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American Option Valuation:
New Bounds, Approximations, and a
Comparison of Existing Methods*

Mark Broadie’, Jérome Detemple’

Abstract

In this paper we provide lower and upper bounds on the prices of
American call and put options written on a dividend paying asset. Based on the
bounds, we provide two option price approximations. Our second approximation,
which uses both lower and upper bound information, has an average accuracy
comparable to a 1000-step binomial tree with a computation speed comparable
to a 50-step binomial tree. Put another way, our second approximation is 6 times
more accurate than a 200-step binomial tree and is about 15 times faster than
a 200-step binomial tree. Furthermore, the approximations are sufficiently
simple that they can be computed in a spreadsheet. In addition, we conduct a
careful large-scale evaluation of many recent methods for computing American
option prices. Comparisons are made on the basis of accuracy and speed of
computation and lead to some surprising results.

Dans cet article nous proposons des bornes inférieures et supérieures sur
Ies prix d'options américaines a l'achat et a la vente. Sur la base de ces bornes nous
proposons deux approximations du prix de I'option. Notre deuxiéme approximation
qui utilise a fa fois I'information sur la borne inférieure et supérieure a une précision
moyenne comparable 4 un arbre binomial de 1000 pas avec une vitesse de calcul
comparable a un arbre binomial de 50 pas. En d'autre termes notre deuxiéme
approximation est 6 fois plus précise qu'un arbre binomial 4 200 pas et est 15 fois
plus rapide qu'un arbre binomial a4 200 pas. De plus les approximations sont
suflisamment simple pour é&tre calculées dans un tableur (spreadsheet). En outre,
nous effectuons une évaluation soigneuse et sur grande échelle des nombreuses
méthodes numériques qui ont été proposées récemment pour calculer les prix des
options américaines. Ces comparaisons sont faites sur la base de la précision et de
la vitesse de calcul et conduisent A certains résultais surprenant.
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1. Introduction

A wide variety of options traded on exchanges are American options and therefore may be
optimally exercised before the maturity of the contract. Commodity options, commodity futures
options, call options on dividend paying stocks, put options on dividend or non-dividend paying
stocks, foreign exchange options, and index options are examples of contracts for which early
exercise may be optimal. The optimality of early exercise presents considerable difficulties from
a computational viewpoint. Closed form or analytical solutions are not available to price these
American options, so mumerical approximation methods are required.

Our paper has two aims. First, we propose new methods for computing lower and upper
bounds on American option values. Based on the bounds, we provide two option price approxima-
tions. Second, we compare our two new approximations to many existing American option price
approximation techniques. Methods are compared on the basis of the speed of computation and
the accuracy of the approximation.

Our computational results show that our second approximation, which uses both lower and
upper bound information, has a root-mean-squared (RMS) relative error of 0.02% on a sample which
represents a wide range of option parameters. This RMS error is slightly better than the RMS
error of a 1000-step binomial tree. Furthermore, our second approximation can be computed as
fast as a 50-step binomial tree (or about 350 times faster than a 1000-step binomial tree). Our
approximations are not dominated in terms of speed and accuracy by any of the other methods that
we tested. Furthermore, our two approximations are sufficiently simple that they can be computed
in a spreadsheet.

The valuation of American options on dividend paying assets is an important problem in finan-
cial economics. Early work focused on the case of discrete dividends for which analytical solutions
can be derived (Roll (1977), Geske (1979), and Whaley (1981)). When closed form solutions cannot
be derived, numerical methods have been employed to compute the value of the option and the
optimal exercise boundary. Schwartz (1977) and Brennan and Schwartz (1977, 1978) introduced
finite difference methods and Cox, Ross, and Rubinstein (1979) introduced the binomial method
for the valuation of American options. These methods discretize both the time and state spaces
in order to approximate the option price. The methods are very easy to implement and are guite
flexible in that they can be easily adapted to price many nonstandard or exotic options. A careful
analysis and comparison of these early methods is given in Geske and Shastri (1985).

Generalizations of the binomial approach include the multinomial methods Boyle, Evnine, and
Gibbs (1989) and Kamrad and Ritchken (1991). Quasi-analytical solutions were introduced by Geske
and Johnson (1984), MacMillan (1986), and Barone-Adesi and Whaley (1987). The Geske-Johnson
method gives an exact analytical solution for the American option pricing problem, but their for-
mula is an infinite series that can only be evaluated approximately by numerical methods. The
quadratic method of MacMillan (1986) and Barone-Adesi and Whaley (1987) and the method of
lines of Carr and Faguet (1994) are based on exact solutions to approximations of the option partial
differential equation. The method of lines generalizes the quadratic method by discretizing the
time dimension. Geske and Johnson (1984) introduced the method of Richardson extrapolation to
the option pricing problem. Richardson extrapolation has also been used in Breen (1991), Bunch
and Johnson (1992), Yu (1993), and Carr and Faguet (1994). The accelerated binomial method of
Breen (1991) can be viewed as a method of approximating the Geske-Johnison (1984) option pricing
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formula.

McKean (1965) and Kim (1990) provide an integral representation of the option price (see also
Jamshidian (1989), Jacka (1991), Carr, Jarrow, and Myneni (1992), and Yu (1993)). Their integral
formulas express the value of the American option as the value of the corresponding European
option augmented by the present value of the gains from early exercise. The gains from early
exercise, in turn, depend parametrically on the optimal exercise boundary which is the solution
of a nonlinear integral equation subject to a boundary condition. While the option price has an
explicit representation, the exercise boundary is implicitly defined by the integral equation, so that
a recursive numerical procedure is required to solve for the exercise boundary and option price.

In the second section of the paper we derive a lower bound for the American call option price
based on a capped option with an appropriately chosen constant cap. We also provide a procedure,
based on the same class of capped options, to compute a uniform lower bound, denoted L*, on
the optimal exercise boundary of the American call option. In Section 3 we use the integral rep-
resentation of the early exercise premium in conjunction with L* to obtain an upper bound for
the theoretical price of the option. Modifications of the procedures for American put options are
given at the end of Section 3. Numerical results and comparisons with existing methods are given
in Section 4. Concluding remarks are given in Section 5. Proofs are collected in Appendix A. Some
details of the implementation of various methods are given in Appendix B.

2. A lower bound using capped call options
We consider an American call option with maturity T and exercise price K that is written on
an underlying asset whose price S satisfies

ds; = Si[(r — 8)dt + odW,], (1)

where W; is a standard Brownian motion process. Here 7 is the constant rate of interest, § is the
dividend rate, and ¢ is the volatility coefficient of the asset price. Throughout the paper, we assume
& > 0, unless otherwise noted. The asset price process (1) is represented in its risk neutral form.
Let B; be a nonnegative continuous function of time representing an exercise boundary. That is,
the exercise policy corresponding to B is to exercise at the first time s < T such that §; = B; or
at maturity if St = K. Let C¢(St, B;) denote the value at time ¢ of an American call option when
the exercise policy B is followed. The parameters r, 8, o, K, and T are omitted for brevity. Let Bff
denote the optimal exercise policy. The value of the American call option is C¢(S;) = C; (S, B*).

