z
I

n(w)dwdv

+(r + 2�)

Z T

0

e
�rv

a
2

v

Z
I

w
2
n(w)dwdv

+2
p
V0 (r + 2�)

Z T

0

e
�rv

�vav

Z
I

wn(w)dwdv:

Substituting the relevant expressions for the truncated moments gives the premium formula an-

nounced. The exercise boundary B solves the recursive integral equation Bt �X = Ct(Bt; B(�)).
The boundary condition is

BT = max

�
X;

� + rX

r + 2�

�
:

This completes the proof of the Theorem.
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Remark 1 Since Vt has a noncentral chi-square distribution for the MRSRP we could also have

developed our valuation formula based directly on that distribution. Instead we have chosen to

exploit the fact that chi-square is a quadratic of a normal variate and hence to work directly with

normal densities. This enables us to unify the derivations for our 4 models since all of them

involve transformations of normals.

Proof of Theorem 4: For this case let

d4t � d4 (V0;X; t) � 1

at

h
�t ln(V0)� ln(X) +

�

�
(1� �t)

i
:

Then, since VT = V
�t
0

exp
�
�
� (1� �t) + atwt

�
where w has a standard normal distribution, the

event fVT � Xg is equivalent to fw � �d4T g and we obtain a closed form expression for the

European call option.

c0 = e
�rT

�
V
�T
0

exp

�
�

�
(1� �T ) +

1

2
a
2

T

�
N(d4T + aT ) � X N(d4T )

�

De�ne � � �+ 1

2
�2. Then, for the American option, the early exercise premium is given by

�0(V0; B (�)) = E
Q

�Z T

0

e
�rv (Vv (r � � + � ln(Vv))� rX) 1fVv�Bvgdv

�

= (r � �)EQ

Z T

0

e
�rv

Vv1fVv�Bvgdv

+�EQ

Z T

0

e
�rv

Vv ln(Vv)1fVv�Bvgdv

�rXE
Q

Z T

0

e
�rv1fVv�Bvgdv:

Substituting the expression for volatility enables us to write

�0(V0; B (�))

= (r � �)

Z T

0

e
�rv

V
�v
0

e
�

�
(1��v)

�Z 1

�d4v
e
avwn(w)dw

�
dv

+�

Z T

0

e
�rv

V
�v
0

e
�

�
(1��v)

�Z 1

�d4v
e
avw

�
�v ln(V0) +

�

�
(1� �v) + avw

�
n(w)dw

�
dv

�rX
Z T

0

e
�rv

�Z 1

�d4v
n(w)dw

�
dv:

An application of Lemma 9 now showsZ 1

�d4v
n(w)dw = N(d4v)
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Z 1

�d4v
e
avwn(w)dw = e

1

2
a2v [1�N(�d4v � av)] = e

1

2
a2vN(d4v + av)

Z 1

�d4v
e
avwwn(w)dw = ave

1

2
a2v [1�N(�d4v � av)] + e

1

2
a2vn(�d4v � av)

= ave
1

2
a2vN(d4v + av) + e

1

2
a2vn(d4v + av):

It then follows that �0(V0; B (�)) equals

(r � �)

Z T

0

e
�rv

V
�v
0

e
�

�
(1��v)e

1

2
a2vN(d4v + av)dv

+�

Z T

0

e
�rv

V
�v
0

e
�

�
(1��v)

�
�v ln(V0) +

�

�
(1� �v)

�
e
1

2
a2vN(d4v + av)dv

+�

Z T

0

e
�rv

V
�v
0

e
�

�
(1��v)av

�
ave

1

2
a2vN(d4v + av) + e

1

2
a2vn(d4v + av)

�
dv

�rX
Z T

0

e
�rv

N(d4v)dv:

Rearranging the terms produces the expression in the theorem. Clearly the exercise boundary B

solves the recursive nonlinear integral equation Bt �X = CA
t (Bt; B(�)). The boundary condition

is

BT = max fX; B
�g

where B� solves r (B� �X)�B� ��+ 1

2
�2 � � ln(B�)

�
= 0:

Proof of Proposition 5: the results follow directly by taking limits.

Proof of Proposition 6: taking partial derivatives and using

V
�v
0

ef�� (1��v)+ 1

2
a2vgn (d4(V0; Bv; v) + av)�Xn (d4(V0; Bv; v)) = 0

leads to the result.

Proof of Proposition 7:

(i) This follows from the continuity of the option payo� function and the continuity of the ow

of the stochastic di�erential equation in Model 4 relative to the initial values.

(ii) This follows from the monotonicity (increasing) of the ow and the increasing structure of

the payo�. In the exercise region immediate exercise is optimal: the option value is the payo�

function.

(iii) This follows from (i) and the di�erentiability of CA (which can easily be established).
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6.3 Appendix C: estimation.

Table: EGARCH estimation of S&P500 index (without dividends).

Estimation conducted by maximum likelihood.

Parameters Estimates Std. Err. Est./S.E. Prob

�� � 0.0003 0.0001 5.034 0.0000

�0 -0.3527 0.0286 -376.447 0.0000

�1 0.9785 0.0025 -45.677 0.0000

�2 0.1864 0.0110 24.320 0.0000

�1 -0.3921 0.0403 0.025 0.4901

Table: Correlation Matrix of parameters.

Parameters (�� �) �0 �1 �2 �1

�� � 1.0000

�0 -0.0057 1.0000

�1 0.0507 0.9618 1.0000

�2 0.0771 -0.6000 -0.3656 1.0000

�1 0.1926 -0.0989 0.0501 0.4616 1.0000
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Figure 1

European Volatility Option Prices vs. Initial Volatility
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Figure 2

European Volatility Option Prices vs. Maturity
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Figure 3

Delta of European Volatility Call Options vs. Initial Volatility (K=0.01) 
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Figure 4

Delta of European Volatilty Call Option vs. Maturity (Initial Vol.=0.01) 
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Figure 5

Immediate Exercise Boundary vs. Maturity
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Figure 6

Euro and Am. Volatility Option Prices vs Initial Volatility
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Figure 7

Early Exercise Premium vs. Initial Volatility (T = 20 days)
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