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Abstract / Résumé

In this paper we analyze a long-term risk-sharing contract between

two risk-averse agents facing self-enforcing constraints. We enlarge the

contracting space to allow for an ex ante transfer (at the beginning of the period)

before the state of nature is realized. We analyze the trade-off between the

self-enforcing constraints of the two agents by characterizing the optimal ex ante

and ex post transfer payments. We show that optimal ex ante payments are

non-stationary. They optimally depend on the surplus from the relationship each

agent expects. The size of the ex ante payment an agent makes is inversely

related to its expected surplus from the relationship. The introduction of ex ante

payments generates interesting dynamic properties. In a two-state example with

i.i.d. shocks, the dynamics of the optimal contract exhibit "experience rating"

even though there is no private information or learning taking place.

Ce papier analyse les propriétés dynamiques d�un contrat de partage de

risque entre deux agents riscophobes qui font face à des contraintes de faillite.

L�espace des contrats est élargi pour permettre aux agents d�effectuer un transfert

au début de chacune des périodes avant la réalisation de l�incertitude. Ces paiements

ex ante ne sont pas stationnaires. Ils dépendent du surplus que chaque agent attend

de la relation. Ce paiement est inversement proportionnel à ce surplus. Dans un

environnement i.i.d. à deux états de la nature, les propriétés dynamiques de la

consommation de chacun des agents démontrent un lissage qui ressemble à de la

tarification a posteriori.

Mots-clés : partage de risque, relation dynamique, contrats auto-exécutoires

Key Words: Risk sharing, dynamic relationship, self-enforcing contracts



1 Introduction

Long-term contracts are useful for the governance of long-term relationships. Such contracts

can help improve incentives as well as risk-sharing between two agents. An optimal contract

trades o� between incentives and risk-sharing to attain an e�cient allocation; however this

e�cient allocation is often time inconsistent. For example, an ex ante e�cient allocation

may not be ex post e�cient (once certain actions have been undertaken or some information

has been revealed). This type of time-consistency problems has led to the recent literature

on renegotiation. Or, an ex ante pro�table contract may not be ex post pro�table following

a given history. In this case, if enforcement costs are high (or mobility costs are low), agents

may be tempted to renege on the contract to seek more pro�table opportunities elsewhere.

The literature on self-enforcing contracts studies this type of time-consistency problems.

This paper studies a dynamic risk-sharing relationship in which agents have commitment

problems. Consider two agents that enter into a long-run relationship to share risk and

for which enforcement costs are high. The risk-sharing problem analyzed in the literature

usually has the following structure.1 In every period a risk-averse agent receives a stochastic

endowment. Risk-sharing is implemented by a contract specifying transfer payments between

the two agents. These transfers take place at the end of the period once the state of nature

has been observed. If the two agents can commit not to default on any prescribed transfer

payment then the optimal contract achieves an e�cient risk-sharing allocation; however, if

an agent cannot commit not to default, e�cient risk sharing may be impeded as the optimal

contract is constrained by the possibility of ex post default. The contract should then

prescribe payments that are self-enforcing, that is, payments that satisfy, for any realization

of the state of nature and every period, a participation constraint for each agent. In any

period the surplus one agent expects from the relationship conditions the transfer that it

is willing to make in this period. An agent that expects a high surplus in the future has

low incentives to break the relationship. It is therefore willing to make a high payment to

continue the relationship. On the other hand a low expected surplus yields low incentives to

maintain the relationship. The agent must then be induced to remain in the relationship by

making a low (possibly negative) payment. Self-enforcing constraints generally limit transfer

payments and therefore reduce the opportunity for e�cient risk sharing.

In this paper we show that allowing for a more general contracting space may help

1
For example, see Thomas and Worrall (1988).
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relaxing self-enforcing constraints. Suppose that these constraints are quite stringent for

one agent, say agent 1. This e�ectively limits the payments agent 1 can make to agent 2.

In this case, agent 1 would like to make a transfer to agent 2 before the state of nature is

realized. At this point, agent 1's self-enforcing constraints only have to hold in expectation

over all states of nature. Such ex ante transfer would e�ectively relax agent 1's ex post

self-enforcing constraints by reducing its ex post payments. However when the two agents

face self-enforcing constraints, an ex ante payment made by one agent to relax its own

self-enforcing constraints usually makes the other agent's self-enforcing constraints more

stringent by leaving the ex post burden to that agent to make the necessary transfers for

optimal risk-sharing. Consequently, the ex ante payment must trade o� between the self-

enforcing constraints of the two agents. We analyze the details of this trade-o� in an optimal

risk-sharing contract.

Our main results are that optimal ex ante payments are non-stationary. They depend

on the surplus from the relationship each agent expects. This expected surplus evolves with

the history of past realizations of states of nature. When an agent expects a low share of

the surplus its ex post self-enforcing constraints are relatively stringent and it cannot be

required to make a high ex post payment. In this case, the contract optimally requires that

agent to pay an amount up front before the realization of the state of nature. This e�ectively

relaxes its ex post self-enforcing constraints. In general, however, these constraints cannot be

completely eliminated because a high ex ante payment by one agent increases the incentives

of the other agent to break the relationship and run away with this payment. We show that

the size of the ex ante payment an agent makes is inversely related to the surplus it expects

to get from the relationship. We can also show that interesting dynamic properties emerge

from our model even though shocks are independently and identically distributed across

periods. For example, in a two-state example, we show that the dynamics of the optimal

contract exhibit \experience rating" even though there is no private information or learning

taking place.

Section 2 presents the basic model. In Section 3 we analyze the role of ex ante payments

when only one agent faces self-enforcing constraints. Section 4 presents the main results of

the paper when the two agents face self-enforcing constraints. Section 5 discusses some key

assumptions about the economic environment. A conclusion follows.
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2 The model

The environment we consider can be described by an in�nite sequence of periods, t =

1; 2; :::;1, and for each period, a �nite set of states of nature, s 2 f1; 2; :::; Sg, with S � 2.

We assume that states are distributed independently and identically across all periods, and

therefore, in each period, the state of nature s occurs with probability ps where
PS

s=1 p
s = 1.

It is assumed that each period t is divided into three dates, t0; t1, and t2, where t1 is the date

at which the state of nature is realized; the dates t0 and t2 denote respectively the dates

preceding and following the realization of the state of nature.

Two in�nitely-lived agents evolve in this environment. Both agents are risk averse. In

each period, agent 1's preferences over consumption c are represented by u(c) where u is

a state-independent increasing and strictly concave utility function for c 2 [0; b]. In each

period, agent 1 obtains a state-contingent endowment ys. We adopt the convention that

ys > ys�1 for all states s. We assume that 0 < y1 < yS < b. This endowment is observable

to agent 2.2 In each period, agent 2's preferences over consumption c are given by v(c) where

v is also a state-independent increasing and strictly concave function for c 2 [0; b]. In each

period, agent 2 obtains a state-independent endowment e.3 To insure an interior solution we

assume that yS + e < b and that u0(0) =1, v0(0) =1. Both agents discount the future by

a common factor � 2 (0; 1).

We assume that there are no contingent markets that would allow the agents to diversify

their risk and therefore the two agents enter into a risk-sharing relationship. For example, the

reader can think of agent 1 as an insuree and agent 2 as an insuror. We call the governance

of such relationship a contract where the term \contract" is interpreted in a broad sense,

namely it can encompass implicit as well as explicit agreements. A contract then speci�es

various transfers between the two agents for all periods of the relationship. In each period t,

a contract can specify the following structure of transfer payments.

1. A (positive or negative) ex ante transfer Bt from agent 2 to agent 1 at date t0 (before

the state of nature is realized).

2
See Thomas and Worrall (1990), Phelan and Townsend (1991), and Wang (1994) for risk-sharing prob-

lems in private-information environments.

3
The analysis can be easily generalized to the case in which the endowment of agent 2 is stochastic. See

Kocherlakota (1994) for an example of this.
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2. Ex post (positive or negative) transfers ast from agent 1 to agent 2 at date t2 (after the

state of nature s is realized).

Consumption takes place at the end of the period. Agent 1's consumption in period t if state

s is realized is cst = ys +Bt � ast ; agent 2's consumption is e�Bt + ast = e+ ys � cst .