The main tool used in approximating the American call option value is a capped call option
written on the same asset. If the price of the underlying asset is S, the payoff of a capped call
option is max(min(S, L) — K, 0), where K is the strike price and L is the cap. The payoff is the
same as a standard option, except that the cap L limits the maximum possible payoff. The value
of a capped call option with maturity date T, exercise price K, and constant cap L, with automatic
exercise when the underlying asset price hits the cap L, is given by

Ce(S,L) = (L~ K) [ XY N(do)) + A7 N(do + 2fVT = t/0)]
+8:e S T-DIN(d; (L) — oVT — £) — N(d] (K) — oVT - 1)]
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— AR oS T-D N (dF (L) ~ 0T ~ £) - N(d} (K) ~ 0T — )]
~ Ke"T-0[N(d] (1) - N(d5 (K)) - A2 IN@f (L) ~ N(df ’)1], (@)

where
1
dg = -(;—ﬁ;_———t[bg(?\:)—f(T—t)] (3)
df(x) = Py %_:_f[tlog()\t) —log(L) +log(x) + b(T - t)] (4)

b=6-r+30% f=vb2+2ro2, ¢p=3b~f), a=3(b+f), and A =S/L.  (5)

The preceding formula for C;(S:, L) holds for I > max(S;, K). For completeness, we define C; (S, L)
= max({S; - K,0) when L < max(S;,K). Equation (2) is derived in Broadie and Detemple (1994).
In (2), N(-) denotes the cumulative standard normal distribution function. Although equation (2)
is long, it is nearly as easy to compute as the Black-Scholes formula (Black and Scholes (1973)).
Indeed, equation (2) is simple enough to implement in a spreadsheet or hand calculator. Note that
equation (2) holds only for constant caps L, not for arbitrary exercise boundaries B;.

The preceding formula for C; (¢, L) gives an immediate lower bound on the value of the Amer-
ican call option, C¢(S;). Since the policy of exercising when the asset price reaches the constant cap
L is an admissible policy for the American option, C; (St, L) = C;(S¢) for any L. Hence a lower bound
is still obtained after optimizing over L. That is, max; C;{(S:,L) < C¢(S¢). Note that the maximum
is achieved for some L < o as long as & > 0. Define the optimal solution £ = L(S;) by

L = argmax C; (S, L). 6)
L=S:

Thus
CHS) = Ce(Se, L) < C(Se). (7)

The lower bound in equation (7) clearly improves over the Furopean call option value, denoted
ct(S;).} That is, Ct‘(St) > ¢¢(St) for & > 0, since ¢;(S¢) = limyr Ce{St,L). The lower bound also
improves over the immediate exercise value. This follows by taking L = S;, which gives

max(S; — K,0) = C¢(St,S¢) < CHS).

The determination of [ is a simple univariate differentiable optimization problem.? This prob-
lem can be solved by any number of methods, from a simple line search to more sophisticated
algorithms that use derivative information. The derivative 9C;(S¢, L) /9L is given in Proposition 2
in the Appendix A. Derivative information is also used to determine a lower bound for the optimal
exercise boundary as described next.

1 The European call value is c¢(St) = S;e"ST-ON(d(K)) ~ Ke " T-YN(d(K) — o-/T =F), where d(K) =
[log(S:/K) + (r — & + 1a2)(T - )] /(avT =0).

2 Option formulas are also available for capped options with caps that grow at a constant rate (see, e.g., Broadie
and Detemple (1994), Chesney (1989), or Omberg (1987)). In this case, the cap function can be specified by two
parameters, e.g., the starting point and the growth rate. A potentially better lower bound could be obtained by
optimizing over both parameters. However, because the cap is convex and the optimal exercise boundary for call
options is concave, the improvement in the bound does not appear to be worth the additional effort and complexity
of a two-dimensional optimization.
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A lower bound for the optimal exercise boundary
The procedure relies heavily on the derivative of the capped call option value with respect to
the constant cap L, evaluated at S; = L:

0C (8, L)

D(,t) = 3L .
o=

. (8)
Expressions for 0C;(St, L) /0L and D(L,t) are given in Proposition 2 in the Appendix A. Denote by
L the solution to the equation

D(L,t) = 0. 9)

Note that< equation (9) does not have to be solved recursively. That is, equation (9) can be solved
for L{ without having first solved for L} for s € [t, T]. Equation (9) represents a simple zero-finding
problem which can be solved easily, e.g., using Newton’s method. Derivative information is often
useful in these problems, so 8D (L, t) /2L is given in Proposition 2 in the Appendix A.

The idea behind the boundary L* is described next. Suppose one wishes to approximate B}
at some fixed time ¢, without using a recursive procedure. For fixed S} (which we'll assume is
below B}), L is one way to approximate Bj. The exercise boundary I can be thought of as the
single constant exercise boundary which best approximates B* in the interval [t, T]. Since B is a
decreasing function of s, B} = L > B¥, and Bf = L for some t < s < T. One difficulty is that L
is probably not a good approximation to B* at time t. However, L is a function of the initial asset
price S}, i.e, L = L(S}). Choosing a new asset price 5? = L(5}) leads to a new constant exercise
boundary L(S?). Note that L(S?) = L(S}) and B} = L(5?) = B}. This process can be repeated until
the iterates L(S}) converge to some L}. Since the iterates form an increasing sequence which is
bounded above by By, each successive iterate is closer to Bf. The limiting value L} can be obtained
directly by solving equation (9), i.e., the intermediate iterates i(St‘) never have to be computed. The
next theorem summarizes some important properties of the exercise boundary L*.

Theorem 1: Let Bf denote the optimal exercise boundary for the American call option. Let L}
denote the exercise boundary given by the solution to equation (9). Then

(i) LF <B}

i . . 14
(ii) 11511101“ ~max(6K,K)
o b+f
LY B
) lim L =g +f~02K

whereb =§ —r + %o‘z and f = /b2 + 2ro? are defined as before.

