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Résumé / Abstract

Nous développons une classe de modèles ARCH pour les séries
temporelles échantillonnées à intervalles inégaux comme des observations liées à
des transactions de marché. Notre approche est fondée sur la méthode d’aggrégation
temporelle pour les modèles ARCH de Drost et Nijman (1993) et de Drost et
Werker (1994), et d’autre part sur le modèle autorégressif des moyennes
conditionnelles des durées entre les transactions financières de Engle et Russell
(1996). La classe de modèles présentée ici est nommée ACD-GARCH. Ce type de
modèles peut être défini comme un GARCH aux coefficients aléatoires où la durée
entre les transactions détermine la dynamique des paramètres. Le ACD-GARCH
devient un modèle bivarié quand sa formation admet les interactions entre les
volatilités des rendements passés et les durées et vice-versa. Sinon, la série de durées
est considérée exogène par rapport au processus de volatilité. Cette condition est
exigée dans l’estimation du modèle ACD-GARCH en deux étapes. La spécification
bivariée nous permet de tester l’existence de la causalité de type Granger entre les
volatilités et les durées. Sous conditions générales, diverses procédures d’estimation
par la méthode de moments généralisés sont considérées, dont certaines fournissent
les estimateurs, à la fois de type GMM et de type QMLE. Pour ce qui est des
applications, nous présentons une étude empirique basée sur les données de
transactions du titre IBM en 1993. Nos résultats indiquent que la volatilité des
rendements sur les prix d’actions de IBM causent, au sens de Granger, les durées
entre les transactions. Nous observons aussi que la persistence du processus
GARCH diminue fortement quand on introduit les durées dans la formulation du
modèle.

We develop a class of ARCH models for series sampled at unequal
time intervals set by trade or quote arrivals. Our approach combines insights
from the temporal aggregation for GARCH models discussed by Drost and
Nijman (1993) and Drost and Werker (1994), and the autoregressive conditional
duration model of Engle and Russell (1996) proposed to model the spacing
between consecutive financial transactions. The class of models we introduce



here will be called ACD-GARCH. It can be described as a random coefficient
GARCH, or doubly stochastic GARCH, where the durations between transactions
determine the parameter dynamics. The ACD-GARCH model becomes genuinely
bivariate when past asset return volatilities are allowed to affect transaction
durations and vice versa. Otherwise the spacings between trades are considered
exogenous to the volatility dynamics. This assumption is required in a two-step
estimation procedure. The bivariate setup enables us to test for Granger
causality between volatility and intra-trade durations. Under general conditions
we propose several GMM estimation procedures, some having a QMLE
interpretation. As illustration we present an empirical study of the IBM tick-by-
tick data. We find that volatility of IBM stock prices Granger causes intra-trade
durations. We also find that the persistence in GARCH drops dramatically once
intra-trade durations are taken into account.

Mots Clés : Hétéroscedasticité, activité de marché, volatilité, causalité, modèles
de durées

Keywords : Heteroskedasticity, Market Activity, Tick-by-Tick Data, Volatility,
Causality, Duration Models

JEL : C22, C32, D41, G1



1 Introduction

The Autoregressive Conditional Heteroskedastic (ARCH) class of mod-
els introduced by Engle (1982) is widely used to capture the temporal
dynamics of asset return volatility. Several recent papers, including Bera
and Higgins (1995), Bollerslev, Chou and Kroner (1992), Bollerslev, En-
gle and Nelson (1994), Diebold and Lopez (1995) and Palm (1996) survey
the extensive number of applications to �nancial time series and the im-
pressive theoretical developments which took place over the last decade.
In their generic form ARCH processes model the conditional variance
as a measurable function of past returns. The volatility dynamics is ex-
plicitly modelled in discrete time and while the sampling frequency is in
general left unspeci�ed, data are assumed to be equally spaced in time.
This setup is adequate for the many applications involving �nancial time
series sampled weekly, daily, or intradaily at hourly or �ner time inter-
vals. There is a growing interest in the modelling of �nancial time series
sampled at the transaction-based frequency. Such data became more
widely available over the last years due to the implementation of the
electronic trading systems on major �nancial markets.

In this paper we introduce a class of ARCH models for return series
sampled at time intervals set by the trade arrivals. Any general formu-
lation of GARCH for irregularly spaced �nancial data is extremely com-
plex. We propose a class of processes which provides an approximation

to the analytically and computationally intractable general case. Our ap-
proach combines insights from the temporal aggregation procedure for
GARCH models proposed by Drost and Nijman (1993) and Drost and
Werker (1996) and the autoregressive conditional duration model (ACD)
of Engle and Russell (1995) for intra-trade duration sequencies. The class
of models introduced here will be called ACD-GARCH, although strictly
speaking they do not belong to the GARCH class of models. Indeed, the
ACD-GARCH models are intrinsically bivariate as they involve past re-
turns and the time intervals between past transactions.1 They can also
be viewed as a time deformed GARCH model and therefore there is
some legitimacy to call it GARCH. An ACD-GARCH model is in fact a
random coe�cient GARCH model, or doubly stochastic GARCH, where
the duration between transactions determine the dynamics of the entire
parameter vector. The parameter behavior is described by the temporal
aggregation formulas of weak GARCH. In this sense our speci�cation
di�ers from the recently proposed ISAR-ARCH model of Pai, Polasek

1Hence, the conditional volatility is not exclusively a measurable function of past

returns, a characteristic attributed to the de�nition of the class of ARCH models, see

e.g. Bollerslev, Engle and Nelson (1994).
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and Kozumi (1995) where the unequal spacing in data is accommodated
by ad hoc varying autoregressive coe�cients in the conditional mean of
returns and the coe�cients on lagged squared errors in the conditional
variance equation.

