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Market Time and Asset Price Movements

Theory and Estimation%

Eric Ghysels , Christian Gouriéroux , Joanna Jasiak� � c

Abstract / Résumé

Subordinated stochastic processes, also called time deformed stochastic

processes, have been proposed in a variety of contexts to describe asset price

behavior. They are used when the movement of prices is tied to the number of

market transactions, trading volume or the more illusive concept of

information arrival. The aim of the paper is to present a comprehensive

treatment of the stochastic process theory as well as the statistical inference of

subordinated processes. Numerous applications in finance are provided to

illustrate the use of the processes to model market behavior and asset returns.

Nous étudions les mouvements de prix d�actifs financiers à l�aide de

processus avec changement de temps. L�idée est que l�activité du marché,

mesurée par des séries comme le volume de transactions, détermine l�échelle de

temps intrinsèque du processus stochastique de prix ou de rendement. Les

propriétés de ce type de processus, parfois aussi appelés subordonné, sont

présentées en détail et illustrées par plusieurs applications à la théorie financière.

On développe également les procédures d�inférence statistique correspondantes.

JEL: C13, C22, G12, C12



1. Introduction

Computer technology has not only changed the structure of trading, it has also

made the collection, storage and retrieval of �nancial market data more widespread

at levels of detail never seen before. Until only a few years ago most empirical

studies involved daily, weekly or monthly time series. As high frequency data

become more easily available it is now possible to study how �nancial markets

evolve in real time. While data sets a researcher in microstructures would dream

of involving the identity, motives and portfolio positions of those transacting, are

not yet available it is clear that continuous record observations which are now

easy to obtain contain already a vast amount of information. There are at least
two key challenges one faces in modelling these newly available data sets. First,
unlike daily, weekly or monthly series, quote or tick-based data are by their very
nature irregularly spaced. The great majority of empirical asset pricing models,
models of market volatility such as ARCH-type models, etc. are constructed on

the basis of equally spaced data points such as daily observations. This simpli�-
cation no longer suits high frequency data and therefore needs to be modi�ed. It
is particularly important to note that the spacing of time between quotes is not a
purely technical issue, as indeed the recent vintage of microstructure models use
the length of time elapsed between consecutive transactions as a signal revealing

information known to market participants (see Easley and O'Hara (1992)). A
second challenge one faces with the analysis of markets in real time is the sheer
number of data points. A typical data set of daily observations spanning a num-
ber of years contains a couple of thousand observations. In contrast, there are
an average of roughly between four to �ve thousand new quotes on a single mar-

ket like the DM/US$ spot exchange recorded by the Reuters FXFX screen page
every working day. Hence, data sets run into millions of records and are easier

to measure in terms of the disk space they occupy rather than the number of

observations. With such large data sets there is obviously also a great need to
identify and summarize empirical regualrities in trading patterns and returns.

The concept of time deformed or subordinated process is a particularly apt to
address some of the challenges we just described. The idea originated in the work

by Mandelbrot and Taylor (1967), Clark (1973), among others, who argued that
since the number of transactions in any time period is random, one may think of

asset price movements as the realization of a process Yt = Y �
zt
where Zt is a direct-

ing process. This positive nondecreasing stochastic process Zt can for instance



be thought as related to the number of transactions or more fundamentally, to

the arrival of information. This by now familiar concept of subordinated stochas-

tic processes, originated by Bochner (1960), was used by Mandelbrot and Taylor

(1967) and later re�ned by Clark (1970, 1973) to explain the behavior of spec-

ulative prices. Originally, it was mostly applied to daily observations since high

frequency data were not available. A well known example in �nance is the con-

siderable amount of empirical evidence documenting nontrading day e�ects. Such

phenomena can be viewed as time deformation due to market closure.1 Obviously,

as pointed out by Mandelbrot and Taylor (1967), time deformation also directly

related to the mixture of distributions model of Tauchen and Pitts (1983), Har-

ris (1987), Richardson and Smith (1993), Foster and Viswanathan (1993) among
others. More to the point regarding high frequency data one should mention that
in foreign exchange markets, there is also a tendency to rely on activity scales
determined by the number of active markets around the world at any particular
moment. Dacorogna et al. (1993a) describe explicitly a model of time deforma-
tion along these for intraday movements of foreign exchange rates. Besides these

relatively simple examples, there are a number of more complex ones. Ghysels
and Jasiak (1994) proposed a stochastic volatility model with the volatility equa-
tion evolving in an operational time scale. They use trading volume and leverage
e�ects to specify the mapping between calendar and operational time. In Ghysels,
Gouri�eroux and Jasiak (1995) this framework is extended and applied to intra-

day foreign exchange data, providing an alternative to the Dacorogna et al. time
scale transformation. Madan and Seneta (1990) and Madan and Milne (1991)
introduced a Brownian motion evaluated at random (exogenous) time changes
governed by independent gamma increments as an alternative martingale process
for the uncertainty driving stock market returns. Geman and Yor (1993) also used

time-changed Bessel processes to compute path-dependent option prices such as
is the case with Asian options. It is also worth noting that there is some research

speci�cally examining the time between trades, see Hausman and Lo (1990) and

Han, Kolay and Rosenfeld (1994) for instance.

Despite the several examples just mentioned there is no comprehensive treat-

1Examples of such evidence include Lakonishok and Smidt (1988) and Schwert (1990) who
argue that returns on Monday are systematically lower than on any other day of the week, while
French and Roll (1986), French, Schwert and Stambaugh (1987) and Nelson (1991) demonstrate
that daily return volatility on the NYSE is higher following nontrading days.
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ment of the stochastic process theory and statistical estimation of subordinated

processes. The aim of the paper is to describe some of the probabilistic and statis-

tical properties of time deformed models. Such models are in principle de�ned in

two steps. We �rst consider the process of interest with respect to intrinsic time

Y �
z , and the changing time process Zt, which explains how to pass from calendar

time to intrinsic time. Then the process of interest expressed in calendar time

is the subordinated process: Yt = Y �
zt
. Clearly the observable model (the one

corresponding to Yt) is a dynamic factor model with Zt as the underlying factor.

As is typical in factor models we may distinguish di�erent cases depending on

whether Z is assumed to be observable (for instance when it relates a series like

transactions volume or number of quotes) or unobservable. In the latter case, it
is necessary to specify a latent factor process for Zt (see Clark (1970, 1973) for
such an approach) and to predict ex-post the values of the factor.

Sections 2 and 3 describe the stochastic behavior of time deformed processes
and highlight their use in �nancial modelling. Sections 4 and 5 cover the empirical
analysis of the processes. Besides estimation we also discuss diagnostic tests which

help summarize the potentially vast amounts of data.

2. Properties of Subordinated Processes

In this section we will compare the properties of the process of interest, when it
evolves in calendar time and in intrinsic (or operational) time. We �rst consider

second order properties of the processes, namely: (1) second order stationarity, (2)
the conservation of a unit root by time deformation and (3) the relation between
the autocovariance functions of Y and Y �. Next we study some distributional
properties such as strong stationarity and examine when the subordinated process

is Markovian. The section concludes with a description of a system of stochastic

di�erential equations with at least two equations, a subordinated di�usion and a
directing process. In a �rst subsection 2.1 we consider second order properties of

a time deformed process. We study distributional properties in section 2.2 and
focus on a system of di�usion processes in section 2.3. To set the scene we �rst

introduce some notations:

i) the time changing process, called the directing process by Clark (1973),

associates the operational scale with the calendar time. It is a positive strictly

4



increasing process:

Z : t 2 = �! Zt 2 Z: (2.1)

ii) The process of interest evolving in the operational time is denoted by:

Y � : z 2 Z �! Y �
z 2 Y � IRM : (2.2)

iii) Finally we may deduce the process in calendar time t 2 = by considering:

Yt = Y � � Zt = Y �
zt
: (2.3)

The introduction of a time scaling process is only interesting if the probabilistic

properties of the process of interest become simpler. It explains the introduction
of the assumption below which ensures that all the links between the two processes
(Yt) ; (Zt) in calendar time come from the time deformation.

Assumption A.1: The two processes Z and Y �are independent.

Assumption A.1 is not entirely innocent with respect to practical applications.
Indeed, if Z is tied to trading volume and Y � is a return process, for instance, it
is clear that the two may not be independent in operational time. However, we
would feel more comfortable with letting Y � be the bivariate process of return and
volume and Z being the (latent) process of information arrival. Hence, the use of

Assumption A.1 has to be used judiciously. As noted before, we will proceed with
this assumption as it makes the links between Zt and Yt result from subordination.
It has also to be noted that our formalism allows for the treatment of both discrete

and continuous time problems. Indeed one may consider: discrete calendar and
operational times with = = Z = IN, continuous calendar and operational times

with = = Z = IR+ and �nally = = IN; Z = IR+ for continuous operational time and
discrete calendar time.

2.1. Second order properties

As usual for time series analysis we will �rst study the second order properties
of the processes Y and Y �. Assuming that both processes are second order inte-
grable, we consider the �rst order moments:
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(
m (t) = E (Yt) de�ned on =;
m� (z) = E (Y �

z ) de�ned on Z; (2.4)

and the autocovariance functions:

8><>:
 (t; h) = E

h
(Yt � EYt) (Yt+h � EYt+h)

0i
; t 2 =; h 2 =;

� (z0; z) = E

�h
Y �
z0
� E

�
Y �
z0

�i h
Y �
z+z0

� E
�
Y �
z+z0

�i0�
; z0 2 Z; z 2 Z:

(2.5)

From the de�nition of the time deformed process, we obtain:

m (t) = E (Yt) = E
h
E
�
Y �
Zt
j Zt

�i
;

 (t; h) = E
�
Y
t
Y
0

t+h

�
�(EYt) (EYt+h)0 = E

h
E
�
YtY

0

t+h j Zt; Zt+h

�i
�(EYt) (EYt+h)0 ;

Cov (Yt; Zt+h) = E (YtZt+h)�EYtEZt+h = E [E (Y �
t j Zt)Zt+h]� EYtEZt+h:

Taking into account the independence assumption between the two processes
Z and Y �, we can establish the following result:

Property 2.1.1: Under Assumption A.1:

m (t) = E [m� (Zt)] ;

 (t; h) = E [� (Zt; Zt+h � Zt)] + Cov [m� (Zt) ;m
� (Zt+h)] ;

Cov (Yt; Zt+h) = Cov (m� (Zt) ; Zt+h) :

It is possible now to discuss some su�cient conditions for the second order

stationarity of the process Y . These conditions are moment conditions on the
underlying process Y �, and distributional conditions on the directing process Z.
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Property 2.1.2: Let us assume the independence Assumption A.1. holds. Then

the Y process in calendar time is second order stationary if the following assump-

tions are satis�ed:

Assumption A.2: Y � is second order stationary: m� (z) = m�; 8z; � (z0; z) =
� (z) ; 8z0; z:

Assumption A.3: The directing process has strongly stationary increments: the

distribution of ~4hZt = Zt+h � Zt is independent of t; 8h; t:

A consequence of Property 2.1.2 is that we can have second order stationarity
of the processes Y and Y � simultaneously, as can be seen from Property 2.1.2. In
such a case we get m (t) = m�;  (t; h) = E

h
�
�
~4hZt

�i
; Cov (Yt; Zt+h) = 0; 8h;

and in particular we observe no correlation between the series Y and Z, while Y

is a (stochastic) function of Z.