Theorem 1 part (i) says that the approximate exercise boundary L} lies uniformly below the
optimal exercise boundary B;. Parts (i) and (iii) show that Lf — B} in two limiting cases. Since
BY = max({r/6)K,K) (see, e.g., Kim (1990)), part (ii) shows that L} = Bf. Similarly, since B} —
(b+f)/(b+f-02)KasT~t 1 « (again, see Kim (1990)), part (iii) shows that L} — Bf as T—t t 03

3 Results (i) and (jii) of Theorem 1 also hold for I = argmax; »s, Ct{(St,L), as long as S¢ < max{(r/8§)K,K) in
case (i) and ¢ < (b + £)/(b + f ~ 02)K in case (iii).
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The relationship between B*, L*, and [ = L(S;) is illustrated in Figure 1. At maturity the
optimal exercise boundary B* and the approximate boundary L* coincide. Let B} = limy ;1 Bf
and L} = Hmr 410 L. These are the asymptotic values of the boundaries. The boundaries also
coincide for very long times to maturity, that is B} = L*. Figure 1 illustrates B} < L < B}, for
S < B:( .

t
L,=B;

Figure 1. Nlustration of B*, L*, and L

3. An upper bound on the American call option value
Consider the class of contracts consisting of a European call option and a sure flow of payments
that are paid at the rate

8See~ BN (dy(St, By, s — t)) — YK N(d3(St,Bs,s ~ 1)), (10)

for s € [t, T], where

1
d2(St,Boys ~ 1) = S—all0g(Su/By) + (7 = 6 + 30} (s = 1)] an
d3(Se,Bs,s — t) = dz(St,Bs,s —t) — o5 ~ €, a2

and B; is a nonnegative continuous function of time. Each member of the class of contracts is
parametrized by B. The value of the contract at time t is

Ve(St, B) = ci(St)

T
+ J [8Se™¢~DN(dy(St, Bs, s — 1)) — ¥Ee "N (d3(St, B, s — £))1ds,  (13)
s=t
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where c:(S:) denotes the value at time f of a Furopean call option on S with strike price X and
maturity T.

The importance of this class of contracts was shown in Kim (1990) and Carr, Jarrow, and Myneni
(1992). The optimal exercise boundary for the American call option is given by solving

Vi(BY,B*) =B¥ ~K (14)

for B} for all s € [t, T]. Equation (14) is often referred to as the value matching condition. The
value of the American call option, C;(S;), is then given by V; (5S¢, B*).

Equation (13) subject to the boundary condition (14) can be numerically approximated by a
computationally intesive recursive procedure described in Appendix B. We use (13) in conjunction
with L*, the lower bound on the optimal exercise boundary, to obtain an upper bound on the
theoretical value of an American call option.

Theorem 2: Let L* denote the lower bound on the optimal exercise boundary given by the solution
to (9). The value of the American call option, C;(S;), is bounded above by the quantity C}(S;) =
Vi (St,L*). Thatis,

Ci(St) = CH(Sp). (15)

In practice, the upper bound C(S;) is computed by approximating L* at n discrete points
in the time interval {f, T]. The points are typically equally spaced throughout the time interval.
The intermediate points on the approximate L* boundary are determined by linear interpolation.
Finally, C3*(S;) is computed from equation (13) taking B = L*. Thus, computing C{(S;) requires
solving equation (9) n times (to approximate L*) and performing one numerical integration. Each
of the steps can be done very quickly. In practice, small values of n, e.g., n between four and ten,
lead to good upper bounds.

The next proposition characterizes the behavior of the bounds in four limiting cases. It says
that the upper and lower bounds become tight for options approaching maturity, for long dated
options, for deep out-of-the-money options, and deep in-the-money options. It also says that the
bounds become tight for extremely low and high volatilities, for large dividend rates, and for large
interest rates.

Proposition 1: The difference between the upper and lower call option bounds approaches zero,
ie.,
CH(St) - CHS 1 0,

when, holding all other parameters fixed, either
(i) T—-tl0, (i) T-tt1oo, (iii) S¢ 10, (iv) S¢1oo,

v) aglo, (vi) o1 oo, (vii) §toe, or (viii) 7 1o,
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From bounds to approximations
The bounds in equations (7) and (15) are used to compute two approximations to the American
call option value. The approximations are

CH(Se) = A CHS), and
CE(St) = AaCH(Se) + (1 - A2)CH(SY)

for weights A; = 1 and 0 < A, = 1. We use the “hat” notation to distinguish the true values of A,
and A, defined by C;(S¢) = A1C}(St) and C¢(S;) = Athl(Sz) + (1 — A2)CE(S:). For convenience, we
refer to the approximation based on the lower bound, C}(S;), as LBA. Similarly, we sometimes refer
to the approximation based on the lower and upper bounds, CZ(S¢), as LUBA.

The simple choice of weights A; = 1 and A, = 0.5 usually leads to good approximations. For
example, in a large sample of options, we never found a value of A, greater than 1.0133. That is,
the lower bound was always within 1.33% of the true option value. However, the original option
parameters together with information obtained in the computation of the lower and upper bounds
can be effectively utilized to quickly compute better weights. We use a weighted regression ap-
proach, described in Appendix B, to determine A; and A,. Regression techniques have been used in
special cases of the American option pricing problem in Johnson (1983) and Kim (1994). Johnson’s
method tackles the no-dividend case, while Kim’s method applies to American futures options with
1o convenience vield.

The quality of our bounds and approximations is investigated in Section 4. Next we show the
modifications necessary to bound and approximate theoretical American put option values.

Modifications for American put options

The bounds and approximations for call options can be adapted for put options. Each of the
formulas and procedures used for call options could be rederived for put options. For example,
corresponding to the capped call option formula is a similar capped put option formula. However,
a put-call parity result for American options, which holds in the geometric Brownian motion setting,
can be used to avoid this additional effort. McDonald and Schroder (1990) show that the value of
an American call option with parameters S, K, 7, 8, T is related to the value of an American put
option by

Ci (8, K,7,0,T) = P (K, S8, 6,7,T). (16)

That is, an American put price equals the American call price with the identification of parameters:
St K, K-~ S,r—-56,andé—r.

The intuition for (16) rests on the duality between the underlying asset and cash. A call option
gives the right to exchange cash for the asset, while a put option gives the right to exchange the asset
for cash. The parity result can also be seen as a variation of the international put call equivalence of
Grabbe (1983). The parity result means that any American call option pricing routine can be used
to price American put options with a simple substitution of parameters.



American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods 8

4. Computational results

In this section, we compare several American option pricing methods on the basis of the speed
of computation and the accuracy of the results over a wide range of option parameters. While
speed and accuracy are primary concerns of researchers and practitioners, other factors can also
be important in an option pricing method. These factors include the economic insights offered by
the method, the simplicity of implementation, the ease of adaptability to other types of options,
the availability of derivative information, etc.

The speed and accuracy requirements of a pricing method depend on the intended application.
A trader wishing to price a single option requires a computation speed on the order of one second.
However, dealers or large trading desks may need to price thousands of options on an hourly
basis. Higher accuracy is always better, but not if economically insignificant price improvements
are obtained at an unacceptable cost in terms of computation time. A simple measure of economic
significance is the tick size (i.e., minimum price fluctuation) of a contract. For example, some option
contracts have tick sizes of 1/8 of a point while others are as little as one cent. Generally option
prices are on the order of $10 (some are less than $1 but few are over $100), so accuracy on the
order of 0.1% (1 cent in ten dollars) is desirable, but clearly not essential in all applications.

