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Résumé / Abstract

Contrairement à ce qu�il est possible d�obtenir dans un contexte

d�évaluation de titres dérivés de type européen, il n�existe pas de formule analytique

simple pour évaluer les options américaines, même si la volatilité de l�actif

sous-jacent est supposée constante. La possibilité d�exercice prématuré qu�offre ce

type de contrat complique considérablement son évaluation. La démarche adoptée

dans cette étude consiste à dériver les prix d�option et les frontières d�exercice à

partir de données financières, utilisées dans un cadre d�analyse statistique

non-paramétrique. Plus particulièrement, l�étude utilise les observations

quotidiennes du prix du contrat sur l�indice S&P100 ainsi que les observations sur

l�exercice de ce contrat. Les résultats sont comparés à ceux obtenus à l�aide de

techniques paramétriques dans unmodèle où la volatilité est supposée constante. La

conclusion est qu�il existe des différences stratégiques entre les prédictions des deux

modèles, aussi bien en ce qui concerne le prix de l�option que la politique d�exercice

qui lui est associée.

Unlike European-type derivative securities, there are no simple

analytic valuation formulas for American options, even when the underlying



asset price has constant volatility. The early exercise feature considerably

complicates the valuation of American contracts. The strategy taken in this

paper is to rely on nonparametric statistical methods using market data to

estimate the call prices and the exercise boundaries. The paper focuses on the

daily market option prices and exercise data on the S&P100 contract. A

comparison is made with parametric constant volatility model-based prices and

exercise boundaries. We find large discrepancies between the parametric and

nonparametric call prices and exercise boundaries.

Mots Clés : Prix d�options, titres dérivés, contrat OEX, estimation par méthode

de noyau

Keywords : Option Pricing, Derivative Securities, OEX Contract, Kernel

Estimation

JEL : C14, C51, D52, G13



1 Introduction

American option contracts �gure prominently among the wide range of
derivative securities which are traded. An American call option not only
provides the possibility of buying the underlying asset at a particular
strike price, but it also allows the owner to exercise his right at any
point in time before maturity. This early exercise feature of the con-
tract considerably complicates its evaluation. Indeed, the option price
critically depends on the optimal exercise policy which must be deter-
mined in the evaluation process. The earliest analysis of the subject
by McKean (1965) formulates the valuation of the derivative security
as a free boundary problem. Additional insights about the properties
of the optimal exercise boundary are provided by Van Moerbeke (1976)
and more recently in Barles, Burdeau, Romano, and Sams�n (1995).
Bensoussan (1984) and Karatzas (1988) provide a formal �nancial argu-
ment for the valuation of an American contingent claim in the context
of a general market model, in which the price of the underlying asset
follows an Itô process. It should not come as a surprise that the dis-
tributional properties of the underlying asset price determine those of
the exercise boundary. However, in such a general context, analytical
closed-form solutions are typically not available and the computations
of the optimal exercise boundary and the contract price can be achieved
only via numerical methods. The standard approach consists of spec-
ifying a process for the underlying asset price, generally a geometric
Brownian motion process (GBM), and uses a numerically e�cient algo-
rithm to compute the price and the exercise boundary. A whole range of
numerical procedures have been proposed, including binomial or lattice
methods, methods based on solving partial di�erential equations, inte-
gral equations, or variational inequalities, and other approximation and
extrapolation schemes.1

The purpose of this paper is to suggest a new and di�erent strategy
for dealing with the pricing of American options and the characteriza-
tion of the exercise boundary. The paper does not come up with a new
twist that boosts numerical e�ciency or a major innovation in algorithm
design. Instead, it suggests a di�erent approach which consists of using
market data, both on exercise decisions and option prices, and relies on
nonparametric statistical techniques. Let us illustrate this intuitively
using the case of the exercise boundary. Suppose that we have observa-
tions on the exercise decisions of investors who own American options,

1A partial list of contributions to this area includes Brennan and Schwartz (1977),
Cox, Ross and Rubinstein (1979), Geske (1979), Whaley (1981), Geske and Johnson
(1984), Barone-Adesi and Whaley (1987), Boyle (1988), Breen (1991), Yu (1993),
Broadie and Detemple (1996) and Carr and Faguet (1994), among others. For a
review and comparison of these procedures, see Broadie and Detemple (1996).
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along with the features of the contracts being exercised. Such data are
available for instance for the S&P100 Index option or OEX contract,
as they are collected by the Option Clearing Corporation (OCC).2 The
idea is that with enough data, such as ten years of daily observations,
we should be able to gather information about how market participants
perceive the exercise boundary. Our approach can be seen as a way to
characterize the exercise boundary for American options using observa-
tions on exercises.3 It can also be applied to the pricing of the option,
again assuming that we have data on call and put contracts and their
attributes. Unlike exercise data, option price data are quite common
and �gure prominently in several �nancial data bases.

The idea of applying nonparametric methods to option pricing has
been suggested recently in a number of paper, e.g., A��t-Sahalia (1996),
A��t-Sahalia and Lo (1995), Gouri�eroux, Monfort and Tenreiro (1994),
Hutchinson, Lo and Poggio (1994) and Stutzer (1995). As there are
a multitude of nonparametric methods it is no surprise that the afore-
mentioned papers use di�erent methods. Moreover, they do not address
the same topics either. Indeed, some aim for nonparametric corrections
of standard (say Black-Scholes) option pricing formula, others estimate
risk-neutral densities, etc. So far this literature has focused exclusively
on European type options. By studying American options, our paper
models both pricing and exercise strategies via nonparametric methods.4

It is worth noting that the approach taken in this paper is somewhat
similar to that of Hutchinson, Lo and Poggio (1995), except that we use
kernel-based estimation methods instead of neural networks.

The empirical application reported in the paper involves three types
of data, namely: (1) time series data on the asset or index underlying
the option contract, (2) data on call and put prices obtained from the
CBOE, and (3) data on exercise decisions recorded by the OCC.

Section 2 is devoted to a brief review of the literature on American op-
tion pricing. Section 3 covers parametric and nonparametric estimation
of exercise boundaries while Section 4 handles estimation of option prices

2Option exercise data have been used in a number of studies, including Ingersoll
(1977), Bodurtha and Courtadon (1986), Overdahl (1988), Dunn and Eades (1989),
Gay, Kolb and Yung (1989), Zivney(1991), French and Maberly (1992) and Diz and
Finucane (1993).

3Questions as to whether market participants exercise \optimally," regardless of
what the model or assumptions might be, will not be the main focus of our paper
although several procedures that we suggest would create a natural framework to
address some of these issues. For the most recent work on testing market rationality
using option exercise data and for a review of the related literature, see Diz and
Finucane (1993).

