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Factor Analysisand Independent Component Analysisin
Presence of High Idiosyncratic Risks

Thierry Vessereau'
Résumé / Abstract

Cet article traite le cas d'un marché d'actions dont les rendements sont
susceptibles d'étre expligués par une structure factorielle. Sur le marché
ameéricain, il est montré que des risques idiosyncratiques élevés existent pour la
plupart des actions quelgue soit le modéle d'évaluation utilisé (CAPM ou APT).

La présence de ces risques idiosyncratiques élevés peut empécher une évaluation
correcte des facteurs générant les rendements, lorsqu'une méthode d'analyse
factorielle classique est utilisée. Il est ici proposé d'utiliser la méthode de
'Analyse en Composantes Indépendantes (INCA), reposant sur les réseaux
neuronaux, pour parvenir a une évaluation correcte des facteurs; cette méthode
permet de prendre en compte la majeure partie de l'information contenue dans les
distributions des rendements des actions, en utilisant les moments d'ordre élevé de
ces distributions. A l'aide de simulations de marchés artificiels, pour lesquels
différentes hypotheses des processus de générations des rendements sont retenus,
il est montré que la méthode de I'INCA permet une amélioration significative de
I'estimation de la structure factorielle, en particulier lorsque des composantes
idiosyncratiques élevées sont présents dans les les rendements des actions. Dans
ce dernier cas, une méthode classique d'analyse factorielle, comme I'Analyse en
Composantes Principales, peut échouer totalement dans I'estimation des facteurs.

This paper addresses the case when stock market returns are assumed
being generated through a factorial structure. High levels of idiosyncratic risk are
shown to exist for most stocks on the US market, when CAPM or APT are used for
the estimation of diversifiable risks. The presence of these high idiosyncratic risks
may not allow a correct estimation of the generating factors when using a classic
factor analysis method. The Independent Component Analysis is introduced as an
adequate method for factor estimation; using neural networks, this method allows
taking into account the information contained in higher moments. Through
simulations of markets with various assumptions on the kind of processes followed
by the generating factors, this method is shown to strongly improve the factors
estimation, especially when high idiosyncratic risks are present. In the latter case,
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a traditional factor analysis, such as the Principal Component Analysis, may fail
to estimate the generating factors.

Mots Clés : Analyse en composantes indépendantes, analyse en composantes principales,

modele d'évaluation par arbitrage, risques idiosyncratiques

Keywords. Independent component analysis, principal component analysis, arbitrage pricing

theory, idiosyncratic risks



1 INTRODUCTION

Multifactorial analysis of stock returns shows an increasing interest since the develop-
ment of the Arbitrage Pricing Theory (APT) by (Ross 1976) and extensions of this theory.
If the parameters of the Capital Asset Pricing Model (CAPM) are well known (the market
portfolio and the sensibilities of the stocks to this portfolio), one challenge of the APT is
that the generating factors are a priori unknown. These factors are either to be assumed
as derived from some observable series, following the work of (Chen, Roll, and Ross 1986)
for instance, or must be estimated from the series of stock returns. As the generating fac-
tors constitute one of the assumptions of the model, empirical analysis of the APT hence
depends on the correct preliminary estimation of the generating factors. Existing studies
of APT show however evidence that the rightness of the factor estimation are subject to
discussion. On a first hand, the estimated factors usually can not be identified to any known
data series, except the market portfolio returns, and it could be expected from the model
that all the estimated factors could more or less be identified. On a second hand, as it is
shown for instance by (Dhrymes, Friend, and Gultekin 1984), the factors estimation is not
stable when a smaller period or less assets are used: the number of factors increase when
more assets are considered, which can reject the assumption of the existence of a generating
structure. In this paper, it is studied in which conditions the estimation of factors can be
successfully led. It is put in evidence that the presence of high-level risks is not innocent in
the factors estimations process and may not allow a correct estimation of the factor series

by classical factor analysis.

Review of APT principles and studies are briefly described in section 2. It is proposed
in section 3 to use an alternative method to the classical factors analysis methods, the
INdependent Component Analysis method (InCA), which was originally proposed by (Her-
ault and Jutten 1991) and lays on neural networks techniques. InCA includes high-order

correlations between stock returns in order to perform a better factor analysis.

Methods for estimating factors are usually methods that were originally developed for
observable processes in which noises could be neglected or of a small effect. In section 4, evi-
dence is shown on the US stocks market that high noises (or in financial terms, idiosyncratic
risks) exist for most of the stocks, in the sense that these risks are of the same level or even

greater than the diversifiable risks calculated by the CAPM or the APT. In order to test the



impact of high-level residual risks on the factors estimation, and to perform comparisons
between methods, stock markets are simulated in section 5, with various assumptions on the
generating processes of the factors and noises (brownian motions, stochastic volatility pro-
cesses and jump processes), and various levels of idiosyncratic risks (noises) are introduced.
Section 6 tests the behavior and performance of the estimations for these various simulated
markets when INdependent Component Analysis or Principal Component Analysis is used.
The stability of the estimations is studied when only a few assets, or smaller periods are

used. Finally section 7 concludes the paper.

2 ARBITRAGE PRICING THEORY

The Arbitrage Pricing Theory was proposed by (Ross 1976) as an alternative to the
Capital Asset Pricing Model developed by (Sharpe 1964), (Lintner 1965) and (Mossin 1966).
The fundamental assumption of the model is that the ¢ = 1..N stocks returns are linearly

generated by a small number of K common factors:
i = B[] + bi181 + biada + ... + bix Sk + &, (1)
where

e 5; is a factor with no correlation to any other factor and b;; is the loading of this factor

7 for the i-th asset;

o the expectations of the errors €; are zero, their variances are bounded and the errors are
mutually independent and independent of factors; in mathematical terms: E[¢] = 0,

02(&;) < 0o, E[|&;] =0, Vi # j and E[¢|3;] = 0, Vi, k.

With the assumption that returns are generated through this factorial structure, (Ross
1976) derives from non arbitrage principles that there exists (K + 1) coefficients A\, A1, ...,

Ax such that for every asset i:

E[’I:Z] = Xo + Abj1 + ... + Axbik, (2)
where )\ is the risk premium for an asset with no sensibility to any of the market factors
(zero-beta portfolio or riskless asset) and Ay is the risk premium for the k-th factor.

In Ross model, the APT relation is an exact relation if diversifiable risk can be eliminated.

Ross presumes that the number of assets is large enough such that the covariance matrix of



the errors can be considered as diagonal. (Huberman 1982) and (Ingersoll 1984) develop the
Ross model by considering a sequence of economies with an increasing number of risky assets,
which allows them to derive bounding errors for the relation. The APT as an equilibrium
model is developed by (Connor 1984), (Chen and Ingersoll 1983), and (Grinblatt and Titman
1987), by adding the assumption that it is possible for one investor to diversify his portfolio
without restraining his choices. With this hypothesis, for which conditions are studied by
(Chen and Ingersoll 1983), (Grinblatt and Titman 1983), (Grinblatt and Titman 1987),
(Wei 1987), the APT relation may actually be written as an exact relation and the APT
as an equilibrium model. Derivations of the APT as an equilibrium model with a finite
number of assets implies that the factorial structure is an approximative structure, which

case is considered by (Chamberlain and Rothschild 1983).