In this section we test several existing methods for computing American option prices. We
test the binomial method of Cox, Ross, and Rubinstein (1979), the version of the trinomial method
described in Kamrad and Ritchken (1991), the quadratic approximation of MacMillan (1986) and
Barone-Adesi and Whaley (1987), the 2-point Geske-Johnson (1984) method, the modified 2-point
Geske-Johnson method described in Bunch and Johnson (1992), the accelerate binomial method
of Breen (1991), the method of lines (ML) from Carr and Faguet (1994), and the integral method
of Kim (1990). We test the two approximations proposed in this paper, LBA and LUBA, as well
as a simple modification of the binomial method. The modified binomial method is the binomial
method, except that at the first time step before option maturity, the Black-Scholes formula replaces
the usual “continuation value.” Details of the implementation of several of the methods, including
data structures and pseudo-code, are given in Appendix B.

Since true American option values are unknown, how can numerical approximation methods
be compared? We solve this problem by taking a convergent method and computing option values
to an error that is an order of magnitude less than the error in the methods we are trying to
compare. For our results, we use the convergent binomial method with n = 10,000 as the basis for
comparison. That is, we take values generated by this method to be the “true” option values. Hence,
the “errors” that we report would not change significantly if we knew the exact option values.*

In order to get a preliminary flavor of the results, Tables 1 and 2 give American option val-
ues for several methods. The results are given for call options, but the American put-call parity
of McDonald and Schroder (1990) implies identical results for puts after a renaming of parame-
ters. In particular, the call option results for » = 0 and § = 0.07 can be more naturally thought

4 We estimated the error in the binomial method with n = 10,000 in three ways. First, we compared the
binomial results with a very fine discretization of the integral method, which is also convergent. Also, we used
the binomial method to price European options. The error in these prices can be computed arbitrarily accurately
using the Black-Scholes formula. We found the error in the European option binomial values to be comparable to
the error in the American option binomial values. Finally, knowing that the error in the binomial decreases linearly
with the number of nodes gives a third check on the error.
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of as put option results for § = 0 and r = 0.07. The results in Tables 1 and 2 suggest that the lower
bound approximation (LBA), the lower and upper bound approximation (LUBA), and the binomial
method with 7 = 300 give fairly accurate results. The accuracy of the quadratic approximation de-
grades for longer maturity options, consistent with the finding in Barone-Adesi and Whaley (1987).
The modified Geske-Johnson 2-point method appears to be more accurate than the original GJ
2-point method. This finding is consistent with Bunch and Johnson (1992).

The forty options in Tables 1 and 2 do not represent a large enough sample to draw any
firm conclusions about the methods. The tables do not give summary information about errors,
nor information about computational speed. More thorough and systematic results concerning
the speed-accuracy tradeoff of various American option pricing methods are given in Figures 2-8.
These figures are based on average results from nearly 2,500 options determined from a random
distribution of parameters. The probability distribution of call option parameters is described next.

We chose a distribution of parameters that is a reasonable reflection of options that are of
interest to academics and practitioners. Volatility, denoted ¢, is distributed uniformly between 0.1
and 0.6. Time to maturity is, with probability 0.75, uniform between 0.1 and 1.0 years and, with
probability 0.25, uniform between 1.0 and 5.0 years. We fix the strike price at K = 100 and take
the initial asset price § = Sy to be uniform between 70 and 130. Relative errors do not change if
S and K are scaled by the same factor, i.e., only the ratio S/K is of interest. The dividend rate, &,
is uniform between 0.0 and 0.10. The riskless rate 7 is, with probability 0.8, uniform between 0.0
and 0.10 and, with probability 0.2, equal to 0.0. By American put-call parity, the roles of » and &
and the roles of S and K are reversed between puts and calls. Hence, when we price call options
with this distribution of parameters, we are also pricing put options with a similar distribution. In
particular, the put option dividends are, with probability 0.8, uniform between 0.0 and 0.10 and,
with probability 0.2, equal to 0.0. Each parameter is selected independently of the others.

The main error measure that we report is root-mean-squared (RMS) relative error. RMS-error

is defined by
RMS = | e?, where =26
mi3 G

is the relative error, C; is the “true” option value (estimated by a 10,000-step binomial tree), and
C; is the estimated option value.> To make relative error meaningful, the summation is taken over
options in the dataset satisfying C; = 0.50. Out of the 2,500 options, 2,271 satisfied this criterion.
For option values less than fifty cents, the RMS-absolute error measure yielded qualitatively similar
results.

Computation speed is measured in option prices calculated per second. The exact hardware
is inconsequential, since only relative speeds matter.® Care was taken to “tune” the methods as
best as possible. That is, many methods have several choices that affect the speed-accuracy trade-
off. For example, to implement a method that requires the solution of a nonlinear equation, the

NgH

5 The RMS error criterion seems to be very reasonable. Mean absolute error does not penalize large errors
enough. Maximum absolute error penalizes large errors too much, Even so, we obtained similar qualitative results
when we used the mean absolute relative error and maximum relative error measures.

6 The results were computed on a 25-MHz 68040 NeXTstation. The methods were all compared using the same
compiler settings.



American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods 12

programmer must select a solution algorithm and must set iteration and/or tolerance parameters.
Similar choices are required if the method requires one or more numerical integrations. Even in the
simpler methods, significant computation time can be saved by eliminating redundant or unneces-
sary computations. Some methods take advantage of the computation of a critical stock price or
boundary. We priced options at five stock values for a given set of other parameters.

The overall results are given in Figure 2. Because of the exireme differences in speed and
accuracy, the results are plotted on a log-log scale. Numbers next to the binomial-type methods
indicate the number of time steps. (These numbers are identical in the later graphs, but are not
repeated for clarity of presentation.) The integral method results are based on the discretizations
4, 8, and 16, in order of decreasing error and speed. Figures 3 and 4 break the results down by
option maturity, Figures 5 and 6 by S/K (“moneyness” of the option), and Figures 7 and 8 by option
volatility.

104 £

103

102 &

Speed

101

100

RMS Relative Error

Figure 2. Speed-Accuracy Tradeoff
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Figure 3. Short maturity options
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Figure 4. Long maturity options
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Observations with 0.9 < S/K < 1.1
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Figure 5. At-the-money options
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Figure 6. In- and out-of-the-money options
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Figure 7. Low volatility options
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Discussion of results

The binomial method is striking in its elegance and simplicity and is very useful because it is
a convergent method. Computation time with the binomial method is quadratic in the number of
times steps. The binomial error decreases linearly with the number of time steps (see, e.g., Geske
and Shastri (1985)). As a result, the binomial method plots as a nearly straight line in Figures 2-8.
The quadratic method is by far the fastest method, with an RMS error of about 0.6% for options
with less than one year maturity.

The 2-point Geske-Johnson methods are dominated by the binomial method. The American
option formula given in Geske and Johnson (1984) is an exact representation of the option value in
terms of an infinite series. Evaluation of n™ order terms requires the computation of n-dimensional
cumulative normals. The 2-point GJ methods require only the evaluation on bivariate cumulative
normals, which is very reasonable in terms of speed. However, two exercise points do not capture
enough of the early exercise opportunities of American options to give high accuracy.