Since the ACD-GARCH model is genuinely bivariate, past volatil-
ities may determine the transaction durations and vice-versa. In this
context, causal relationships between the volatility and durations arise
as an interesting issue to investigate. In the univariate ACD model dis-
cussed by Engle and Russell (1996), the spacings between trades is not
a function of the volatility process. We propose GMM as an estimation
method applicable under general conditions. A sequential procedure can
be adopted when we assume that the spacing of transactions in time is
weakly exogenous in the sense of Engle, Hendry and Richard (1983). In
our empirical illustration we use tick-by-tick data on IBM stock extracted
from the ISSM (Institute for the Study of Security Markets) 1993 data
set. We estimate ACD-GARCH models and introduce tests for causality
between IBM stock volatility and intra-trade durations. We �nd such
causality to be signi�cant.

The paper is organized as follows: The general structure is presented
in section 2. Next, we discuss the estimation methods in section 3.
The empirical study IBM tick-by-tick data is presented in section 4.
Conclusions appear in section 5.

2 The ACD-GARCH class of models

We consider asset prices recorded on a real time basis. A simple exam-
ple would be transaction prices of a particular stock where each trans-
action has a time stamp. We assume that observations are represented
by the pairs (yti ;ti)

N
i=0 where yti = ln pti , the log of the transaction

price recorded at time ti. The data are unequally spaced and tied to
the point process of transaction events. In many cases the arrival times
are modelled as a Poisson process, possibly non-homogenous with the
intensity determined by a set of covariates.2 Engle and Russell (1995)
argued that the class of Poisson processes does not �t well the �nan-
cial tick-by-tick data as the occurrence of market transactions shows a
strong temporal dependence. They suggested an autoregressive condi-
tional durations model, henceforth denoted ACD, very similar to ARCH

2This is the so-called proportional hazard model. See e.g. Lancaster (1990) for

a detailed discussion. Gouri�eroux, Jasiak and Le Fol (1996) propose nonparamet-

ric methods for hazard models and their associated duration and survival functions

applied to French tick-by-tick data from the Bourse de Paris.
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to accommodate the persistence in intra-trade durations. We will focus
almost exclusively our attention on the sequential trading process taking
each tick into account. The framework we develop, however, is generic
and general with respect to the transaction event. For instance, the ticks
may be restricted to large block trades instead of all trades, or may be
the time that elapses before a predetermined number of shares is traded
(say 10000 shares for instance).

In a �rst subsection we present the structure of the models. Next
we provide a time deformation interpretation to ACD-GARCH models.
A third subsection covers some special cases and the �nal subsection
discusses causality between trading and volatility.

2.1 The Model Structure

Following the approach of Engle and Russell we call a duration the di�er-
ence between subsequent transaction times ti+1� ti; i = 0:::N . The con-

ditional expected intra-trade time  i+1 = E
h
(ti+1 � ti) j (tj � tj�1)j�i

i
can be represented as a measurable function of past durations. In anal-
ogy to the GARCH (1,1)

 i+1 = !d + �d (ti � ti�1) + �d i; (2.1)

where the parameter vector �d =
�
!d; �d; �d

�
is indexed by d to indicate

that the parameters pertain to the durations dynamics. Dividing the
durations by their conditional means yields a sequence of i.i.d. variables:

(ti+1 � ti) = i+1 � g
�
 i+1; �

d
�
; i = 0; :::; N (2.2)

where g denotes the assumed distribution function, like for example an
exponential or Weibull [see Engle and Russell (1995)]. Eventually, the
conditional mean duration equation (2.1) can be extended from ACD
(1,1) to a more general setup:

E
h
(ti+1 � ti) j (tj � tj�1)j�i ;

�
ytj � ytj�1

�
j�i

;
�
xtj
�
j�i

i
=  i+1 �

 
h
(tj � tj�1)

i�p+1
j=i ; ( j)

i�q+1
j=i ; (ytj � ytj�1)

i�r+1
j=i ; (xtj )

i�s+1
j=i ; �d

i
(2.3)

where xti represents a state variable process which may include deter-
ministic components or other variables such as the trading volume of
the transactions occurring at or before ti. Whenever past returns or
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especially past volatilities appear in the above equation, we allow other
market dependent variables to a�ect the trading process beyond the dy-
namics captured by the autoregressive structure in (2.1). This suggests
of course testing for causality, an issue which will be discussed later.

Consider now the asset price process fytig ; i = 0; :::; N . The return
series is de�ned as a sequence of di�erences

��
yti � yti�1

�	
, indexed by

the transaction numbers i = 1; :::; N . Note that the current return value
is expected to be observed over the period  i+1 before the next trade
arrives.

Ultimately we would like to construct the expected volatility at the
next tick (or large block trade or sale of the next 10000 share, depending
on the de�nition of events), more precisely:

��2i+1 � E
h�
yti+1 � yti

�2 ���(tj � tj�1)j�i ;
�
ytj � ytj�1

�
j�i

;
�
xtj
�
j�i

i
where we assume that (yi+1 � yi) has conditional mean zero. This
will be di�cult to accomplish, however, if we aim for analytic expres-
sions and stay within the class of ARCH models. Indeed, the ARCH
class of models, as originally de�ned by Engle (1982) does not tempo-
rally aggregate. Since we deal with unequally spaced data temporal
aggregation is crucial. Hence, a �rst step is to weaken the de�nition
of ARCH such that temporal aggregation is possible. This was de-
veloped by Drost and Nijman (1993). In particular, we assume that
the �rst di�erences

��
yti � yti�1

�
; i = 1; :::; N

	
have �nite fourth mo-

ments and form a stationary sequence satisfying the weak GARCH (1,1)
de�nition [see Drost and Nijman, 1993]. Especially we assume that
f
�
yti � yti�1

�
; i = 1; :::; Ng consists of selected observations drawn from

a underlying data generating process evolving on a time grid set by equal,
very small time increments.3 Hence, for the moment we will remain in a
discrete time setting which will cause us some di�culty. Some of these
di�culties will be solved by adopting a continuous time framework to
which we turn our attention later in this section. Drost and Nijman
(1993) have shown that the class of weak GARCH (1,1) processes is
closed under temporal aggregation. We will rely on this result to model
the dynamics of the volatility process over unequal intra-trade intervals.