As it was noticed before, the APT fundamental assumption is that the returns are
generated by factors, which are mutually independent. In order to test the model, more
assumptions must be added, for instance the factors are assumed to be stationary processes
and the factors loadings are assumed to be constant. In this paper, conditions for a correct
factor estimation are discussed and it is assumed that other assumptions on the generating
structure are correct. With a matrix notation, the APT assumption is that the zero-meaned

observed returns ¥(¢) at time ¢ are generated through the linear transform:
r(t) = AS(t) + &, (3)

where A € R™™ is an unknown mixing matrix, and &; is a noise term. The term &; will
here be omitted as it can not be separated from input signals; § and observed T are assumed
to be of expectation zero. The first step is hence to estimate the factors §(¢) (and the matrix
A), and to recover the original signals from the observations ¥(t¢), by a linear transform of

the following kind:

y(t) = W), (4)

where y(¢) are the mutually independent recovered signals which approximate the actual
input signals §(¢), and W € R™*" is a de-mixing matrix. In a most general way, the estima-
tion is a blind estimation as neither the actual input signals, nor the mixing characteristics,
nor the signals characteristics (high or low bandwith, deterministic or not, etc.) are known,

the only assumption being that sources are mutually independent and that the mixing is



a linearly process. Two indeterminations are inherent to the problem: it is impossible to
know neither the order of the signals nor their amplitude, hence the estimated signals y ()

are at best a transformation of actual input signals s(t):
y(t) = DP5(), (5)

where D is a diagonal matrix, and P a permutation matrix (at best) or a rotation matrix.
Both matrices D and P can not be determined; in practice, variances of signals (factors)

are normalized to one (D =1I).

Various methods exist in order to estimate the matrix W. Two methods will here be
used in order to compare the results of the Independent Components Analysis which is
later proposed. The method of Principal Component Analysis consists in choosing the K
first principal components in order to represent the maximum of the dispersion of the N
returns. The classical PCA uses the N x N matrix of the covariance matrix of the assets of
which the K eigenvectors corresponding to the highest eigenvalues are retained. The second
method which will be used follows (Connor and Korajczyk 1986) who propose to use the
T x T covariance matrix of the 7" observations rather than the N x N covariance matrix of
assets, as a way to improve the estimation of the factors. One problem of this method is of
course that it is much more computer-time expensive than a classical Principal Component

Analysis'.

Almost all APT empirical studies use either factor analysis in order to estimate the
portfolios replicating generating factors, like in the seminal study of (Roll and Ross 1980), or
Principal Component Analysis (PCA), as in (Connor and Korajczyk 1988). One alternative
method based on an autoregressive approach was proposed by (Mei 1993). Usual results of
these studies is that the number of necessary factors is between three and five. These results
are found for instance by (Roll and Ross 1980), (Lehmann and Modest 1988) or (Connor
and Korajczyk 1988). Mei finds that at least seven factors are necessary. But, as found by
(Trzcinka 1986) or (Dhrymes, Friend, and Gultekin 1984), the number of factors increases
as the number of assets increase, and the estimated factor structures are not the same on
different samples. This non stability of factors is a severe problem for APT, as it could

reject the assumption of a generating factor. An other explanation of this unstability is that

'The third method which is commonly used is factor analysis. It is shown however by (Chamberlain and
Rothschild 1983) that PCA and factor analysis are asymptotically equivalent. The PCA methods are used
for comparison because they are the more similar to the InCA method which is proposed in the paper.



the methods used in order to estimate the factors lead to wrong estimations. This paper
focuses on the latter explanation, by showing that existence of high-level idiosyncratic risks

may bring severe problems in estimation of factors through traditional factor analysis.

3 INDEPENDENT COMPONENT ANALYSIS

One natural way to correct the problem of a wrong estimation is to add more information
in the component analysis; the method of Independent Component Analysis developed in
this section can bring a solution as the method includes high-order statistics to perform
the analysis. The method uses neural networks techniques which have shown large interest
in the late years in nonlinear analysis but also as a way to modelize and easily improve

well-known classical linear analysis.

One first application of neural networks to data analysis was for the estimation of the
principal components. (Oja 1982) first proposes to use a network allowing to estimate
the first principal component and the algorithm is extended to the case of K principal
components by (Oja and Karhunen 1985), and (Sanger 1989) who treats the case of local
minima. Figure 1 represents the architecture of neural networks which are used in these
methods: the network is composed of one input layer with N cells and one output layer
with K cells. Observed signals (returns) are presented to the input layer, and the output

layer gives, after convergence of the network, the estimated factor series.

Noting x(¢) the zero-mean N-vector of input signals ¥(¢) (the observed signals) and y(¥)
the K-vector of output signals (which are the generating signals to estimate), the response
of the neural network is computed as: y(¢t) = Wx(¢), where W is a K X N mixing matrix.

The goal of the algorithm is to minimize the costs function e(W):
L2
(W) = el ()

where e = x — X and with *x = W'y = W/Wx. Minimization of this function leads to the

following learning algorithm at each step k:

Wk +1) = W(k) +n(k)[x' (k) — y' (k)W (K)]. (7)

Karhunen and Oja demonstrate that the algorithm converges to a linear combinaison of

the K principal eigenvectors of 2. Principal Component Analysis using neural networks has



some subject-to-discussion advantages to the classic estimation method: it allows continuous
learning from observed vectors, but adaptation of the mixing matrix is not always desirable
as this tends to loose old informations; an other advantage of neural networks is that the
variance-covariance matrix {2 has not to be estimated, but this advantage depends on the
actual convergence time needed by the neural networks, which can be the same or greater
that the time needed for one 2 estimation. Both algorithms lead however to the same

results.

(Herault and Jutten 1991) propose to use an alternative approach to Principal Compo-
nent Analysis, referred to as Independent Component Analysis (InCA). In order to estimate
generating factors, InCA is designed not to search the principal components, which allow to
represent the maximum of the returns dispersion, but the more independent factors which
can linearly generate the returns. The algorithm includes higher order statistics than the
second order moments (covariances) which are used by the PCA. Neural network used by
(Herault and Jutten 1991) and following extensions are recurrent networks using nonlinear
learning rules, which architecture is the same as the PCA neural networks architecture (fig-
ure 1). The goal of the algorithm is to find the mutually independent input signals y;(t)

satisfying for every pair of signals (i,7) and for different values of parameters k and I:
Bl )yl ()] =0, Vi,j. (8)

Herault and Jutten propose to use the even functions as output nonlinear functions:

{w(y) = (B1y)®
P(y) = B3 tanh(Bey)

where (1, 82,83 are strictly positive numbers. Taylor expansion of the product of these

(9)

2k+1

functions gives a sum of terms in y , which all have to be zero to assure the convergence

in a high-order statistics framework.

As Herault and Jutten algorithms treat only the case of two sources, and can not be
easily extended to the case of more sources, various derivations have recently been done for
this algorithm. For example, (Oja and Karhunen 1995) under the name of principal non-
linear component analysis, (Bell and Sejnowski 1995) through maximization of the entropy,
(Cichoki, Unbehauen, Moszczynski, and Rummert 1994), or (Cardoso and Laheld 1996)
under the name of equivariant adaptative algorithm. I will here use the (Amari, Cichocki,

and Yang 1995) algorithm derivation, which lays on the Kullback-Leiber divergence measure



and the Gram-Charlier expansion for stochastic variables. The divergence between signals
y;, © = 1..K, is measured by the Kullback-Leiber measure between joint distributions and

product of marginal distributions, which is written as:

/ y)Inp(y) (10)
H¢ 1 Pi(Yi lnpz(yz)

The key of the algorithm consists in applying a 4-th order Gram-Charlier expansion

to approximate the marginal distributions p;(y’). It is beyond this paper to make this
development, which can be found in (Amari, Cichocki, and Yang 1995). The Kullback-
Leiber divergence measure D(W) is used as the cost function of the network and developing

the gradient descent algorithm leads to the general learning rule:
W(k+1) = W(k) +n(t)[I- f(y)y' |W(k), (11)

where the activation function f(y) is defined by:

29 , 47 5 14 , 254 3 .,

f(y)zzy R Ay AR A (12)

At each step, yi is calculated as y, = Wxy, where x;, = W'yy.