In a typical relationship the prescribed transfers can potentially be contingent on the

complete past history of the relationship. The history up to period t is the vector of all

previous realizations of the state of nature. Let st denote the realized state of nature in

period t. The history at the end of period t� 1 (date (t� 1)2) or at the beginning of period

t (date t0) is denoted by ht�1 = (s1; s2; :::; st�1). We assume that h0 = ;. Denote by Ht the

set of all possible histories up to the end of period t (date t2). We can then de�ne formally

a contract between the two agents.

De�nition 1 A contract, �, is a sequence of two functions: fBt;Atg
1

t=1 where Bt : Ht�1 ! R

and At : Ht ! R. The variable Bt = Bt(ht�1) represents the transfer from agent 2 to agent

1 at the beginning of period t (date t0) when history is ht�1. The variable ast = At(ht�1; s)

represents the transfer from agent 1 to agent 2 at the end of period t (date t2) when the

history is ht�1 up to period t and s is the realized state of nature in period t.4

For any contract, �, and any history, ht�1, agent 1's expected surplus from the beginning

of period t onwards is

U(�;ht�1) � E
1X
�=t

���t
fu(ys� +B� � as�)� u(ys�)g

where E is the expectation operator taken over all possible histories starting with ht�1 and

ys� denotes that the endowment ys is realized in period � . Similarly, the expected surplus of

agent 2 from the beginning of period t onwards is

V (�;ht�1) � E
1X
�=t

���t
fv(e�B� + as�)� v(e)g :

The surplus of each agent is measured with respect to autarky where it would consume

its endowment. The characterization of the implemented contract depends on the available

4
Note that an equivalent description of a contract could be given by the functions fBt; Ctg

1

t=1 where

Ct(ht�1; s) = yst + Bt(ht�1) �At(ht�1; s).
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technology to legally enforce the prescribed payments. The objective of the paper is to study

the e�ects of limited enforceability of payments on optimal contracts.

We �rst establish a benchmark case in which the two agents sign a contract at the

beginning of the �rst period and all prescribed transfers are legally enforceable. We refer to

this case as the full-commitment case. In this case, the optimal contract, �fc, is the solution

to the following maximization problem where, for simplicity, it is assumed that agent 1 has

the bargaining power and agent 2's reservation utility is given by autarky.

�fc = argmax
�
fU(�;h0) s.t. V (�;h0) � 0g (1)

This maximization problem simply states that the optimal contract maximizes the discounted

expected utility of agent 1 subject to agent 2's participation constraint. This constraint

states that the contract must provide agent 2 with a nonnegative discounted expected sur-

plus. A solution to this maximization problem exists and is characterized in the following

proposition.5

Proposition 1 When both agents can commit to the terms of the contract, the optimal con-

tract, �fc, is characterized by the equalization of marginal rates of substitution of consumption

of the two agents across all states and periods. Formally, for all periods t; � , all states s; q,

and all histories ht�1,
u0(ys

t
+Bt�a

s

t
)

u0(yq�+B��a
q

� )
=

v0(e�Bt+as
t
)

v0(e�B�+a
q

� )
.

The optimal full-commitment contract speci�es perfect risk-sharing with a stationary

consumption rule. This consumption rule can be written as cst = c�(ct�1; yt�1; s) where

u0(c�(ct�1; yt�1; s))

u0(ct�1)
=
v0(e+ yst � c�(ct�1; yt�1; s))

v0(e+ yt�1 � ct�1)
:

Two aspects of this characterization deserve mention. First, in problem (1), the functions

U and V depend only on the net transfers Bt � a
s
t and therefore, in each state only optimal

net transfers are determined. This implies that the optimal value of Bt is arbitrary. With full

commitment there is no role for the ex ante transfer Bt in the optimal contract. Second, in

some states of nature net transfers from agent 1 to agent 2 are positive, and in other states

the opposite is true. Complete legal enforcement of the contract is a su�cient condition

to make these transfers feasible. In the next sections we relax the assumption of complete

legal enforcement to study the characterization of optimal contracts under incomplete legal

enforcement.

5
The proof of this proposition is straightforward and is therefore omitted.
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3 Contracting under one-sided commitment

In this section we consider an environment in which legal enforcement of all prescribed

payments is limited. We examine the situation in which only agent 1 cannot commit to

making all transfers prescribed by the contract.6 We say that agent 1 faces self-enforcing

constraints. These constraints impose that, at any point in time, agent 1 should always do

at least as well obeying the contract as reneging on it. When the self-enforcing constraints

are satis�ed we say that the contract is self-enforcing.

When legal enforcement cannot provide a su�cient incentive for agent 1 to obey the

contract it must be incited to do so di�erently. In a long-term relationship such incentive

arises endogenously from the interaction of the two agents over time. One approach to study

this incentive would be to model the relationship as a strategic game where each agent's

strategy would be a sequence of payments for the complete history and following any history.

In this case, the incentive for agent 1 to obey its equilibrium strategy would come from the

anticipation of agent 2's response to a deviation. Any payment by agent 1 would therefore

be enforced by the strategy of player 2. The more severe would be player 2's punishment,

the higher would be cooperation between the two agents. In this case the Folk theorem

states that given a high enough discount factor any individually rational feasible allocation

can be sustained in equilibrium. For our purposes such an approach is unsatisfactory for two

reasons. First, as is well known in the theory of supergames the multiplicity of equilibria

creates signi�cant coordination problems between the two agents. Second, we are interested

here in characterizing allocations for any value of the discount factor and not just allocations

for high values of the discount factor.

We therefore adopt the following approach. We assume that if agent 1 reneges on the

contract it su�ers the maximal punishment in that it must remain in autarky forever after.

This punishment strategy by agent 2 allows us to characterize the best possible contract sat-

isfying self-enforcing constraints.7 The optimal contract is then the solution to a well-de�ned

6
The analysis of the opposite case in which only agent 2 can renege on the contract is symmetric.

7
In a labour market example MacLeod and Malcomson (1989) model a situation similar to ours as an

explicit game and show that the maximal punishment is indeed subgame perfect. Any deviating agent is

punished in the future by not being able to enter a successful relationship, all parties expecting the deviating

agent to deviate again in the future. Furthermore, Kocherlakota (1994) shows that this maximal punishment

is renegotiation-proof if it is interpreted as maintaining the contract but reverting to the point on the Pareto

frontier that the deviating agent likes the least.

6



maximization problem. This approach resolves the coordination problem in e�ectively co-

ordinating the two agents on a Pareto e�cient allocation. Furthermore it allows us to

characterize optimal allocations for any value of the discount factor.

Agent 1 will make a transfer to agent 2 if and only if it is in its interest to do so. Agent

1 will compare the bene�t of making the transfer and obeying the contract with the payo�

of reneging on the contract and staying in autarky thereafter. For example, suppose the two

agents have signed a contract � prescribing transfers fBt(ht�1);At(ht)g for all histories ht. In

period t agent 1 may decide to renege on the contract at date t0 before receiving the (possibly

negative) transferBt. Its surplus from staying in the contract is then U(�;ht�1). Agent 1 may

also decide to renege on the contract after the state of nature has been realized at date t2. In

this case its surplus from staying in the contract is u(yst +Bt�a
s
t)�u(y

s
t +Bt)+�U(�;ht�1; s)

where the �rst two terms represent its current surplus from the relationship and the last term,

its discounted expected future surplus. We can now de�ne a self-enforcing contract for agent

1.

De�nition 2 A contract � is self-enforcing for agent 1 if and only if, for all histories ht�1,

periods t, and states s, the following constraints hold.

(i) U(�;ht�1) � 0

(ii) u(yst +Bt � a
s
t)� u(yst +Bt) + �U(�;ht�1; s) � 0

This de�nition states that a contract is self-enforcing for agent 1 if at all times during the

relationship agent 1 prefers making the contractual transfer to reneging on the contract and

being reduced to autarky from then on. Constraint (i) is an ex ante self-enforcing constraint

in that it holds at date t0; constraint (ii) is an ex post self-enforcing constraint in that it

holds at date t2 after the state of nature has been realized. It is important to note that

even though all ex post self-enforcing constraints are satis�ed, the ex ante self-enforcing

constraints may not be so. For example, if Bt is negative, the ex ante constraint may bind

while ex post constraints may not once the ex ante payment Bt has been paid. It is therefore

necessary to consider these two sets of constraints.

When designing the optimal contract the two agents will take into account agent 1's

incentive to renege. To solve for the optimal contract we must therefore add self-enforcing

constraints to the maximization problem (1). The optimal contract with non-commitment

7



by agent 1, �1, is then the solution to the following maximization problem.