4Bossaerts (1988) and de Matos (1994) are to our knowledge the only papers dis-
cussing some of the theoretical issues of estimating American option exercise bound-
aries. We do not know of any empirical work attempting to estimate such boundaries.
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using similar methods. In both cases a comparison between model-based
and data-based approaches is presented.

2 American option pricing: a brief review

Let us consider an American call option on an underlying asset whose
price S follows an Itô process. The option is issued in t0 = 0 and matures
at date T > 0 with strike price K > 0: We adopt the standard speci�ca-
tion in the literature and assume that the dividend rate is constant and
proportional to the stock price. Consider the policy of exercising the
option at time � 2 [0; T ]: A call option with automatic exercise at time
� has a payo� (S� �K)+: In the absence of arbitrage opportunities, the
price at time t 2 [0; �) of this contingent claim, Vt(�); is given by the
expected value of the discounted payo�, where the expectation is taken
relative to the equivalent martingale probability measure Q; i.e.

Vt(�) = EQ

�
exp

�
�
Z �

t

rsds

�
(S� �K)+jFt

�
; (2.1)

where rs denotes the time s risk-free interest rate in the economy, EQ

denotes the expectation taken with respect to Q [see Harrison and Kreps
(1979)] and F(�) � fFt : t � 0g is a �ltration on (
;F) the measurable
space on which the price process S is de�ned. Since an American option
can be exercised at any time in the interval (0; T ]; an option holder will
choose the policy (i.e. the exercise time) which maximizes the value of
the claim in (2.1). This stopping time solves

max
�2T[0;T ]

V0(�) (2.2)

and at any date t the price of the American call is given by

Ct = sup
�2T[t;T]

EQ

�
exp

�
�
Z �

t

rsds

�
(S� �K)+jFt

�
(2.3)

where T[u;v] is the set of stopping times (w.r.t. F(�)) with values in [u; v]:
The existence of a �� solving (2.2) has been proved by Karatzas (1988)
under some regularity conditions on S: Furthermore, the optimal exercise
time is the �rst time at which the option price equals the exercise payo�,
i.e.,

�� � infft 2 [0; T ] : Ct = (St �K)+g (2.4)

This characterization, however, is of limited interest from an empirical
point of view since the option price which determines the optimal exercise
policy is an unknown endogenous function.
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A more precise characterization of the optimal exercise policy is ob-
tained if we restrict our attention to the Black-Scholes economy. In this
model, the underlying asset price follows the geometric Brownian motion
process, 5

dSt = St[(r � �) dt+ �dW �
t ]; t 2 [0; T ]; S0 given; (2.5)

where � is the constant dividend rate, r the constant interest rate and �
the constant volatility of the underlying asset price. The price process
(2.5) is expressed in its risk-neutral form, i.e., in terms of the equivalent
martingale measure. Under these assumptions, the American call option
value is given by

Ct(St; B) = CE
t (St) +

R T
t

�
�St e

��(s�t)N [d1(St; Bs; s� t)]�

rKe�r(s�t)N [d2(St; Bs; s� t)]
i
ds (2.6)

where CE
t (St) denotes the price of the corresponding European op-

tion, d1(St; Bs; s � t) �
�
�
p
s� t

��1 ��
log(St=Bs) + (r � � + �2=2) (s� t)

�
and d2(St; Bs; s�t) � d1(St; Bs; s�

t)� �
p
s� t: In (2.6) the exercise boundary B solves the recursive inte-

gral equation,

Bt �K = Ct(Bt; B); t 2 [0; T ); (2.7)

lim
t"T

Bt = max fK; r
�
K g: (2.8)

This characterization of the option value and its associated exercise
boundary is the early exercise premium representation of the option.
It was originally demonstrated by Kim (1990), Jacka (1991) and Carr,
Jarrow and Myneni (1992).6 The early exercise representation (2.6){
(2.8) of the American call option price is useful since it can be used as a
starting point for the design of computational algorithms. In this paper,
we implement a fast and accurate procedure proposed by Broadie and

5These assumptions, combined with the possibility of continuous trading, imply
that the market is complete. Moreover, in this economy there is absence of arbitrage
opportunities. This is the setting underlying the analysis of Kim (1990), Jacka (1991)
and Myneni (1992).

6This representation is in fact the Riesz decomposition of the value function which
arises in stopping time problems. The Riesz decomposition was initially proved by El
Karoui and Karatzas (1991) for a class of stopping time problems involving Brownian
motion processes. This decomposition is also applied to American put options by
Myneni (1992); it has been extended by Rutkowsky (1994) to more general payo�
processes.
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Detemple (1996), henceforth BD, for the parametric pricing of American
options and the estimation of the optimal exercise boundary.7

We now turn our attention to the parametric and nonparametric
analysis of exercise boundaries. Thereafter, option prices will be covered
in the same way.

3 Parametric and nonparametric analysis

of exercise boundaries

Probably the only study that addresses the issue of �nding an estimate
of the optimal exercise boundary is the work by de Matos (1994), which
is an extension of Bossaerts (1988). It proposes an estimation proce-
dure which is based on orthogonality conditions which characterize the
optimal exercise time for the contract. However, although no particular
dynamic equation for S is postulated, de Matos (1994) assumes that the
optimal exercise boundary is deterministic and continuous, and approxi-
mates it by a �nite order polynomial in time, whose parameters are esti-
mated from the moment conditions. In this paper, we use nonparamet-
ric cubic splines estimators [see e.g. Eubank (1988) and Whaba (1990)]
to extract an exercise boundary from the data. Our approach readily
extends to more general models with additional state variables such as
models with random dividend payments or with stochastic volatility (see
Broadie et al. (1996)). The procedure of de Matos is more restrictive
and does not generalize easily.