The initialization of the network and the learning parameter 1 have a crucial importance
for convergence performance. Here the initial value of W will be set as the value given by the
PCA method; 7 is assigned a great value at the beginning of the algorithm (avoiding overflow
traps), and is gradually decreased to 0. The algorithm converges to a unique solution with

a correct choice for n and provided that the following conditions (14) are satisfied.

The choice of a 4-th order Gram-Charlier expansion is an arbitrary choice and the ex-
pansion could have been done at a higher level, but this do not give much improvement to
the algorithm and computing time would be considerably increased. This 4-th order expan-
sion allow to treat information included in dependencies of 3-th and 4-th order moments.
As it is usually observed on financial markets, skewness and kurtosis is an important part
of distributions and inclusion of these higher-order dependencies may hence allow better

estimations.

The mathematical and statistical context of the InCA principles are first studied by
(Common 1994). Study of the algorithm convergence and stability is led by (Cardoso and

Laheld 1996) who consider sources with strong skewness components. (Amari, Chen, and



Cichocki 1997) study the algorithm stability in a more general framework when the learning

rule of the algorithm is given by (11). Defining

K = E[f(y:)], (13)
for the observed signals y;, with f(y) = %gjy), the learning algorithm is stable if the following
conditions are verified :
m; +1>0,
ki >0, (14)
0,0 jkikj > 1,
for all signals y;, y;. With these conditions, the algorithm converges, and converges to a

unique solution.

The use of Independent Component Analysis seems appropriated in the Arbitrage Pric-
ing Theory framework. One default of PCA and generally of factor analysis is that the
method do not search the independent components which generate the returns, but prin-
cipal components. It will tend to isolate the components with the greater impact on the
market, while taking into account only the two first moments. As it is noted by (Connor
and Korajczyk 1988), this may tend to extract a sole principal factor. InCA tries to find a
succession of components which are statistically the more independent possible; this point
of view seems more in agreement with APT principles. The second advantage of the method
is that it uses high-order statistics, hence the greatest part of the information which can be
used considering only past returns. The inclusion of these high-order moments is likely to
allow a more appropriate estimation. As it will be seen in the remaining of this paper, this

is especially the case when high-level idiosyncratic risks exist on the market.

4 HIGH IDIOSYNCRATIC RISKS: EVIDENCE FROM THE US MARKET

The ideal framework for factor analysis is when observed signals are linearly generated
by a set of input signals and when noises are mainly due to observation errors and small
errors in signal transmissions. The case of a financial market is slightly different. If it can
be assumed that stock returns are dependent on a small set of macro or micro-economic
factors, these assets represent nevertheless firms with various inner lives. Specific factors

can not only be considered as negligible noises, but also as firms specific behaviors. The only



assumption of classic pricing models is that the specific returns are mutually independent
and can not be diversified, besides the fact that they are equal to zero in expectation. If
these assumptions are accepted, idiosyncratic risks can however be important and it is here
shown that their values can be as important as the part of risks which is diversifiable. As it
will be seen later, the fact that these idiosyncratic risks are important can lead to inaccurate

factors estimations when using traditional factor analysis.

To show the level of residual specific risks on factor estimation, a 4 year period was used
going from January 1, 1994 through December 31, 1997. All the US stocks daily prices
available from Datastream historical database in this period of time had been downloaded?.
Returns were computed from the prices as logarithmic returns. Only stocks existing on
the whole period were retained and among them only stocks with at least 60% of non-
zero returns, in order to decrease the effect of a possible liquidity premium. Through this
procedure, 1157 raws of stocks returns could be used. Two data sets were built. In the first
set, assets were alphabetically sorted and grouped in 76 portfolios, each portfolio containing
15 or 16 stocks. In the second set, 120 stocks were randomly selected from the 1157 available

stocks.

It is assumed that the zero-meaned N-vector r; of daily returns are generated through

the factor structure:
r; = AS; + €. (15)

where T; is a K-vector of factors realisations, A the N x K of factors loadings, and & =
r; — AS; are noises or specific factors. It is assumed that the model is correct and that the
only sources of risks are the factors §; or the specific factors €;. It is also assumed that the
factors loadings are constant for every asset. Let us define the vector of global risk &, on

individual stocks as:
& = diaglcov ()], (16)
the diversifiable component of risk &;:
€ = diaglcov((A8y)")], (17)
and the remaining specific risks &;:

¢s = diaglcov(&)] = diaglcov((F; — AS;)")]. (18)

2The data were retrieved from the Datastream connexion at University of Geneva, Switzerland.



It can be expected that &, ~ £; + &, depending on the diagonality of the errors €.

On the two data sets, the values &, £; and & were computed for three models: the
CAPM and two versions of the APT for which respectively 5 and 10 generating factors
are considered. For the CAPM, the unique factor is the market portfolio: §; = T the
Datastream Vontobel index has been used as a proxy for the market portfolio returns ',
and A is the usual beta vector 8 = (81, f1, ..., Bn), where the §;’s, i = 1..N, are defined by
Bi = 0im/0om. For the APT, Principal Component Analysis or Connor-Korajczyk method
are used to estimate the factor loadings A and the factor series s;, and the number of factors

is set as a rather high number of 10.

For sets of portfolios and of individual stocks, levels of computed risks are sorted and
displayed respectively in figures 2 and 3. The minimum and maximum values, means and
standard deviations of &, £; and &, are reported for both sets in table 1. The analysis of
residual risks shows that the level of these risks can be of the same order or greater than
the diversifiable risks. When individual assets are considered (figure 3), the idiosyncratic
risks are much higher than the diversifiable risks, for all the models. Using portfolios (figure
2) decreases the part of idiosyncratic risks, as it could be expected from the smoothing
effect of building these portfolios. Residual risks stay however high even when portfolios
are used. They are greater than the diversifiable risks calculated for the CAPM and can
not be neglected even when a rather high number of factors are used in the APT. It can be
argued that not enough factors are introduced in the structure. A number of ten factors is
however greater than the number of factors which are considered by most studies of APT

in US market.

Figures 2 and 3 give also a good indication of the way that models work when factors
are added to the structure. CAPM catches an almost constant level of risks across assets or
portfolios, whatever the global risk of individual assets or portfolios. When adding factors,
the new model catches the risks of assets or portfolios containing the most important residual
risks. This shows a rather not intuitive behaviour of the model in a financial market: the
addition of one factor covers in preference the asset with the higher residual risk, and the
method seems to behave as if this asset series was actually added into the structure. Finally,
Connor-Korajczyk method seems to lead to a model with lower explanatory power as the

diversifiable risks are always lower than the diversifiable risks obtained by the classical PCA

10



method.