�1 = argmax
�

U(�;h0)

s.t. V (�;h0) � 0 (2)

U(�;ht�1) � 0 8 t; ht�1

u(yst +Bt � ast)� u(yst +Bt) + �U(�;ht�1; s) � 0 8 s; t; ht�1

The next proposition gives a characterization of the optimal contract �1.8

Proposition 2 Suppose that the maximum ex ante payment agent 1 can make is B.9

(i) For all values of � 2 (0; 1) the optimal contract with non-commitment by agent 1 is the

optimal full-commitment contract, that is, �1 = �fc, if and only if B � yS � cSfc, where csfc

is the optimal consumption in state s under the full-commitment contract.

Suppose that B < yS � cSfc.

(ii) There exists a �1 which depends on B such that for � 2 [�1; 1), the optimal contract with

non-commitment by agent 1 is the optimal full-commitment contract, that is, �1 = �fc.

(iii) For all � 2 (0; �1), the following characterization forms part of an optimal contract �1:

1. Agent 1 makes the highest ex ante payment in every period, that is, Bt = �B for all

periods t;

2. Agent 2's expected pro�t is non-increasing in time, that is, V (�1;ht�1; s) � V (�1;ht�1)

for all histories ht�1, time periods t, and states s.

This proposition states that if agent 1 can make a high enough ex ante payment (B � yS�

cSfc), then the optimal full-commitment contract satis�es agent 1's self-enforcing constraints.

A large enough ex ante payment e�ectively allows all ex post transfers ast to be negative which

in turn implies that all ex post self-enforcing constraints are satis�ed.10 Because the optimal

full-commitment contract yields agent 1 a surplus in every period its ex ante self-enforcing

constraint is also satis�ed.

8
All proofs are relegated to the Appendix.

9
The bound B is rather arti�cial and is introduced solely to study the case in which self-enforcing

constraints can be binding. We remove this restriction in the next section.

10
Note that the transfer yS � cSfc is the largest transfer agent 1 makes to agent 2 in the full-commitment

contract �fc.
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When the maximum ex ante payment agent 1 can make is not high enough, the optimal

contract with full-commitment cannot be supported for all values of the discount factor. If

the discount factor is high enough, that is, no lower than �1 (where �1 is de�ned in the

Appendix), then agent 1's ex post self-enforcing constraints are not binding.11 In this case

the future bene�ts to player 1 of perfect risk-sharing exceed the short-run cost of making

the prescribed transfer in any state s. Contrary to the full-commitment case however, the

transfer Bt is not a matter of indi�erence. It will optimally be set to the maximum level agent

1 can pay. For given net transfers, a maximal ex ante payment reduces ex post transfers

ast from agent 1 to agent 2 and hence the incentive for the former to renege ex post on the

contract. It therefore allows the optimal full-commitment contract �fc to be supported for

the largest interval of discount factors.

When the discount factor is smaller than �1, the optimal full-commitment contract cannot

obtain if B < yS � cSfc. In this case a �rst property of an optimal contract is that agent 1

makes the maximum ex ante payment Bt = �B in all periods.12 A substitution from ex post

to ex ante transfers leaves the two agents' consumption unchanged and therefore does not

change the value of agent 2's participation constraint, nor the value of ex ante self-enforcing

constraints; however it does relax the ex post self-enforcing constraints of agent 1. When

one of these constraints is binding this new contract (weakly) increases the utility of agent 1.

A second property of an optimal contract is that agent 2's expected pro�t is non-

increasing in time. The optimal contract seeks two objectives: (1) to insure agent 1 against

shocks to its endowment and (2) to smooth its consumption across periods. These objectives

are impeded by the inability of agent 1 to commit. They can be improved upon by having

agent 1 \save" in the early periods and good states of the world and withdraw these savings

in later periods and bad states of the world. The optimal contract therefore prescribes using

agent 2 as a savings account. This is possible given that agent 2 can commit not to \steal"

agent 1's early savings. The objective of this savings account is precisely to insure future

consumption against bad states of the world. This saving behavior implies that agent 2's

expected pro�ts are non-increasing in time as it will have to reimburse agent 1's savings in

the future.

11
This result is akin to results in the theory of supergames where any e�cient outcome of a static game

can be supported as an equilibrium of its associated supergame provided that the discount factor is high

enough.

12
Although making the largest ex ante payment is not necessary for an optimal contract for all values of

the discount factor, it is clearly su�cient.
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The following corollary gives a more precise characterization of the optimal consumption

path.

Corollary 1 Assume that B < yS � cSfc and that � < �1.

(i) For each state s, there exists an optimal time-invariant consumption level cs such that

cst � cs for all time periods t.

(ii) The lower bounds of consumption, cs, are increasing in the state of the world, that is,

k > q ) ck > cq, and are decreasing in the maximal payment B that agent 1 can make.

(iii) For any history (ht�1; s), optimal consumption at time t is such that:

c(ht�1; s) =

8<
:
cs if c�(ct�1; yt�1; s) < cs

c�(ct�1; yt�1; s) otherwise

where c�(ct�1; yt�1; s) is implicitly de�ned by u0(c�(ct�1;yt�1;s))
u0(ct�1)

=
v0(e+ys

t
�c�(ct�1;yt�1;s))

v0(e+yt�1�ct�1)
.

In each state, there exists an optimal time-invariant lower bound on agent 1's consump-

tion. These bounds are de�ned by the ex post self-enforcing constraints and the optimal

trade-o� between current and future consumption. E�cient risk sharing requires agent 1 to

save a large share of its endowment in the better states of the world; however when � < �1

no consumption can take place below these bounds as such consumption would imply that

agent 1 is saving too much compared with the future discounted surplus it expects from the

relationship. These bounds are increasing with the state of the world. Agent 1's endowment

is optimally shared between current and future consumption. As its endowment increases the

lower bound on its current consumption increases as well. These bounds are also decreasing

in the maximum ex ante payment that agent 1 can make. An increase in B increases agent

1's cost of reneging on the contract and thus relaxes its ex post self-enforcing constraint.

This allows agent 1 to save more and consume less in the current period. This comparative

statics result will be useful in the no-commitment case.

Consumption paths follow a simple rule. If, given consumption in period t � 1 optimal

consumption smoothing between periods t� 1 and t satis�es agent 1's ex post self-enforcing

constraints, then consumption in period t is equal to c�(ct�1; yt�1; s). If it does not satisfy

agent 1's ex post self-enforcing constraints, then consumption in period t is equal to cs. Con-

sumption then follows a stationary �rst-order Markov process where period t consumption

depends on period t � 1 consumption and the realized states in periods t � 1 and t. The

dynamics of consumption also imply that there is convergence to e�cient risk sharing and
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consumption smoothing. In the steady state consumption only depends on the current state.

Moreover, because optimal risk-sharing at actuarially fair prices is impossible when � < �1,

the steady-state consumption in every state must be higher than optimal consumption in

the full-commitment case. This higher consumption is the result of agent 1's savings in the

early periods and withdrawals in the later periods. This is acceptable to agent 2 because it

gets a compensating surplus at the beginning of the relationship as it consumes agent 1's

early savings.

The results of Proposition 2 and Corollary 1 are similar to results obtained by Harris and

Holmstr�om (1982) in a model of labor contracts. They showed that under the assumption

of non-commitment by the employee wages are downward rigid as the risk-neutral employer

fully insures the worker against bad states of the world. Our characterization is, �rst, a

generalization to the case of two risk-averse agents. It shows that, in this case consumption

can decrease in some states. Secondly, it shows that the non-committed party (agent 1) would

like to make in each period ex ante transfers to relax its ex post self-enforcing constraints,

that is, an optimal characterization sets Bt = �B.

Having the non-committed agent making the maximal ex ante payment relaxes its ex post

self-enforcing constraints. The possibility that the non-committed agent has of making an ex

ante payment allows to shift (some or all) the burden of ex post transfers to the committed

agent. However if both agents face self-enforcing constraints the above characterization may

not be feasible. One agent may run away with the ex ante payment of the other agent as its

ex post self-enforcing constraints would become too stringent. The optimal ex ante payment

should therefore trade o� between the two sets of self-enforcing constraints. The next section

studies the details of that trade-o� when the two agents face self-enforcing constraints.

4 Contracting under no commitment

We �rst de�ne the concept of a self-enforcing contract under the non-commitment assump-

tion.