We describe the exercise data for the S&P100 Stock Index Ameri-
can option contract in Section 3.1 and report summary statistics, plots
and �nally the nonparametric estimates of the exercise boundary using
market data. Details regarding the nonparametric methods appear in
the Appendix. Next in Section 3.2 we use S&P100 Stock Index data to
estimate the GBM di�usion and invoke the BD algorithm to produce a
parametric boundary. Finally, in Section 3.3 we discuss comparisons of
the parametric and nonparametric boundaries.
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Figure 1: Distribution of the number of call contracts exercised, condi-

tional on S/K and �
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Table 1: Summary statistics of exercise data

Var. �X min 5% 25% 50% 75% 95% max

Ncall 2697 1 3 24 202 1357 16946 72590
S 236:9 146:5 154:495 181:8 238:5 280:9 322:838 336:1
� 0:05254 0 0 0 0:00788 0:06046 0:26044 0:79783

3.1 Description of the exercise data and nonpara-

metric boundary estimates

The data on the characteristics of S&P100 Index American contracts
(maturity, strike price, number of exercises) is the same as in Diz and
Finucane (1993) and we refer to their paper for a description of the
sources. These are end-of-the-trading-day daily data on S&P100 Index
American put and call contracts which are traded on the Chicago Board
Options Exchange. The contract is described in OEX{S&P100 Index
Option (1995). To this data we added the corresponding series of ob-
served S&P100 Index daily closure prices obtained from Standard and
Poors.8 The sample we consider runs from January 3rd 1984 to March
30th 1990. Figure 1 shows the sample distribution of the number of exer-
cises of call and put contracts, conditional on the current S&P100 Index
to strike price ratio (S=K); and on the time to maturity (�):9

Table 1 provides summary statistics of the data. Ncall is the number
of exercises of call options, S is the S&P100 Index and � is the dividend
rate on S: The latter is derived from the S&P100 Index dividend series
constructed by Harvey and Whaley (1992).10 �X denotes the sample
mean of the series and x% represents the x% quantile of the empirical

7For the boundary estimation, the BD algorithm provides a lower bound on the
boundary. We checked that the di�erence between the bound and the true boundary
was small by comparing the results with the recursive integral procedure (using a �ne
discretization) suggested in Kim (1990) and detailed in Huang, Subrahmanyam, and
Yu (1996).

8The wildcard feature of the OEX contract, described in detail in Diz and Finucane
(1993) for instance, results in some nonsynchronous e�ects in the exercise and index
data which will be ignored (at least explicitly). Any systematic nonsynchronous e�ect
will (implicitly) be captured, however, in our nonparametric analysis.

9Figure 1 present truncated data, since we left aside observations corresponding
to high values of �: The purpose was to obtain a better visualization of what happens
when the number of exercises is signi�cant. However, the complete sample was used
at the estimation stage.
10The series derived by Harvey and Whaley (1992) gives Dt; the amount in $ of

the dividend paid on the S&P100 Index at date t: In order to be consistent with
equation 2.5, we need annualized dividend rates. The series � whose empirical mean
and quantiles are reported in Table 1 has been computed as �t �

Dt

St
=dt; where St is

the S&P100 Index and dt = 1=360:

7



distributions, i.e., the value X0 2 fXi : i = 1; 2; : : : ; nXg such that
n�1X

PnX
i=1 II(�1;X0](Xi) = x=100: Here nX is the number of observations

for the variable X and IIA is the indicator function of the set A:
Figure 1 shows that most of the exercises occur during the last week

prior to expiration. Except for a period of one or two days to maturity,
exercise decisions are taken when the ratio S=K is close to one. During
this period, the ratio is never below one. However, in the last days before
maturity, although most exercise decisions take place at S=K close to
one, the dispersion of the observed ratio is highly increased towards
values close one.11

The objective here is to estimate a boundary by �tting a curve
through a scatterplot in the space (�; S=K) appearing in Figure 2. We
proceed as follows. Over the entire observation period, consider the set of
observed values for the time to maturity variable T � f0; 1; : : : ; �maxg:
Over the same period, we observe a total of N call options indexed
by i 2 I � f1; 2; : : : ; Ng: Each of these options is characterized by
the date of its issue, ti0; the date at which it matures, ti0 + T i; and its
strike price, Ki: In addition to these variables, for � 2 T ; we observe
Si� � Sti0+T i�� and n

i
� � ni

ti0+T
i��

which are respectively the price of the

S&P100 Index and the number of exercises of option i at date ti0+T
i��;

i 2 I� � fj 2 I : nj� 6= 0g: Observations can be represented as in Figure
2.

The idea underlying the estimation procedure is that observed Si�=K
i

ratios result from an exercise policy and can therefore be considered as
realizations of the bound B(�; �); which, besides �; is a function of the
parameter vector � = (r; �; �)0 de�ned in equation (2.5). With such
an interpretation of the data, to each � corresponds only one optimal
exercise policy, and we should observe only one Si�=K

i ratio. However,
as Figure 2 reveals, we observe several realizations of Si�=K

i for a single
�: 12 A natural way to summarize the information is to give more weight
to Si�=K

i ratios associated with high numbers of exercises ni� : In other
words, we consider the weighted averages

�
S

K

�
�

� 1P
i2I�

ni�

X
i2I�

ni�
Si�
Ki

(3.9)

11 These stylized facts do not contradict the predictions of the option pricing model
when the underlying asset price is assumed to be a log-normal di�usion. As shown in
Kim (1990, Proposition 2, p. 558) lim�#0

B�

K
= maxf r

�
; 1g; for call contracts, while

for puts lim�#0
B�

K
= minf r

�
; 1g. Here � denotes time to maturity.

12The fact that we observe a dispersion in exercise decisions may be viewed as
su�cient evidence to reject the parametric model in equation (2.5) and suggests
more complex models (see e.g., Broadie et al. (1995)).
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as our realizations of B(�; �):13 A nonparametric estimator of B is a
cubic spline estimator for the model

�
S

K

�
�

= g(�) + " : (3.10)

For the details of this estimation procedure, see Eubank (1988, p.200{
207, and Section 5.3.2). Intuitively, a curve is �tted to the points
(�; (S=K)� ); � 2 T : It involves a smoothing parameter � which is selected
by Generalized Cross Validation (GCV). This is the default procedure of
the function smooth.spline in the S-Plus statistical package. The value

of � computed from observations of the S=K ratio is �̂ = 0:009058884;

which gives a GCV criterion GCV(�̂) = 0:0005911787: Details of the
choice of the smoothing parameter are discussed in the Appendix; see
also Eubank (1988, p.225{227) and Wahba (1990, Sections 4.4 and 4.9).