It can be argued that as long the idiosyncratic risks are not diversifiable, the estimation
of factors do not suffer of their presence. This should be true if these risks were small. What
is found is that idiosyncratic risks are not negligible but of the same level of diversifiable
risks and moreover not uniform. When estimating the covariance matrix, idiosyncratic
variances will mix with the diversifiable variances in an unknown way as these variances
can be more or less important. This can be neglected if there are idiosyncratic risks are
small or uniform; when this is not true, as it seems to be the case, estimation may become
inaccurate. By simulating artificial stock markets in the following sections, it will be shown
that classic factor analysis can dramatically fail to estimate the factorial structure when

high idiosyncratic risks exist.

5 SIMULATED MARKETS

In order to empirically test the factor estimations when stocks are generated through
a factor structure, three types of markets were simulated with different assumptions on
the generating stochastic processes and with different levels of idiosyncratic risks for each

generated stock in the market. Returns 7;; of one stock ¢ are generated following the model:
K

Fir =X+ > bikdre + pwici, (19)
k=1

where §j; are the simulated generating factors, b;; the loadings of the factors for asset ¢, &

a blank noise with standard deviation w;, and p a parameter allowing to control the level of

specific risks.

In a first step, factors Si; and noises € are generated. The K number of factors is set
as K = 2. Three types of markets are generated, referred as A, B and C, depending on the
assumptions which are made on the processes followed by factors and noises. Factors and

noises, i.e. assets specific factors, are assumed to follow the same type of process.

e In the first market A, factors correspond to log-normal prices, generated through the

geometric brownian motion:
dX(t) = pX(t)dt + o X (t)dz, (20)

where dz; is a Wiener process. For all series, o is a constant equal to an annualized

value of 0.14, and p is set to zero.

11



e In the second market B, factors follow a stochastic volatility model. In this model,

the factors X follow a stochastic process:

dX(t) = pX(t)dt + 04 X (t)dz1, (21)
where the volatility oy is such that In o, follows a mean-reverting process:

dlno = f(a — Ino)dt + ydzs. (22)

The value of a has been set to -4.968, corresponding to a mean-reverting level of 0.11
on a annual basis. Values of # and v have been set respectively to 0.0316 and 0.0949,

corresponding to annualized values of 0.5 and 1.5.

e Finally, the third market C is generated through a jump-process:
dX (t) = [aX(t) — XX (t)y(t)]dt + o X (t)dz + y(t)dQy, (23)

where o is the instantaneous expected change in X per unit of time, o2 is the in-
stantaneous variance of the change in X, conditional on the change being a brownian
motion outcome, A is the probability per unit time that the change in X is a jump
process outcome, y(t) is the random variable outcome for the change in X, conditional
on the change being a jump process outcome. The value of A has been set to 0.05
(corresponding to a mean of one jump every 20 observations), and y(¢) has been taken

as a normal random value with standard deviation equals to 3.50.

For each of the three markets, factors and noises have been generated with the same kinf
of processes, leading to the generation of (N + K') independent series. As series are randomly
generated but finite, the covariances are not strictly zero; these covariances are small but
as levels of noise is controlled in a second step, it would be impossible to assure reasonable
independence between noises and factors. The independence at level two is assured by
performing the following transformation: let us define the (N + K) x T matrix X = [f; €],

this matrix is transformed into a new matrix X* by
X* = VD ?y'X, (24)

where V' is the matrix of eigenvectors of Q = XX’ and D is a diagonal matrix with eigen-

values of X on the diagonal. New factors &* and noises €* are taken as X* = [F*; €*], which
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*

assures that covariances between new noises €* and factors r*, as long as the covariances
of errors and of factors are zero. After this final transformation, the means of factors have
been rescaled to annualized values of respectively 0.16 and 0.8 and their annualized stan-
dard deviation to 0.14. Simulation use a number of N = 100 stocks observed on 7" = 1000
times. This number of stocks is a realistic number on small markets (like the Swiss market
for instance), and T = 1000 data for each stock would correspond to four years of daily
data or twenty years of weekly data. Finally, factors loadings are randomly selected. As

actual betas in financial markets are not uniformly distributed, the loadings are taken from

a Student law with a d.f. of 10. The means of factors loadings are forced to be one.

Statistics of the generating factors for the three markets are reported in table 2 together
with statistics on the market indices for seven stock markets from 1984 until 1997. This table
gives an idea of the realism of the simulatged markets: the mean and standard deviation
are compatible with what is observed on most international markets. The kurtosis of the C
market (jump-process) is compatible with the actual observed kurtosis which are important
in all the markets, indicating the existence of fat tails; the skewness of actual markets is
not perfectly approached by the simulated markets: the simulated B market (stochastic
volatility) has the most important component of skewness. Finally the market A (generated
by geometric brownian motions) seems the less realistic in respect to the actual markets

statistics.

After the generation of factors and of factors loadings, noises are added to the structure.
For each market, different levels of noises are added. All noises have been standardized to
have mean 0 and their standard deviations w; have been randomly taken from a Student law
with a d.f. of 10. The level of idiosyncratic risks compared to the level of diversifiable risks
are controlled through a parameter § which will vary from 0 (no noise) to 2 (idiosyncratic
risks are twice as important as the diversifiable risks). This value of ¢ is obtained by setting
the value of p in equation (19) in order that the mean of the standard deviations of pwje;
(specific risks) divided by the mean of the standard deviations of I'; = >, bix(skt — 5k)

(diversifiable risks) is equal to ¢:

N 2 1
Zi:1 Wy €€,

d=p- —_—
Zi:l \/Pir;

For each type of markets A, B and C, 40 markets are generated with a value of § varying

(25)
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from 0.05 to 2. Figure 4 displays the global and residual risks for the generated market
of type A (gaussian processes). Comparing with the risks which were obtained on actual
markets and displayed in figures 2 and 3, a value for § around § = 1 seems the more realistic
case when portfolios are used, but a value as high as § = 2 seems realistic when individual
stocks are considered. The value of § = 1 corresponds to a case where the mean of the
residual (isosyncratic) risks of assets is equal to the mean of the diversifiable risks. The
realism of these values is confirmed when examining the twenty largest eigenvalues which
are displayed in figure 6 for both the simulated markets with different values of §, and for
US market when individual assets or portfolios are considered: the shape of the eigenvalues
function corresponds to a value of § around 2 when individual assets are considered, and

between § = 0.75 and § = 1.25 when portfolios are considered.

6 FACTOR ESTIMATIONS ON SIMULATED MARKETS

The three markets simulated in the previous section have been used to estimate the
factors by considering only the generated stock returns. The results of Independent Com-
ponent Analysis are compared to the results given by Principal Component Analysis and to
the results given by the Connor-Korajczyk method. In a first try, small noises (§ = 0.05) are
added to each stock returns, that is a small part of the stock risk is due to its idiosyncratic
risk. In a second try, high levels of noises are introduced; these risks will be of the same

level or greater than the diversifiable risks due to the factors.

6.1 Markets with small noises components (6 = 0.05)

In a first step, only small noises are added, and the value of ¢ is fixed to 0.05. This
corresponds to an almost perfect case where almost all the stock risks are diversifiable, and
the only variations from the diversifiable returns can be seen as information transmission
errors. The §;; generating factors have been estimated by PCA and by InCA. In order to
test the estimation performance, the following regressions were led for the two factors sy

and s9; which actually generated the returns:
s1¢ = a10 + a1181; + a1282; + Ny

(26)
Sot = a0 + a2181¢ + a2282¢ + N2y
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Results of these regressions are reported for the three analysis methods and for the three

types of markets A, B and C in table 3.

In the case of the gaussian market (market A), Principal and Independent Component
Analysis should theoretically show the same behaviour. Indeed, moments of 3-th order are
null and 4-th order are not discriminant. In this case the algorithm is equivalent to the
Oja and Karhunen algorithm for Principal Component Analysis. As expected, factors are

correctly estimated for all the decompositions, with R? near to one, but have been rotated.