De�nition 3 A contract � is self-enforcing if and only if, for all histories ht�1, periods t,

and states s, the following constraints hold.

(i) U(�;ht�1) � 0

11



(ii) u(yst +Bt � ast)� u(yst +Bt) + �U(�;ht�1; s) � 0

(iii) V (�;ht�1) � 0

(iv) v(e�Bt + ast)� v(e�Bt) + �V (�;ht�1; s) � 0

This de�nition simply states that a contract is self-enforcing if it is self-enforcing for

agent 1 (constraints i and ii) as well as for agent 2 (constraints iii and iv).

Before proceeding with the analysis we assume that there are no exogenous bounds on

the ex ante payment Bt. This assumption is motivated by the fact that we want to study

how self-enforcing constraints rather than some exogenous bound limit the use of the ex ante

payment.

The optimal contract without commitment, �nc, is the solution to the following maxi-

mization problem.

�nc = arg max
�

U(�;h0)

s.t. U(�;ht) � 0 8 t; ht

u(yst +Bt � ast)� u(yst +Bt) + �U(�;ht�1; s) � 0 8 s; t; ht�1 (3)

V (�;ht) � 0 8 t; ht

v(e�Bt + ast)� v(e�Bt) + �V (�;ht�1; s) � 0 8 s; t; ht�1

It is di�cult to characterize the optimal contract under this formulation. We therefore derive

a more manageable recursive formulation. Following any time period and any history the

optimal contract �nc will necessarily be e�cient, since if it were not it would be possible to

replace the none�cient path by an e�cient path thus (weakly) increasing the utility each

agent derives from the contract and hence relaxing all previous self-enforcing constraints.

This new contract would necessarily be self-enforcing and would dominate the old contract

at the beginning of the relationship. This argument implies that the optimal contract from

the start of period t onwards is the solution to the following maximization problem.

f(Vt) = max
Bt;(ast)s;(V

s

t+1
)s
E
n
u(yst +Bt � ast)� u(yst ) + �f(V s

t+1)
o

s.t. f(V s
t+1) � 0 8 s

u(yst +Bt � ast)� u(yst +Bt) + �f(V s
t+1) � 0 8 s

V s
t+1 � 0 8 s (4)

v(e�Bt + ast)� v(e�Bt) + �V s
t+1 � 0 8 s

12



Vt � E
n
v(e�Bt + ast)� v(e) + �V s

t+1

o

where f represents the Pareto frontier that can be attained through an e�cient self-enforcing

contract after an arbitrary history ht�1. This time-independent frontier is de�ned by

f(Vt) = max
�2�(ht�1)

fU(�;ht�1) s.t. V (�;ht�1) � Vtg

where �(ht�1) is the set of contracts satisfying the self-enforcing constraints following the

history ht�1.

In problem (4), the variable V s
t+1 is to be interpreted as V (�;ht�1; s), that is, agent 2's

expected surplus from period t+ 1 onwards when contract � is signed and s is the realized

state of nature in period t. The �rst two sets of constraints represent agent 1's ex ante

and ex post self-enforcing constraints respectively. The next two sets represent agent 2's

self-enforcing constraints. The last constraint of the problem ensures that the contract is

dynamically consistent. Before characterizing the properties of the optimal contract we

derive some useful technical results.

Lemma 1 (i) The set of values of Vt for which a self-enforcing contract exists is a compact

interval [0; �V ].

(ii) The Pareto frontier f is decreasing, strictly concave, and continuously di�erentiable

(almost everywhere) on (0; �V ).

(iii) For each value of Vt 2 [0; �V ] there exists a unique continuation of the contract � at

time t in which V (�;ht�1) = Vt and U(�;ht�1) = f(Vt).

To get a better understanding of the role of the ex ante payment in the no-commitment

environment, we will �rst state the solution to problem (4) assuming that no ex ante pay-

ments are allowed.13

Proposition 3 Set Bt = 0 for all time periods t.

(i) For each state s, there exist optimal time-invariant consumption levels cs and �cs such

that cs � cst � �cs for all time periods t.

(ii) The optimal lower bounds cs and upper bounds �cs are increasing with the states of the

world, that is, k > q) ck > cq and �ck > �cq.

13
This generalizes Thomas and Worrall (1988) to the case of bilateral risk aversion.
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(iii) For any history (ht�1; s), optimal consumption at time t is such that:

c(ht�1; s) =

8>>><
>>>:

cs if c�(ct�1; yt�1; s) < cs

c�(ct�1; yt�1; s) if cs � c�(ct�1; yt�1; s) � �cs

�cs otherwise

(iv) There are no values of � such that the optimal contract with non-commitment, �nc, is

the optimal contract with full commitment, �fc.

When no ex ante payments are allowed there are upper and lower bounds on the optimal

consumption of agent 1. Lower (upper) bounds are determined by agent 1's (2's) ex post self-

enforcing constraints and the optimal trade-o� between current and future consumptions.

Agent 1's consumption follows a simple stationary �rst-order Markov process. In period

t consumption depends on period t � 1 consumption and endowment and the state of the

world realized in period t. This implies that the consumptions of the two agents between

two adjacent periods are smoothed as much as possible subject to ex post self-enforcing

constraints.

A second important property of this characterization is that the optimal risk-sharing

contract, �fc, is not feasible under bilateral non-commitment. This contract yields zero

expected utility to agent 2 in every period. Its ex post self-enforcing constraints then hold

if and only if ast � 0 for all states s. When Bt = 0 these restrictions are incompatible with

optimal risk-sharing and hence there is no value of the discount factor for which the contract

�fc is feasible.14

We now characterize the optimal solution when the ex ante payment is chosen optimally.

An implication of Lemma 1 is that problem (4) is a concave program and therefore �rst-order

conditions are both necessary and su�cient for a solution. Denote respectively by �ps�s,

ps�s, �ps�s, ps�s, and  the multipliers of the �ve sets of constraints in problem (4). The

�rst-order conditions are

Bt :
X
s

psu0(yst +Bt � ast) +
X
s

ps�s (u0(yst +Bt � ast)� u0(yst +Bt))

�
X
s

ps(�s +  )v0(e�Bt + ast) +
X
s

ps�sv0(e�Bt) = 0 (5)

14
If agent 2 has some bargaining power over autarky there exist some values of � such that an opti-

mal risk-sharing contract can be supported with no ex ante payments. See Kocherlakota (1994) for such

characterization.
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ast : �ps(1 + �s)u0(yst +Bt � ast) + ps(�s +  )v0(e�Bt + ast) = 0 8 s (6)

V s
t+1 : (1 + �s + �s)f 0(V s

t+1) + �s + �s +  = 0 8 s (7)

and the envelope condition is f 0(Vt) = � . Lemma 2 provides some basic properties of the

solution.

Lemma 2 (i) There exists a �nc such that the optimal non-commitment contract, �nc, yields

the same consumption as the optimal full-commitment contract, �fc, if and only if � 2

[�nc; 1).

Suppose that � < �nc.

(ii) For i = 1; 2, there exists a state si in which agent i's ex post self-enforcing constraint is

binding.

If the discount factor is high enough, the optimal full-commitment contract is feasible with

non-commitment and is therefore optimal. Agent 2 pays up front a high enough payment

(Bt = c1fc � y1) such that the resulting ex post payments, ast , are all positive. These

payments yield zero expected utility to agent 2 in every period and therefore its ex ante and

ex post self-enforcing constraints are all satis�ed. If the discount factor is high enough agent

1 prefers to make the ex post payments in all states of nature and be optimally insured in the

future rather than keep the up-front payment, renege on the contract, and revert to autarky

thereafter. The critical value of the discount factor �nc (de�ned formally in the Appendix)

is the lowest discount factor for which agent 1 does not renege on the contract in all states

of nature. This result contrasts with the case Bt = 0 where the contract �fc is not feasible

with non-commitment for any value of the discount factor. This is a �rst indication that the

use of ex ante payments can strictly improve the utility of the two agents (at least for some

values of the discount factor).

The second result of Lemma 2 states that, when the contract �fc is not feasible each

agent always has at least one ex post self-enforcing constraint binding. Suppose only one

agent was (ex post) constrained. This agent could then increase marginally its up-front

payment and adjust its ex post payments to maintain its levels of consumption. This would

relax its ex post self-enforcing constraints. At the margin, this would not violate the other

agent's ex post self-enforcing constraints which were not binding before the increase in the

ex ante payment. Such change would therefore increase the utility of a least one agent.