Another case of interest is that of a unit root in the calendar time process Yt.
Considering the case Z = IN we �rst discuss su�cient conditions for the second
order stationarity of the di�erentiated process ~4Yt = Yt+1 � Yt. Let us examine
the �rst and second order moments of the increments of the underlying process
Y �:

E
�
Y �
z0+z

� Y �
z0

�
= �� (z0; z) ; (2.6)

Cov
�
Y �
z0+z1

� Y �
z0
; Y �

z0+z2
� Y �

z0+z3

�
= c� (z0; z1; z2; z3) : (2.7)

Provided the independence Assumption A.1 holds, the �rst and second order

moments of the di�erentiated process ~4Yt are:

� (t) = E (Yt+1 � Yt) = E��
�
Zt; ~4Zt

�
; (2.8)
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c (t; h) = Cov (Yt+1 � Yt; Yt+h+1 � Yt+h)

= E c�
�
Zt; ~4Zt ; ~4h+1Zt ; ~4hZt

�
+Cov

h
��
�
Zt; ~4Zt

�
; ��

�
Zt+h; ~4Zt+h

�i
:

(2.9)

Both equations yield the following result:

Property 2.1.3 Let us assume the independence Assumption A.1 to hold. Then

the process Yt in calendar time is integrated of order 1, henceforth I(1), and second

order stationary in �rst di�erences under the following set of assumptions:

Assumption A.5: Y � is I(1) and second order stationary in �rst di�erences:

�� (z0; z) = �� (z) ; 8z0; z; c� (z0; z1; z2; z3) = c� (z1; z2; z3) ; 8z0; z1; z2; z3:2

Assumption A.6: The time changes have strongly stationary trivariate incre-

ments, i.e. the distribution of
�
~4Zt; ~4hZt; ~4h+1Zt

�
is independent of t.

As noted in Property 2.1.2, the calendar time process Y is stationary if Y � is
second order stationary and A.6 is satis�ed. From Property 2.1.3, however, we
can also deduce that for Y to be nonstationary it is necessary that both Y � and
Z are nonstationary.

Finally we can note that Assumption A.6 is satis�ed for changing time pro-

cesses de�ned by:

Zt =
tX

i=0

�i; (2.10)

where �t is a strongly stationary process with positive values.

2The conditions on the moments of the di�erentiated processes might also have been writ-
ten in terms of the moments of the initial processes. For instance the condition: �� (z0; z) =
�� (z) 8z0; z, is equivalent to: m

� (z0 + z) �m� (z0) = �� (z) 8z0; z. Whenever m� is contin-
uous, this means that m� has a linear a�ne form: m� (z) = az + b.
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2.2. Distributional properties

While it is natural to consider �rst second order properties, it is obviously also

of interest to study distributional properties of the two processes Y and Y �, like
strong stationarity or Markov properties. A subsection is devoted to each of the

properties.

2.2.1. Strong stationarity

Property 2.2.1 Let us assume again Assumption A.1 holds. Then the process in

calendar time is strongly stationary under the two following conditions:

Assumption A.2': Y � is strongly stationary.

Assumption A.6': The changing time has strongly stationary multivariate in-

crements, i.e. the distribution of
�
~�t1Zt; : : : ; ~�tnZt

�
is independent of t for any

t1; : : : ; tn.

In the remainder of this section let us sketch the proof of this property in the
case where Y � and Z have discrete values. Then we get:

P [Yt1 = y1; : : : ; Ytn = yn]

=
P

z1;:::;zn

P [Yt1 = y1; : : : ; Ytn = yn; Zt1 = z1; : : : ; Ztn = zn]

=
P

z1;:::;zn

P
h
Y �
z1
= y1; : : : ; Y

�
zn
= yn

i
P [Zt1 = z1; : : : ; Ztn = zn]

=
P

z1;:::;zn

P � (y1; : : : ; yn; z2 � z1; : : : ; zn � z1)P [Zt1 = z1; : : : ; Ztn = zn] ;

where P � is the elementary probability associated with Y �
z1
; : : : ; Y �

zn
and taking

into account the strong stationarity of Y �. Therefore we obtain:

P [Yt1 = y1; : : : ; Ytn = yn] = E [P � (y1; : : : ; yn;Zt2 � Zt1; : : : ; Ztn � Zt1)] ;

and the result follows from the property that Z has strongly stationary increments.
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2.2.2. Markov properties

Let us now consider two independent underlying processes Y � and Z, each of them
being Markovian of order one. Continuing with processes with discrete values for

tractability purpose, we get:

P
h
Ytn = yn; Ztn = zn j Ytn�1 = yn�1; Ztn�1 = zn�1; : : : ; Yt1 = y1; Zt = z1

i

= P
h
Y �
zn
= yn; Ztn = zn j Y �

zn�1
= yn�1; Ztn�1 = zn�1; : : : ; Y

�
z1
= y1; Zt1 = z1

i

= P
h
Y �
zn
= yn j Y �

zn�1
= yn�1; : : : ; Y

�
z1
= y1

i
P
h
Ztn = zn j Ztn�1 = zn�1; : : : ; Zt1 = z1

i

where the latter follows from Assumption A.1. Then using the Markovian prop-
erties we obtain:

= P
h
Y �
zn
= yn j Y �

zn�1
= yn�1

i
P
h
Ztn = zn j Ztn�1 = zn�1

i
:

Therefore the conditional distribution depends on the past values through the
most recent ones Ytn�1 ; Ztn�1.

Property 2.2.2 Under Assumption A.1, if Y � and Z are Markov processes of

order one, then the joint process (Y;Z) is also a Markov process of order one.

It is well known that while the joint process (Y;Z) is Markovian it does not
necessarily imply that the marginal process Y is also Markovian of order one.

However, this property is satis�ed under the following additional conditions.

Property 2.2.3: Let the conditions of Property 2.2.2 hold then if

Assumption A7: the conditional distribution of Y �
z+z0

given Y �
z0

= y0 only

depends on (z; z0) through z:3

3In the discrete case we note that P (Y �
zn

= yn j Y �
zn�1

= yn�1) = P �
n
(yn; yn�1 ; zn � zn�1)

10



Assumption A8: The directing process has independent increments,

then Y is a Markov process of order 1.

Proof: Again for convenience let us give the proof for processes with discrete

values. Consider:

P
h
Ytn = yn j Ytn�1 = yn�1; : : : ; Yt1 = y1

i
=

P
h
Y �
Ztn

= yn; Y
�
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1
i

P
h
Y �
Ztn�1

= yn�1; : : : ; Y �
Zt1

= y1
i

=
E P

h
Y �
Ztn

= yn; Y
�
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1 j Zt1; : : : ; Ztn

i
E P

h
Y �
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1 j Zt1; : : : ; Ztn�1

i
= E

n
P
h
Y �
Ztn

= yn j Y �
Ztn�1

= yn�1; Zt1; : : : ; Ztn

i
�

P
h
Y �
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1 j Zt1 : : :Ztn�1

io.
E
n
P
h
Y �
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1 j Zt1 : : : Ztn�1

io

=
E
n
P �
n

�
yn; yn�1 ; Ztn � Ztn�1

�
P
h
Y �
Ztn�1

= yn�1; : : : ; Y
�
Zt1

= y1 j Zt1 ; : : : ; Ztn�1

io
E P

h
Y �
Ztn�1

= yn�1; : : : ; Y �
Zt1

= y1 j Zt1 ; : : : ; Ztn�1

i
The latter follows from Assumption A.7 while Assumption A.8 in turn yields:

= E P �
n

�
yn; yn�1 ; Ztn � Ztn�1

�
:

Q.E.D.

A byproduct of the proof is a formula of the transition kernel for the process
Y , namely:

P
�
Ytn = yn j Ytn�1 = yn�1

�
= E P �

n

�
yn; yn�1 ; Ztn � Ztn�1

�
; (2.11)
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and as usual we can verify in this case that:

P
h
Ytn = yn j Ytn�1 = yn�1

i
= P

h
Ytn = yn j Ytn�1 = yn�1; Ztn�1 = zn�1

i
:

Indeed from the proof of Property 2.2.2 we have:

P
h
Ytn = yn j Ytn�1 = yn�1; Ztn�1 = zn�1

i

=
P
zn

P �
n (yn; yn�1 ; zn � zn�1) P

h
Ztn = zn j Ztn�1 = zn�1

i

=
P
~z

P �
n (yn; yn�1 ; ~z) P

h
Ztn � Ztn�1 = ~z j Ztn�1 = zn�1

i

=
P
�z

P �
n (yn; yn�1 ; ~z) P

h
Ztn � Ztn�1 = ~z

i
= E P �

n

�
yn; yn�1 ; Ztn � Ztn�1

�
:

2.3. Di�usion processes

We now examine cases where the bivariate process (Y �; Z) is described by a

stochastic di�erential system. Unlike in the previous subsection we now assume
= = Z = IR+, and the system is de�ned by:

8><>:
dY �

z = a� (Y �
z ) dz + b� (Y �

z ) dW
�
z ;

dZt = � (Zt) dt+ � (Zt) d ~Wt;

(2.12)

where (W �
z ) and

�
~Wt

�
are two independent Brownian motions. In the Ap-

pendix, we prove the following result:

Property 2.3.1: When the condition [b�2 (Yt)� (Zt)� a�2 (Yt)�
2 (Zt)] > 0; 8t;

holds, then the bivariate process (Yt; Zt) satis�es the stochastic di�erential system:
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dYt
dZt

!
=

 
a� (Yt)� (Zt)

� (Zt)

!
dt+

X 1

2 (Yt; Zt)

 
dW 1

t

dW 2
t

!
; (2.13)

where (W 1
t ) ; (W

2
t ) are two independent Brownian motions, and where the ma-

trix
P1

2 may be taken equal to:

P 1

2 =

"
(b�2 (Yt)� (Zt)� a�2 (Yt)�

2 (Zt))
1

2 a� (Yt)� (Zt)

0 � (Zt)

#
:

Comparing the last lines of system (2.12) and of the system given in Property
2.3.1, we note that W 2

t = ~Wt. Therefore we can write (2.12) in a recursive form:

8>><>>:
dYt = a� (Yt)� (Zt) dt+ [b�2 (Yt)� (Zt)� a�2 (Yt)� (Zt)]

1

2 dW 1
t

+a� (Yt)� (Zt) d ~Wt;

dZt = � (Zt) dt+ � (Zt) d ~Wt:

(2.14)

The condition [b�2 (Yt)� (Zt)� a�2 (Yt)�
2 (Zt)] > 0 introduces some restric-

tions between the characteristics of the two di�erential equations in (2.12). In-
deed, it automatically requires a strictly positive trend � (�) > 0 for the time
changes, and a not too large volatility e�ect. These conditions are natural to
ensure that Zt is a strictly increasing process. It is in particular satis�ed when:

� (z) = 0 8z; i.e. when:

dZt = � (Zt) dt() Zt =
R t
0 �sds, where �s = � (Zs) :

It is worth noting that the restriction � (z)=0 is often encountered in �-

nancial applications, it is considered for instance in Conley-Hansen-Luttmer-

Scheinkman (1994), who are interested in estimating subordinated di�usions, or in

Yor (1992a,b), Leblanc (1994), who considered a setup where �s is an exponential

of the Brownian motion ~W plus a drift.

One should observe that the drift and the volatility terms in the bivariate
system (2.13) are with respect to the information generated by both processes

13



(Yt; Zt). It may therefore be useful to examine the evolution of Yt with respect

to its own �ltration only. The characterization of this marginal evolution is in

general quite di�cult, but it may be discussed in speci�c cases, one such case is

considered in the remainder of this section.

We should �rst point out that Property 2.3.1 remains valid if the drift and

volatility parameters for the stochastic di�erential equations are functions of cur-

rent as well as past values of the process instead of just the current ones. This will

be denoted as a� (Y �
z) ; b

� (Y �
z) ; �

�
Z t; ~W t

�
and �

�
Z t; ~W t

�
. Let us now consider

the case where �
�
Z t; ~W t

�
= 0, and �

�
Z t; ~W t

�
= ~�

�
~W t

�
:

Then we can write:

dYt = a� (Y t)�
�
Z t; ~W t

�
dt+ b� (Y t)�

�
Z t; ~W t

� 1

2

dW 1
t ;

dYt = a� (Y t) ~�
�
~W t

�
dt+ b� (Y t) ~�

1

2

�
~W t

�
dW 1

t ;

Since (W 1
t ) ;

�
~W t

�
are independent Brownian motions, we obtain the following

equality in distribution:

dYt = a� (Y t) ~� (W t) dt+ b� (Y t) ~�
1

2 (W t) dWt; (2.15)

where (W t) is another Brownian motion. As expected it is something like an

\autoregressive-moving average" formulation of the process Yt, where the drift
and volatility parameters both depend on the past values Y t and on the past

values of the Brownian motion, whose "increments" are the analogous of the
centered reduced innovations.

3. Examples

We noted in the introduction to Section 2 that time deformed processes are only

interesting if we can tackle complex structures via simpler ones thanks to the

14



rescaling of time. It is therefore important to have "workable" examples which

can be used in mathematical �nance or in empirical estimation of discrete and/or

di�usion processes. The examples described in this section will also serve as

illustrations of the results established in the previous section. In this section we

will elaborate on several examples, beginning with time changed Bessel processes

in Section 3.1, Ornstein-Uhlenbeck processes in Section 3.2 and last but not least

the time deformed random walk with drift.

3.1. Time deformed Bessel processes

This �rst class of processes has been studied extensively by Yor (1992a,b). While
we omit all the speci�c details here, as they are treated by Yor, we would like to
use the example of Bessel processes to further clarify the relation between (2.13)

and (2.15). The initial model is:8<: dY �
z =

�
 + �2

2

�
(Y �

z )
�1
dz + �dW �

z

dZt = exp 2
�
� ~Wt + t

�
dt;

(3.1)

where Y �
z follows a Bessel process. System (3.1) is similar to that de�ned in

(2.12) except that there are parametric restrictions which will be exploited shortly.
Then, using (2.15) we obtain:

dYt =
�
 + �2

2

�
exp 2 (�Wt + t)Y �1

t dt+ � exp (�Wt + t) dWt:

A solution of this stochastic di�erential equation can be written as:

Yt = exp [�Wt + t]() dYt =
�
 + �2

2

�
Ytdt+ �YtdWt;

which corresponds to a geometric Brownian motion with drift.

This example illustrates how simpli�cations arise because of the strong links

introduced between the parameters de�ning the evolution of Y � and the evolution
of Z in (3.1). As noted before, this process has some useful applications in �nance

in the pricing of options. See in particular Geman and Yor (1993) and Leblanc
(1994). The former study the pricing of Asian options while the latter examines
option pricing in a stochastic volatility context.
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3.2. Time deformed Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck process is of course the simplest example of a stationary

continuous time process satisfying a di�usion equation. It will therefore be ideal

for illustrating the properties discussed in Section 2. Moreover, it is worth noting

that this type of process appears in continuous time �nance applications particu-

larly in stochastic volatility models. Ghysels and Jasiak (1994) for instance used

a subordinated Ornstein-Uhlenbeck process to analyze the Hull-White stochastic

volatility model with a time deformed evolution of the volatility process. We will

�rst examine the autocovariance structure of a subordinated Ornstein-Uhlenbeck

process and show how time deformation a�ects the temporal dependence of the
process. Typically, in discrete calendar time such processes have an ARMA rep-
resentation with uncorrelated, and yet nonlinearly dependent, innovations. We
therefore examine also the nonlinear dependencies.

3.2.1. De�nition of the process

We consider the one dimensional case: n = 1. The process Y � is de�ned as the
stationary solution of the stochastic di�erential equation:

dY �
z = k (m� Y �

z ) dz + �dW �
z ; k > 0; � > 0; (3.2)

where W � is a Brownian motion indexed by Z = IR+, independent of the
directing process. It is well known that Y � is a Markov process of order one, and
that the conditional distribution of Y �

z+z0
given Y �

z0
has a Gaussian distribution,

with conditional mean:

E
�
Y �
z+z0

j Y �
z0

�
= m+ �z

�
Y �
z0
�m

�
; (3.3)

and conditional variance:

V
�
Y �
z+z0

j Y �
z0

�
= �2

1 � �2z

1 � �2
; (3.4)

with: � = exp�k. Let us now assume again the independence Assumption
A.1 holds and that = = IN. Then the previous properties may be rewritten in

calendar time as:
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Yt = m+ ��Zt (Yt�1 �m) +

(
�2
1� �2�Zt

1 � �2

) 1

2

�t; (3.5)

where �t � I:I:N (0; 1) and independent of Z; with �Zt = Zt � Zt�1.

Moreover, we also have a similar relation for lag h:

Yt = m+ ��hZt (Yt�h �m) +

(
�2
1� �2�hZt

1� �2

) 1

2

�h;t; (3.6)

where �h;t � N (0; 1) and is independent of Z.

3.2.2. The autocovariance function

Now that we have formally de�ned the process, let us study its second order prop-

erties. This entails of course a study of the temporal dependence of the process
as measured by the autocovariance function. We will study several cases where
we can compare the temporal dependence of Y � and that of Y . From Property
2.1.1, and the fact that m� (z) = m;� (z) = (�2�z)/ (1 � �2) ; we directly obtain
that:

m (t) = m,

 (t; h) =
�2

1� �2
E
�
�
~�hZt

�
:

It should be noted, however, that the second order properties of the Y and Y �

processes may be rather di�erent. To clarify this let us �rst examine a particular

case in which they are similar. This is accomplished via the following result:

Property 3.2.1: If Z is a strong random walk, independent of the Ornstein-

Uhlenbeck process Y �, then Y has a linear autoregressive representation of order

1.
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Proof: From the de�nition of the autocorrelation we have:

� (h) =
 (h)

 (0)
= E

�
��̂hZt

�
= E

h
��Zt+h+:::+�Zt+1

i
= E

�
��Zt+h

�
: : : E

�
��Zt+1

�

=
h
E
�
��Zt+1

�ih
= rh; where r = E

�
��Zt+1

�
: Q.E.D.

Moreover, from the convexity inequality and the restriction 0 < � < 1, we

have:

0 � r = E
�
��Zt+1

�
� �E(�Zt+1) < 1.

Hence, the process in calendar time is weakly stationary with an autoregressive

coe�cient which is smaller than �, if E��Zt+1 > 1. In fact the value of r depends

on the distribution of �Zt+1. To illustrate this, let us consider increments with a
Pascal distribution with parameter �, 0 < � < 1 :

P [�Zt+1 = n] = (1 � �)�n�1; n � 1:
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So, that:

r =
P
n�1

�n (1� �)�n�1 =
� (1� �)

1� ��
.

The e�ect of changing time is summarized in �gure 3.1, where the autoregres-

sive coe�cient in calendar time is given as a function of �.

So far we focussed on a situation where Zt is a (strong) random walk, as
assumed in Property 3.2.1. Let us now consider a situation where Zt is no longer
a strong random walk, but �Zt is still strongly stationary. Then we can still
characterize the asymptotic behavior of the autocorrelation coe�cient � (�). To
do so let us denote:

�2 =  (�Zt) + 2
1X
h=1

Cov (�Zt;�Zt+h) : (3.7)

For h large, using a central limit argument we have:

~�hZt = �Zt+1 + : : :+�Zt+h ' N [hE (�Zt) ; h�
2] ;

Exploiting this property yields:

� (h) = E
h
�
~�hZt

i
' E

�
�hE(�Zt)+

p
h�u
�
; where u � N (0; 1) ;

= rh1;

where:

r1 = exp

"
E (�Zt) log � +

�2 (log �)
2

2

#
: (3.8)

Hence, for large h, the process Y has approximately the same properties as an

autoregressive process of order 1, with autoregressive coe�cient r1. In particular
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we have a larger long range dependence in calendar time than in operational time

if:

r1 > �, E (�Zt) � 1 +
�2

2
log � < 0: (3.9)

This condition is automatically satis�ed for E (�Zt) < 1, but it may also hold

for E (�Zt) > 1, in particular if the variance and covariances Cov (�Zt;�Zt+h)

are su�ciently large.