Let us denote "i = yti � yti�1 and �x the next trade ti+1 = ti + �,
i.e. when time is measured in seconds the intra-trade duration will be �.
For any given � the weak GARCH (1,1) models provides the best linear
projection

3In practice, we will consider as very small time unit, the accuracy limit of the

records which usually is one second.
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�2i+1 (�) � P�

h
"2i+1j1; ("j)j�1 ;

�
"2j
�
j�i

i
(2.4)

where P� denotes the best linear projection. The temporal aggregation
formula of Drost and Nijman (1983), which will be presented shortly,
enable us to compute this linear projection for any given �. There is an
important technical issue emerging here which we cannot accommodate
properly in this framework. Indeed, the temporal aggregation formula
provide a mapping between equally spaced representations with di�erent
sampling frequencies and do not strictly speaking apply to unequally
spaced data. We will ignore this issue until we adopt a continuous time
framework later in this section. The continuous time framework is more
suitable to deal with this, but for the moment we will remain with the
disrete time setup. Since the ACD model provides us with a conditional
duration distribution for �. It is worth noting that P� is only a function
of past returns, a feature which is proper to ARCH models. At this stage,
however, we can introduce information about intra-trade durations, as
the ACD model allows to compute:

~�2i+1 =

Z
�2i+1 (�) g

�
�; i+1; �

d
�
d� (2.5)

which is the expected conditional volatility based on the distribution
function g appearing in (2.2) with conditional mean  i+1. While the
integration in (2.5) is in principle feasible it is analytically intractable
and can only be accomplished numerically. To side step this di�culty
we propose to use �2i+1 ( i+1) which yields the structure for the class of
ACD-GARCH models we introduce in this paper. Using the temporal
aggregation formula of Drost and Nijman (1993) we can write the ACD-
GARCH class of models more explicitly as:

�2i+1 = !i + �i "
2
i + �i �

2
i (2.6)

where:

!i =  i+1!
1 + (�+ �)

 i+1

1� (�+ �)
; (2.7)

�i = (�+ �)
 i+1 � �i; (2.8)

�i=
�
1 + �2i

�
=
h
a (�; �;  i+1) (�+ �)

 i+1 � b (�; �;  i+1)
i
=

h
a (�; �;  i+1)

n
1 + (�+ �)

2 i+1
o
� 2b (�; �;  i+1)

i
;

(2.9)
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a (�; �; �;  i+1) =  i+1 (1� �)
2
+ 2 i+1 ( i+1 � 1) (1� �� �)

2�
n
1� (�+ �)

2
+ �2

o
=
h
(�� 1)

�
1� (�+ �)

2
�i

+4c (�; �;  i+1) =
�
1� (�+ �)

2
�
;

(2.10)

b (�; �;  i+1) =
n
�
�
1� (�+ �)

2
�
+ �2 (�+ �)

o�
1� (�+ �)

2 i+1
�

=
�
1� (�+ �)

2
�
;

(2.11)

c (�; �;  i+1) =
n
 i+1 (1� �� �)� 1 + (�+ �)

 i+1
o
�

n
�
�
1� (�+ �)

2
�
� �2 (�+ �)

o
:

(2.12)

The constant parameters !, �, � in (2.7) - (2.12) characterize the
conditional volatility of the underlying process which is de�ned at the
smallest time interval. The parameter k in (2.9) and (2.10) denotes the
kurtosis. For the purpose of parameter identi�cations we will also use
the relationship � i+1 + � i+1=(�+ �)

 i+1 .
When we de�ne an error term �i = "2i � �2i such that

"2i = !i + (�i + �i) "
2
i�1 + �i + �i+1 �i�1 (2.13)

we obtain an alternative representation for the model. It reveals that
there are two sources of error in the �i process, one related to the inno-
vation in the duration process (ti+1 � ti)� i+1 and the other related to
the usual GARCH volatility innovation. This mixture of errors suggests
that the �i process is most likely fat-tailed.

Finally, the ACD-GARCH can be written as a system of equations

 i+1 = !d + �d (ti � ti�1) + �d i (2.14)

�2i = !i + �i"
2
i�1 + �i�

2
i�1: (2.15)
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2.2 Time deformation

As noted in the introduction, the ACD-GARCH model does not sat-
isfy the weak GARCH, nor the ARCH de�nitions in the sense that it
does not represent the conditional variance as a measurable function de-
�ned on the �ltration of past returns. In some way the ACD-GARCH
model is in fact a stochastic volatility model. It was also noted that the
GARCH aggregation formula apply in principle to equally spaced data
with di�erent sampling frequencies; a technical issue we ignored when
dealing with irregularly spaced series. In this section we address some
of these issues by noting that the class of ACD-GARCH models could
also be viewed as a time deformed GARCH di�usion.4 Following Drost
and Werker (1996) one can de�ne a di�usion:

dy (t) = �(t)dW1(t) (2.16)

d�(t)
2
= �

�
! � � (t)

2
�
dt+

p
2�� �(t)

2
dW2(t) (2.17)

where W1 (t) and W2 (t) are two independent Brownian motions with
! > 0; � > 0; and � � (0; 1). Using the results of Drost andWerker (1996)
one interprets the ACD-GARCH model as a time deformed GARCH
di�usion with time deformation  i+1 yielding:

!i =  i+1 ! f1� exp (� i+1�)g (2.18)

�i = exp (� i+1�)� �i (2.19)

�i =
�
�2i + 1

�
(ci) (exp (� i+1�)� 1) =

[ci f1 + exp (�2 i+1�)g � 2]
(2.20)

where

ci = [4 fexp (� i+1�)� 1 +  i+1�g+ 2 i+1� f1 +  i+1� (1� �) =�g] =
[1� exp (�2 i+1�)]

(2.21)

4For more details on time deformation and its applications to �nancial data, see

Ghysels and Jasiak (1994) and Ghysels, Gouri�eroux and Jasiak (1996a, b).
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Equations (2.18) through (2.21) yield the ACD-GARCH appearing in
(2.6) as an exact discretization of the di�usion (2.16-17) with the ACD
conditional mean 'i+1 as the directing process. The time deformation
is purely exogenous to volatility when we restrict our attention to pure
ACD models. However, in the more general case where past volatility
a�ects expected trade durations we may have a partially endogenous di-
recting process.5 This time deformation interpretation clari�es, as noted
earlier, that we are in fact dealing with a class of stochastic volatility
models.