An increase in the ex ante payment by one agent is possible until one of the other agent's
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self-enforcing constraint becomes binding, in which case further increases may not be self-

enforcing anymore. Therefore, in the optimal contract each agent always has at least one ex

post self-enforcing constraint binding.

The next proposition provides a characterization of the optimal ex ante payment when

the contract �fc is not feasible.

Proposition 4 Assume that � < �nc.

(i) The optimal value of the ex ante payment in period t is strictly decreasing in the expected

surplus that agent 1 has to concede to agent 2 in period t, that is, V 0

t > V 00

t ) B0

t < B00

t where

B0

t (B
00

t ) is optimal if agent 2's expected surplus in period t is V 0

t (V 00

t ).

(ii) The optimal ex ante payment is strictly positive when agent 2 has a zero expected surplus

and negative when agent 2 has maximal expected surplus, that is, Bt > 0 if Vt = 0 and Bt < 0

if Vt = �V .

The ex ante payment is decreasing in the expected surplus of agent 2. Suppose that,

following a given history the contract promises a low expected surplus to agent 2. This

makes the contract not much more pro�table than autarky to agent 2 and thus its ex post

self-enforcing constraints are likely to be more constraining than those of agent 1. In this

case agent 2 optimally pays out a relatively large ex ante payment to relax its ex post self-

enforcing constraints. The size of the optimal ex ante payment is therefore inversely related

to the expected surplus of agent 2. This logic can easily be extended to show that the optimal

ex ante payment is negative when agent 2 expects a high surplus from the relationship, that

is, agent 1 pays out to agent 2 a high ex ante transfer.

It is di�cult to provide a more complete characterization of the solution in the general

case given the number of inequality constraints; however, we can do so in a special case in

which there are only two states. This simple example is su�cient to illustrate the role of the

ex ante payment. We then compare our results with the case in which no ex ante payments

are allowed. Suppose that S = 2. State 1 can represent a state in which an accident occurs

and state 2, a state where no accident occurs. Also assume that the discount factor is such

that full insurance at fair prices (contract �fc) is not feasible.

Proposition 5 Suppose that S = 2 and � < �nc.

(i) The expected pro�t of agent 2 for period t+ 1 is larger (smaller) than that of period t if

state 1 (2) occurs in period t, that is, V (�nc;ht�1; 2) � V (�nc;ht�1) � V (�nc;ht�1; 1), with
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strict inequality if V (�nc;ht�1) =2
n
0; �V

o
.

Suppose that 0 < Vt < �V .

(ii) Agent 1's consumption in period t is smaller (larger) than c�(ct�1; yt�1; s) if s = 1 (if

s = 2) in period t, that is, c1t < c�(ct�1; yt�1; 1) and c2t > c�(ct�1; yt�1; 2).

If an accident occurs (state 1) agent 1 wants to smooth its impact across periods. It then

borrows from agent 2, that is, V 1
t+1 � Vt. Alternatively agent 1 lends to (or reimburses)

agent 2 if no accident takes place, that is, V 2
t+1 � Vt. In this case the good news of \no

accident" is spread over many periods. The second result of the proposition states that

the two agents bear more risk than they do in the full-commitment case. This shows that

incomplete insurance need not be explained by the presence of asymmetric information.

Non-commitment problems can also explain such occurrence.

These results may seem quite similar to those one would obtain when no ex ante payments

are allowed. This may be a misleading conclusion. Consider �rst the case where no ex

ante payments are allowed. The results of Proposition 3 imply that optimal consumption

takes place at �c1 (c2) if state 1 (2) occurs. These consumption levels are time-invariant

and therefore consumption can only take one of these two values depending on the realized

state. At any given period expected consumption for next period is the same regardless

of the history. Now consider the case where ex ante payments are allowed. In any given

period, for a given value B of the ex ante payment it is possible to de�ne as in Proposition

3 consumption bounds �c1(B) and c2(B). We know that these optimal bounds are increasing

with the ex ante payment.15 Furthermore Proposition 5 states that V 2
t+1 � Vt � V 1

t+1. Using

Proposition 4 this implies that the ex ante payment from agent 2 to agent 1 will decrease

(increase) in period t + 1 compared to that of period t if state 1 (2) occurs. We can now

characterize the optimal consumption paths. Suppose state 1 occurs in period t. Agent 2 is

then promised a higher expected surplus for period t+ 1. This implies that it will make a

lower ex ante payment in period t + 1 thus reducing the two consumption bounds for that

period. Expected consumption will then be lower in period t + 1 than in period t. The

opposite holds if state 2 occurs in period t, that is, expected consumption rises in period

t+ 1 compared to that of period t. The presence of the ex ante payment therefore improves

consumption smoothing. If a good state occurs, current and future expected consumptions

are increased, while the opposite holds if the bad state is realized.

15
This is a straightforward extension of Proposition 3 and Corollary 1.
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In an insurance context these results can be interpreted as the insurance premium in-

creasing when an accident occurs and decreasing when no accident occurs. Furthermore the

dynamics of our model imply that the complete history is relevant for explaining contempo-

raneous insurance premium, that is, a sequence of accidents results in successive increases in

insurance premia and therefore a drop in expected consumption. The consumption pattern

with an ex ante payment looks like \experience rating", that is, average consumption in one

period is positively related to the previous realizations of the state of nature. In this model

experience rating arises from the desire of the insuree to smooth consumption over time.

This is optimally achieved by having a premium increase when an accident occurs. In this

case, the current marginal utility of the insuree is high and it promises higher premia in the

future in exchange for a high current compensation. Our model therefore predicts that ex-

perience rating can take place in an insurance market even though information is symmetric

and shocks are identically and independently distributed. Our model can therefore generate

higher order correlation in consumption even though endowments are independently dis-

tributed. This shows that neither asymmetric information nor uncertainty and learning are

necessary to explain experience rating in dynamic insurance contracts. This simple example

shows that allowing for an ex ante payment yields predictions that are signi�cantly di�erent

from those without ex ante payments.

5 Discussion

In this section we discuss two possible modi�cations to our economic environment, namely

the introduction of savings and bonding.

One question that comes to mind is: would the contract still have value if, say agent 1

was allowed to save at a risk-free rate equal to its discount rate? The introduction of savings

in the contracting framework developed here would have nontrivial e�ects on the patterns

of consumption. Savings does not only modify the expected utility an agent gets from the

contract but also its expected utility in autarky. As savings accumulate autarky becomes

more attractive; but this does not imply that the contract may eventually play no role.

Bewley (1977) and Schechtman (1976) show that even though an agent has accumulated

important savings, still it does not fully insure itself against random shocks. Rather, good

shocks are spread over many periods, as are bad shocks in an e�ort to smooth consumption.

There is therefore some residual risk left in an agent's consumption. It is then presumed that

18



some residual risk could be further insured by a self-enforcing contract with, for example

a risk-neutral agent. Autarcic consumption would then correspond to consumption with

savings (instead of consumption of the endowment). In any case the contract would be useful

in the early periods where a bad shock increases the demand for a loan. The introduction

of savings is worth investigating and is the subject of our current research.

Another interesting question that often comes to mind in non-commitment environments

is: what if agents could post a bond? It is well known that posting a bond is a means for

avoiding self-enforcing constraints, that is, the agent that cannot commit or that must be

disciplined simply posts a bond that it loses if it does not perform satisfactorily. For example

Williamson (1983) illustrates how the use of a bond can promote e�cient trade. Posting a

bond is equivalent to specifying a penalty for breach of contract. We can then provide a

di�erent interpretation for the ex ante payment. Suppose that all payments and consumption

take place at the end of the period. The ex ante payment can now be interpreted as a penalty

for breach of contract that is decided upon by the agents at the beginning of the period,

that is paid only in case of default, and that is enforceable by the courts. Our results would

therefore imply that the net penalty rests upon the shoulders of that agent that is the most

likely to breach the contract, that is, the agent that expects the lower future surplus from

the relationship.

Because Bt is the net penalty, this interpretation would imply that it cannot be made

contingent on who breached the contract. This would be reasonable in an environment where

the courts can observe whether a relationship is continuing or not, but if it is not they cannot

determine why there has been a breach. This is a reasonable assumption if, for example,

an agent can \force" the other agent to breach the contract by misbehaving. If courts can

observe who breached the contract then an agent-speci�c bond would resolve all commitment

problems.