A remarkable fact is that the estimated factors are almost equal to the actual factors for
Independent Component Analysis when considering market B or C, for which skewness and
kurtosis exist. In this case, Independent Component Analysis allows finding factors which
are very near to the actual factors, with a negligible rotation part. This is illustrated in
figure 5 where estimated factors are compared to the corresponding actual factors. It must
be noticed, however, that the order and the scale are not determined, and some factors may
be of opposite sign to the real factors. InCA method can decrease rotation problems of
factor estimation when there exist significant skewness and kurtosis components. As it is
usually concluded, the rotation of factors is however not a fundamental problem in a financial
framework as the main goal is to catch the generating space. Avoiding factor rotations can
nevertheless make easier the identification of factors; moreover if the significativity of the
factor premiums are considered as a criteria for deciding on the number of factors, the

estimated factors should not be rotated during the components estimation.

6.2 Markets with various levels of noises

As noticed above, additional terms in the factorial structure should not be considered in
financial markets as only measurements errors or needless information terms. In fact, strong
volatilities may exist for one asset even if the specific factor is not diversifiable and can
therefore not be included in a diversified allocation. In this section, strong additional noises
are added to the returns generated by the factors. The value § has been increased from
0.05 to 2 with steps of 0.05. For a value § = 0.05, almost no specific factors exist for stocks.
When the value is 2, the specific risks of stocks are on average twice as large as the values

of diversifiable risks.

In order to test the rightness of the decompositions, the same regressions were led as in
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the precedent section:

s1¢ = a10 + a1181¢ + a1282¢ + Mt
(27)

Sot = a0 + a2181 + 2282 + M
where s;; (1 = 1..2) is the actual i-th factor used to generate the returns, and $; and $9; are
the estimated factors. The results of these regressions for the three types of markets A, B
and C and for three component analysis methods are reported in table 4, with values of ¢

equal to 0.05, 0.5, 1 and 2. The lowest R? values of the two regressions and for § increasing

from 0.05 to 2 are presented in figure 7.

Introduction of high-level risks appear to conduct to a wrong estimation of factors by
classical methods as soon as § > 0.75. For § = 1, which has been seen as a realistic value for
0 on a actual financial market, both PCA and Connor-Korajczyk method fail to estimate
the second factor; indeed the R? of the regression is near to zero for one of the actual factor,
what means that this factor can not be retrieved by the estimated factors. The behavior
of Connor-Korajczyk method seems even less robust than PCA to the introduction of these
residual risks, as both factors are wrongly estimated, and not only one as it is the case with
PCA. If high-residual risks exist, what seems to be the case in real markets, this has great
consequences on the estimation of factors: Connor-Korajczyk method may fail to estimate
all the factors; PCA may fail to estimate all the factors except one, and this one factor is
likely to be the portfolio market which can be expected as having the most influence in the
market stocks returns. As the factor structure is the main assumption of APT, a wrong
estimation of these factors will of course lead to unpredictable and no pertinent test of the

APT itself.

The InCA, INdependent Component Analysis, which is here proposed succeeds in esti-
mating these factors, and appears to be robust to the introduction of high-level risks. Even
with a level of residual risks twice larger than the diversifiable risks (0 = 2), the factor
estimation with InCA is still correct. The introduction of these risks do not even modify
the behaviour of InCA in terms of rotation, as the method estimates the factors with a
minimum rotation, provided that skewness and kurtosis are present in the stock returns.
One remarkable behaviour of InCA method is that even in the case of a gaussian market,
where moments of 3rd and 4th order are not pertinent information, the method allows a

correct estimation of the factors.
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6.3 Estimations through subgroups of assets

An important aspect of factor analysis is the stability of the decomposition when only a
part of the data is observed or when the model is tested on subgroups of assets [see for
instance (Grinblatt and Titman 1987)]. In order to test the stability on subgroups of assets,
the sample was divided into two subsets of assets, each subset containing the same number

of assets (N7 = Ny = 50), and the following regression was led for i = 1,2:
git = ajo + an St + aizdor + €it, (28)

where §;; is the i-th factor estimated with data of the first group, and $;4 and §9; are factor
series estimated on the second group. Results of the regression for the three types of markets
are reported in table 5 for § = 0.05,1,2. The figure 8 reports the lowest R? obtained for the

regressions.

In the case of Principal Component Analysis methods, the factor structure obtained by
using PCA is not stable when the assets are divided into two subgroups, even when the
estimation seemed previously correct for values of § smaller than 1. Estimated factors are
different from one subgroup to an other, which indicates that factors are wrongly estimated
in one of the samples or in both. An intuitive conclusion is that if high residual risks exist on
the market, a greater number of assets must be used in order to correctly estimate the factor
structure. Reciprocally, the chance to get a wrong estimation of factors when high-level
idiosyncratic risks exist strongly increase when the number of assets is smaller. Grouping
assets into portfolios has hence an unknown impact on the rightness of the estimation: if
idiosyncratic risks decrease for portfolios, which can lead to improve the estimation, the size
of the sample which can be used also decreases, which process can lead to annihilates the
expected improvement of the estimation. In many studies of the APT, stocks are grouped
into subsamples, and the test of the model is led independently in each subgroup; for
instance, the seminal study of (Roll and Ross 1980) constitute groups containing 60 stocks
each. The existence of high idiosyncratic risks apparently indicates that a correct estimation

of factors is not possible with such a small number of stocks.

The Independent Component Analysis gives good results for all three markets, even if the
performance of the estimation appears to decrease when less assets are used. The R? values

decrease from almost 1 to values around 0.7 or 0.8 when high-levels of residual risks are
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introduced, but the estimation remains pertinent. Between the two groups, the factors are
retrieved without rotation, except permutation or scale change (here by an opposite sign);

this is even the case for the gaussian markets where the estimated factors were rotated.

6.4 Estimations through subperiods

The stability over time is a priori less important for financial markets as it is not excluded
by the APT model that one factor appears or disappears during a long period. As a known
structure was used to generate the returns, it is however important to look at the properties
of the estimations when a shorter period of time is used, especially when the PCA gives
poor results; indeed, it could be argued that a too short period of time was used in this
case. The T'= 1000 times period is divided into two equal T7 = T> = 500 times subperiods,

and the following regression is run:
git = aoi + @181 + azid + €, (29)

where g;; is the factor estimated in the subperiod, $1; and §9; are factors estimated using
the whole period of time, of which realisations are retained only in the subperiod where the

git factors are estimated.

Results for the regressions are reported in table 6 only for a value § = 2, for which all
methods expect InCA fail to correctly estimate the generating factors. Connor-Korajczyk
method leads to inconsistent estimations what is not surprising as both factors were wrongly
estimated with this method; but strangely enough the other methods lead to the same
estimations even if the number of observations decrease. This is a good thing when InCA is
used as this method already estimated correctly the factors, and it means that the method
is robust to the decreasing of the number of observations (providing that this number is
however significant). Most importantly, the stability over periods is found for PCA method
even when this method was doing a poor job. This apparently means that PCA has no
chance to find the correct result even if the period was much longer, and that the failure of
PCA is due to the method itself and not to an estimation problem which could occur if the

number of observations was too small.
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7 CONCLUSION

This paper addresses two problems: What is the impact of high idiosyncratic risks on
the factor estimations in a multifactorial model? Which method in such a case may perform

a correct estimation of factor series?