13Hastie and Tibshirani (1990, p.74) give a justi�cation to the intuitive solution of
averaging the response variable when we observe ties in the predictor.
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3.2 Parametric estimation of the exercise boundary

We now exploit the information provided by the dynamics of the under-
lying asset price and consistently estimate its trend and volatility param-
eters. Up to this point, we did not explicitly introduce the distinction
between the process which generates the data on S; i.e., the probability
distribution P from which the observations are \drawn," referred to as
the \objective" probability, and the risk-neutral representation of the
process described by (2.5). The data generating process (DGP) which is
to be estimated is

dSt = St [�dt+ � dWt] ; t � 0; (3.11)

where W is a standard Brownian motion on (
;F ;F( � ); P ):
Quite a few well known procedures exist for estimating the param-

eters of a general di�usion. Most of them are based on simulations of
the DGP; examples are the simulated method of moments [see Du�e
and Singleton (1993)], the simulated (pseudo) maximum likelihood [see
Gouri�eroux andMonfort (1995)] and indirect inference or moment match-
ing [see Gouri�eroux, Monfort and Renault (1993) and Gallant and Tauchen
(1994)]. Recently another approach has been proposed by Pedersen
(1995a, b) based on a convergent approximation of the likelihood. In
the case of a simple geometric Brownian motion, however, we take ad-
vantage of the existence of an exact discretization. Application of Itô's
lemma to (3.11) gives

lnSt = lnS0 +

Z t

0

(�� 1

2
�2)ds+

Z t

0

�dWs ; t � 0:

Therefore the process lnS has an AR(1) representation:

lnSt = lnSt�1 + (�� 1

2
�2) + �"t ; t � 1; (3.12)

where f"t � Wt � Wt�1g ind.� N(0; 1): The vector � � (�; �) can be
estimated by maximum likelihood (ML). The ML estimate (MLE) of �
is solution of

min
�2B

T

2
ln�2 +

1

2�2

TX
t=2

�
ln

St

St�1
� �+

�2

2

�2

;

and denoted �̂T : Here T is the sample size and B is the set of admissible
values for �:

However, what is required for the implementation of the BD algo-
rithm are values for r; � and �: Obviously �̂T ; the MLE of �; will be

10
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selected as the required value for the volatility parameter. But the esti-
mation of (3.11) does not provide us with values for the risk-free interest
rate and the dividend rate. These parameters are extracted from histor-
ical series. An estimate of the nominal interest rate is the average daily
rate of return on 1 month T -bills, expressed in % per annum, and the
constant dividend rate on the S&P100 Index is the sample average of the
dividend series described in Section 3.1 (see also Table 1). A parametric
estimate of the exercise boundary is then derived by implementing the
BD algorithm with �̂T � (r̂T ; �̂T ; �̂T )

0 as the true parameter value, where

r̂T = 0:05915; �̂T = 0:05254 and �̂T = 0:01244:
The parametric and nonparametric estimates of the exercise bound-

ary are shown in Figure 3. As can be seen, the two estimated exercise
boundaries appear quite di�erent in shape. First, the parametric esti-
mate of the boundary lies well above the nonparametric one. This is
mainly due to the di�erence of the two estimates at maturity (� = 0):
Since the (unbiased) estimate of r�� is positive, the parametric estimate
of the (normalized) boundary is equal to r̂T =�̂T = 1:12325 at � = 0: How-
ever, if we admit that the result of footnote 11 holds, the nonparametric
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estimate of the exercise boundary suggests that this ratio is substantially
lower. Second, it is interesting to note that the parametric estimate of
the exercise boundary lies above the pairs (�; S=K) obtained from the
exercise data. It is clear that the two estimates predict very di�erent
exercise strategies in the few days before expiration, where most of the
exercise decisions take place (see Figure 1). Ideally, we would like to
make a formal statistical comparison between the two curves appearing
in Figure 3. Unfortunately, there are several reasons, explained in the
next section, why such a comparison is not straightforward.

3.3 Nonparametric and parametric boundaries

So far, we engaged only in casual comparison of the two estimated ex-
ercise boundaries drawn in Figure 3. On the parametric side, there is
uncertainty about the position of the curve because the parameters fed
in the BD algorithm are estimates of unknown parameters. Likewise,
there is uncertainty regarding the position of the nonparametric curve
as well. Indeed, the S=K ratios obtained via (3.10) may not directly
reect the exercise boundary because: (1) there is in fact a dispersion
of exercise decisions which was summarized by a single ratio per time to
maturity (see Figure 1) and (2) the index S in the ratio is the index at
the closure which may not exactly coincide with the value of the index
when the exercise decision was actually made. Even if we ignore these
e�ects, it is clear that the kernel estimation is also subject to sampling
error which we can characterize at least asymptotically.

There are essentially two ways to tackle the comparison between
the parametric and nonparametric boundaries. Given what we know
about the statistical properties of the nonparametric boundary, we could
entertain the possibility of formulating a con�dence region which, if
it does not contain the entire parametric boundary, suggests rejecting
the model. Such (uniform) con�dence regions were discussed in H�ardle
(1990), Horowitz (1993) and A��t-Sahalia (1993, 1996). The former two
deal exclusively with i.i.d. data, while the latter considers temporally
dependent data. Only the latter would be appropriate since the exer-
cise data described in Section 3.1 are not i.i.d. There are essentially
two approaches to compute con�dence regions with temporally depend
data: (1) using asymptotic distribution theory combined with the so-
called delta method applied to distribution functions of the data (see
A��t-Sahalia (1993) or (2) applying bootstrap techniques. The former can
implemented provided that the derivatives of the distribution functions
are not too complicated to compute. Since this is typically not the case it
is more common to rely on bootstrap techniques. Since the data are tem-
porally dependent one applies bootstrapping by blocks (see for instance

12



K�unsch (1989)). Unfortunately, our data are not straightforwardly in-
terpretable as time series since the exercise boundary is obtained from
observations at �xed time to maturity. This scheme does not amount
to a simple sequential temporal sampling procedure. Moreover at each
point in time one records exercise decisions on di�erent contracts simul-
taneously which have very di�erent coordinates in the time-to-maturity
and boundary two-dimensional plane. The conditions on the temporal
dependence in calendar time (such as the usual mixing conditions) do not
easily translate into dependence conditions in the relevant plane where
the empirical nonparametric boundary is de�ned (see the Appendix for
more details). Because of these unresolved complications, we opted for
another strategy similar to the one just described, but concentrated in-
stead on the parametric speci�cation. Indeed, we can use the asymptotic
distribution, namely

p
T
�
�̂T � �

�
A� N(0;
))

p
T
�
B(�̂T ; �)�B(�; �)

�

A� N [0; (@B=@�0)
(@B=@�)];

(which holds under standard regularity assumptions, e.g., see Lehmann

(1983, Theorem 1.9, p.344). The estimate of � is denoted �̂T and B(�; �)
stands for the value of the optimal exercise bound when the vector of
parameters is equal to � and the time to maturity is �: However, in our
situation the vector �̂T is obtained by stacking estimates of its compo-
nents, namely r̂T ; �̂T and �̂T ; which were computed from separate series,
with unknown joint distribution. Hence, the asymptotic normality of
�̂ may be questionable, while the covariance matrix 
 would remain
unknown.14