One can argue that bonds could also be posted with third parties that would keep it if

an agent ever breaches the contract. This solution also has some problems of its own. For

one, it may encourage collusion between one of the agents and the third party to breach

the contract and then share the bond. Or, faced with a possible breach the agents may

renegotiate the contract to avoid losing the bond to the third party.
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6 Conclusion

We develop a dynamic model of contracting for risk-sharing purposes. Complete insurance

is impeded by ex post opportunism in that agents can break the relationship at any time

if it is in their own interest to do so. However, agents can commit partially by making

payments at the beginning of a period before the state of nature is realized. These payments

can increase the potential gains from trade but cannot generally restore perfect risk sharing.

These payments evolve inversely with the surplus an agent expects from the relationship.

20



References

[1] Benveniste, L.M. and J.A. Scheinkman (1979) \On the Di�erentiability of the

Value Function in Dynamic Models of Economics," Econometrica, 47, 727{732.

[2] Bewley, T. (1977) \The Permanent Income Hypothesis: A theoretical Formulation,"

Journal of Economic Theory, 16, 252{292.

[3] Harris, M. and B. Holmstr�om (1982) \A Theory of Wage Dynamics," Review of

Economic Studies, 49, 315{333.

[4] Kocherlakota, N.R. (1994) \E�cient Bilateral Risk-Sharing Without Commit-

ment," Mimeo, Department of Economics, University of Iowa.

[5] Phelan, C. and R. Townsend (1991) \Computing Multi-period Information-

constrained Optima," Review of Economic Studies, 58, 853{882.

[6] Schechtman, J. (1976) \An Income Fluctuation Problem," Journal of Economic The-

ory, 12, 218{241.

[7] Thomas, J. and T. Worrall (1990) \Income Fluctuations and Asymmetric Infor-

mation: An Example of a Repeated Principal-Agent Problem," Journal of Economic

Theory, 51, 367{390.

[8] Thomas, J. and T. Worrall (1988) \Self-Enforcing Wage Contracts," Review of

Economic Studies, 55, 541{554.

[9] Wang, C. (1994) \Dynamic Insurance Between Two Risk Averse Agents With Bilateral

Asymmetric Information," Mimeo, Department of Economics, University of Iowa.

[10] Williamson, O.E. (1983) \Credible Commitments: Using Hostages to Support Ex-

change," American Economic Review, 73, 519{540.

21



APPENDIX

Proof of Proposition 2 (i) Consider the optimal full-commitment contract �fc characterized in

Proposition 1. The per-period surplus to agent 1 is Eu(cqfc) � Eu(yq) which is positive. Hence

U(�fc; ht�1) > 0 for all histories ht�1 and periods t. This implies that all ex ante self-enforcing

constraints are satis�ed. Suppose that B � yS�cSfc and that agent 1 makes the maximum ex ante

payment, namely, Bt = �B. From Proposition 1 we know that ast = yst + Bt � csfc. If Bt = �B,

then ast � yst � y
S + cSfc� csfc. Because the transfer from agent 1 to agent 2 is largest when s = S,

we have that ast � 0 for all s, and hence no ex post self-enforcing constraints are binding. The

contract �fc can then be supported as the optimal contract �1.

(ii) Assume that B < yS � cSfc. Consider the optimal full-commitment contract �fc. As argued

above, all ex ante self-enforcing constraints are satis�ed. Ex post self-enforcing constraints are

satis�ed if and only if

u(csfc)� u(yst +Bt) +
�

1� �

�
Eu(cqfc)�Eu(yq)

�
� 0 8 s:

These constraints become less binding if Bt is set at its lowest level, namely, Bt = �B and net

transfers are adjusted such that agent 1's consumption be csfc. Setting Bt = �B and solving for �

in the ex post self-enforcing constraint yields

� �
u(ys � B)� u(csfc)

u(ys � B)� u(csfc) + Eu(cqfc)�Eu(yq)
for all s:

The critical value �1 above which all ex post self-enforcing constraints are satis�ed is given by

0 < �1 �
u(yS � B)� u(cSfc)

u(yS � B)� u(cSfc) + Eu(cqfc)�Eu(yq)
< 1:

Hence all (ex ante and ex post) self-enforcing constraints for agent 1 are satis�ed for � 2 [�1; 1).

For values of � outside this interval, at least one of the ex post self-enforcing constraints for agent 1

is violated and thus the optimal full-commitment contract is not feasible when agent 1 can renege

on the contract.

(iii) The proof of this part of the proposition is more involved and we need to introduce some

notation. De�ne by 
(ht�1) the set of contracts satisfying the self-enforcing constraints for agent 1

following history ht�1. For convenience we de�ne this set over the space of functions Ct and Bt.

This set is not convex due to the presence of the term �u(yst +Bt) in the self-enforcing constraints

of agent 1. Because it is convenient to work with a convex set we convexify this set by allowing

for lotteries over the �xed payment Bt.
16 Suppose that in every period there is a continuum of

possible values of the �xed payment in the interval � � [�B;1). De�ne the function Zt(�; ht�1)

as a density function over the support �. Agent 1's self-enforcing constraints then become for all

histories, periods, and states:

(i) U(�; ht�1) � 0

(ii) u(cst)�

Z
�
u(yst + B)Zt(B; ht�1)dB + �U(�; ht�1; s) � 0

16
We will show later that the optimal lottery is in fact degenerate.
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The space of self-enforcing contracts is then b
(ht�1) � fCt;Zt(�; ht�1) such that agent 1's self-

enforcing constraints are satis�edg. The Pareto frontier that is attainable by an e�cient self-

enforcing contract is given by

g(Vt) = max
�2b
(ht�1) fU(�; ht�1) s.t. V (�; ht�1) � Vtg :

The Pareto frontier is time-independent as all constraints de�ning b
(ht�1) and the functions

U(�; ht�1) and V (�; ht�1) are forward looking.

We now show that the Pareto frontier is strictly concave and continuously di�erentiable almost

everywhere.17 First we argue that the set b
(ht�1) is convex. This follows directly form the con-

cavity of the utility function u and linearity of the constraints in the terms Zt(�; ht�1).

Secondly, following history ht�1, the set of Vt such that a self-enforcing contract for agent 1 exists

is a compact interval [�K1; �V ] where �K1 is the discounted utility of agent 2 when it pays out to

agent 1 its total endowment in every state and period.18 Such transfers are obviously self-enforcing

for agent 1. There exists an upper bound on the surplus agent 1 can concede to agent 2 in a self-

enforcing contract. Denote this upper bound by �V . If �V is attainable by a self-enforcing contract,

then any Vt 2 [�K1; �V ] is also. The closedness of this interval can be shown by constructing a

sequence of self-enforcing contracts yielding some utility level to agent 2 converging to �V . Because

u is continuous and � 2 (0; 1), the Dominated Convergence Theorem implies that the limiting

contract is also self-enforcing and hence �V is included in the interval.

Finally, we show that the Pareto frontier is decreasing, strictly concave and continuously di�er-

entiable almost everywhere. It is obvious that the function g is decreasing. The strict concavity

property follows from the strict concavity of u, the concavity of v, and the convexity of b
. The

di�erentiability property follows from the continuity and di�erentiability of u. Consider an e�cient

self-enforcing contract � such that V (�; ht�1) = Vt 2 (�K1; �V ). Construct a contract �
 which dif-

fers from the contract � in that a(ht�1; s) = a(ht�1; s)+. The state s is chosen such that agent 1's

ex post self-enforcing constraint is not strictly binding. The contract � is therefore self-enforcing

for  small enough. De�ne the function ĝ such that U(�; ht�1) = ĝ(V (� ; ht�1)) � g(V (�; ht�1))

with equality if  = 0. As  is varied, it is easy to show that the function ĝ is concave and dif-

ferentiable at Vt. Therefore it satis�es Lemma 1 reported in Benveniste and Scheinkman (1979).

The function g is then di�erentiable. Because it is monotonic, it is also continuously di�erentiable

almost everywhere. This implies that for any value Vt 2 [�K1; �V ], there exists a unique e�cient

continuation of the contract � at time t in which V (�; ht�1) = Vt and U(�; ht�1) = g(Vt). Exis-

tence is guaranteed by the compactness of the interval [�K1; �V ]; uniqueness is guaranteed by the

convexity of b
 and the strict concavity of u.