The first part of this paper puts in evidence that high idiosyncratic risks exist for the
stocks of the US market, when the CAPM is assumed to be the correct model but also
when the APT is used with a rather large number of 10 factors. The magnitude of these
idiosyncratic risks is of the same level as the diversifiable risks calculated by considering a
CAPM or an APT when portfolios are considered, and greater when individual stocks are

considered.

In case of high levels of idiosyncratic risks, a classic factor analysis like PCA may fail to
estimate the factors. This had been shown by simulating markets with different assumptions
on the generating processes. As soon as the level of idiosyncratic risks is around the level of
diversifiable risks given by the generating factor structure, only one factor of two is correctly
estimated by this method. The critical point is around J = 1, that is when idiosyncratic
and diversifiable risks are of the same magnitude. As this value seems consistent with what
is observed on actual markets, PCA has a great chance to lead to wrong factor structure
estimation in a real financial market. The method seems very sensible to the number of
stocks that are included in the sample, and a number of 50 portfolios or 100 individual

assets are shown to likely lead to wrong estimations.

I propose here to use the Independent Component Analysis as a new method for es-
timating the generating factor series. Although this method is based on neural networks
techniques, its advantage is to be easily understandable and applicable. Moreover, it can
be viewed as an extension of PCA in which high-order statistics information is included.
Empirical tests put in evidence the robustness of the method with respect to the inclusion
of high idiosyncratic risks. Even when very high idiosyncratic risks are added, twice as
large as the diversifiable risks, InCA succeeds in retrieving the correct factor structure. The
structure is stable when assets are divided into subgroups. This stability of the structure
is important in the APT framework as an unstability of the structure prevents testing the

model in a subgroup of assets as an equilibrium model; this is the main advantage of APT, as
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noted by (Grinblatt and Titman 1983). The non stability of the factor structure obtained by
classic factor analyis is the main critic which can be addressed to the use of these methods,
as shown for instance by (Chen 1983). Besides, one empirical advantage of InCA is that the
method allows rebuilding the input signals without rotation when significantly high-order
dependence exists between these input factors. The only indetermination remains the order
and the scale of factors, which is unavoidable. Of course, rotation may still exist, but its

smallness may allow an easier identification of the actual generating factors.

The use of InCA seems moreover well adapted to the case of factor estimation in a
financial multifactorial framework such as the APT, by avoiding the fact that factor analysis
tends to isolate the components which have the greatest impact on the market. The second
advantage of InCA is to allow considering higher-moments in the distributions, especially
skewness or kurtosis, that is the greatest part of information when only past returns are
considered. In that sense, the advantage for InCA is that no assumption is made about the
returns distributions, which is one feature of APT. Empirical studies using factor analysis
or PCA take usually only the second moments (variances and covariances) into account,
and implicitly assume that the risk can be represented in a mean-variance world. A final
interesting feature of the Independent Component Analysis is that the method explicitly
considers that the factor structure is not strict, but an approximative one. InCA indeed
uses the four first moments for decomposition and the fact that residual covariances are not

necessarily zero.
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CAPM PCA5 PCA10 CK10

Portfolios &r & &s & &s &a &s &a &s
Mean 0.139 0.085 0.105 0.105 0.088 0.112 0.079 0.076 0.111
StdDev 0.032 0.022 0.041 0.028 0.027 0.035 0.021 0.045 0.015
Min 0.097 0.037 0.059 0.068 0.027 0.069 0.020 0.022 0.080
Max 0.229 0.140 0.220 0.228 0.152 0.228 0.123 0.213 0.145

Individual & &a s a &s £a &s &d &s
Mean 0.321 0.095 0.303 0.130 0.278 0.157 0.254 0.135 0.263
StdDev 0.139 0.051 0.137 0.135 0.099 0.162 0.084 0.169 0.080
Min 0.133 0.008 0.132 0.012 0.100 0.018 0.042 0.010 0.089
Max 0.868 0.229 0.860 0.862 0.600 0.867 0.459 0.863 0.457

Table 1: Global risks and residual (idiosyncratic) risks

Global and residual risks on the US market are presented for the period going from January
1, 1994 through December 31, 1997. &, represent the total risks of assets; £, the diversifiable
risks calculated by the model and &, represents the specific remaining risks. The risks are
calculated for the CAPM, for the APT where the 5 (PCA5) or the 10 factors (PCA10) are
estimated using Principal Component Analysis, and for the APT with 10 factors computed
through the Connor-Korajczyk method (CK10). The risks are computed when all the stocks
available during the whole period are grouped into 76 portfolios, or when a random selection
of 120 individual stocks are considered.
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Market indices

Country Mean StDev Skewness Kurtosis KS ProbaKsS
Germany 0.102 0.168 -1.053 10.808 0.081 0.000
Canada 0.084 0.117 -1.824 34.418 0.092 0.000
France 0.128 0.169 -0.688 8.333 0.066 0.000
Japan 0.018 0.183 -0.343 15.111 0.083 0.000
Switzerland 0.147 0.151 -1.743 21.413 0.100 0.000
United Kingdom 0.110 0.137 -1.475 21.879 0.053 0.000
United States 0.143 0.150 -3.370 70.577 0.097 0.000

Simulated markets

Market A Mean StDev Skewness Kurtosis KS ProbaKS
Factor 1 0.160 0.140 0.014 0.015 0.026 0.492
Factor 2 0.080 0.140 0.119 -0.097 0.021 0.777

Market B Mean StDev Skewness Kurtosis KS ProbaKsS
Factor 1 0.160 0.140 -0.246 1.440 0.040 0.076
Factor 2 0.080 0.140 -0.163 0.911 0.039 0.097

Market C Mean StDev Skewness Kurtosis KS ProbaKS
Factor 1 0.160 0.140 0.105 17.927 0.105 0.000
Factor 2 0.080 0.140 -0.008 16.308 0.088 0.000

Table 2: Statistics on generated factors and on market indices
The first panel reports the statistics of market indices (daily returns) for seven markets
during the period going from January 1, 1984 through December 31, 1997, corresponding
to N = 3652 returns observation. The second panel reports statistics of factors used to
artificially generate stock returns (1000 observations). The reference values for the normal
distribution are /15/N for skewness (0.0641 for the actual markets and 0.1224 for the
simulated markets) and 1/96/N for kurtosis (0.1621 for the actual markets and 0.3098 for
the simulated markets). Means and standard deviations are annualized. The last columns
give the scores of Kolmogorov-Smirnov and the corresponding probabilities that the factors

distributions are normal.