2.3 Special cases

The ACD-GARCH provides a convenient framework encompassing some
well-known models. We discuss two special cases which arise when ad-
ditional restrictions are imposed on the duration dynamics.

The �rst is the equally spaced traditional GARCH(1,1) model which
is obtained by setting  i+1 �  8i. It applies to unequally spaced
data with a constant conditional duration distribution. Such a situation
would occur when the point process governing transactions is in fact a
time homogeneous Poisson process. We noted in the introduction that
the event process is not exclusively tied to every transactions tick. For
instance, the intra-trade durations may reect to occurrence of large
block trades or other speci�c trades. If these arrive at a Poisson rate we
can simply use standard GARCH processes to predict the volatility of
returns despite the fact that such trades are irregularly spaced.

Another special case worth mentioning is the situation where  i fol-
lows a deterministic periodic pattern, i.e.  i =  i�S for 8i and given S.
Then, one obtains a periodic GARCH model, introduced by Bollerslev
and Ghysels (1996), for unequally spaced data. Such a situation occurs if
transactions arrive as a Poisson process which is time non-homogeneous
with a periodic pattern in the hazard rates.

2.4 Causality

An interesting issue to investigate in the context of ACD-GARCH is the
causality from the volatility process to the intra-trade duration sequence.

5This distinction has consequences with respect to estimation. If we were to

estimate directly the di�usion instead of the discrete time weak GARCH we could

in principle use the methods proposed by Conley et al. (1996) when the directing

process is exogenous. Otherwise one needs to adopt the methods discussed in Ghysels

and Jasiak (1996).

8



More explicitly, the question is whether past returns or past volatilities
should appear on the right hand side of the (2.3).

There are various ways to test the exclusion restrictions associated
with the absence of returns and/or volatility in the intra-trade dura-
tions process. The most appealing, though not the most optimal, is to
estimate the ACD model without any consideration for volatility, i.e.
the univariate process of intra-trade durations as in Engle and Russell
(1996). The ACD-GARCH is estimated next using the return data and
tests are applied to the bivariate process of residuals generated by the
two univariate models. Such a procedure is quite similar to recently
proposed causality tests in conditional variances across various �nan-
cial asset price movements. Cheung and Ng (1996) developed such a
procedure to test causality in conditional variances based on the early
work by Haugh (1976) and McLeod and Li (1983) based on estimating
the univariate ARCH models and using the cross-correlation function
(CCF) of the squared standardized residuals. In theory two issues can
be investigated, namely the traditional causality between the conditional
mean of returns and the intra-trade durations as well as the causality
between the volatility and durations, i.e. the conditional variance-mean
causality.

The �rst problem can be addressed by applying the CCF-based Pierce-
Haugh test to the standardized residuals, i.e. the i.i.d sequence di and
the return innovation process "i:

di = (ti+1 � t1) = i+1; (2.22)

ei = (yi � yi�1) =�i; (2.23)

For independent sequences fdig and feig, the existence of their second
moments implies that:

� p
Nĉde (k)p
Nĉde (k

0)

�
! AN

��
0
0

�
;

�
1 0
0 1

��
; k 6= k0 (2.24)

where ĉde (k) is the sample cross-correlation at lag k,

ĉde (k) = côvde (k) =
p
côvdd (0) côvee (0) ; (2.25)

and côvde (k) is the kth lag sample cross covariance [see Hannan (1970),
Cheng and Ng (1996)]:

côvd (k) = N�1
X�

di � �d
�
(ei�k) :

9



Causality at lag k can be tested by comparing
p
Nĉde (k) to a critical

value from the standard normal distribution. Alternatively, a chi-square
test statistic based on:

Sk = N

kX
i=j

ĉde (i)
2

(2.26)

can be computed. It is chi-square distributed with (k � j + 1) degrees
of freedom and can be used to test the null hypothesis of no causality
from lag j to lag k:

The test of causality between the volatility process and the intra-
trade durations involves the conditional mean of durations and the con-
ditional variance of returns. Hence the kth lag sample cross-correlation
of the squared standardized residuals e2i , denoted by Ei, and di are com-
puted:

ĉdE (k) = côv dE (k) =
p
côvdd (0) côvEE (0); (2.27)

where

côvdE (k) = N�1
X�

di � �d
� �
Ei�k � �E

�
:

For di and e
2
i de�ned by (2.22) and (2.23) we show in the appendix

that under suitable regularity conditions
p
N (ĉdE (k1) ; :::; ĉdE (km)) con-

verges to N (0; Im) as N !1, where k1; :::km are m di�erent integers.6

It should be recalled that the residual-based causality tests are con-
servative tests since they are constructed from univariate time series
processes. In the context of high-frequency data this negative feature
of such tests is probably not of great concern. More elaborate tests
based on the genuine bivariate representation of the trade and volatility
process can be considered as well. They will be briey covered in the
next section. To conclude it is important to stress the importance of
causality testing. Indeed, when trading and volatility are not mutually
exogenous we really have to deal with the joint process of di and e

2
i . Most

microstructure models suggest such a bivariate setup (see e.g. O'Hara
(1995) for a survey of the literature).

6For the above results to hold, the conditional mean of the returns has to be in-

cluded in the model and consistently estimated. We need to remain cautious however,

as the eventual causality in mean violates the independence condition and a�ects the

size of the mean-variance causality test [see Cheung and Ng (1996)].
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3 Estimation

It is assumed that the econometrician has a high-frequency data set of �-

nancial time series consisting of observations
�
(yti ; ti; xti)

N
i=0 ; Yo; To; Xo

�
where Yo; To; Xo are sets of initial conditions of yti ; ti and xti which con-
tain the p; r; s lagged presample observations (see equation (2.3)). As
noted in section 2, the xti process may include deterministic compo-
nents as well as other variables included in the ACD-GARCH model,
trading volume or past returns being a particularly relevant examples.