This Pareto frontier can be used to characterize the optimal contract. Following any history the

optimal contract �1 will necessarily be e�cient, since if it were not it would be possible to replace the

none�cient path by an e�cient path thus relaxing all previous self-enforcing constraints. This new

contract would necessarily be self-enforcing and would dominate the old contract at the beginning

of the relationship. This argument implies that the optimal contract from the start of period t

17
Most of the arguments used here follow those of Lemma 1 of Thomas and Worrall (1988).

18
Remember that agent 1's utility function is de�ned over the interval [0; b].
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onwards is the solution to the following maximization problem.

g(Vt) = max
zt;(cst )s;(V

s

t+1
)s
E
�
u(cst)� u(yst ) + �g(V s

t+1)
	

s.t. g(V s
t+1) � 0 8 s

u(cst)�

Z
�
u(yst +B)zt(B)dB + �g(V s

t+1) � 0 8 s (8)
Z
�
zt(B)dB = 1

zt(B) � 0 8B

Vt � E
�
v(e+ yst � cst)� v(e) + �V s

t+1

	

In this problem, the variable V s
t+1 is to be interpreted as V (�; ht�1; s), that is, agent 2's expected

utility from period t+ 1 onwards when contract � is signed, ht�1 is the history up to period t, and

s is the realized state of nature in period t. The �rst two sets of constraints represent agent 1's

self-enforcing constraints. The next two constraints ensures that zt is a density function. The last

constraint of the problem ensures that the contract is dynamically consistent.

The properties of the Pareto frontier g and the convexity of b
 imply that problem (8) is a concave

program, and therefore its �rst-order conditions are both necessary and su�cient for a solution.

Let �ps�s, ps�s, �, �(B), and  be the respective multipliers of the constraints in problem (8).

The �rst-order conditions are then

zt(B) :
X
s

(�ps�su(yst + B)) + �(B) + �=0 8B (9)

cst : ps(1 + �s)u0(cst)� ps v0(e+ yst � cst) = 0 8 s (10)

V s
t+1 : (1 + �s + �s)g0(V s

t+1) +  = 0 8 s (11)

and the envelope condition is g0(Vt) = � .

1. If no self-enforcing constraint binds (�s = 0 for all s), only net payments matter and hence

zt(B) can be set arbitrarily such that it has a mass point at B and be zero elsewhere. Note that

this density is the one for which ex post self-enforcing constraints are the least binding. If there

is at least one self-enforcing constraint that binds, then there exists a state s such that �s > 0.

The expression
P

s (�p
s�su(yst +B)) is decreasing and convex in B. This implies that there is at

most one value of B which has positive density (i.e. �(B) = 0). Furthermore this value must be

at the lower bound of �. This implies that zt(B) is such that it has a mass point at B and is zero

elsewhere.

2. Condition (11) and the envelope condition jointly imply that (1 + �s + �s)g0(V s
t+1) = g0(Vt).

Because �s + �s � 0 and the Pareto frontier g is decreasing and concave, it implies that V s
t+1 � Vt

with strict inequality when �s + �s > 0. Q.E.D.

Proof of Corollary 1 We �rst show that �s = 0 for all s. First-order conditions and the envelope

condition imply that

(1 + �s + �s)g0(V s
t+1) = g0(Vt):

Suppose that �s > 0, then g(V s
t+1) = 0. Because agent 2's expected pro�ts are non-increasing in

time and g is decreasing we must have that g(Vt) = 0. But then the above expression cannot hold.

This implies that �s = 0 for all states s.
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(i) Denote by �V s and cs the optimal maximum and minimum values for V s
t+1 and cst respectively

such that there exists a self-enforcing contract for agent 1. These values are implicitly de�ned by

u0(cs)

v0(e+ ys � cs)
= �g0( �V s) (12)

u(cs)� u(ys � B) + �g( �V s) = 0: (13)

The �rst equation follows from �rst-order conditions to problem (8) and the fact that �s = 0 for

all s while the second represents agent 1's ex post self-enforcing constraint in state s. Note that

these equations are time-independent. After substituting for �V s in agent 1's ex post self-enforcing

constraint, the optimal bound on consumption, cs, is then implicitly de�ned by

u(cs)� u(ys � B) + �g

�
g0�1

�
�

u0(cs)

v0(e+ ys � cs)

��
= 0:

The left-hand side of the ex post self-enforcing constraint is increasing in cs which implies that it

is satis�ed for cst � cs for all t and s.

(ii) Totally di�erentiating equations (12) and (13) with respect to cs, �V s, and ys yields dcs=dys >

0.19 Hence, cs is increasing in the states of the world, that is, ck > cq if and only if yk > yq.

Finally, totally di�erentiating the same equations yields dcs=dB < 0:

(iii) From the �rst-order conditions in periods t� 1 and t we know that

(1 + �s)
�
u0(cst)=v

0(e+ yst � cst)
�
= u0(ct�1)=v

0(e+ yt�1 � ct�1):

Suppose �rst that c�(ct�1; yt�1; s) � cs. This expression is satis�ed when cst = c�(ct�1; yt�1; s) � cs

and �s = 0. Now suppose that c�(ct�1; yt�1; s) < cs. The above expression is satis�ed when cst = cs

and �s > 0. Q.E.D.

Proof of Lemma 1 As in the proof of Proposition 2 the set �(ht�1) is not convex and we must

convexify it to prove our results. Use the same notation as before, namely, Zt(�; ht�1) is a density

function de�ned over all possible values of B (possibly the real line). The self-enforcing constraints

then become for all histories ht�1, periods t, and states s:

(i) U(�; ht�1) � 0

(ii) u(cst)�

Z
u(yst +B)Zt(B; ht�1)dB + �U(�; ht�1; s) � 0

(iii) V (�; ht�1) � 0

(iv) v(e+ yst � cst)�

Z
v(e�B)Zt(B; ht�1)dB + �V (�; ht�1; s) � 0

The set of self-enforcing contracts b�(ht�1) is then fCt;Zt(�; ht�1) such that both agents' self-

enforcing constraints are satis�edg.

19
Because the function g is continuously di�erentiable almost everywhere and concave we know that g00

exists almost everywhere. Where it does not exist, we know that the right-hand and left-hand derivatives

are negative, which is su�cient to prove the result.
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Now consider the following modi�ed version of problem (4) where we allow for random values of

B. It will be used to show that the optimal Zt(�; ht�1) is degenerate at a single value.

f(Vt) = max
zt;(c

s

t
)s;(V

s

t+1
)s
E
�
u(cst)� u(yst ) + �f(V s

t+1)
	

s.t. f(V s
t+1) � 0 8 s

u(cst)�

Z
u(yst + B)zt(B)dB + �f(V s

t+1) � 0 8 s

V s
t+1 � 0 8 s (14)

v(e+ yst � cst)�

Z
v(e� B)zt(B)dB + �V s

t+1 � 0 8 s
Z
zt(B)dB = 1

zt(B) � 0 8B

Vt � E
�
v(e+ yst � cst)� v(e) + �V s

t+1

	

Only consider the necessary �rst-order conditions for the density function to satisfy.

zt(B) :
X
s

(�ps�su(yst +B) � ps�sv(e�B)) + �(B) + � = 0 8B

where the �s are the multipliers on agent 2's ex post self-enforcing constraints. If all multipliers

�s and �s are zero then the ex ante payment is a matter of indi�erence and its density can be

arbitrarily set at a single mass point. Now suppose some ex post self-enforcing constraints are

binding. The expression
P

s (�p
s�su(yst +B) � ps�sv(e� B)) is convex in B. This implies that

there are at most two values of B that can have positive density (i.e. �(B) = 0). Suppose that

the density is positive for exactly two values. This contradicts the necessary �rst-order conditions

as some multipliers �(B) would have to be negative. Hence the optimal density is degenerate at

a single value of the ex ante payment. There is therefore no loss in generality in restricting our

attention to problem (4).

(i), (ii), (iii) The rest of the proof follows that of Proposition 2 with minor modi�cations. Q.E.D.

Proof of Proposition 3 Denote respectively by �ps�s, ps�s, �ps�s, ps�s, and  the multipliers

of the �ve sets of constraints in problem (4). The �rst-order conditions when Bt = 0 for all time

periods are

ast : �ps(1 + �s)u0(yst +Bt � ast ) + ps(�s +  )v0(e� Bt + ast) = 0 8 s (15)

V s
t+1 : (1 + �s + �s)f 0(V s

t+1) + �s + �s +  = 0 8 s (16)

and the envelope condition is f 0(Vt) = � . We �rst argue that �s = �s = 0 for all states s.