Clearly, we need to make some compromises to be able to assess the
e�ect of parameter uncertainty on the boundary. We should note �rst
and foremost that r̂T and �̂T play a role di�erent from �̂T : The former
two are estimates which determine the drift under the risk neutral mea-
sure. They are sample averages of observed series and computed from
a relatively large number of observations. In contrast, �̂T is estimated
from a GBM speci�cation. It is typically more di�cult to estimate yet
at the same time plays a much more important and key role in the pric-
ing (and exercising) of options. Indeed, r̂T and �̂T primarily determine
the intercept (see footnote 11), while �̂T a�ects essentially the curvature
of the exercise boundary. For these reasons, we will ignore uncertainty

14A slightly di�erent approach would consist of using Monte Carlo simulations to
approximate the distribution of B(�̂T ; �); or at least its variance if we wish to rely
on a normal approximation. For this, we need to simulate r̂T ; which cannot be done
without making any further assumptions on the economy.
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Figure 4: Parametric ( | ) and nonparametric ( - - ) estimates of the
exercise boundary with 95% con�dence bounds on the parametric bound-

ary (� � �):

regarding r̂T and �̂T and focus exclusively one the role played by �̂T in
the location of B(�̂T ; �): The con�dence bounds appearing in �gure 4
were obtained through a Monte Carlo simulation of the GBM volatility
parameter empirical distribution and its impact on that of B(�̂T ; �):

For the reasons explained above, the simulations are performed con-
sidering r̂T and �̂T as �xed. The parametric estimator of the exercise
boundary at maturity � is denoted B(�̂MLE; �) since the volatility co-
e�cient is obtained by maximum likelihood estimation. We simulate
R = 10,000 samples

�
(St ; t = 1; : : : T );  = 1 : : : R

�
of the S&P100 Index

using �̂T in (3.12). We then estimate � by �̂T � (�̂

T ; �̂


T )
0; its MLE

computed from the -th sample, and derive B(�̂MLE; �) using the BD

algorithm with � = �̂

T � (r̂T ; �̂T ; �̂


T )
0; � 2 T : For r̂T and �̂T �xed and

R large, the sample variance

V̂ R(r̂T ; �̂T ; �̂T ; �) =
1

R

RX
=1

2
4B(�̂MLE; �)�

1

R

RX
�=1

B�(�̂MLE; �)

3
5
2

; � 2 T ;
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is close to V�̂T
�
B(�̂MLE; �)

�
; the variance of B(�̂MLE; �) when r̂T and �̂T

are �xed and �̂T is assumed to be the true value of the volatility coe�-
cient. When T is large, this can be expected to be a good approximation
of V�0

�
B(�̂MLE; �)

�
; where �0 denotes the true value of �:

If we further assume that for each � 2 T B(�̂MLE; �) is approximately
normally distributed (recall that �̂ is a MLE), we can build a con�dence

interval for B(�; �) at level 1� �; whose limits are given by B(�̂T ; �) �
c�V̂

R(r̂T ; �̂T ; �̂T ; �)
1=2; � 2 T ; where c� satis�es �(c�) = 1� �

2 ; � being
the cumulative distribution function of N(0; 1):

The con�dence bands obtained in this way show clearly that, pro-
vided that r̂T and �̂T are not too far from their true values and that the
normal approximation is good enough, the two boundaries are signi�-
cantly di�erent from each other. Indeed, the nonparametric curve and

the data points appearing in Figure 4 lie outside the parametric curve
con�dence region. Before we turn to call price estimation, it is worth
noting that the uncertainty on the volatility parameter is of less impor-
tance for the exercise policy when the contract approaches its maturity.
This is expected since the volatility of the underlying asset becomes less
important in the decision of exercising the call contract, or in other words
@B(�; �)=@� � 0; for � � 0; and for any �:

4 Parametric and nonparametric analysis

of call prices

We now turn to the estimation of call option prices. As in Sections 3.1
and 3.2, we consider two types of estimators: (1) a nonparametric esti-
mator entirely based on the data and (2) a model-based (or parametric)
estimator. Along the same lines, we �rst describe the data and then
present the estimation results.

4.1 The data

We now use data sets (1) and (2) mentioned in the introduction. The
period of observation and the data on the S&P100 Stock Index are the
same as for the boundary estimation (see Section 3.1). For the same
period, we observed the characteristics (price, strike price and time to
maturity) of the call option contracts on the S&P100 Index, described
in OEX (1995). They represent daily closure prices obtained from the
CBOE was already de�ned.

15



0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

S/K

C
/K

(a)

0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

S/K

C
/K

(d)

0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

S/K

C
/K

(b)

0.6 0.8 1 1.2 1.4
0

0.1

0.2

0.3

0.4

S/K

C
/K

(c)

Figure 5: Observed couples
�
(C=K)t; (S=K)t

�
at di�erent times to ma-

turity. � = 7 days: (a), � = 28 days: (b), � = 56 days: (c), � = 84 days:
(d).

4.2 Estimation of call option prices

Since the call option price C depends on the underlying stock price S;
we may have some problems in estimating C; due to the possible non-
stationarity of S: To avoid this, we use the homogeneity of degree one
of the pricing formula with respect to the pair (S;K) [see equations
(2.6)-(2.8)] and focus on the ratio C(S;K; �)=K = C(S=K; 1; �); which
expresses the normalized call option price as a function of the money-
ness and time to maturity.15 Figure 5 shows the pairs

�
(C=K); (S=K)

�
observed at di�erent times to maturity, � = 7; 28; 56; 84 days.

Again, we consider two types of estimators depending on our as-

15The homogeneity property holds for the GBM as well as for a large class of other
processes featuring stochastic volatility. See Broadie et al. (1995) and Garcia and
(1996) for further discussion.
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Figure 6: Parametric estimate of call option price surfaces.

sumptions about the underlying economic model. The �rst estimator is
entirely based on the Black-Scholes speci�cation of the economy intro-
duced in Section 2. It is derived in two steps. First, we estimate the
parameters of (3.12) by maximum likelihood (see Section 3.2), and sec-
ond, we use these estimates in the BD routine to compute C(S=K; 1; �):

We implemented the BD algorithm with � = �̂T ; with S=K running from
0.6 to 1.4 and � from 0 to 120 days. These values match the range of the
observed values of S=K and �: The resulting surface is shown in Figure
6.