The accelerated binomial curve in Figure 2 requires explanation. As the number of time steps
increases, the accelerated binomial converges to the 3-point Geske-Johnson approximation, not to
the American option value. To have convergence to the American option value, both the number
of time steps (n) and the number of exercise points () must increase to infinity. In Figure 2, large
values of n with m fixed at three lead to an RMS error of about 0.3%. The accelerated binomial
approximation is faster to compute but less accurate than the binomial for each n (with m =
3). Surprisingly, however, the binomial method dominates the accelerated binomial in the overall
speed-accuracy tradeoff.

The trinomial method slightly edges out the binomial method, except for long maturity op-
tions. Likewise, the modified binomial method described earlier is slightly better than the trinomial
method. Overall, the results of the three methods are very similar, as might be expected from the
nearly identical nature of the algorithms. We also tested another variation of the binomial method
which is common among practitioners. In this variation, the result of the binomial method with n
time steps is averaged with the n+ 1 time step result. The idea is to take advantage of the oscillatory
convergence of the binomial. In the speed-accuracy figures, this variation plots almost directly on
top of the binomial method. That is, this variation used with a given value of n and n + 1 has the
same speed and accuracy as the original binomial method with a larger value of n. In other words,
this binomial variation has little to recommend.

The method of lines (ML) is close, in terms of speed and accuracy, to the modified binomial
method with n = 25. ML does slightly better with at-the-money options and high volatility options.
We used the method of lines with a discretization parameter of three, as described in Carr and
Faguet (1994). Their procedure is more difficult to implement for an arbitrary discretization. How-
ever, it would be interesting to check the speed-accuracy tradeoff for a finer discretization. The
integral method appears to be competitive in this implementation. Because the method requires
equation solving and numerical integration, there are many choices that affect the speed-accuracy
tradeoff. Yu (1993) implemented the integral method with a less accurate but quicker step func-
tion approximation for the integrals. Our implementation is slower and more accurate, and it is
not clear which is the better choice.

The two approximations developed in the paper, LBA and LUBA, are undominated in the speed-
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accuracy tradeoff. The LUBA method has an accuracy comparable to a 1000 time step binomial tree
and a speed comparable to a 50 time step tree. This represents an average error of about 0.02% and
a computation speed on the order of one hundred options per second (on a 25-MHz 68040-CPU or
comparable 486-based PC).

5. Conclusion

The theoretical values of many European options can be computed by evaluating simple a
formula. The computation of theoretical American option values is considerably more difficult
because of the optimality of early exercise. In this paper, lower and upper bounds on the theoretical
American option value were developed. These bounds were shown to become tight for extreme
values of the parameters.

Based on the bounds, we developed two option value approximations. LBA, the approximation
based on the lower bound, has an RMS error of about 0.1% on a large range of option parameters,
which is comparable to a 200-step binomial tree. LUBA, the approximation based on the lower
and upper bound, has an RMS error of 0.02%, which is comparable to a 1000-step binomial tree.
Both methods are more complicated to implement than the binomial method. However, they are
simple enough that they can be directly implemented in today’s spreadsheets. One drawback of
the methods is that they are not convergent, i.e., there is no parameter than can be increased to
give arbitrarily high accuracy. The bounds could be improved, but the resulting algorithm would
likely resemble the integral equation approach.

We compared many existing American option approximation techniques based on speed and
accuracy. The results showed that the LBA and LUBA approximations were not dominated by any
of the methods tested. The quadratic approximation was the fastest method tested. The binomial
method has stood the test of time for its combinations of speed and accuracy. In addition, the
binomial method is quite valuable for its simplicity, elegance, and adaptability to other options.

In principle, the methodology developed in this paper based on capped option values can be
used to obtain bounds for other American-style contracts. However, the quality of the bounds and
approximations for other contracts remains to be investigated.
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Appendix A

Proof of Theorem 1: (i) Fix time . Without loss of generality, consider the case where § < ». In
this case, Bf = (r/8)K. (The case § = r with B¥ = K is similar.) Consider some arbitrary asset
price S} = (r/8)K. The value of the capped option with constant cap L is C¢(S},L). Maximizing
the value of the option with respect to L = S} yields the first order condition
8¢ (SH, L)
oL

for L > S} or 8C:(S},L)/0L < 0 for L = S}. The first order condition admits a sohution L(S1)
such that S} < L:(S}) < Bf. The fact that £,(S}) is bounded above by B} follows from Lemma 1
below. Indeed Lemma 1 implies that for constant boundaries L! and L2 such that L2 > L! = B} we
have Ct (S¢, L?) < C¢(St, L), The optimal strategy, if one is restricted to a constant exercise barrier,
will necessarily lie below B. Now set SE = I:t(S}) and repeat the procedure, i.e., select the cap
L:(S}) that maximizes the capped option value when the asset price is S2. Clearly, $? < I,(52), for
otherwise value is lost. (The exercise value in the case S? > [;(S?) would be L;(5?) — K which is
less than S7 — K.) By Lemma 1, L;(S?) =< B}. Following this procedure we construct an increasing
sequence L; (S") which converges, by the monotone convergence theorem, to a limit L{. Since the
sequence is bounded by B the inequality (i) follows. Clearly L} solves the first order condition.

(i) As t 1 T clearly L} — max((z/86)K,K).

(iii) Using the analytic expression for D(L,t) given in Proposition 2, it can be shown that
&+ hH

o2

=0

D(L,t) ~ 1 1-K/L)
as T —t t co. The resuit follows by solving equation (9) for that case. 4

Lemma 1: Suppose that L' and L? are any continuous time dependent boundaries satisfying 2>
Ll = B forall s € [t, T]. Then C+(S;,L2) < Ce(Se,L1).

Proof of Lemma 1: Let E; denote the expectation at time ¢ under the risk neutral probability
measure. Denote the first time that S hits L by 1, for i = 1,2. Let the operator x* denote
max(x,0). Then
Ce(St,L%) = Erfe™" ™ (L2, = K)1(ryer;] + Ee[e™" T (St — K} Lrpari]
= E{e M Ly e Er [T U, = K)Liryery + €7 T (ST = K)* Liany 1}
+ Ele™ T (S — K)* 1irpary Limpary ]

<Ele™ ™MLY, ~ K)Lm<ny] + Eele T (1~ K)* 1o

= Cp (S, LY).
The first equality follows from the risk neutral representation of the option value with deterministic
cap L?. The second equality follows from the law of iterated expectations and from the fact that
l{r,<1} is measurable relative to information at time T,. The next inequality follows from the
fact that at time T; for S, =L} > B, immediate exercise dominates any waiting strategy. Thus,
LY —K > Cr,(S;,L?). The second term on the righthand side of the inequality also makes use of the
relationship 17,21} L{ry=1) = 1{r;>7}- The last equality follows from the risk neutral representation
of the option value with deterministic cap L!. +
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Proof of Theorem 2: Consider the class of contracts whose value at time t is given by