We conclude this section by noting that the behavior of the entire autocor-

relation function can only be accomplished under some simplifying assumptions
regarding the temporal dependence of the �Zt process. Let us for instance con-
sider that �Zt is a Markov chain, with a transition matrix M whose elements
are:

mij = P [�Zt = j j �Zt�1 = i] ; i; j = 1; : : : ; J (3.10)

Then we obtain a model with a qualitative factor whose alternatives de�ne
J regimes. This model is quite similar to the stochastic switching regime in
Hamilton (1989), except that here the e�ect of the factor is nonlinear. Suppose
we denote by � the invariant probability distribution associated with M , then the
autocorrelation function is as follows:

� (h) = E
�
�
~�hZt

�
= E

h
��Zt+h+:::+�Zt+1

i
=

P
�1;:::;�h

(��1+:::+�h)m�h�1;�hm�h�2;�h�1 : : :m�1;�2� (�1)

=
P

�1;:::;�h

��1� (�1) �
�2m�1;�2 : : : �

�hm�h�1;�h:

Consider now the matrixM (�) whose general element is of the form: [M (�)]i;j =

�jmi;j; while � (�) is the vector whose general component is: �i� (i), then:

� (h) = M (�)h � (�) : (3.11)
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Whenever the matrix M (�) has distinct eigenvalues �1; : : : ; �J we can write

the autocorrelation as:

� (h) =
JP

j=1
�j�

h
j ; �j ; �j 2 IC:

This implies that the process Y has a linear ARMA[J; J � 1] representation,

with autoregressive polynominal:

� (L) =
JQ
j�1

(1 � �jL) = det [Id�M (�)L] ;

which implies that time deformed process has longer lags than the process Y �

expressed in intrinsic time.

3.2.3. The conditional distribution

In the previous subsection we described how under some circumstances the process

Y may have a linear ARMA representation. Yet, the innovations corresponding
to such representation are generally uncorrelated but not white noise. In such a
case it is of interest to have some information on the conditional distribution of
Yt given Yt�1; Yt�2;:::. to capture the nonlinear dependencies.

To do this we shall focus on a situation where Z is a strong random walk.
Following Property 2.2.3 we know that Y will be both strongly stationary and
Markovian of order one. The conditional pdf can then be written as:

l (Yt j Yt�1 = yt�1) =
Z

1

�

 
1 � �2�

1� �2

! 1

2

	

2666664
yt �m� �� (yt�1 �m)

�

 
1 � �2�

1� �2

! 1

2

3777775 g (�) d�;
(3.12)

where 	 is the pdf of the standard normal, and g the pdf of the time increments

�Zt. Since the conditional distribution in (3.12) is a complicated mixture of
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Gaussian distributions with di�erent means and variances we shall examine the

conditional moments which turn out to be simpler. Namely, let us �rst consider

the conditional expectation:

E (Yt j Yt�1) = E [E (Yt j Yt�1;�Zt) j Yt�1] = E
h
m+ ��Zt (Yt�1 �m) j Yt�1

i

= m+ E
�
��Zt

�
(Yt�1 �m) = m+ r (Yt�1 �m).

The latter implies that the optimal prediction coincides with the linear regres-
sion. However, let us study the conditional variance:

V (Yt j Yt�1) = V [E (Yt j Yt�1;�Zt) j Yt�1] + E [V (Yt j Yt�1;�Zt) j Yt�1]

= V
h
m+ ��Zt (Yt�1 �m) j Yt�1

i
+ E

"
�2

1� �2�Zt

1� �2

#

= (Yt�1 �m)2 V
�
��Zt

�
+ �2

1� E
�
�2�Zt

�
1 � �2

:

Hence we note that, contrary to the underlying process Y �, the process in calendar
time features conditional heteroskedasticity. This was �rst noted by Stock (1988),
who compared the behavior of the time deformed Ornstein-Uhlenbeck process

in discrete time with ARCH processes. This feature of the Ornstein-Uhlenbeck
process makes it of course particularly attractive since �nancial time series are
known to exhibit volatility clustering. In the next section we will in fact examine
a related feature, namely that of leptokurtic asset return distributions as a result

of time deformation.

3.3. The subordinated random walk with drift

The last class of processes we would like to study as explicit example are random
walks. Again to facilitate our discussion we divide the section in several subsec-
tions. Section 3.3.1 covers the continuous time case which is exploited in section

3.3.2 to illustrate applications in �nance. Finally, section 3.3.3 deals with discrete

time deformed random walks.
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3.3.1. De�nition of the process

We assume that the initial process is a (multivariate) random walk with drift:

dY �
z = a�dz +B�dWz; (3.13)

whereWz is a standard Brownian motion. We immediately deduce from this that:

Yt � Yt�1 = Y �
Zt
� Y �

Zt�1
= a� (Zt � Zt�1) +B�

�
WZt �WZt�1

�
;

so that the �rst di�erenced process can be written as:

�Yt = a��Zt + (�Zt)
1

2 B��t; (3.14)

where �t � I:I:N [0; Id].

Moreover, the �rst and second order moments of Y can directly be obtained
from (3.14), namely:

E (�Yt) = a�E (�Zt) ;

Cov (�Yt;�Yt+h) = a�a�
0

Cov (�Zt;�Zt+h) + E (�Zt)B
�B�0�0 (h) ;

where �0 (h) is the Kronecker symbol, and �nally:

Cov (�Yt;�Zt+h) = a�Cov (�Zt;�Zt+h).

3.3.2. A particular case: Zt is a random walk with drift

The particular case where Zt is a random walk is of special interest as it yields

an easy characterization of leptokurtic features in the Yt process. This can be put
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to use in the construction of optimal portfolios. We will �rst characterize the tail

behavior before turning our attention to portfolio allocations. In particular it will

be shown how optimal portfolio allocation depends on the information regarding

the directing process Zt. If Zt is latent it will be shown that the optimal allocation

rule will resemble one where there is no time deformation but where attitudes

toward risk have been changed.

i) The leptokurtic e�ect

When Zt is a strong random walk, with marginal pdf g (�), the process in
calendar time is also a strong random walk with marginal pdf for the increments:

f (�Yt) =
Z 1

(2�)�
n

2

��
n

2 (detB�B�0)�
1

2 �

exp�(�Yt � a��)0 (B�B�0)�1 (�Yt � a��)

2�
g (�) d�:

This pdf appears again as a mixture of Gaussian distributions, which will mod-
ify the tails of the distribution of (�Yt) compared to the tails of the distribution
of (�Y �

t ) (Mandelbrot (1963) among others stressed the importance of the tails of

asset price distributions). In fact, Mandelbrot and Taylor (1967) used the frame-
work of subordinated process to describe the fatness of the tails. Yet the result
here may seem di�erent from the usual one, where the introduction of hetero-
geneity in normal distributions implies heavier tails (see e.g. Clark (1970, 1973),
Engle (1982)). The di�erence is a consequence of the fact that the time change not

only a�ects the conditional variance, but also the conditional mean. It is impor-
tant to note, however, that this observation also applies to examples with serial

correlation and where one considers the conditional distribution f (�Yt j �Yt�1).
Indeed it is known that after taking into account conditional linear dependence,
conditional heteroskedasticity and the empirical kurtosis may be larger or smaller

than that associated with the Gaussian distribution. To further explore this, let
us compute the centered fourth order moment, for n = 1:

E [�Yt � E�Yt]
4 = E

h
a� (�Zt � E�Zt) + (�Zt)

1

2 B��t
i4
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= a�4E (�Zt � E�Zt)
4
+ 6a�2B�2E

h
(�Zt) (�Zt � E�Zt)

2
i
+ 3B�4E (�Z2

t ) :

It follows that:

E [�Yt � E�Yt]
4 � 3 [V (�Yt)]

2
= a�4

h
E (�Zt � E�Zt)

4 � 3V (�Zt)
2
i

+6a�2B�2Cov
h
�Zt; (�Zt � E�Zt)

2
i
+ 3B�4V (�Zt) :

Whenever the right hand side is nonnegative we have a kurtosis which is larger

than 3. Such nonnegativity is immediate when a� = 0 , i.e. there is no hetero-
geneity in the conditional mean. In the general case the sign will depend on the
kurtosis of the time increments �Zt (in particular if a� is large compared to B�),

and on the covariance term Cov
h
�Zt; (�Zt � E�Zt)

2
i
.

The leptokurtic e�ect may be important as shown in the following example
fsee Feller (1957)g. Let us assume n = 1, a� = 0, B� = 1, and a time deformation
with density :

g (�) =
1p

2�
p
�3

exp� 1

2�
:

Then the marginal pdf of �yt is :

f (�y) =
Z

1

2�
��2 exp� 1

2�

�
1 + (�y)2

�
d� =

1

�

1

1 + (�y)2
;

a Cauchy distribution, for which the �rst order moment does not exist.

ii) Comparison of optimal portfolios

In �nancial applications the subordinated random walk model may be used

to facilitate the characterization of optimal portfolios. Let us assume that the

components of Yt are the log-prices of a set of �nancial assets, and that the short
term interest rate is equal to zero.
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Wemay determine two mean-variance optimal portfolios depending on whether

we have or not information on time deformation. These optimal allocations are

respectively:

�t (Z) = [V (�Yt j Z)]�1E (�Yt j Z) ;

� = V (�Yt)
�1
E (�Yt) :

Since the former is a function of Zt it corresponds to the case where the

portfolio allocation is an explicit function of an (observable) directing process.
Replacing the moments by their explicit expressions, we have for the allocation
rules using Zt :

�t (Z) =
�
B�B�0

��1
a�;

yielding a �xed composition of the optimal portfolio which is also equal to the
composition in intrinsic time.