Similarly, we derive a second estimator of the same surface. This
estimator requires no particular assumptions on the economy. We simply
express the normalized call price as a function of time to maturity and
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Figure 7: Nonparametric estimate of call option price surfaces.

of the moneyness ratio S=K :

C=K = C(S=K; 1; �) + " = V (S=K; �) + "; (4.13)

where " is an error term. The unknown function V is estimated by �t-
ting a surface through the observations

�
(C=K)t; (S=K)t; �t

�
using kernel

smoothing.16 The surface appears in Figure 7.
The parametric and nonparametric estimates of the relation between

C=K and (S=K; �) are very similar in shape, and it is not easy to ap-
praise the di�erences that may exist between the two estimates by a

16For a discussion on multivariate nonparametric estimation, we refer to Hastie
and Tibshirani (1990) and Scott (1992). We used here a product of Gaussian kernels
with bandwidths h� = 5 in the time to maturity direction and hSK = :4 in the S=K
direction.
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Figure 8: Di�erence between the nonparametric and parametric �ts of

call prices (solid line |) and 95% con�dence bounds (dash lines - - -).

� = 7 days: (a); � = 28 days: (b); � = 56 days: (c); � = 84 days: (d).

direct comparison of Figures 6 and 7. Instead, we could select di�erent
times to maturity (� = 7, 28, 56 and 84 days) and extract the relation be-
tween C=K and S=K from the estimated surfaces in Figures 6 and 7 for
these given �: It is more appropriate however to re-estimate the relation
between C=K and S=K only, for � 2 f7; 28; 56; 84g: Obviously this will
produce no change in the parametric estimate. However, for nonpara-
metric estimation, we avoid some di�culties inherent to multivariate
kernel estimation [see Silverman (1986), Hastie and Tibshirani (1990)
and Scott (1992)]. We used a smoothing spline where the smoothing
parameter is chosen according to the GCV criterion. The resulting dif-
ference e(S=K; �) � ĈNP (S=K; 1; �) � ĈP (S=K; 1; �); (� = 7; 28; 56; 84
days), between the nonparametric and parametric �ts of the call price is
shown on Figure 8.
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Several remarks emerge from these �gures. We note from Figure
7 that the nonparametric estimate captures the dependence of option
prices on time to maturity, i.e., as we move away from the maturity date,
the normalized call option price increases as time to maturity gets larger,
for any �xed moneyness ratio S=K: However, this dependence dampens
out as this ratio moves away from unity. The largest di�erences occur
for \near-the-money" or at-the-money contracts.

The plots of the di�erences e(S=K; �) [see Figures 8(a)-(d)] reveal
some interesting features. First, we see that the parametric estimates
tend to underprice the call option contract, when the nonparametric
estimated relation is taken to be the true one. Although this holds for all
the times to maturity we considered (� = 7; 28; 56; 84); it is remarkable
that the discrepancy between the two price predictors diminishes as we
approach to maturity. One possible explanation for this is the following.
Suppose the observed underpricing of the parametric estimator can be
attributed to a misspeci�cation in the dynamics of the underlying asset
price process, S: Then we see that the e�ects of this misspeci�cation on
option pricing disappears as � # 0: Indeed, as the option approaches its
maturity, the degree of uncertainty on its normalized price C=K vanishes
and C=K tends to be more and more directly related to the observed
di�erence between S=K and 1 (when � = 0; C=K = (S=K � 1)+). This
is always true in option pricing models, irrespective of the speci�cation
of the dynamics of S: In particular, this is true for the GBM speci�cation
we adpoted here. A second remark about the estimation results is that,
for a �xed time to maturity, the two estimates of C=K seem to agree for
S=K close to 1. This is in accordance with the stylized facts compiled in
the literature on option pricing [see Ghysels, Harvey and Renault (1995)
and Renault (1996)]. The usual practice of evaluating \near-the-money"
options not far from maturity according to models as simple as those of
Section 2 seems to be well founded in light of the results reported in this
section.

To assess statistically the signi�cance of e;we derived some con�dence
bounds like in Section 3.3, measuring the e�ect of the uncertainty in the
estimation of � on the parametrically estimated call prices. Considering
ĈNP (S=K; 1; �) as �xed and equal to the true pricing formula, and for
a �xed �; we say that e(S=K; �) is not signi�cantly di�erent from 0
for a given moneyness ratio S=K; if 0 lies in the con�dence interval for
e(S=K; �): These intervals, derived in a similar way as in Section 3.3, are
reported in Figure 8. The results con�rm the previous remark that the
two estimates of call prices agree only for S=K close to 1.
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5 Conclusion

In this paper we proposed nonparametric estimation procedures to deal
with the computational complications typically encountered in Ameri-
can option contracts. We focused on the most active market in terms
of trading volume and open interest. It provided us with a wealth of
data on the exercise and pricing decisions under di�erent circumstances,
i.e. di�erences in time-to-maturity and strike prices, and enabled us to
estimate the functionals nonparametrically. In principle our methods
apply to any type of contract, as complicated as it may be, provided the
data is available and the suitable regularity conditions to apply nonpara-
metric methods are applicable. We also reported a comparison of the
nonparametric estimates with the nowadays standard parametric model
involving a GBM for the underlying asset. While the comparison of the
nonparametric and parametric estimated functionals raised several un-
resolved issues our results suggest large discrepancies between the two.
It obviously raises questions about the parametric models. Of course
typically practitioners will \calibrate" their parameters to the market
data instead of estimating the unknown parameters via statistical tech-
niques as we did. This may improve the �t, yet it remains limited to the
constant volatility framework modi�ed through time-varying (implied)
volatilities. The advantage of the framework we propose is that it can
be extended to deal with state variables such as random dividends etc.
(see Broadie et al. (1996)). One remaining drawback of the approach
we suggested in this paper is that it does not lend itself easily to impos-
ing absence of arbitrage conditions. However, the advantage in terms of
computing exercise boundaries and call pricing overshadow at least in
the single asset case this disadvantage.
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Appendix on nonparametric estimation

In this appendix, we briey present the nonparametric estimation tech-
niques used in the paper. We also provide references with more details
on the subject.

In this paper, we mainly used two kinds of nonparametric estimators,
namely kernel and spline smoothing. Since the issues related to these
estimation techniques are similar, we present the kernel estimator �rst
and then digress on the smoothing spline estimator.