T
Vt<s,,B)=ct<st>+f (BB, St 5)ds

where
®¢(Bs,St,5) = 656 0 ON(da(St, By, S — 1)) — e TSTON(d3 (St, Bs, 5 ~ 1)),

The functions d2 and d3 are defined in equations (11) and (12), respectively, and B, is a continuous
function. For each s, consider ®;(x;s,St,s) : R* — R as a function of x;. It can be verified that
Py (x5, St,s) is single peaked with global maximum at x; = (r/8)K, strictly decreasing for x; €
[(r/8)K, ), and satisfies lim, 1 ®¢ (x5, S, 5) = 0. Recall that the theoretical value of the American
option is V¢ (S¢, B*) where B* solves (14). Since B¥ > L¥ > (v/8)K an upper bound is obtained by
pointwise maximization of the function ®;(xs,St, s) over the set x; € [L¥, c0):

T
Vi (S, B*) < cp(Sp) + max B¢ (xs, St, s)ds.

s=t xg2L}
By the monotonicity property of the function ®;(x;,S:,s) for x; = (r/8)K, the solution to the
pointwise maximization problem is x; = L¥. It follows that

T
Vi(Se, B*) < ci(Se) + ] B (LY, Sy, 5)ds
s=t

= CH(Sy). 'S

Proof of Proposition 1: A sketch of the proof for each of the cases is provided. Details of each step
can be checked directly using the functional forms for each quantity.

W AsT—~t 10, Lf - Bf. Also CH(S;) — c(S;). Note that ¢,(S;) — max(S; — K,0) as
T —t | 0. Similarly, C}(St) - ¢{(St) as T —t | 0. Combining these straightforward results gives
CH(S)—CHS) LoasT =t Lo,

(ii) For a perpetual call option, the optimal exercise boundary is By = (b+ f)/(b+ f —02)K. For
any ¢ and any St, the optimal solution to max; C; (S, L) is achieved at L* = [ = (b+£)/(b+f—0?)K.
Since L* = B*, C}(St) = Ct(St,L*) = C:(St, B*). Hence, C¥(S;) —~ CH(S;) 1 0as T ~ ¢ 1 o0,

(iii) As S; | 0, both C¥(S¢) — ¢;(S:) and C,l<st) — ¢¢(St). (Also c¢(Sy) — 0 as S¢ | 0.) Hence,
CH(S:) ~CHS) L 0as s, L 0.

(iv) As S¢ 1 oo, both C}(S;) — S — K and C}(S;) — S¢ ~ K. Hence, C¥(S¢) ~ C(S) | O as S¢ 1 o

(v) For o | 0, consider two cases: (a) § > * and (b) § < ». For case (a), the boundaries B*
and L* approach the constant K as 0 | 0. For S; < K, L — K and for S; > K, I — S;. Thus,
Cclsy) — 0 or C}(St) — 8t — K, respectively. Also, for $; < K, V(S;,L*) — ¢;(8;) — 0. For S; > K,
V{8, L*) - Sy - K.

For case (b), the boundaries B* and L* approach the constant (+/8)K as " | 0. For S; < (r/8)K,
L - (/8K andforS; > (r/8)K, L — S;. Now there are several subcases to consider, depending on
the direction of the inequality between vK/(55S;) and e~%¥-""7-t and between K /S, and e~ (6-")(T~1)
For example, if S; < (v/8)K and K/S; > e~®~"WI-D) (and hence vK/(8S;) > e~@-MT-1)) then
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CH(Sp) — 0 and V(S;,L*) — 0. In another subcase, if S; < (r/6)K, ¥K/(5S;) > e-6-THT-8 anq
K/Sp < e=@=I=1) then CH(S;) and V(S:,L*) both approach e 5T-DS, — Ke="{T~0_ The other
subcases follow similarly.

(Vi) As 0 1 o0, C}(S;) — (L~ K)S; /L. Since £ — o, CH(Sy) — S. Similarly, as ¢ 1 oo,

T
VI(Se, L*) — ¢, (Sp) +J’ 55,6760 g
s=t
T

= 5.
t

(vii) and (viii) As § 1 o or 7 1 oo, both C*(S;) — 0 and C}(S;) — 0. 4

~ S ST-D _ g p=8(s-t)

Proposition 2 gives explicit expressions for various partial derivatives of C¢(S;, L).

Proposition 2: Let T = T ~ t and Ay = St/L. Suppose L = max(S;,K). Letb =& —r + %02 and

J = Vb2 +2r0?, as before. Then dC;(S;,L)/0L can be written as:

0Ce(S:, L)
oL

= 11- A5 e 109187 Niag) + 11 - EE) Qaran T Ny + 267 10)

— (72
+ s 2T 2017 (g1 (1) - 0. F) - N7 (K) - o))

- e'”%{—?\?""’z IN(d} (L)) — N(df (KD

OCi(St,L)/3S can be written as:

B l) - Lo 0 02 I + (210N N g + 24 F/0)]

+e T IN(d{ (L) - 6/T) — N(dj (K) - 0vT)]
+2(r ~ §)/02e A 12 IN (G (L) — o /T) — N(d (K) ~ 0v/T)]
+ %e-"A;Z"“”’”zu = 2(r - §)/0}) N} (L)) ~ N(d{ (K]

D(L,t) can be written as

oG (S, L)

D(L,t) = 3 et
o=

=11 - A egrot - fvFIo) + 11 - EE earong T

+e

—g
20 NG ) - ) - N () - 09

) SR N
—-e ﬁ[N(dl (L)) — N(dy (K))].

8D(L,t) /oL can be written as

DLy _ —5[2¢/02 + QFIOVN(fYT/0)] = 2¢7 5" n(d] (K) - 0vT) [ (LOVT)

oL 12
+er 22K vy ) - Ny .
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Proof of Proposition 2: The expression for 3C;(S;,1)/2L follows by taking the partial derivative
of equation (2) and simplifying. Identities used in the simplification include: ?\f‘b / Uzn(d{’ L)) =
n(dy (L), FP™ VDI (@} (L)~ 0 JF) = ndf (L) -0y, n(d; (L) -0 yDA = n(df (L))e-r-o7,
n(df (K)e~"-OTAKIL = n(d] (K) - ovT), e n(d (L) = n(do)AZ?'”’, and e~ "Tn(d; (L)) =
ni{do +2f/T/ O')Af"‘/ o, In the previous identities, n(-) denotes the density function of a standard
normal random variable. The expression for D(L,t) follows by substituting S; = L. The other
expressions follow similarly using standard calculus. +
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Appendix B

In this Appendix we provide details of the implementation of various American option pricing
methods. Although the binomial method is easy to program, we begin with this method in order
to present a particular implementation which is easily adapted to the accelerated binomial method
and the trinomial method.

Binomial Method

The binomial method was proposed in Cox, Ross, and Rubinstein (1979). See also Rendlemen
and Bartter (1979). The parameters that we use for the binomial procedure are modified from Hull
and White (1988, footnote 4) to account for dividends.