It would be tempting to formulate a maximum likelihood estimator
(henceforth MLE) for ACD-GARCH models since taken separately both
ARCH and ACD models are typically estimated using MLE. However, in
estimating the two components simultaneously we encounter a major ob-
stacle to maintaining a fully speci�ed distributional framework. Indeed,
Drost and Nijman (1993) argued that the temporal aggregation results
hold for a weaker than the standard (strong) de�nition of ARCH and
this requires an estimation via a set of moment conditions or via quasi-
MLE or QMLE. The necessary moment conditions are provided by the
projection equations which de�ne weak GARCH models. Alternatively,
the theoretical likelihood of GARCH could serve as a distributional form
for the QMLE. Under certain circumstances, related to the causality is-
sues discussed in section 2.3, we could even consider maintaining a ML
estimation approach for the ACD model. Indeed, a two-step procedure
can be considered, starting �rst with the estimation of the ACD param-
eters followed by the estimation of the conditional variance model for
the tick-by-tick data. In a MLE framework such a two-step procedure
would amount to a situation where the spacing of transactions in time
is weakly exogenous, in the sense of Engle, Hendry and Richard (1983).
We �rst cover the general joint estimation framework in section 3.1 and
discuss the two-step procedures in section 3.2. In section 3.1 we focus
on the GMM estimation and show a particular GMM estimator having
a QMLE interpretation.

3.1 Joint ACD and GARCH estimation

We assume that the parameter vector � has two components, namely
(1) �da subvector describing the parameters of the ACD model and (2)
�r a subvector which contains the parameters of the conditional mean
and variance of tick-by-tick returns. This setup is the same as in section
2.3. When we assume that xti contains at least a constant then the
dimension of �d equals p + q + r + s, using the notation of (2.4) with
s � 1: The vector �r can also be divided into two components, namely
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�r which governs the conditional mean, and may contain as components
the constant drift or seasonal dummies and the vector � � (!; �; �)
which determines equations (2.7) through (2.12). To set the scene for
the discussion of the estimation procedure we consider a generic GMM
setup based on a set of moment conditions:

Efi (�) = 0 (3.1)

where fi (�) �
�
fdi (�)

0

; fri (�)
0

�0
and

fdi (�) � fd
�
(tj � tj�1)

i�p
j=i+1 ; ( j)

i�q
j=i ;

�
ytj � ytj�1

�i�r
j=i

;
�
xtj
�i�s
j=i

; �
�

(3.2)

fri (�) � fr
�
(tj � tj�1)

i�p+1
j=i ; ( )

i�q+1
j=i ;

�
ytj � ytj�1

�i�r+1
j=i+1

;
�
xtj
�i�s+1
j=i

; �
�

(3.3)
It should be noted that ti+1� ti enters fdi (�) while yti+1 � yti enters

fri (�). Hence, the �rst set of moment conditions pertains to the dura-
tions between transactions while the second set of moment conditions
draws on projection equations of the conditional mean and variance of
returns. Moreover, within this generic general framework the entire pa-
rameter vector � enters both sets of moment conditions. Hence, as we
discussed in section 2.3, past volatility �i could possibly help to deter-
mine expected future durations such as  i+1. This can be accommodated
in (2.3) by letting xti � (1; �i).

7 In the sequel we consider this general
framework. Later, in section 3.2 we examine the more restrictive set-
ting where fdi (�

d) does not involve �r. While in principle a wide variety
of choices for fdi and fri exist there is a rather natural choice which
emerges from the discussion in section 2. Although, we cannot consider
MLE for the joint duration/conditional volatility model it would be log-
ical to start with distributional properties of the normalized durations,
i.e. (ti � ti�1) = i in (2.2), to construct fdi (�). It has the advantage
that the two-step procedures examined in the next section are special
cases of the procedures considered here. For the exponential version of
the ACD model the log likelihood function can be written:

7Needless to say that such a situation could become numerically quite involved.

Indeed, with q = p = 1; r = 0 and xti � (1; �i) in (2.3) it would require recursive

calculations of  i+1 given �i and �i+1 given  i+1 and �i starting with �0.
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LE (�) � �
NX
i=1

ldi (�) � �
NX
i=1

[ln ( i) + (ti � ti�1) = i] ;

resulting in the score moment condition:

fdi (�) = @ldi+1 (�) =@�
d = [(ti+1 � ti) = i+1 (�)� 1] = i+1 (�)�

@ i+1 (�) =@�
d:

(3.4)

The score function of the ACD model, required in this approach is it's
derivative with respect to �d. The dependence on the entire vector � is
revealed by making  i an explicit function of �. The computation of this
moment condition is relatively straightforward. As indicated by Engle
and Russell, it involves recursive computations of @ i=@�

d which are
quite similar to those encountered in score functions of GARCH models.
Engle and Russell also consider a Weibull distributed ACD requiring an
appropriate expression for @ldi+1 (�) =@�

d.8

We turn our attention now to the second set of moment conditions
fri (�). There are two particular choices for fri (�) that would naturally
emerge from the discussion in section 2. The �rst choice is computation-
ally simple, while the second is more involved but has the advantage of
yielding a QMLE interpretation of the resulting GMM estimator. The
moment conditions for the �rst approach are obtained from the projec-
tion equations resulting from (2.4) and (2.6). In particular consider the

instrument set Zmi �
h
1; (tj � tj�1)

i�p+1
j=i ;

�
ytj � ytj�1

�i�r+1
j=1

;
�
xtj
�i�r+1
j=i

i
,

then for "i+1 de�ned in (2.4) we have :

E"i+1Z
0

mi = 0: (3.5)

For the conditional variance we can use:

E
�
"2i+1 � !i+1 � (�i+1 + �i+1) "

2
i

�
Z

0

V i�1 = 0; (3.6)

8In fact, we could entertain the possibility to model normalized durations via SNP

density, [see Gallant and Tauchen (1989)], and use the SNP score in (3.4).
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where ZV i �
�
1; "i; :::; "i�l+1; "

2
i ; :::; "