Now without the information on the directing time process we have the fol-
lowing allocation rule:

� =
h
a�a�

0

V (�Zt) + E (�Zt)B
�B�0

i�1
a�E (�Zt)

=

"
a�a�

0 V (�Zt)

E (�Zt)
+B�B�0

#�1
a�

=

264�B�B�0
��1

� V (�Zt)

E (�Zt)

�
B�B�0

��1
a�a�

0

�
B�B�0

��1
1 + V (�Zt)

E(�Zt)
a�0 (B�B�0)

�1
a�

375 a�

=

(
1 +

V (�Zt)

E (�Zt)
a�

0

�
B�B�0

��1
a�
#�1 �

B�B�0
��1

a�:
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While this portfolio is proportional to �t (Z) it can be seen that to correct for

the lack of information, the agent has to modify his risk aversion. Suppose the

risk aversion coe�cient is �, when the information on Z is available. Then to

obtain the same optimal portfolio allocation without information requires a risk

aversion coe�cient equal to:

�� = �

"
1 +

V (�Zt)

E (�Zt)
a�

0

�
B�B�0

��1
a�
#
:

3.3.3. Subordinated random walk in discrete time

The two preceding sections dealt with continuous time models. Here we examine
the discrete time case, hence = = Z = IN. The subordinated random walk in
discrete time can be de�ned as follows:

Y �
z =

zX
n=0

Xn; z 2 IN; (3.15)

where (Xn; n 2 IN) is a sequence of i.i.d. random variables. It should be noted that,
unlike the Gaussian innovations appearing in the continuous time model (3.13),
we cover a much wider class of distributions in (3.15). The directing process is
assumed to be with i.i.d. increments �Zt, which amounts to a generalization
in discrete time of the example considered in the previous section. We will �rst

examine the general properties of such a process and then focus on a speci�c
example yielding tractable formulas. The latter will be obtained for a Poisson
mixture.

i) General properties

Let the subordinated process Yt=Y
�
zt
be de�ned following (3.15), namely:

Yt=
ZtX
n=0

Xn=
Zt�1X
n=0

Xn+
ZtX

n=Zt�1+1

Xn=Yt�1+
ZtX

n=Zt�1+1

Xn; (3.16)

where we use the convention
ZtP

n=Zt�1+1
Xn=0, if Zt=Zt�1 or �Zt=0. It follows from

(3.16) that increments in Yt, i.e. �Yt, are i.i.d. so that the subordinated process
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is also a strong random walk in calendar time.4 Obviously, since both Y and Y �

are strong random walks we would like to compare the distributions governing the

incremental processes in both cases. Such a comparison is typically performed via

Laplace's second transforms.

For the univariate case they are de�ned by :

	� (u) = logE(expuXn)= logE(expu�Y �
n ),

� (u) = logE(expu�Zt),

	 (u) = logE(expu�Yt).

Because of the structure of subordination, see for instance (2.3), we can also write:

	 (u)=� [	� (u)] :

To examine the relation between the increments of both random walks in op-
erational and calendar time, we recall that Laplace's second transform can be
expended as:

� (u)=um+ u2

2
m2 +

u3

6
m3 +

u4

24
(m4 � 3m2

2) + o (u4) ;

where m is the mean and mj denotes j
th centered moment. Replacing m and mj

by � and �j or �
� and ��j yield similar expressions for 	 (�) and 	� (�). Moreover,

the following holds:

�=m��;

�2=m��2+m2�
�2;

�3=m��3+3m2�
���2+m3�

�3;

�4 � 3�22=m (��4 � 3��22 )+3m2�
�2
2 +4m2�

���3+6m3�
�2��2+�

�4 (m4 � 3m2
2) :

The �rst term on the right hand side in each of the four expressions is obtained

through
E(�Zt)P
n=1

Xn, i.e. replacing Zt by its expected values. The next terms specify

the impact of the stochastic variation in Zt on the moments. It is worth noting,

4This rea�rms the observation deduced from Property 2.1.3, that for Y to be nonstationary,
it is necessary that both Y � and Z are nonstationary.
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for instance, that for a symmetric Xn process (i.e. ��3=0) one does not in gen-

eral obtain a symmetrically distributed increment process with time deformation.

Indeed, �3=3m2�
���2+m3�

�3 is typically nonzero unless X has zero mean, i.e.

��=0.

ii) Poisson mixtures

A speci�c case which is of practical interest is the Poisson mixture model where

�Zt has a PoissonP (�) distribution [see Goovaerts et al. (1991)]. We also assume

that the increments �Yt take positive integer values. Consider now the functions
	
�
(u)=E

�
u�Y �

t

�
and 	 (u)=E

�
u�Yt

�
. It is easy to verify that:

	 (u)= exp��
h
1�	

�
(u)
i
; (3.17)

and hence, di�erentiating (3.17) yields:

@	(u)

@u
=�	 (u)

@	
�
(u)

@u
: (3.18)

The latter equation allows us to compute recursively the relationship between
the elementary probabilities p�i ; i = 0; 1; : : : associated with the distribution of
increments �Y �

t and those associated with the distribution of �Yt, which will be
denoted pi; i = 0; 1; : : : Indeed, from (3.18) one obtains that:

1X
i=1

ui�1ipi=�
1X
j=0

ujpj

1X
k=1

�k�1kp�k: (3.19)

Now, comparing the coe�cients corresponding to the terms of the same order on

both sides of (3.19) yields [See Panjer (1981)] :

pi=
�

i

i�1X
j=0

pjp
�
i�j (i� j) : (3.20)

The formula (3.20) can be used for recursive calculations of the correspondence

between pi and p
�
i . This mapping is particularly useful in estimation since the like-

lihood function of (�Yt; t = 1; : : : ; T ) has to be expressed in terms of the structural

parameters � and p�i .
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4. Statistical inference for subordinated stochastic processes

In the previous two sections we discussed several elements of the theory of time

deformed stochastic processes in discrete and continuous time. We also provided

speci�c examples of processes that are potentially useful in �nancial time series

modelling. We turn our attention now to statistical issues involving the estimation

of subordinated stochastic processes. In a �rst subsection we describe the role

played by the di�erent parameters in a generic model with time deformation. The

discussion of estimation is divided in two cases, a �rst one where the directing

process Zt is observable, which is treated in section 4.2, and a second situation

where Zt is latent. The latter is treated in section 4.3.

4.1. Parameters of interest

The analysis presented in the previous sections reveals that a generic model con-
tains two types of parameters: (1) those characterizing the evolution of the direct-
ing process in intrinsic time, and (2) those corresponding to the time deformation.
It is important to note that the knowledge of these two types of parameters is
important in practice. Indeed let us for instance consider a problem of option

pricing. Consider a European call in intrinsic time, with maturity H, strike price

K and hence cash-ow
�
Y �
z+H �K

�+
. Furthermore assume that the complete

model is given by the stochastic di�erential system (2.12). This system is driven
by two independent Brownian motions, which will result in an incompleteness of
the market, if only the price of the underlying asset Y � is observed. To resolve this
problem we may assume that the price of the option only depends on the current
and past values of W � , and not on the randomness speci�c to the time deforma-

tion. In such a case we have a unique price at z for this option: P (z; Y �
z ;H;K),

which will only depend on the parameters appearing in a�� (�) and b� (�). Yet, we
are interested of course in the pricing option in calendar time and not in intrin-

sic time. It is clear that the price of a European style call option
�
Y �
t+H �K

�+
is necessarily P [Zt; Yt; Zt+H � Zt;K]. This price cannot be computed, however,

when the directing process Z is unobserved. It will only be possible to approxi-
mate this price if we know the distribution of Zt; ZH ; i.e. the parameters of the

second equation in (2.12). In summary, this example stresses the importance of

estimating all the parameters of the latent model and not just some subset.
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It will be rather obvious that the estimation methods will depend on the

information available regarding the process Z. We will distinguish two cases, in

the �rst case the set of observable variables contain some variables in deterministic

relationship with Z while in the second case no such variables will be available,

resulting in Z being a completely unobservable factor.

4.2. Time deformation as a parametric function of observable processes

We will �rst look at processes where the time deformation is governed by a para-

metric function which is known up to some unknown parameters involving an
observable process Xt. Namely, let us assume that:

Zt = gt (Xt; b) ; (4.1)

where b is a parameter and Xt is a set of series like trading volume, bid-ask
spreads, number of quotes, etc. Once the directing process is speci�ed as in (4.1)
we can proceed with estimating the vector b as well as the parameters governing
the process Y �

z . One can think of at least two estimation methods for estimating
the parameters. A �rst one only exploits the second order properties of subor-

dinated processes while the second one is based on a full characterization of the
distributional properties via the maximum likelihood principle. A subsection is
devoted to each method.

4.2.1. Estimation from empirical second order moments

In analogy with section 2 we �rst consider estimation only involving the second or-
der moments of subordinated processes. Su�cient conditions for weak stationarity

of subordinated processes where given in Property 2.1.2 allowing us to estimate

parameters through matching empirical and theoretical moments. To illustrate
this, let us consider a time deformed Ornstein-Uhlenbeck process discussed in sec-
tion 3.2. In particular, from section 3.2.2 we know that for the process de�ned

by equation (3.2) with parameters m,  and � = exp�k, we have the following
theoretical �rst and second moments for the marginal process Yt in calendar time:

m (t) = m; (4.2)

 (t; h) = �2
�
1 � �2

��1
E
�
�
~�hgt(Xt;b)

�
: (4.3)
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Hence, with a su�cient number of lags h we can identify the parameters m;�; �

as well as b. Consequently, using the empirical mean of Yt and the empirical

autocovariances, we can estimate the aformentioned parameters.

4.2.2. Maximum likelihood estimation

Let us suppose now that we provide a complete speci�cation of the distributional

properties to produce parameter estimates. In particular, let us assume that the

two processes Y � and X are independent and Markovian of order one. In such a

case we have for discrete variables:

P [Yt = yt; Zt = zt j Yt�1 = yt�1; Zt�1 = zt�1]

= P
h
Y �
zt
= yt j Y �

zt�1
= yt�1

i
P [Zt = zt j Zt�1 = zt�1] ;

and a similar decomposition of the conditional pdf holds for continuous variables:

`t (yt; zt j yt�1; zt�1) = `�t (yt j yt�1; zt; zt�1) ~�t (zt j zt�1) ;

where `� corresponds to the conditional distribution of Y � and ~� to the conditional

distribution of Z. Furthermore, we assume again that the available data are
described by Yt and Xt where the latter de�nes Z through (4.1). The process
(Yt;Xt) is Markovian of order one with its transition function given by:

`�t (yt j yt�1; gt (xt) ; gt�1 (xt�1))�t (xt j xt�1) ;

where �t is the conditional distribution of X. The model is completed by intro-

ducing a parametric speci�cation for `�t , �t and g. To characterize the likelihood

function, let �; � and b denote the parameter vectors describing respectively `�t ,
�t and g. Then, we have:

LT (�) =
TY
t=1

`�t (yt j yt�1; g (xt; b) ; g (xt�1; b) ;�)
TY
t=1

�t (xt j xt�1;�) : (4.4)
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From (4.4) we note that the log likelihood function is the product of functions

of (�; b) and of �. Therefore, the � parameter can be estimated using observation

on X alone, and the ML estimators of the two subsets of parameters will be

asymptotically independent.