Because a binomial tree with n time steps has O(n?) nodes, the computation time increases
as O(n?). Our implementation of the binomial method uses only O(n) storage. It is not necessary
to store the entire tree in memory; only information related to the current time step is required.
Our implementation computes the stock price values Su/d”~/ recursively. This approach uses
only multiplications and hence avoids the use of the more time consuming power function. In
addition, these 2n stock price values need only be computed once. The parameters p’ and g’ are
the binomial up and down probabilities, respectively, deflated by the discount factor. Adjusting
the probabilities initially means that discounting is done automatically at each node as part of the
present value computation. This saves one multiplication at each node.

A pseudo-code expression of our implementation is given next. The inputs to the routine are
the option parameters S, K, T, 7, and &, and the binomial time step parameter n. The output of the
routine is the American call option value C. In order to clarify our routine, a small binomial tree
indicating the indexing of time and stock price states is given in Figure 9. Our indexing scheme
avoids the need for a separate temporary storage vector.

0 1 2 n=3 I(time)

Figure 9. Ilustration of binomial tree for n = 3
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Binomial Routine Pseudo-Code
/* allocate space */
vectors v[jl,s[f], for j = -ntonby 1;
/* initialize parameters */
At =T/m; rinv= 8t g = ¢7-001 p2 - g2(e0?At _py,
tmp =a?+b%+1; u=(tmp+tmp? - 4a2)/(2a);d = 1/u;
p =(a-d)/u-d)yq=1-p;, p =r.invxp;
q =rinvxgqg; s[0] =S,
for j=1tonbyl;
slil=slj-11xuw;
sl=jl=sl-j+11*d;
end;
/* store option values at time index i = n */
v[j1 = max(s{j] - K,0), for j = ~nto nby 2;

/* work backwards in time */

for i=n-~1t00by -1;
v{jl =max(p’ *xv[j+1]+q *v[j~1],s[j]l -K), for j=—itoiby?2;
end;

/* return binomial option value */
C=v[0};

Accelerated Binomial Method

The accelerated binomial method was proposed in Breen (1991). The main “trick” to an efficient
implementation of this method involves the computation of the binomial formula. We use a simple
recursion to avoid redundant computations. As before, the tree parameters for this implementation
are modified from Hull and White (1988, footnote 4) to account for dividends.

The binomial formula involves terms of the form b; = (;‘) p"™Jql. If the term b; has a;ready
been computed, then the next term bj.; can be computed using the recursion
These binomial terms only need to be computed once.

Using the notation of Breen (1991), the accelerated binomial requires the computation of P(1),
P(2), and P(3). For brevity, we illustrate the computation of P(3) only. Recall P(3) is the option
value allowing exercise at T, 2T/3, and T/3 only. The pseudo-code for our computation of P(3) is
given next. The inputs to the routine are the option parameters S, K, T, #, and §, and the time step
parameter 7. We assume that the routine is called with an integer n which is divisible by 6. The
output of the routine is the value P(3). The accelerated binomial value is given by the Richardson
extrapolation formula C = P(3) + 3.5(P(3) -~ P(2)) — 0.5(P(2) — P(1)). As before, the nodes of the
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tree are indexed as in Figure 9. (This leads to a slightly different indexing of the binomial terms in
our routine below than indicated in (17) above).

Portion of Accelerated Binomial Pseudo-Code
/* allocate space */
vectors v[jl1,s[j], b[j1, vimp[j], for j = —n to n by 2;
/* initialize parameters */
At =T/m; rinv=e7T/3; g = elr-9At p2 - g2(pa*At _ 1),
tmp =a?+b?+1; u=(tmp+Jtmp? —4a2)/(2a); d = 1/u;
r =a-d)ju-dyq=1-p; s[0]=3S;
for j=2tonby2;
sLi) = sj — 2] % u?;
s[=j1 = s[~j+2] % d%
end;
/* store option values at time index i = n */
v{jl = max(s[j] - K,0), for j = ~ntonby2;
/* store binomial terms */
m=n/3; b[m] =p™,
for j=1tombyl;

k=m-2j;
bk] = b[k+2}* ((m - j+ 1)/j) % (a/p);
end;

/* evaluate at time index i = 2n/3 =2m */

for j=-2mto2mby2;
vtmp[j] = sumproduct(b[2k — m],v[2k —m + j1,k = 0 to m by 1);
vimplj] = max(r.inv * vemplj], s{j] - K);
end;

v{jl = vimp[jl, for j = -2m to 2m by 2;

/* evaluate at time index i = n/3 =m*/

for j=-mtomby?2;
vtmp[j] = sumproduct(b[2k — m],v[2k - m + j],k = O to m by 1);
vtmp{j] = max(r-inv * vtmp(j],s[j1 - K);
end;

vLjl = vtmp[j], for j = —m to m by 2;

/* evaluate at time { = 0 */
vtmp[0] = r_inv x sumproduct(b[k],v[k],k = —m to m by 2);

/* return P(3) value */
P(3) = vtmpl0];

Since the main computational effort in this routine involves multiplication, the work is easily
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shown to be ~ 7/12n2.7 The work in the binomial routine is ~ n2 (2 multiplications at n2/2 nodes).
Hence, the accelerated binomial is faster than the binomial routine for the same .

Trinomial Method

Trinomial methods have been proposed in Parkinson (1977), Boyle, Evnine, and Gibbs (1989),
and Kamrad and Ritchken (1991). We test the Kamrad and Ritchken (1991) version. Our trinomial
implementation follows easily from our binomial implementation. A small trinomial tree indic%m‘ng
the indexing of time and stock price states is given in Figure 10. The parameters Pu P, and pj
are the trinomial up, middle, and down probabilities, respectively, deflated by the discount factor.

A pseudo-code expression of our implementation is given next. The inputs to the routine are
the option parameters S, K, T, 7, and §, the time step parameter #, and the trinomial parameter A
{which we set to 4/372). The output of the routine is the American call option value C.

Trinomial Routine Pseudo-Code
/* allocate space */
vectors v[jl1, s[j], vimp(j},for j = ~nton by 1;

/* initialize parameters */
A =372 At =T/n; rinv=e78¢t y = e""\/A_‘;
d =1/u; p=7v-06~10% py, = 1/(2A2) + pv/AE/ (2A0);
Pm =1-1/A% pa=1-py — pa; py = rinv * py;
Pm = VNV % py; py = rinv * pg; s[0] = S;
for j=1tonbyl;

slil=slj~11%w;

sSl—jl=s[—-j+1]%d;

end;
/* store option values at time index i = n */
v[j] = max(s[j] - K,0), for j = ~n to n by 2;

/* work backwards in time */
for i=n-1to0by-1;
vimp[j] = max(p,, * v[j+ 1]+ pp, * v[jl + py * v[j - 11,5071 ~ K),
forj=-itoibyl;
vIjl = vtmp[j], for j = —itoiby 1;
end;

/* return trinomial option value */
C =v[0];

Since the main computational effort in this routine involves multiplication, the work is seen
to be ~ 3/2n? (3 multiplications at n2/2 nodes). This compares with ~ n2 work for the binomial.
So the computational work in the trinomial for large n should be comparable to the work in the

7 The symbol ~ means asymptotic to. The computation of P(1) requires . multiplications, P(2) requires
~ n2 /4 multiplications (1./2 multiplications at n/2 nodes), and P(3) requires ~ n?/3 multiglications (n/3 multi-
plications at n nodes). Hence computing C in the accelerated binomial requires ~ n2/4 + n¢/3 multiplications.
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binomial for 3/2n. In Figure 2, the speed of the trinomial for n = 400 is close to the binomial speed
corresponding to n = 600.