Market A
1) PCA §1 Sa R2 CK §1 S9 R2 InCA §1 So R2
0.1 S1 -0.687 0.726 1.000 S1 0.322 0.946 0.999 S1 -0.941 0.339 1.000
S2 0.727 0.687 1.000 S2 0.947 -0.322 1.000 S2 0.335 0.942 1.000
Market B
1) PCA S1 So R2 CK $1 So R2 InCA S1 D R2
0.1 S1 -0.722 0.692 1.000 S1 0.962 0.271 1.000 S1 -1.000 0.003 1.000
S2 0.692 0.722 1.000 82 -0.271 0.963 1.000 S2 0.042 0.999 1.000
Market C
1) PCA §1 So R2 CK §1 D) R2 InCA §1 So R2
0.1 S1 -0.704 0.710 1.000 S1 0.630 -0.776 1.000 S1 -1.000  -0.012 1.000
S2 0.710 0.704 1.000 S2 0.776 0.630 1.000 S2 -0.006 1.000 1.000

Table 3: Comparison of factors in markets with low noises
The three panels report for each actual generating factor s;;, ¢+ = 1,2, the coefficients of
the regression s;; = a0 + a;151: + @282 + nit, where 3, is the k-th factor estimated either
by Principal Component Analysis (PCA), by the Connor-Korajczyk method (CK) or by
Independent Component Analysis (InCA).
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Market A

1) PCA §1 So R2 CK $1 So R2 InCA §1 So R2
0.1 S1 -0.687 0.726 1.000 S1 0.322 0.946 0.999 S1 -0.941 0.339 1.000
52 0.727 0.687 1.000 S2 0.947  -0.322 1.000 S2 0.335 0.942 1.000
0.5 K -0.725 0.665 0.968 K 0.981 -0.100 0.973 S1 -0.929 0.353 0.988
52 0.675 0.735 0.996 S2 0.100 0.980 0.970 S2 0.358 0.931 0.995
1.0 51 0.010 0.024 0.001 51 0.152 -0.219 0.071 S1 0.952 -0.271 0.980
52 0.658 0.740 0.980 S2 -0.010 0.942 0.887 S2 0.275 0.954 0.986
1.5 51 0.201 -0.100 0.050 51 -0.610 0.334 0.483 S1 0.951 -0.245 0.965
52 0.699 0.685 0.958 S2 0.004  -0.232 0.054 S2 0.265 0.952 0.977
2.0 51 0.128 0.007 0.016 51 -0.257  -0.024 0.067 S1 0.872 -0.401 0.922
52 0.679 0.677 0.919 S2 -0.082 0.037 0.008 S2 0.430 0.895 0.986
Market B
1) PCA 51 S2 R2 CK §1 So R2 InCA S1 S R2
0.1 s1 -0.722 0.692 1.000 s1 0.962 0.271 1.000 S1 -1.000 0.003 1.000
S2 0.692 0.722 1.000 S2 -0.271 0.963 1.000 S2 0.042 0.999 1.000
0.5 S1 -0.701 0.697 0.977 S1 0.740 0.648 0.968 S1 -0.996 0.026 0.993
S2 0.704 0.707 0.996 S2 -0.656 0.739 0.977 S2 0.063 0.994 0.993
1.0 S1 0.661 -0.668 0.883 S1 0.731 -0.589 0.881 S1 0.990 0.006 0.981
S2 0.699 0.703 0.983 S2 -0.571  -0.730 0.859 S2 0.035 0.992 0.986
1.5 S1 0.136 0.010 0.018 S1 -0.147 0.209 0.065 S1 0.009 -0.984 0.969
S2 0.674 0.704 0.951 S2 0.009 -0.132 0.018 S2 0.983 0.073 0.972
2.0 S1 -0.131 0.071 0.022 S1 0.001 0.021 0.000 S1 -0.973  -0.024 0.948
S2 0.701 0.665 0.934 S2 -0.174 0.032 0.031 S2 0.033 0.983 0.967
Market C
1) PCA 51 S2 R2 CK $1 S2 R2 InCA 51 S2 R2
0.1 s1 -0.704 0.710 1.000 S1 0.630 -0.776 1.000 S1 -1.000 -0.012 1.000
S2 0.710 0.704 1.000 S2 0.776 0.630 1.000 S -0.006 1.000 1.000
0.5 s1 0.693 -0.695 0.964 s1 0.585 -0.788 0.963 S1 0.008 -0.992 0.985
S2 0.710 0.702 0.997 S2 0.796 0.589 0.979 S2 0.994 0.022 0.988
1.0 s1 -0.591 0.566 0.669 s1 0.586 0.066 0.348 S1 -0.004 0.987 0.975
S2 0.704 0.698 0.983 S2 -0.612 0.547 0.674 S2 0.987 0.016 0.975
1.5 s1 -0.364 0.377 0.275 S1 0.378 0.395 0.299 S1 0.976 0.028 0.953
S2 0.701 0.686 0.962 S2 -0.573 0.136 0.347 S2 0.002 0.980 0.960
2.0 s1 0.123 -0.004 0.015 S1 0.256 -0.118 0.079 S1 -0.015 0.982 0.965
S2 0.690 0.678 0.937 S2 0.030 0.140 0.020 S2 0.982 0.027 0.965
Table 4: Comparison of estimated factors with different values of noises

The panels report for each actual generating factor s, ¢ = 1,2, the coefficients of the
regression s;; = ajo + @181 + @289 + Mit, where Sg; is the k-th factor estimated either
by Principal Component Analysis (PCA), by the Connor-Korajczyk method (CK) or by
Independent Component Analysis (InCA). The parameter § controls the average level of
noises which are added to the returns of the stock.
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Market A

1) PCA 51 ED R2 CK $1 ED R2 InCA 51 S2 R2
0.1 S1 -0.997  -0.074 0.999 51 -0.023 0.999 0.999 s1 -0.999  -0.004 0.998
52 -0.074 0.997 1.000 52 0.998 0.023 0.997 52 -0.004 1.000 0.999
0.5 S1 0.921 -0.084 0.855 S1 -0.871  -0.349 0.880 51 0.974 0.027 0.950
52 0.079 0.988 0.982 S2 -0.341 0.857 0.851 S2 -0.056 0.989 0.981
1.0 S1 0.003 0.052 0.003 51 0.397 -0.572 0.485 51 -0.947  -0.200 0.934
52 0.062 0.957 0.920 52 0.061 -0.106 0.015 52 -0.151 0.953 0.934
1.5 S1 0.026 0.186 0.035 51 0.039 0.000 0.002 s1 0.923 0.157 0.874
52 0.052 0.897 0.807 S2 0.034 0.007 0.001 S2 -0.051 0.945 0.897
2.0 S1 0.020 0.628 0.395 51 -0.018 0.030 0.001 s1 -0.805  -0.209 0.689
52 0.026 0.525 0.276 52 0.006 -0.009 0.000 52 -0.135 0.955 0.931
Market B
1) PCA §1 So R2 CK $1 So R2 InCA §1 So R2
0.1 R -0.984  -0.173 0.999 R -0.640 0.768 0.999 S1 -0.999  -0.003 0.999
52 -0.173 0.985 1.000 S2 0.768 0.640 0.999 S2 -0.003 0.999 0.999
0.5 K -0.949 0.089 0.908 K 0.836 -0.406 0.864 S1 -0.984  -0.007 0.968
S2 0.090 0.987 0.983 S2 0.386 0.867 0.901 S2 -0.031 0.984 0.972
1.0 R 0.706 -0.060 0.502 R -0.685  -0.192 0.506 S1 0.959 0.069 0.928
52 0.032 0.962 0.927 52 0.174 -0.595 0.385 S2 -0.022 0.970 0.940
1.5 51 0.050 0.324 0.108 S1 -0.036  -0.020 0.002 S1 -0.932 0.099 0.884
52 0.149 0.847 0.739 52 0.014 -0.008 0.000 S2 -0.002 0.944 0.891
2.0 51 0.080 0.710 0.511 51 0.000 0.001 0.000 S1 -0.019  -0.890 0.794
52 0.069 0.437 0.196 52 0.018 -0.021 0.001 S2 0.926 0.107 0.874
Market C
1) PCA 51 ED R2 CK $1 D R2 InCA 51 S2 R2
0.1 S1 -0.999 0.005 0.998 51 -0.132 0.991 0.999 51 -0.999 0.002 0.998
S2 0.005 1.000 1.000 S2 0.990 0.132 0.999 S2 -0.001 0.999 0.998
0.5 s1 -0.903 0.122 0.829 S1 -0.449  -0.803 0.847 51 0.034 0.969 0.940
52 0.110 0.986 0.984 52 0.798 -0.492 0.879 S2 0.963 0.007 0.928
1.0 S1 0.137 -0.064 0.023 S1 0.514 -0.108 0.276 S1 -0.948  -0.024 0.899
S2 0.092 0.963 0.937 S2 0.315 -0.114 0.112 S2 0.032 0.950 0.903
1.5 S1 -0.037 0.037 0.003 S1 0.044 -0.133 0.020 S1 -0.908  -0.077 0.824
S2 0.022 0.900 0.811 S2 0.102 0.075 0.016 S2 0.075 0.922 0.850
2.0 s1 0.030 0.223 0.051 s1 -0.003  -0.004 0.000 S1 -0.055 0.919 0.844
S2 0.079 0.845 0.720 S2 -0.009  -0.006 0.000 S2 -0.919 0.063 0.843