We can proceed further with an illustrative example which, for the purpose

of comparison, is the same as in subsection 4.2.1. Namely, consider again the

Ornstein-Uhlenbeck process and suppose that :

gt (Xt; b) = b0t+ b1Xt: (4.5)

Therefore �Zt = b0 + b1�Xt, and the evolution of Yt conditional to Xt is
summarized by:

Yt = m+ �b0+b1�Xt (Yt�1 �m) +

"
�2
1� �2(b0+b1�Xt)

1� �2

# 1
2

�t; (4.6)

where �t is standard Gaussian white noise. We observe immediately that the
parameters are not identi�able, and that we must impose some identifying con-
straint, such as b0 = 1. Then the conditional likelihood becomes:

`�t (yt j yt�1; gt (xt; 1; b1) ; gt�1 (xt�1; 1; b1) ; �)

= (2�)
� 1

2

"
�2

1 � �2(1+b1�Xt)

1� �2

#� 1

2

exp�1
2

h
yt �m� �1+b1�Xt (yt�1 �m)

i2
�2

1� �2(1+b1�Xt)

1� �2

:

Finally, it is also worth noting that the corresponding log likelihood function

can easily be concentrated with respect to m;�2.
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4.3. Estimation with latent directing processes

It should come as no surprise that the task of estimating subordinated stochas-

tic processes with latent directing processes is considerably more di�cult. We

no longer assume that Zt is observable through Xt via the parametric mapping

gt (:; b). Instead we must uncover Zt through the sample behavior of Yt. Once

again we can draw a distinction between a method of moments approach, though

not necessarily limited to second order properties, and a maximum likelihood ap-

proach. Since we are dealing with latent processes it might be more useful to

organise our discussion on the basis of a di�erent attribute. Indeed, we will �rst

study a class of estimators which do not involve simulations of the latent Z pro-
cess. Such is for example the case for the continuous time generalized method
of moments (henceforth GMM) approach proposed by Hansen and Scheinkman
(1994) and recently adapted by Conley et al. (1994) to subordinated di�usions.
We shall review this method and in particular show the limitations it imposes to
class of time deformed processes we can possibly estimate with such a method. In

fact, the continuous time GMM procedure seems to only apply to a restrictive set
of circumstances where Z is only governed by a deterministic drift. To estimate
a wider class, containing many processes of interest in �nance, we must entertain
the possibility of simulating the process Z and use simulation-based methods dis-
cussed in Du�e and Singleton (1993), Gouri�eroux, Monfort and Renault (1993),

Gallant and Tauchen (1993) and Gouri�eroux and Monfort (1994). A �rst subsec-
tion is devoted to the continuous time GMM estimator of Conley et al. (1994)
while a second covers the simulation-based estimators for subordinated processes.

4.3.1. Method of Moments using In�nitesimal Operators

Hansen and Scheinkman (1994) proposed to estimate continuous time di�usions

through the GMM principle. We will �rst discuss the principle of the estimation

procedure and then elaborate on the identi�cation of parameters. Finally, we will

concentrate on a very special case where the directing process is predetermined, i.e.
its path is not a�ected by the randomness of a Brownian motion. The discussion

of identi�cation issues will show that it is the latter rather restrictive case only
which can be treated by the GMM.

(a) Moment Conditions for Di�usions
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To describe the generic setup of the continuous time GMM estimator, let us

consider the following multivariate system of di�usion equations:

dyt = �� (yt) dt+ �� (yt) dWt; (4.7)

where Wt is a standard n-dimensional brownian motion and Yt 2 IRn: The pa-

rameters in (4.7) are described by the vector � 2 IRp. Hansen and Scheinkman

(1994) consider the in�nitesimal operator A de�ned for a class of square integrable

functions ':IRn ! IRd as follows:

A�' (y) =
d' (y)

dy
0
�� (y) +

1

2
Tr

 
�� (y)�

0

� (y)
d2' (y)

dydy
0

!
: (4.8)

Because the operator is de�ned as a limit, namely :

A�' (y)=lim
t!0

t�1[IE ('(yt)j yo = y)�y],

it does not necessarily exist for all square integrable functions ' but only for a
restricted domain D. A set of moment conditions can now be obtained for this

class of functions ' 2 D. Indeed, as shown for instance by Revuz and Yor (1991),
the following equalities hold :

EA�' (yt) = 0; (4.9)

E [A�' (yt+1) ~' (yt)� ' (yt+1)A
�
� ~' (yt)] = 0; (4.10)

where A�
� is the adjoint in�nitesimal operator of A� for the scalar product associ-

ated with the invariant measure of the process y.5 By choosing an appropriate set
of functions, Hansen and Scheinkman exploit moment conditions (4.9) and (4.10)

to construct a GMM estimator of �.

Conley, Hansen, Luttmer and Scheinkman (1994) extended the previous ap-

proach to deal with subordinated processes. In particular let us consider the

5Please note that with A�
�
is again associated a domain D� so that ' 2 D and ~' 2 D� in

(4.10).
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system of di�usions described in section 2.3. To simplify the presentation let us

only concentrate on the set of marginal moment conditions de�ned in (4.9), leav-

ing aside those in (4.10). The in�nitesimal operator argument applied to the joint

process yt = (Yt; Zt)
0

yields:

A�'

�
y

z

�
=

"
a�� (y)�� (z)

�� (z)

# 2664
@'

@y
(y; z)

@'

@z
(y; z)

3775

+1
2
Tr

8>>>><>>>>:
"
b�

2

� (y)�� (z) a�� (y)�
2
� (z)

a�� (y)�
2
� (z) �2

� (z)

# 266664
@2'

@y2
(y; z)

@2'

@y@z
(y; z)

@2'

@y@z
(y; z)

@2'

@z2
(y; z)

377775
9>>>>=>>>>;
(4.11)

For subordinated di�usions this is not the only in�nitesimal operator we can
(and should) introduce. Indeed, we can de�ne an in�nitesimal operator for the

marginal process Yt in calendar time as soon as it marginally satis�es a univariate
di�usion equation (see for instance with � (Zt) = 0 as in equation (2.15)) or even
an operator associated with Y �

z , i.e. with the operational time di�usion. From
each of the in�nitesimal operators associated with the joint process, as in (4.11),
or the marginal process in calendar time, or the operational time di�usion Y �

z , we

can de�ne a set of moment conditions similar to (4.9) (and of course also (4.10)
not considered here) and all these conditions may be combined.

(b) Moment Conditions and Parameter Identi�cation

While parameter estimation via GMM is relatively straightforward there is the

common and well-known point that moment conditions may pose identi�cation

problems. In a continuous time GMM framework we construct moment conditions

via an appropriate choice of functions ' belonging to the domain of the operator.

However, further restrictions on ' must be imposed when the di�usion yt is only
partly observable. As emphasized by Gouri�eroux and Monfort (1994), for a large
class of di�usions encountered in �nance, particularly stochastic volatility models,

one often cannot identify the latent parameters governing the dynamics of y.
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Indeed to construct moment conditions with an empirical counterpart we must

restrict the choice of ' to functions only involving observable transformations of

y. Since we are dealing with a situation where Zt is latent, this problem is of

course encountered here as well. Consider the moment conditions :

E

�
A�'

�
Yt

Zt

��
= 0; (4.12)

where it is assumed that the functions ' are independent of the parameter �. We

may only consider the ones where A�'
�
Yt
Zt

�
only depend on Yt for any �. As soon

as the parameterization does not introduce links between the functions a��, b
�
�, ��

and �� de�ning the di�usions we deduce from (4.11) that we must restrict the
class of functions to the one satisfying :

a�� (y)�� (z)
@'

@y
(y; z) ; �� (z)

@'

@z
(y; z) ; b�

2

� (y)�� (z)
@2'

@y2
(y; z) ;

a�� (y)�
2
� (z)

@2'

@y@z
(y; z) ; �2

� (z)
@2'

@z2
(y; z) being all independent of z.

This yields the following restrictions on the class of admissible functions.

(1) Since

"
b�

2

� (y)�� (z)
@2'

@y2
(y; z)

#,"
a�� (y)�� (z)

@'

@y
(y; z)

#
has to be inde-

pendent of z, we deduce that
@

@y
log

@'

@y
(y; z) has also to satisfy this condition.

Therefore :

' (y; z) = G (y) f (z) + C (z) : (4.13)

(2) Furthermore since �� (z) @' (y; z)/ @y has to depend only on y one obtains

from (4.13) that f (z) = k (�� (z))
�1 and therefore:

' (y; z) = kG (y) (�� (z))
�1

+ C (z) ; (4.14)

(3) Similarly, �� (z) @' (y; z)/ @z must be function of y only and hence:

'(y; z) = �kd��(z)/ dz G(y) (��(z))
�1 + �� (z) dC(z)/ dz: (4.15)

37



Using the arguments in (1) through (3) one constraints the choice of '. Two cases

may be distinguished :

i) If G (y) is not constant, it is necessary to choose C (z) constant, and this

choice is only valid if [�� (z)]
�1

d�� (z)/ dz is constant.

ii) If G (y) is a constant, it is necessary that [�� (z)]
�2

d�� (z)/ dz is indepen-

dent of �.

These constraints are extremely restrictive since they impose conditions on
the dynamics of the underlying processes. Therefore it seems di�cult to construct
moment conditions that will identify all elements of the parameter vector �, except
in some very special circumstances.

(c) Predetermined latent directing processes.

One special case, the one implicitly treated by Conley et al. (1994), is where
the directing process Zt satis�es:

dZt = �� (Zt) dt; (4.16)

and hence �� (Zt) = 0. Recall from the discussion in section 2.3 that in such a
case one can also derive a di�usion for the marginal process (Yt) as described by
(2.15). Now the moment conditions (4.11) greatly simplify and amount to:

EA�'
�
Yt
Zt

�
= E

h
�� (Zt)

h
a�� (Yt)

@'

@y
(Yt; Zt) +

@'

@z
(Yt; Zt)

+ 1
2
(b�� (Yt))

2 @2'

@y2
(Yt; Zt)

ii
= 0:

(4.17)

Following Conley et al. (1994) let us consider now functions separable in y and
z, i.e. ' (y; z) = '0 (y)'1 (z). Then (4.16) further simpli�es to:
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EA�'

�
Yt

Zt

�
= E

"
�� (Zt)'1 (Zt)

(
a�� (Yt)

d'0 (Yt)

dy
+ 1

2
(b�� (Yt))

2 d
2'0 (Yt)

dy2

#

+E

"
�� (Zt)

d'1 (Zt)

dz
'0 (Yt)

#
:

(4.18)

From the in�nitesimal operator associated with the changing time process in

(4.16) we obtain that

E

"
�� (Zt)

d'1 (Zt)

dz

#
= 0; (4.19)

for all '1 belonging to the appropriate domain.