2
i�k+1

�
. The combination of (3.5)

and (3.6) yields:

fri (�) �
��

"i+1Z
0

mi

�0
;
��
"i+1 � !i+1 � (�i+1 + �i+1) "

2
i

�
Z

0

V i�1

�0�0

(3.7)

which amounts to r+ p+ s+ k+ l+2 moment restrictions. The sample
equivalent of (3.1) forms the basis of the following GMM estimation
procedure:

�̂GN � �Argmin

 
N�1

NX
i=1

fi (�)

!0


�1N

 
N�1

NX
i=1

fi (�)

!
; (3.8)

where 
�1N is the optimal weighting matrix. Hansen (1982) showed that
matrix should be estimated from:


 � E

"
fdi (�)

0

fdi (�) fdi (�)
0

fri (�)

fri (�)
0

fdi (�) fri (�)
0

fri (�)

#
: (3.9)

Equation (3.9) emphasizes the fact that crossproducts between fdi (�)
and fri (�) are involved in the computation of the optimal GMM estima-
tor de�ned in (3.8). A priori we do not expect these crossproducts to be
zero. Indeed, it was shown in (2.13) that the error process �i is related
to the innovation in the duration process error (ti+1 � ti)�  i+1 which
makes the �rst element of fri (�) nonorthogonal to f

d
i (�). It is impor-

tant to emphasize this feature at this stage as the two-step procedure
presented in the next section yields an estimator ine�cient relative to
�̂GN because the o�-diagonal elements in (3.9) are set equal to zero.

We denoted the GMM estimator in (3.8) by �̂GN to distinguish it from

the second GMM estimator, denoted �̂QN where the index Q refers to a
QMLE interpretation of the estimator. We mentioned before that main-
taining a fully speci�ed distribution of normalized returns, i.e.

�
yti � yti�1

�
=�i � Zi, is not compatible with the temporal aggregation condition and
therefore MLE of ACD-GARCH is ruled out. Yet, as stressed by Drost
and Nijman, it is possible to provide a QMLE interpretation to the usual
ARCH-type MLE procedures. This suggests to construct the moment
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condition from a score function using a QMLE argument for �r. Indeed,
the e�ciency of �̂GN could be improved by using instruments other than
Zmi and ZV i. In fact, Meddahi and Renault (1995) examine QMLE es-
timation of weak GARCH processes and provide an optimal instrument
GMM interpretation. We replace fri (�) speci�ed in (3.7) by:

fri (�) = @lri+1 (�) =@�
r (3.10)

where the quasi-log likelihood function lri for return yti�yti�1 , assuming
Zi is i.i.d. N(0; 1) for all i, is:

lri (�) = (2�)
�1=2

exp
n
�0:5

��
yti � yti�1

�
=�i (�)

�2o

� ln jJi (�)j � 0:5 ln
�
�2i (�)

� (3.11)

with Ji (�) = @�i (�) =@ i+1 j i+1 . Since the score function in (3.10)
involves the derivative with respect to �r we obtain an exactly identi�ed
system of equations when the scores @ldi (�) =@�

d and @lri (�) =@�
r are

stacked. This results in a GMM estimator which is independent of its
weighting matrix and therefore yields a QMLE interpretation to the joint
duration/volatility estimator �̂QN . The fact that we need to compute the
score of (3.11) may be computationally more intensive compared to the
GMM estimator based on the projection equations de�ned in (3.5) and

(3.6). Hence there is some advantage in using �̂GN instead of �̂QN in terms
of computer time.

Several concluding comments can be made before turning our atten-
tion to the two-step procedure. Consider �rst the asymptotic distribu-
tion. Under suitable regularity conditions, which may or may not be
easy to verify or establish (see Bollerslev, Engle and Nelson (1994) for
further discussion and references), the estimators have standard normal
asymptotic distributions (see e.g. Hansen (1982)). It is worth noting
that the MLE of Engle and Russell will be inconsistent, even under
proper distributional assumptions when @ i (�) =@�

r 6= 0 as is the case
with xti � (1; �i), since it would require joint estimation of transaction
durations and volatilities. It was already noted that in principle (3.8)

may involve over identifying restrictions under the �̂GN speci�cation when
dim (�) < 2 (1 + p+ r + s) + k+ l+ q. In such cases one must choose an
estimator for 
̂N , an issue covered in detail by Newey and West (1988),

15



and Andrews and Monahan (1992), among others. Finally, a standard
J-statistic could be applied as model diagnostic.

3.2 Two-step estimators

Engle, Hendry and Richard (1984) drew attention to properties of like-
lihood functions which allow for separate estimation of �d and �r. As
noted in the previous section we do not really operate in the context of
MLE to straightforwardly apply the concepts of weak and strong exo-
geneity introduced by Engle and al. (1984). Yet, it is only the weakening
of the GARCH structure that prevents us from using MLE. Hence, in
principle we can focus on the properties of the duration process between
transactions and discuss its ML estimation separately. This raises the
possibility of introducing two-step procedures.

If we assume that the spacing between transactions is weakly exoge-
nous, in the sense of Engle, Hendry and Richard, with respect to the re-
turn process then the parameter vector �d can be estimated �rst and sep-
arately. This amounts to assuming that the score function @ldi+1 (�) =@�

d

is independent of �r or put di�erently ldi+1 (�) is a function of �d only.
With this restriction, we can estimate the ACD-GARCH model in two
steps: First we estimate the ACD model following the procedure de-
scribed in Engle and Russell (1995). Under the correctly speci�ed distri-
butional assumptions this estimator will in fact be the most e�cient by
virtue of MLE. This estimator, denoted �̂d1 space can be used to construct

an expected durations sequence  i

�
�̂d1

�
using (2.1) in the ACD(1,1) case

or a more general recursion formula for ACDX(p; q) models. The se-

quence of expected durations  i

�
�̂d1

�
can be used to estimate the weak

GARCH model. As noted in the previous section one may choose a dif-
ferent instrument setup. Either using projection equation arguments as
in (3.7) or a score function with a Gaussian QMLE speci�cation as in
(3.10). Other possibilities could be considered as well of course. The

former will be denoted �̂rNG while the latter will be denoted �̂rNQ.