Table 5: Comparison of factors estimated on subgroups of assets

The table reports the regression values for g;; = ag; + a1;51¢ + a2;89¢ + €51, where g is the
factor estimated on the first subgroup of assets, and §14, $9; are the factors estimated on the
second subgroup. Factors are estimated either by Principal Component Analysis (PCA), by

the Connor-Korajczyk method (CK) or by Independent Component Analysis (InCA).
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Market A

6=2 PCA $1 So R2 CK S1 So R2 InCA S1 ED R2
Period 1 g1 -1.029 0.073 0.988 g1 0.934 0.044 0.868 g1 0.974 0.125 0.995
g2 0.041 1.019 0.998 g2 0.028 -1.030 0.988 go -0.119 1.011 0.999
Period 2 g1 0.963 0.058 0.991 g -0.119 0.052 0.017 g1 0.985 -0.241 0.996
92 -0.029 0.976 0.998 g2 0.029 0.961 0.992 P 0.269 0.945 0.999
Market B
6=2 PCA S1 So R2 CK §1 So R2 InCA §1 So R2
Period 1 g1 -1.009 0.089 0.992 g1 0.511 -0.012 0.231 g 0.184 0.989 0.992
g2 0.048 0.998 0.998 g2 -0.0561  -1.010 0.995 g2 -0.944 0.235 0.997
Period 2 g1 0.982 0.107 0.994 g1 0.937 0.101 0.983 g1 1.020 0.085 0.992
g2 -0.062 0.991 0.998 g2 -0.063 0.977 0.995 g2 -0.086 0.982 0.994
Market C
6=2 PCA §1 ED R2 CK $1 ED R2 InCA $1 So R2
Period 1 g1 1.006 -0.033 0.856 g1 -0.377  -0.189 0.157 g1 0.929 0.043 0.995
g2 0.010 0.953 0.997 g2 -0.296 1.009 0.965 g2 0.012 0.929 0.997
Period 2 g1 0.923 0.048 0.984 g -0.947 0.101 0.959 g1 1.084 -0.069 0.993
92 -0.017 1.048 0.996 g2 0.075 0.920 0.993 g2 -0.022 1.085 0.994

Table 6: Comparison of factors estimated in subperiods

For each subperiod, the regression is §;; = ag; + a1;81¢ + a2;89; + €;¢, where g;; is the factor
estimated in the subperiod one or two, and 314, $9; the factors estimated using the whole
period, but with taking only the realisations in the subperiod where the §;; factors are
estimated. Factors are estimated either by Principal Component Analysis (PCA), by the
Connor-Korajczyk method (CK) or by Independent Component Analysis (InCA).

Output y layer

Input x layer

y=Wx

Figure 1: Neural networks architecture for factor analysis

Factor analysis with neural networks generally use an architecture without a hidden layer.
The input observed signals r are propagated to the output layer y through the transforma-
tion y = Wr. The K X N weights w;; are recursively updated by applying an adequate
learning rule depending on an energy function e(r,y).
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Figure 2: Global and idiosyncratic risks for portfolios on the US market
Global and residual risks are presented for the US market when stocks are grouped into port-
folios, for the CAPM and for the APT with ten factors estimated by Principal Component
Analysis or by Connor-Korajczyk method. The period goes from January 1, 1994 through
December 31, 1997. The global risks (top curve) and diversifiable risks (lower curves) are
represented by plain lines; the residual risks are represented by dash lines.

28



Risks for CAPM

0.9 ;
08

07 /
06

04

03
02— =

0.1

Risks

10 20 30 40 50 60 70 80 90 100 110 120
Ranked Assets

Risks for APT with 10 factors estimated by PCA

/
058
07 J
06 [
05 —
04 s e
0.3 MR ]

Risks

02 ,,,,, e e I .
01 ="

10 20 30 40 50 60 70 80 90 100 110 120
Ranked Assets

Risks for APT with 10 factors estimated by Connor-Korajczyk method

]
09
08

J
07
06 [
05
04 s e

0'3 . /
0:2 —— e — /

01
0 T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110 120

Ranked Assets

Risks

Figure 3: Global and idiosyncratic risks for single stocks on the US market
Global and residual risks are presented for the US market when individual stocks are con-
sidered, for the CAPM and for the APT with ten factors estimated by Principal Component
Analysis or by Connor-Korajczyk method. The period goes from January 1, 1994 through
December 31, 1997. The global risks (top curve) and diversifiable risks (lower curves) are
represented by plain lines; the residual risks are represented by dash lines.
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Simulated risks with § = 0.05
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Figure 4: Plots of risks and residual risks on simulated markets
Global and residual risks are presented for simulated markets of type A (gaussian factors
and noises) for different levels § of idiosyncratic risks. The global risks (top curve) and diver-
sifiable risks (lower curves) are represented by plain lines; the residual risks are represented
by dash lines.
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Figure 5: Plots of actual and estimated cumulated factors
The estimated factors are here presented for the second market B where factors are built
following a stochastic volatility model. The factors are cumulated for PCA and InCA,
with the transformation: g; = gi(t_l)(l +1072s;), and g = 100. In case of Independent
Component Analysis, estimated factors can not be distinguished from the actual factors; in
the case of estimation by Principal Component Analysis, the estimated factors are rotated
and can not be identified with the actual generating factors.
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Eigenvalues from actual US market Eigenvalues from simulated markets
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Figure 6: Plots of eigenvalues for actual and simulated markets
Eigenvalues are plotted on the left for the US market when portfolios are considered (lower
curve) or when a random selection of 120 assets are considered. The period goes from
January 1, 1994 through December 31, 1997. On the right are displayed the 20 highest
eigenvalues for gaussian generated markets with values for § equal to 0.05 (squares), 0.75
(diamonds), 1.25 (circles) and 2 (crosses). Eigenvalues have been standardized such that
the greatest eigenvalue is equal to 20.
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Figure 7: Smallest explanations of actual factors
The lowest R? values of the actual generating factors regressions above the estimated factors
are displayed for values of ¢ increasing from 0.05 to 2 with steps of 0.05. Squares refer to the

InCA method, plain circles to the PCA method and white circles to the Connor-Korajczyk
method.
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Figure 8: Smallest explanations through subgroups
The lowest R? values of the estimated factors on one subgroup of assets above the estimated
factors on the other subgroup are displayed for a ¢ value increasing from 0.05 to 2 with a

0.05 step. Squares refer to the InCA method, plain circles to the PCA method and white
circles to the Connor-Korajczyk method.
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