Therefore we deduce from (4.19), that

E

"
�� (Zt)

d'1 (Zt)

dz
'0 (Yt)

#

= E

(
�� (Zt)

d'1

dz
(Zt)E ('0 (Yt)jZt)

)
= 0:

Then the condition (4.18) implies :

E

"
�� (Zt)'1 (Zt)

 
a�� (Yt)

d'0 (Yt)

dy
+
1

2
[b�� (Yt)]

2 d
2'0 (Yt)

dy2

!#
= 0;8'0; '1;

which is equivalent to :

E

"
a�� (Yt)

d'0 (Yt)

dy
+

1

2
[b�� (Yt)]

2 d
2'0 (Yt)

dy2

�����Zt

#
= 0;8'0;

and by integrating on Zt :

E

"
a�� (Yt)

d'0 (Yt)

dy
+
1

2
[b�� (Yt)]

2 d
2'0 (Yt)

dy2

#
= 0;8'0: (4.20)
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4.3.2. Simulation-based estimators

In general, the estimation problem is much more complicated with a latent direct-

ing process Zt because the observable log likelihood, corresponding to Y1 : : : Yr is

now derived by integrating out the unobservable path of Z:

L�T (y1; : : : ; yT j y0; z0) =
Z
� � �

Z TY
t=1

(`�t (yt j yt�1; zt; zt�1)~�t(zt j zt�1)dzt): (4.21)

The presence of such multiple integrals inside the likelihood function is com-
mon in many empirical models for �nancial data. The best examples are stochastic

volatility models. Statistical inference for such processes can be based on simu-
lated estimation methods (Du�e-Singleton (1990), Gouri�eroux-Monfort-Renault
(1993), Gallant-Tauchen (1992), Gouri�eroux-Monfort (1994)).

In recent years considerable advances were made in this area. Since simulation
of a subordinated process with latent Zt is a special case of the estimation prob-
lems treated by this class of simulation-based estimators it is a relatively straight
forward application of the available theory. It may be noted here that Ghysels
and Jasiak (1994) provide a speci�c example of such an estimator applied to a

subordinated stochastic volatility model.

5. Testing the hypothesis of time deformation

In this �nal section we treat the problem of hypothesis testing, speci�cally focus-
ing of course on testing for time deformation. We shall �rst consider diagnostic
tests which are easy to apply. They are based on either a modi�ed study of the

correlogram in calendar time, or a direct estimation of the correlogram in de-

formed time. The methods assume some direct or indirect observations of the
changing time process. Finally, a second section deals with the problem of testing

restrictions regarding subordination in a parametric setting.
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5.1. Descriptive diagnostic tools

5.1.1. Use of the calendar time correlogram

Before entertaining the possibility of modelling a time series via an operational

time setup it is useful to have some simple diagnostic tests at hand designed to

detect the need for such a speci�cation. The �rst test we propose has features

which are quite similar to tests for ARCH e�ects. Indeed, while the class of

ARCH processes is quite large one typically constructs a diagnostic test for ARCH

e�ects only on the basis of a simple ARCH(q) representation (see for instance

Engle (1982)). Here we will also start from a simple structure to capture features
belonging to a wider class of time deformed processes. The development of the
test is based on the Ornstein-Uhlenbeck model, i.e. the �rst order autoregressive
model in continuous time. From the discussion in section 3.2.2 we know that such
a process, when subordinated to Zt, has the following autocorrelation structure:

� (h) = E
�
�
~�hZt

�
: (5.1)

To conduct the test we need to assume that the time deformation is related
to an observable process Xt as in (4.1). In particular let us consider the linear
function, as in (4.5):

~�hZt = b0 + b ~�hXt: (5.2)

To construct the test we will use an approximation to the expected value in
(5.1), neglecting the randomness of ~�hXt:

log � (h) � c0 + cE ~�hXt; where c0 = bo log �; c = b log �: (5.3)

The result in (5.3) yields a formula which can be easily exploited once � (h) is
replaced by its sample analogue and E ~�hXt replaced by the corresponding sample

average. It suggests to display graphically log �̂ (h), i.e. the log of the empirical

autocorrelation, against empirical averages of ~�hXt for di�erent lags h = 1; 2; : : :
If b 6 =0 we should observe a slope pattern on the graph, as displayed in Figure 5.1.
This deformed time correlogram extends the usual correlogram which corresponds

to calendar time and for which ~�hXt is proportional to the lag h.
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The signi�cance of the slope coe�cient b, which amounts to a time deformation
scheme, might also be formally tested.

5.1.2. Estimation of the intrinsic time correlogram

In section 2.1 we discussed the second order properties of subordinated stochas-
tic processes. We examined the autocovariance functions for Y and Y �, which
appear in (2.5). In this section we propose estimators for  (h) and � (z) under
the assumption that Property 2.1.2 holds. Let us �rst recall that the empirical

autocovariance function for a zero mean calendar time process can be written as:
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̂T (h) = 1
T

TP
t=1

YtYt+h=
1
T

TP
t=1

TP
�=1

YtY�1t��=h

�

TP
t=1

TP
�=1

YtY�1t��=h

�P
t=1

TP
�=1

1t��=h

:

This formulation of the empirical autocovariance function would suggest an esti-

mator for � (z). The di�culty is that the autocovariance function � is de�ned
on the real line, whereas we have only a �nite number of observations Zt, t = 1,
..., T , therefore a small number of pairs (Zt; Z� ) such that Zt � Z� = z given.
This forces us to rely on smoothing through a kernel namely:

̂�T (z) =

TP
t=1

TP
�=1

YtY�
1

hT
K

�
Zt � Z� � z

hT

�
TP
t=1

TP
�=1

1

hT
K

�
Zt � Z� � z

hT

� , (5.4)

where hT is a bandwidth, depending on the size of the sample, and K is a kernel
function.

A detailed analysis of the asymptotic properties of this nonparametric estima-
tor is beyond the scope of the paper. We provide, however, some discussion of
the form of the asymptotic �rst and second order moments of the estimator in
Appendix 2.

The nonparametric estimator has, as shown in the appendix, the following
asymptotic behavior :

i) ̂�T (z) is a.s. consistent of 
� (z) ;

ii) It is asymptotically normal :

q
ThT [̂�T (z)� � (z)] d�! N

0BB@0;
R
K2 (�) d�

2
1P
n=1

fn (z)
V ar

�
Y �
z0
Yz0+z

�1CCA ;

where fn is the pdf of Zt+n � Zt: It is interesting to note that,

V
�
Y �
z0
Yz+zo

�
= V

h
Y �
z0
E
�
Y �
z+z0

j Y �
z0

�i
+ E

h
Y �2
z0
V
�
Y �
z+z0

j Y �
z

�i
;
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and therefore the asymptotic precision of this estimator depend on the conditional

�rst and second order moments of Y �.

5.2. Testing for time deformation in parametric models

Besides diagnostic tests we turn our attention now to parametric models where

the null hypothesis of subordination is being considered for testing. In section 4

we noted that there is an important distinction to be made between a situation

where Zt is latent and one where it isn't. We will therefore distinguish these two
cases when discussing hypothesis testing.

5.2.1. Parametric models with observable directing processes

Let us consider the maximum likelihood estimator discussed in section 4.2.2. The
likelihood function as formulated in (4.4) has a parameter vector � = (�; b; �)
where b determines the mapping between the observable series Xt and the di-

recting process Zt. For the purpose of hypothesis testing, let us specify the time
deformation (4.1) such that :

gt (Xt; b) jb=0= t: (5.5)

It is for instance the case in the illustrative example given in (4.5) gt (Xt; b) =
b0t + b1Xt, with the identifying restriction b0 = 1. The test of the hypothesis
Zt = t may be performed by a Lagrange multiplier procedure based on the score:
[@ log L�T (�)/ @b]�=�̂0 , where �̂o is the constrained ML estimator and � � (�; b; �).
As an illustration let us consider again the time deformed Ornstein-Uhlenbeck
process and gt (Xt; b) = t+ bXt. It can be shown that:

T�1@ logL
�
T (�)

@b

�����
�=�̂o

� 1

̂20
Cove

�
�xt; �̂

2
ot

�
+
1 � �̂20
�̂0̂

2
0

Cove (�xt (yt�1 � m̂0) ; �̂ot) ;

(5.6)

where: m̂0; �̂0; �̂ot = yt � m̂0 � �̂0 (yt�1 � m̂0) ; �̂20 = 1
T

TP
t=1

�̂2ot; are the con-

strained ML estimators and the constrained residuals. Consequently the score
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statistic contains two di�erent terms: the �rst one Cove (�xt; �̂
2
ot) is useful for

testing the presence of conditional heteroskedasticity in the direction �xt, the

second one Cove (�xt (yt�1 � m̂0) ; �̂ot) for testing the omission of �xt (yt�1 �m)

in the conditional mean. This double local e�ect of time deformation is easy to

understand intuitively when we study the expansion of the regression model of

Yt given Yt�1;�Xt in a neighborhood of the null hypothesis i.e., when b is small.

Indeed we have, from (4.6) :

Yt � m+ (� + �b�Xt log �) (Yt�1 �m) +

(
�2

1� �2
(1� �2 [1 + 2b�Xt log �])

) 1

2

�t

� m+ � (Yt�1 �m) + b� log ��Xt (Yt�1 �m) +

"
�2 � 2

b�2�2 log �

1� �2
�Xt

# 1

2

�t:

Hence the test combines both e�ects due to time deformation in the case of
an Ornstein-Uhlenbeck model.