Nonparametric estimation deals with the estimation of relations such
as

Yi = f(Zi) + ui ; i = 1; : : : ; n; (A.1)

where, in the simplest case, ((Yi; Zi); i = 1; : : : ; n) is a family of i.i.d.
pairs of random variables, and E(ujZ) = 0; so that f(z) = E(Y jZ = z):
The error terms ui; i = 1; : : : ; n; are also assumed to be independent,
while f is a function with smoothness properties which have to be esti-
mated from the data on the pair (Y; Z): Kernel smoothers produce an
estimate of f at Z = z by giving more weight to observations (Yi; Zi)
with Zi \close" to z: More precisely, the technique introduces a kernel

function, K; which acts as a weighing scheme (it is usually a probability
density function, see Silverman (1986, p.38)) and a smoothing param-

eter � which de�nes the degree of \closeness" or neighborhood. The
most widely used kernel estimator of f in (A.1) is the Nadaraya-Watson
estimator de�ned by

f̂�(z) =

Pn
i=1K

�
Zi�z
�

�
YiPn

i=1K
�
Zi�z
�

� ; (A.2)

so that
�
f̂�(Z1); : : : ; f̂�(Zn)

�0
=WK

n (�)Y; where Y = (Y1; : : : ; Yn)
0 and

WK
n is a n� n matrix with its (i; j)-th element equal to

K
�
Zj�Zi

�

��Pn
k=1K

�
Zk�Zi

�

�
:

WK
n is called the inuence matrix associated with the kernel K:
The parameter � controls the level of neighboring in the following

way. For a given kernel function K and a �xed z; observations (Yi; Zi)
with Zi far from z are given more weight as � increases; this implies
that the larger we choose �; the less f̂�(z) is changing with z: In other

words, the degree of smoothness of f̂� increases with �: As in parametric
estimation techniques, the issue here is to choose K and � in order to
obtain the best possible �t. A natural measure of the goodness of �t

at Z = z is the mean squared error (MSE(�; z) = E
h�
f̂�(z)� f(z)

�2i
);

which has a bias/variance decomposition similar to parametric estima-
tion. Of course both K and � have an e�ect on MSE(�; z); but it is
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generally agreed in the literature that the most important issue is the
choice of the smoothing parameter.17 Indeed, � controls the relative
contribution of bias and variance to the mean squared error; high �s
produce smooth estimates with a low variance but a high bias, and con-
versely. It is then crucial to have a good rule for selecting �: Several
criteria have been proposed, and most of them are transformations of
MSE(�; z): We may simply consider MSE(�; z); but this criterion is lo-
cal in the sense that it concentrates on the properties of the estimate at
point z:We would generally prefer a global measure such as the mean in-

tegrated squared error de�ned by MISE(�) = E
hR �

f̂�(z)� f(z)
�2
dz
i
;

or the sup mean squared error equal to supzMSE(�; z); etc... The most
frequently used measure of deviation is the sample mean squared er-

ror Mn(�) = (1=n)
Pn

i=1

h
f̂�(Zi)� f(Zi)

i2
!(Zi); where !( � ) is some

known weighing function. This criterion only considers the distances
between the �t and the actual function f at the sample points Zi: Ob-
viously, choosing � = ~�n � argmin

�
Mn(�) is impossible to implement

since f is unknown. The strategy consists of �nding some functionmn( � )
of � (and of

�
(Yi; Zi); i = 1; : : : ; n

�
) whose argmin is denoted �̂n; such

that j~�n � �̂nj �! 0 a.s. as n!1: For a review of such functions mn;
see H�ardle and Linton (1994, Section 4.2).18 The most widely used mn

function is the cross-validation function

mn(�) = CVn(�) �
1

n

nX
i=1

h
Yi � f̂

(�i)
� (Zi)

i2
;

where f̂
(�i)
� (z) is a Nadaraya-Watson estimate of f(z) obtained accord-

ing to (A.2) but with the i-th observation left aside. Craven and Wahba
(1979) proposed the generalized cross-validation function with

mn(�) = GCVn(�) �
n�1

Pn
i=1

h
Yi � f̂�(Zi)

i2
�
1� n�1tr

�
Wn(�)

��2 ;

where Wn is the inuence matrix.19

17For a given �; the most commonly used kernel functions produce more or less
the same �t. Some measures of relative e�ciency of these kernel functions have been
proposed and derived, see H�ardle and Linton (1994, p.2303) and Silverman (1986,
Section 3.3.2).
18See also Silverman (1986, Section 3.4) and Andrews (1991).
19This criterion generalizes CVn since GCVn can be written as n�1

P
n

i=1

�
Yi �

f̂
(�i)

�
(Zi)

�2
aii; where the aiis are weights related to the inuence matrix. Moreover,

GCVn is invariant to orthogonal transformations of the observations.
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Another important issue is the convergence of the estimator f̂�̂n(z):

Concerning the Nadaraya-Watson estimate (A.2), Schuster (1972) proved

that under some regularity conditions, f̂�̂n(z) is a consistent estimator

of f(z) and is asymptotically normally distributed.20 Therefore when

the argmin �̂n of mn(�) is found in the set �n (see footnote 20), we ob-

tain a consistent and asymptotically normal kernel estimator f̂�̂n(z) of

f(z); which is optimal in the class of the consistent and asymptotically
Gaussian kernel estimators for the criterion Mn(�):

21

While kernel estimators of regression functions (or conditional expec-
tation functions) are based on kernel estimates of density functions (see
for instance H�ardle and Linton (1994, Section 3.1)), spline estimators are
derived from a least square approach to the problem. One could think
of solving the following problem

min
g2M

nX
i=1

[Yi � g(Zi)]
2; (A.3)

whereM is a class of functions satisfying a number of desirable proper-
ties (e.g., continuity, smoothness, etc). Obviously, any ~g 2 M restricted
to satisfy ~g(Zi) = Yi; i = 1; : : : ; n; is a candidate to be a solution of the
minimization problem, which would merely consists in interpolating the
data. Even if we restrict g to have a certain degree of smoothness (by
imposing continuity conditions on its derivatives), functions g such that
g(Zi) = Yi; i = 1; : : : ; n; may be too wiggly to be a good approximation
of f: To avoid this, the solution of the problem is chosen so that functions
not smooth enough are \penalized." A criterion to obtain such solutions
is

min
g2M

nX
i=1

[Yi � g(Zi)]
2
+ �

Z
I

h
g(2)(x)

i2
dx : (A.4)

I is an interval [a; b] such that a < minfZi : i = 1; : : : ; ng � maxfZi :
i = 1; : : : ; ng < b; and g(k) denotes the k-th derivative of g: The integral
in the second term of (A.4) is a measure of the degree of smoothness
of the function g since it can be interpreted as the total variation of
the slope of g: Then for � high, we penalize functions which are too
wiggly and we move away from solutions that tend to interpolate the
data. If � becomes too high, we decrease the goodness of the �t. In the

20 The regularity conditions bear on the smoothness and continuity of f; the prop-
erties of the kernel function K; the conditional distribution of Y given Z; the marginal
distribution of Z; and the limiting behavior of �̂n: The class of �̂ns which satisfy these
regularity conditions is denoted �n:
21By de�nition, the choice � = ��n is optimal for the criterion D(�) if

D(��n)= inf�2�n D(�)
a.s.
�!
n!1

1:
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limit, if � ! 1; the problem tends to minimizing the second term of
(A.4), whose solution is a function that is \in�nitely smooth." Such a
function is a straight line which has a zero second derivative everywhere.
Conversely, if �! 0; the solution of (A.4) tends to the solution of (A.3)
which is the interpolant. Therefore, the parameter � plays exactly the
same role as in kernel estimation.