4 Empirical illustration: IBM stock prices

In this section we present an application of the ACD-GARCH to intra-
daily observations on IBM prices and intra-trade durations recorded in
November 1993. The sample originally consisted of 43328 observations.
Prior to estimation the durations between the market closure and the
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next day's opening were deleted. We also removed observations corre-
sponding to the market openings and trades occurring simultaneously
at the same price, yielding zero returns at zero length durations. The
sample reduced to 13038 observations. These data were adjusted for
seasonal e�ects in the duration series and higher order autocorrelation
in the returns. The data exhibited intra-day seasonality in the mean
durations. Table 4.1 shows the average durations throughout the eight
hour trading day.

Table 4.1: Hourly Averages of Durations

Time Mean

900- 1000 33.0949
1000- 1100 34.3788
1100- 1200 36.2974
1200- 1300 39.3115
1300- 1400 34.9770
1400- 1500 33.4801
1500- 1600 38.5714

These intra-daily components were removed by using the splines to com-
pute the deterministic means conditioned on the time of day and dividing
each observation by this value [see Engle and Russell (1995)]. No daily
or weekly seasonal components were detected.
The transformed series has mean 0.9999 and standard deviation 0.4469,
i.e. features an underdispersion compared to the exponentially dis-
tributed series with � = 1. It is also characterized by a signi�cant
degree of autocorrelation as indicated by the value of the portmanteau
statistic Q(20)=523.5944.

No signi�cant predictable patterns were detected in the returns on
IBM stock. The original series exhibited some persistence in the con-
ditional mean and was replaced by residuals of an AR(3) process with
mean 0.0000, variance 0.0578 and kurtosis 5.4939. The portmanteau
statistics computed for the levels and squares of the transformed process
are Q(20)=14.3650 and 264.4364 consecutively.

The �rst estimation method is the two-stage approach under the
duration exogeneity assumption. In the �rst stage we estimated the ACD
(1,1) model by Maximum Likelihood based on an exponential density
function with intensity parameter � = 1. The parameter estimates are
presented in Table 4.3.
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Table 4.3: Maximum Likelihood Estimates of the ACD (1,1)

Model

parameter estimate std.error p.value

!d 0.0028 0.0055 0.3041
�d 0.0128 0.0064 0.0231
�d 0.9843 0.0089 0.0000

We can easily observe that the sum of the �d and �d parameters is
close to unity revealing the possible presence of a long memory pattern.9

The residuals of the ACD(1,1) feature a high degree of autocorrelation
(Q(20)=169.5615) and the null hypothesis of a white noise process is
rejected. To improve the �t, we increase the lag length and estimate an
ACD(2,2) model summarized in Table 4.4.

Table 4.4: Maximum Likelihood Estimates of the ACD(2,2)

Model

parameter estimate std.error p.value

!d 0.0009 0.0026 0.3689
�d1 0.0760 0.0218 0.0002
�d2 -0.0710 0.0208 0.0003
�d1 1.3805 0.4241 0.0006
�d2 -0.3863 0.4187 0.1781

This speci�cation turns out to be more successful in accommodating
the persistence in durations. The portmanteau statistic associated with
the residuals is Q(20)=20.0516 and the white noise hypothesis can not
be rejected at level 0.05.

The sequence of predicted duration f ig was used in the second step
of the estimation procedure to evaluate the time varying parameters �i
and �i appearing in (2.6) through (2.12). We relied on a normal ap-
proximation of the density of returns yielding QMLE estimates of the
parameters ! and � of the underlying process reported in Table 4.5.
The coe�cient � was computed from the relation appearing in (2.8).
Given the large number of observations we computed the average over
all  in the sample. In principle one could obtain standard errors but as
this is quite computationally involved we did not calculate them for �.
The duration-dependent parameters �i and �i have means 0.1578 and

9The issue of long memory in intra-trade durations is discussed in Ghysels and

Jasiak (1996) were supporting evidence for the long memory hypothesis is in fact

found.
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0.0004. They take values within the intervals [0., 0.2212] and [0., 0.0141]
respectively. The expected intra-trade durations range from 0.8082 and
2.2995 with a mean one by construction. The results in Table 4.5 are
quite interesting as they reveal that the persistence in volatility has com-
pletely disappeared once the intra-trade duration persistence is driving
the volatility process. Indeed the well known IGARCH phenomenon
does not appear in the underlying process as the sum of � and � is very
small. Moreover, the random coe�cients �i and �i also take values in-
dicating low persistence. The setup of equations (2.6) and (2.7) reveals
perhaps why this is the case. Indeed the drift !i depends directly on
 i+1, i.e. the expected duration which absorbs all the persistence. Since
intra-trade durations take account of the persistence it is interesting to
investigate whether they are exogenous in the sense of Granger causal-
ity. The series of rescaled ACD-GARCH and ACD (2,2) residuals were
used to test causality as discussed in section 2.4. We investigated the
impact of past returns (levels) on the durations and of past volatilities
(squares) on the durations as well. We proceeded by computing the
crosscorrelation functions at various lags k reported in the Table 4.6.

Table 4.5: Quasi - Maximum Likelihood Estimates of the

ACD-GARCH (1,1)

parameter estimate std.error p.value

! 0.0503 0.0003 0.0000
� 0.0729 0.0083 0.0000
� 0.0838 { {

The �rst column in Table 4.6 contains the lags k corresponding to the
number of ticks. The second one shows the values of the crosscorrelation
function between the levels of returns and durations (rde) while the third
contains the crosscorrelations between past squared returns and duration
(rdE). The null hypothesis of independence cannot be rejected at any
lag in the levels. We �nd however evidence con�rming the existence of
Granger causality between past volatilities and durations at lags 4 and
10 at the 5% signi�cance level. The joint hypothesis of independence at
lags 1 though 10 cannot be rejected at 5% for both (rde) and (rdE).
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Table 4.6: Cross-correlations in levels and squares of

standardized residuals

lag k levels rde squares rdE
1 -0.0025 0.0081
2 0.0003 0.0079
3 0.0087 0.0036
4 0.0064 *0.0209
5 -0.0042 0.0019
6 -0.0123 -0.0048
7 -0.0073 0.0035
8 0.0115 -0.0109
9 -0.0082 0.0019
10 0.0077 *0.0198

Q(10) = 7.9255 Q(10) = 14.8523

Note: �2(10) = 18:3: \*" indicates signi�cance at the 5% level.