5.2.2. Parametric models with latent directing processes

We will concentrate most of our attention on testing the hypothesis of time defor-
mation when one uses the simulation-based estimators described in section 4.3.2.
Some observations will also be made about testing when the continuous time

GMM estimator is used. Since we discuss primarily simulation-based estimators,
let us introduce an analogue to (4.1) to describe the dynamic of the changing time
process in discrete time, namely:

Zt = ht (Zt�1; �zt; b) ; (5.7)

where �zt is I.I.N (0,1). Again, for the purpose of discussion we assume that:

ht (Zt�1; �zt; b) jb=0= t (5.8)

The score principle was advanced for testing b = 0 when the directing process

was tied to an observable process Xt through gt in (4.1). The same score principle
can be applied to cases where Zt is latent. Let us assume again that the parameter

vector is � = (�; b) and that we estimate the model (via simulation) under the
null restriction b = 0, yielding �̂0T = (�̂0

T ; 0) for a sample of size T . Consider paths
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for the directing process simulated under the alternative b /=0. For any choice of

b we obtain
h
Zs
t (b)

T

t�1

iS
s=1

. Taking the parameter estimates �̂0
T under the null

we can simulate for any alternative b the process
h
(yst (�̂

0
T ; b))

T

t=1

iS
s=1

. For the

Ornstein-Uhlenbeck example this would amount to:

yst (�̂
0
T ; b) = m̂oT+�̂

(1+b1�Zs

t
(b))

oT

�
yst�1 (�̂

0
T ; b)� m̂0T

�
+�̂0T

0B@1� �̂
2(1+b1�Zs

t
(b))

0T

1 � �̂0T

1CA
1

2

"st

where �̂0
T = (m̂0T ; �̂0T ; �̂0T ) and b1 is an element of the parameter vector b.
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Appendix 1

The Stochastic di�erential system in calendar time

In this Appendix we provide a proof of Property 2.3.1 in Section 2.3. The idea

of the proof follows the approach of Stroock-Varadhan (1979). It consists of char-
acterizing for the in�nitesimal drift, volatilities and covolatilities. In particular,
we have that:

a (yt; zt) = lim
h!0

E

�
Yt+h � Yt

h
j Yt = yt; Zt = zt

�

= lim
h!0

E

"
Y �
Zt+h

� yt

h
j Y �

zt
= yt; Zt = zt

#

= lim
h!0

"
E

"
Y �
Zt+h

� yt

h
j Y �

zt
= yt; Zt = zt; Zt+h

#
j Yt = yt; Zt = zt

#

= lim
h!0

E

"
Zt+h � zt

h
E

 
Y �
Zt+h

� yt

Zt+h � zt
j Y �

zt
= yt; Zt = zt; Zt+h

!
j Y �

zt
= yt; Zt = zt

#

= lim
h!0

E

�
Zt+h � zt

h
a�
�
Y �
zt

�
j Y �

zt
= yt; Zt = zt

�

= a� (yt) lim
h!0

E

�
Zt+h � zt

h
j Zt = zt

�
= a� (yt)� (zt) :

Therefore the in�nitesimal drift for the bivariate process is as follows:

lim
h!0

1
h

 
E [Yt+h � Yt j Yt; Zt]

E [Zt+h � Zt j Yt;Zt]

!
=

 
a� (Yt)� (Zt)

� (Zt)

!
:
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The in�nitesimal volatilities and covolatilities are determined in a similar way.

Namely,

lim
h!0

E

"
(Yt+h � Yt) (Zt+h � Zt)

h
j Yt; Zt

#

= lim
h!0

E

"
(Zt+h � Zt)

2

h
E

"
Yt+h � Yt

Zt+h � Zt

j Yt; Zt; Zt+h

#
j Yt; Zt

#

= lim
h!0

E

"
(Zt+h � Zt)

2

h
a� (Yt) j Yt; Zt

#
= a� (Yt)�

2 (Zt) :

lim
h!0

E

"
(Yt+h � Yt)

2

h
j Yt; Zt

#

= lim
h!0

E

"
Zt+h � Zt

h
E

"
(Yt+h � Yt)

2

Zt+h � Zt

j Yt; Zt; Zt+h

#
j Yt; Zt

#

= lim
h!0

E

�
Zt+h � Zt

h
b�2 (Yt) j Yt; Zt

�
= b�2 (Yt)� (Zt) :

Therefore the bivariate in�nitesimal volatility is given by:

lim
h!0

1
h
V

" 
Yt+h � Yt

Zt+h � Zt

!
j Yt; Zt

#
=

"
b�2 (Yt)� (Zt) a� (Yt) �

2 (Zt)

a� (Yt) �2 (Zt) �2 (Zt)

#
:

The matrix on the right hand side will be denoted
P
(Yt; Zt) and it is positive

de�nite as soon as:

b�2 (Yt)� (Zt)� a�2 (Yt)�
2 (Zt) > 0; 8t:

With these in�nitesimal drift and volatilities, we can immediately characterize

the form of the stochastic di�erential system satis�ed by the time deformated
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process. (It is easily checked that the matrix
P1

2 given in (2.12) is such thatP 1

2

�P 1

2

�0
=
P
(Yt; Zt)).
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Appendix 2

The asymptotic moments of the functional estimator of the autocovariance

function in intrinsic time

In this appendix we provide some ideas of the form of the asymptotic �rst
and second order moments of ̂�T (z), without discussing the regularity conditions
for a.s. convergence and asymptotic normality of this estimator. As usual these
properties are deduced from the properties of :

g1T (z) =
1
T

TP
t=1

TP
�=1

Yt Y�
1
hT
K

�
Zt � Z� � z

hT

�
;

g2T (z) =
1
T

TP
t=1

TP
�=1

1
hT
K

�
Zt � Z� � z

hT

�
;

noting that : ̂�T (z) = g1T (z) =g2T (z) :

As soon as [g1T (z) ; g2T (z)] is a.s. consistent to its asymptotic mean, we get :

̂�T (z) a:s:�! lim
T

g1T (z)

g2T (z)
:

Similarly as soon as :

264g1T (z)� lim
T
Eg1T (z)

g2T (z)� lim
T
Eg2T (z)

375 d�! N

"�
0

0

�
;

"

11 (z) 
12 (z)


21 (z) 
22 (z)

##
;

we get :

�
̂�T (z)� lim

T
Eg1T (z)

�
lim
T

Eg2T (z)

�
d�!

N

2640;
0B@ 1

lim
T

Eg2T (z)
;�

lim
T

Eg1T (z)

lim
T

Eg2T (z)
2

1CA 
11 (z) 
12 (z)


21 (z) 
22 (z)

!0B@ 1

lim
T

Eg2T (z)
; �

lim
T

Eg1T (z)

lim
T

Eg2T (z)
2

1CA
0375
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Below we derive the form of the various terms lim
T

Eg1T (z), lim
T

Eg2T (z),


11 (z) , 
12 (z), 
22 (z), which characterize the asymptotic distribution.

For this derivation, we assume that the processes (Y �
z ) and (ZT ) are indepen-

dent, that (Y �
z ) is strongly stationary with zero mean and that (ZT ) is with iid

increments.

a) First order moments

We get, for z 6= 0 :

AT = E

(
1

T

TP
t=1

TP
�=1

�
YtY�

1

�
1

hT
K

�
Zt � Z� � z

h�

�)

=
1

T

TP
t=1

TP
�=1

E

��
Y �
Zt
Y �
Zt

1

�
1

hT
K

�
Zt � Z� � z

hT

��

=
1

T

TP
t=1

TP
�=1

E

("
� (Zt � Z� )

1

#
1

hT
K

�
Zt � Z� � z

hT

�)

=
1

T

TP
t=1

TP
�=1

Z "
� (u)

1

#
1

hT
K

�
u� z

hT

�
fj��tj (u) du;

where fjT�tj (u) is the p.d.f. of Zt � Z� , which only depends on j� � tj because of
the assumption of strongly stationary increments. Therefore we obtain :

AT =
1

T

TP
t=1

TP
�=1

Z "
� (�hT + z)

1

#
fj��tj (�hT + z) K (�) d�

' 1

T

TP
t=1

TP
�=1

"
� (z)

1

#
fj��tj (z) ;

(since hT tends to zero when T tends to in�nity and
R
K (�) d� = 1).

Then :

AT '
"
� (z)

1

#
+1X

n=�1
fjnj (z) = 2

"
� (z)

1

# 1X
n=1

fn (z) :
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This result is valid if the series
1X
n=1

fn (z) =
1X
n=1

f�n (z) is convergent.

For instance if Zt+1 � Zt has an exponential distribution  (1; �), we have :

1X
n=1

fn (z) = �
1X
n=1

1

� (n)
exp��z (�z)n�1 < +1:

This condition
1X
n=1

fn (z) <1 may be seen as the functional analogue of the

similar condition on the covariance
1X
n=1

Cov [Zt; Zt+n] < +1:

The form of the limit for ̂�T (z) is immediately deduced :

lim
T
̂�T (z) =

lim
T
Eg1T (z)

lim
T
Eg2T (z)

= � (z) ;

which corresponds to the consistency property.

b) Second order moments

We have :

B

= Vas

0@pTht
8<: g1T (z)� lim

T
Eg1T (z)

g2T (z)� lim
T

Eg2T (z)

9=;
1A

= Vas
�p

Tht
n
1
T

PT
t=1

PT
Z=1

�
ytyZ
1

�
1
hT
K
h
Zt�ZZ�z

hT

i
� 1

T

PT
t=1

PT
Z=1 E

�
ytyZ
1

�
1
hT
K
h
Zt�ZZ�z

hT

io�
As usual for this kind of computation, it is possible to neglect in the developed

expansion of this variance all the cross-terms, the one corresponding to di�erent

| (t; Z), (t0; Z 0) : Then we get :

B (z)

=lim
T

n
1
T

PT
t=1

PT
Z=1 E

�h
ytyZ
1

i
(ytyZ ; 1)

1
hT
K2

h
Zt�ZZ�z

hT

i�
� hT
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Z=1E

h�
ytyZ
1

�
1
hT
K
�
Zt�ZZ�z
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�
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1
T
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t=1

PT
Z=1 E

��
ytyZ
1

�
[ytyZ; 1]

1
hT
K2

h
Zt�ZZ�z

hT

i�
[Since the second term is asymptotically negligeable.]
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B (z)

=lim
T

1
T

PT
t=1

PT
Z=1 E

" 
y�2Zty

�2
Zz

y�Zty
�
Zz

yRZty
�
Zz

1

!
1
hT
K2

�
Zt�ZZ�z

hT

�#
Let us introduce the quantity :

� (z) = E
�
y�2zo y

�2
zo+z

�
(A:1)

We directly deduce after a change of variable similar to the one of the previous

subsection :

B (z) =
R
K2 (�) d� 2

P1
n=1 fn (z)

h
�(z)

�(z)

�(z)

1

i
:

Therefore the asymptotic variance of the estimated autocorrection will be :
Vas
p
Tht

hb�T (z)� Z (z)
i

=

R
K2(v)d�

2
P

1

n=1
fn(z)

h
� (z)� � (z)2

i
;

where :
� (z)� � (z)2

= E
�
y�2Zzy

�2
z+zo

�
�E

�
y�zoy

�
z+zo

�2
= V

�
y�zoy

�
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�
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