WhenM is taken as the class of continuously di�erentiable functions
on I; with square integrable second derivative on I; the solution of (A.4)

is unique and is a natural cubic spline, which we denote by f̂� [see Wahba
(1990, p.13{14) and Eubank (1988, p.200{207)]. By natural cubic spline,
it is meant that, given the mesh on I de�ned by the order statistic Z(1) �
Z(2) � � � � � Z(n); f̂� is a polynomial of order three on [Z(i); Z(i+1)]; i =
1; : : : ; n � 1; with second derivatives continuous everywhere, and such

that f̂
(2)
� (Z(1)) = f̂

(2)
� (Z(n)) = 0: It can be shown [see H�ardle (1990,

p.58{59)] that the spline f̂� is a linear transformation of the vector of
observations Y; i.e.,

f̂�(z) =

nX
i=1

w�
i (z)Yi: (A.5)

A result of Silverman (1984) proves that the weight functions w�
i behave

asymptotically like kernels. If we write (A.5) for observations points

Z1; : : : ; Zn; we have
�
f̂�(Z1); : : : f̂�(Zn)

�0
=WS

n (�)Y where the inu-

ence matrix WS
n (�); has its (i; j)-th entry equal to w�

j (Zi) [see Wahba
(1990), p.13]. This matrix is explicitly derived in Eubank (1988, Section
5.3.2) and is shown to be symmetric, positive de�nite.

It appears that, like kernel estimators, spline function estimators are
linear estimators involving a smoothing parameter and are asymptoti-
cally kernel estimators. Therefore, the criterions for selecting � described
above also apply for spline estimation (see Wahba (1990, Sections 4.4 and
4.9) and Eubank (1988, p.225{227)).

Things are a little bit more complicated when the errors are not
spherical. Under general conditions, the kernel and spline estimators re-
main convergent and asymptotically normal. Only the asymptotic vari-
ance is a�ected by the correlation of the error terms. However, the
objective functions for selecting � such as CVn or GCVn do not pro-
vide optimal choices of the smoothing parameters. It is still not clear
in the literature what should be done in this case to avoid over- or un-
dersmoothing.22 Two kind of solutions have been proposed. The �rst
one consists in modifying the selection criterion (CVn or GCVn) in or-

22Altman (1990) shows that when the sum of the autocorrelations of the error term
is negative (positive), then the functions CVn and GCVn tend to produce values for
� that are too large (small), yielding oversmoothing (undersmoothing).
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der to derive a consistent estimate of Mn; and the second one tries to
orthogonalize the error term and apply the usual selection rules for �:
When the autocorrelation function of u is unknown, one has to make the
transformation from sample estimates obtained from a �rst step smooth.
In that view, the second alternative seems to be more tractable. Altman
(1987, 1990) presents some simulations results which show that in some
situations, the whitening method seems to work relatively well. How-
ever there is no general result on the e�ciency of the procedure. See
also H�ardle and Linton (1994, Section 5.2) and Andrews (1991, Section
6).

When the observed pairs of (Y; Z) are drawn from a stationary dy-
namic bivariate process, Robinson (1983) provides conditions under which
kernel estimators of regression functions are consistent. He also gives
some central limit theorems which ensure the asymptotic normality of
the estimators. The conditions under which these results are obtained
have been weakened by Singh and Ullah (1985). These are mixing condi-
tions on the bivariate process (Y; Z): For a detailed treatment, see Gy�orfy
et al. (1989). This reference (Chap. 6) also discusses the choice of the
smoothing parameter in the context of nonparametric estimation from
time series observations. In particular, if the error terms are indepen-
dent, and when �̂n = argmin

�2�n
CVn(�); then under regularity conditions

�̂n is an optimal choice for � according to the integrated squared er-

ror, ISE(�) =
R h

f̂�(z)� f(z)
i2
dz (see Gy�orfy et al. (1989, corollary

6.3.1)). Although the function CVn(�) can produce an optimal choice
of � for the criterion Mn(�) in some particular cases (such as the pure
autoregression, see H�ardle and Vieu (1992)), there is no general result
for criterions such as MISE(�) or Mn(�):

The most general results concerning the convergence of nonparamet-
ric kernel estimators of regression functions seem to be found in A��t-
Sahalia (1993). In this work, very general regularity conditions which
ensure the convergence and the asymptotic normality of functional es-
timators, whose argument is the cdf which has generated the observed
sample, are given (A��t-Sahalia (1993, Theorem 3, p.33{34). This re-
sult is derived from a functional CLT for kernel estimators of cdfs (A��t-
Sahalia (1993, Theorem 1, p.23) combined with a generalization of the
delta method to nonparametric estimators. Therefore, provided that the
asymptotic variances can be approximated, one can apply usual Wald-
type tests or con�dence regions to make proper statistical inference.
When the asymptotic distribution is too complex, a block bootstrap-
ping technique, specially adapted to resampling from dependent data,
can be used (see K�unsch (1989), Liu and Singh (1992) and A��t-Sahalia
(1993)). Although this method is very general, a mixing condition is
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required when dealing with dependent data. Even though this condition
allows for many types of serial dependence, application of these results
in the context of Sections 3.1 and 4.2 is not straightforward. Indeed, in
the case of nonparametric exercise boundary estimation as well as in call
price estimation, the data points from which we derive our estimates are
not sampled via a simple chronological scheme. In the case of exercise
boundary estimation, the data points we use are weighted averages of
observations of ordinary time series. In the case of call price estimation,
the di�culty comes from the panel structure of option prices and strike
prices. In both cases it is not obvious to see how the original depen-
dences characterized in calendar time translate in the dimensions we are
looking at. This makes the aforementioned approaches developed for
dependent data more di�cult to justify and implement.
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