-1

-2

-3

0 1 2 n=3 1(tme)

Figure 10. Hlustration of trinomial tree for n = 3

Muodified binomial method

The modified binomial method is identical to the binomial method, except that at the first time
step before option maturity, the Black-Scholes formula replaces the usual “continuation value.”
Evaluating the Black-Scholes formula involves more work than computing the continuation value
(which involves two multiplications). However, this additional work is done only at n nodes, so
the work of the modified binomial is still ~ n2. Figure 2 is consistent with this observation. For
example, the speed of the binomial and modified binomial are nearly identical for n = 600.

LBA: approximation based on the lower bound
Next we detail the approach that is used to convert the lower bound C!(§) to the option value
approximation C1(S). The relationship between the bound and approximation is

cHs) = A, Cks),

where 5\1 zlisa funcEion of the option parameters S, K, T, ¥, and J.
In order to define A; = A;(S, K, T, 7, §), we first define some intermediate variables. Let x; = T,
x2 = VT, 23 = S/K, X4 =7, x5 = &, X6 = min(r /(8 v 10-5),5), x7 = x2, x5 = (CHS) — c(S))/K,
Xg = x§, %10 = CHS)/c(S). Recall c(S) denotes the European call option value. Then define y; by
1 = 1.002 X 10*° - 1.485 x 1073x; + 6.693 x 1073x, ~ 1.451 X 1073x;3
~3.430 X 107%x4 + 6.301 X 10725 —~ 1.954 x 10736 + 2.740 x 10™4x;
—1.043 x 107 x5 + 5.077 x 107 xg — 2.509 x 10™3x1.

Finally, define A, by

A ={ 1 if CY(S) =c(S) or CH(S)<S-K
17 Umax(y, A 1.0133,1) otherwise.
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The coefficients in the formula for y; were determined from a regression on approximately
2,500 option values. These option parameters were sampled from the same distribution described
on page p. 11. However, to avoid any potential bias, Figures 2-8 were computed using a different
sample of 2,500 options.

LUBA: approximation based on the lower and upper bound
Next we detail the regression approach that is used to convert the lower bound C}(S) and upper
bound C*(S) to the option value approximation C2(S). The relationship between the bounds and
approximation is
C3(S) = AaCHS) + (1~ A2)CH(S),

where 0 < A, < 1is a function of the option parameters S, K, T, r, and 6.

In order to define 5\2 = ?\2 (S, K, T,r,5), we first define some intermediate variables. Let x; = T,
x2 = VT, x3 =¥, x4 = §, x5 = min(r/(5 v 10°%),5), x5 = x&, x7 = dAC{(S)/dS, xg = xZ,
xg = (CHS) ~ c(SN/K, x10 = x3, x13 = CHS) /¢ (8), x12 = (C¥(S) — CHSH/K, x13 = CH(5) /CL(S),
x14 = §/Lg, and x5 = xﬂ. Recall dC(S)/dS is defined in Proposition 2. Then define 3> by

V2 = 8.664 X 1071 ~ 7.668 x 1072x1 + 3.092 X 107 x, — 3.356 x 107 1x3
+1.200 x 10*%x4 ~ 3.507 x 1072 x5 ~ 9.755 x 1072x6 ~ 7.208 x 1071 x7
+6.071 x 107 x5 + 7.379 x 10799 ~ 4.999 x 10* 110 + 1.148 x 107 1xy;
—5.037 x 10*1x15 ~ 6.629 X 107113 — 4.745 x 107 x14 + 5.995 x 107 1x35.

Finally, define A, by

A ={ 1 if CHS) =c(S) or CYS)<S-K
2 max(y2 A 1,0) otherwise.

The computation of the upper bound is computed approximating L* at n discrete points in
the time interval [0, T]. To compute C?(S), we use n = 8 in the computation of L*. To compute the
upper bound C*(S), we need to evaluate the integral in equation (13). We do this using Simpson’s
rule with n = 8.8 In this way, the evaluations of the function in the integral in (13) coincide with
the computed values of L*.

The coefficients in the formula for v, were determined from a weighted regression on approx-
imately 2,500 option values. As before, to avoid any potential bias, Figures 2-8 were computed
using a different sample of 2,500 options. The idea of the weighted regression is described next.

Suppose we want to solve the optimization problem min 3;[(C? ~ C;)/C;}%. Applying the
definitions gives CZ — C; = (A — A)(C¥ — C}). So instead of a simple regression of A on the x-
variables, we weight each observation by (C¥ - C})/C;. Intuitively this makes a great deal of sense.

8 For n = 8, Simpson’s rule approximates the integral of f over [tp,tg] by

t
[, Ot = /3o +4fy 26 + 4f3 + 263 + 45 + 25 + 4F1 + fo),
=to

where h = (tg - tg)/8.
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If the lower and upper bounds are close, the value of A does not matter in the prediction C?. The
larger the difference between the bounds, the more important it is to have an accurate estimate A
of A.

Integral Equation Method

Equation (13) subject to the boundary condition Vs(Bf,B*) = Bf — K can be numerically ap-
proximated by discretizing the time interval [t, T]. Denote the time intervals by to < t; < - - - < tp
with o = t and t, = T. We take equally spaced intervals; t; = t + (T — t)i/n. To solve for the
boundary with n equally spaced increments, denoted B™, first set B = max((r/8)K, K). Next solve
for By, by setting the lefthand side of (13) to B}, — K and use numerical integration to evaluate
the righthand side of (13). This nonlinear integral equation can be solved for the single unknown
Bf: . The boundary between adjacent points of B™ is taken to be linear. Continue this procedure
for i =n—2,...,0. This procedure is based on Kim (1990).

This method requires solving n integral equations, where n is the number of time steps. Like
the binomial procedure, this procedure converges to the American option value as 7 increases to
infinity.

Even though the theoretical optimal exercise boundary B* is monotonic in the time to maturity,
the discrete implementation of the integral method need not produce monotonic approximations
to the boundary. This situation is illustrated in Figure 11 for a call option. The parameters used in
Figure 11 are o = 0.2, v = 0.08, § = 0.12, K = 100, and T = 3. For n = 4, B" is not monotonic in
the time to maturity.

0 T t

Figure 11. Nlustration of B4, B1%° and L*
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