5 Conclusion

In this paper we introduced ACD-GARCH models which is a class of
ARCH models for asset return series sampled at time intervals set by
the trade arrivals. Our approach combines insights from the tempo-
ral aggregation procedure for GARCH models and ACD for intra-trade
duration sequencies. Since the ACD-GARCH models are intrinsically
bivariate we also tested for Granger causal relationships between the
volatility and intra-trade durations. Several interesting results emerged
from our analysis of IBM data. First of all we �nd that once the per-
sistence in intra-trade durations are taken into account the volatility
dynamics show very little temporal dependence. However, intra-trade
durations are not exogenous in a Granger causality sense. Indeed, the
results based on tick-by-tick data on IBM stock show that volatility and
trading are interdependent.

We also propose a GMM estimation method applicable under general
conditions. A sequential procedure can also be adopted when we assume
that the spacing of transactions in time is weakly exogenous. Admit-
tedly, the methods we propose are still computationally complex to be
implemented on a real time basis in a tick-by-tick trading basis. As we
noted throughout the paper it is straightforward to consider events other
than the next trading tick. One may for instance consider the durations

20



between the sale of a total of 10000 shares and predict price volatility
that is asssociated with this event. Antoher example is that of large
block trades, like the sale of 10000 shares in one single trade. Both these
events are less frequent and therefore make the use of ACD-GARCH
easier in the context of real time trading.
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Appendix A

In principle the causality from durations to volatility and vice versa
can be investigated. Although, in the framework of the ACD-GARCH
model we restrict our attention to causality from volatility to intra-trade
durations we will consider the general case in the proof of Proposition
1. The demonstration follows arguments also used in Cheung and Ng
(1996). We will use the following notation:

[(yi � yi�1)]
2

�2i
=

�y2i
�2i

= Ei ;

ti � ti�1

 i
=

�ti

 i
= di ;

where di has mean 1 and "i has mean 0 and variance 1. We adopt a
general speci�cation of the conditional mean of durations:

 i = 'd0 +

1X
l=1

'l
�
�d
� �

�ti�l � 'd0
	
;

where 'l
�
�d
�
are uniquely de�ned functions of �d, the subvector of �

which parameterizes the intra-duration process. We assume that the
above speci�cation satis�es stationarity conditions. We �rst show that:

p
N
@ covdE (k)

@�i
j�=�0 = O (1) ; 8�i��: (1)

Consider �j��
d:

@ covdE (k)

@�dj

�����
�=�0

= N�1
X
i

piqi�k ; (2)

where

pi = � di
 i

1X
l=1

@'l
�
�d
�

@�dj

�
�ti�l � 'd0

�
(3)

qi�k = Ei�k � 1 (4)
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The highest order of di in pi is 2. Under the null hypothesis of indepen-
dence pi and qi�k are independent. Under the null the same result holds
for �j � �

r, the parameter vector of the return process rather than �d for
the duration process, under the following speci�cation of the conditional
variance of returns:

�2i = 'r0 +
1P
l=1

'l
�
�r; ��i

� �
�y2i�l � 'r0

	
;

where 'l
�
�r; ��i

�
are functions of �r and a �xed value of the duration ��

and satisfy stationarity assumptions. We then have:
@ covdE(k)

@�r
j

���
�=�0

= N�1
P
i

piqi�k ;

where pi = di - 1 and:

qi�k = �Ei�k

�i�k

1P
l=1

@'l(�r;��)
@�r

j

�
�y2i�k�l � 'r0

�
The highest order of "i�kqi�k is 4.

The stationarity and existence of the fourth moment of di and the
fourth moment of Ei imply that:

p
N

P
piqi�k
N

N ! 1�!N
�
0; �2

�
; (5)

[Hannan (1970), theorem 14, p.232]. Hence for any �j epsilon �:

p
N
@ covdE (k)

@�j

����
�=�0

= O (1) : (6)

We now expand côvdE (k) around the true parameter �0,

p
NcôvdE (k) =

p
NcovdE (k) +

p
N
�
�̂ � �0

� @ covdE (k)

@�

����
�=�0

+
p
N
�
�̂ � �0

�0 @2 covdE (k)

@�@�0

����
�=��

�
�̂ � �0

�
; (7)

where k �0 � �� k � k �0 � �̂ k. Since by assumption �̂ is consistent,�
�̂ � �0

�
= O (1) : (8)

By this result and if we assume that for all � in an open convex neighbor-
hood of

�
�0
�
and for allN ,

p
N@2côvdE (k) =@�i@�j exists and is bounded

in probability for �i; �j��; where � =
�
�d; �r

�
are the parameters of the

duration and return processes and �0 =
�
�d

0

; �r
0
�
is the true parameter

vector, then we have that:
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p
NcôvdE (k) =

p
NcovdE (k) +

p
N
�
�̂ � �0

� @ covdE (k)

@�

����
�=�0

+ o (1) :

(9)
The second term is o (1) by (1) and (8). Hence

p
NcôvdE (k) =

p
NcovdE (k) + o (1) : (10)

For k 6= k0 we have

NcôvdE (k) côvdE (k0) =
�p

NcovdE (k) + o (1)
� �p

NcovdE (k0) + o (1)
�

= N covdE (k) covdE
�
k

0
�
+ o (1) (11)

By a similar argument

côvdd (�) = covdd (�) + o (1) :

and

côvEE (�) = covEE (�) + o (1) :

Applying the Slutsky and Cramer-Rao theorems imply that ĉdE (k) and cdE (k)

have the same asymptotic distribution and

p
N (ĉdE (k1) ; :::ĉdE (km))! N (0; Im) :
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