When Bt = 0 ex ante self-enforcing constraints cannot be binding when all ex post self-enforcing

constraints are satis�ed. There is therefore no loss in generality in supposing that �s = �s = 0 for

all states s.20

(i) First-order conditions imply that

u0(cst)

v0(e+ yst � cst)
= �f 0(V s

t+1): (17)

20
A formal proof of this can be provided by the authors.
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Condition (17) can be rewritten as V s
t+1 = f 0�1 (�u0(cst)=v

0(e+ yst � cst)). The lower bound on

consumption, cs, is de�ned by the intersection of this expression and agent 1's ex post self-enforcing

constraint. More formally,

u(cs)� u(ys) + �f
�
min

n
f 0�1

�
�u0(cs)=v0(e+ ys � cs)

�
; �V
o�

= 0 (18)

where f( �V ) = 0. This expression states that optimal lower bounds on consumption are de�ned

by the intersection of �rst-order conditions and agent 1's ex post self-enforcing constraints to the

extent that they respect the ex ante self-enforcing constraint; otherwise the expression reduces to

cs = ys. It is clear from expression (18) that cs � ys. Note that these optimal lower bounds are

time-independent.

We now de�ne the optimal upper bounds on consumption. The expression

V s
t+1 = f 0�1

�
�u0(cst)=v

0(e+ yst � cst)
�

is substituted in agent 2's ex post self-enforcing constraint. More formally,

v(e+ ys � �cs)� v(e) + �
�
max

n
f 0�1

�
�u0(�cs)=v0(e+ ys � �cs)

�
; 0
o�

= 0: (19)

This expression states that optimal upper bounds on consumption are de�ned by the intersection of

�rst-order conditions and agent 2's ex post self-enforcing constraint to the extent that they respect

the ex ante self-enforcing constraints; otherwise the expression reduces to �cs = ys. It is clear from

expression (19) that �cs � ys. Again, note that these optimal upper bounds are time-independent.

The preceding arguments show that in any time period t and state s, consumption cst must be in-

cluded in the interval [cs; �cs]; otherwise one of the self-enforcing constraints or �rst-order conditions

would be violated.

(ii) We now show that the optimal lower bounds are increasing in the states of the world. The

optimal lower bounds are implicitly de�ned as a function of ys in expression (18). This expression

is continuous in cs and ys but is not di�erentiable at the point where the minimum switches from

f 0�1 (�u0(cs)=v0(e+ ys � cs)) to �V . When the minimum equals �V , cs = ys and clearly the optimal

bound is increasing in the state of the world. When the minimum equals the �rst expression, total

di�erentiation of the implicit function yields

dcs

dys
= �

�f 0f 0�1
0
�
�
u0(cs)v00(e+ys�cs)

v0(e+ys�cs)2

�
� u0(ys)

u0(cs) + �f 0f 0�10 �
�
�

u00(cs)v0(e+ys�cs)+u0(cs)v00(e+ys�cs)
v0(e+ys�cs)2

�

which is positive because f 0f 0�1
0
> 0.21 Hence, because cs is a continuous implicit function of ys,

these results imply that cs is increasing in the states of the world, that is, ck > cq if and only if

yk > yq.

We now show that the optimal upper bounds are increasing in the states of the world. The optimal

upper bounds are implicitly de�ned as a function of ys in expression (19). This expression is

continuous in �cs and ys but is not di�erentiable at the point where the maximum switches from

21
Because the function f is continuously di�erentiable almost everywhere and concave we know that f 0�1

0

exists almost everywhere. Where it does not exist, we know that the right-hand and left-hand derivatives

are negative, which is su�cient to prove the result.
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f 0�1 (�u0(�cs)=v0(e+ ys � �cs)) to 0. When the maximum equals 0, �cs = ys and clearly the optimal

bound is increasing in the state of the world. When the maximum equals the �rst expression, total

di�erentiation of the implicit function yields

d�cs

dys
= �

v0(e+ ys � �cs) + �f 0�1
0
�
�
u0(�cs)v00(e+ys��cs)

v0(e+ys��cs)2

�

�v0(e+ ys � �cs) + �f 0�10 �
�
�

u00(�cs)v0(e+ys��cs)+u0(�cs)v00(e+ys��cs)
v0(e+ys��cs)2

�

which is positive because f 0�1
0
� 0.22 Hence, because �cs is a continuous implicit function of ys,

these results imply that �cs is increasing in the states of the world, that is, �ck > �cq if and only if

yk > yq.

(iii) First-order conditions and the envelope condition imply that

(1 + �s)
u0(cst)

v0(e+ yst � cst)
� �s = �f 0(Vt)

u0(cst)

v0(e+ yst � cst)
= �f 0(V s

t+1)

First-order conditions in period t� 1 then imply that

(1 + �s)
u0(cst)

v0(e+ yst � cst)
� �s =

u0(ct�1)

v0(e+ yt�1 � ct�1)
:

Suppose that cs � c�(ct�1; yt�1; s) � �cs. The solution must then be cst = c�(ct�1; yt�1; s) with �
s =

�s = 0. If c�(ct�1; yt�1; s) > �cs, then the solution must be �s > 0 and cst = �cs. If c�(ct�1; yt�1; s) <

cs, then the solution must be �s > 0 and cst = cs.

(iv) The contract �fc is such that V sfc
t+1 = 0 for all states and periods. This implies that agent 2's ex

post self-enforcing constraints can be satis�ed if and only if ast � 0 in all states and periods. But this

is inconsistent with the payments prescribed by the contract �fc, hence it cannot be self-enforcing

when Bt = 0. Q.E.D.

Proof of Lemma 2 (i) We know that V (�fc; ht) = 0 for all histories ht. The contract �fc is

therefore self-enforcing if and only if ast � 0 for all states s and periods t. Consider the following

contract �̂: the ex ante payment is set at B̂t = c1fc � y1 and contingent payments at âst = yst �

y1 + c1fc � csfc � 0 in all states and periods. This contract yields for both agents the same

consumption as under the contract �fc. The contract �̂ is self-enforcing for agent 2. Its ex ante

self-enforcing constraints are trivially satis�ed, that is, V̂ s
t+1 = 0 for all states and periods; its ex

post self-enforcing constraints are also satis�ed by construction because âst � 0 for all states and

periods. It is self-enforcing for agent 1 if all its ex post self-enforcing constraints are satis�ed, that

is,

u(csfc)� u(ys + c1fc � y1) +
�

1� �

n
Eu(cqfc)�Eu(yq)

o
� 0 for all s:

Furthermore its ex ante self-enforcing constraints are satis�ed by �̂. De�ne �nc by

0 < �nc �
u(yS + c1fc � y1)� u(cSfc)

u(yS + c1fc � y1)� u(cSfc) +Eu(cqfc)� Eu(yq)
< 1:

22
The remark of the last footnote applies here as well.
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It is the smallest discount factor that satis�es the self-enforcing constraints in all states. This shows

that � � �nc is a su�cient condition for the contract �̂ to be self-enforcing. It is also necessary

since a contract with a smaller ex ante payment would not be self-enforcing for agent 2 as it would

require at least one ex post payment to be negative; a contract with a larger ex ante payment would

be self-enforcing for larger values of the discount factor than �nc.

(ii) When � < �nc, there is at least one ex post self-enforcing constraint that binds. Adding up all

conditions (6) to condition (5) yields

X
s

ps
�
�sv0(e�Bt)� �su0(yst +Bt)

	
= 0: (20)

It therefore follows that there must be a s1 for which �
s1 > 0 and a s2 for which �s2 > 0. Q.E.D.

Proof of Proposition 4 Consider the optimal solution to maximization (4) as a function of the

state variable Vt. By the theorem of the maximum we know that the solution is continuous in

the state variable over the interval [0; �V ]. Consider a marginal increase in the value of the state

variable. We want to show that the optimal ex ante payment is strictly decreasing in the state

variable. The proof goes by contradiction. Suppose that the optimal value of the ex ante payment

is left unchanged following a marginal increase in the state variable. The envelope condition implies

that f 00(Vt)dVt = �d < 0. Consider all ex post constraints that are satis�ed at equality before the

increase in the state variable. Of these constraints, we choose all those that become strictly binding

following the increase in the state variable. These are the only constraints that bind following the

marginal increase in Vt. Consider the �rst-order conditions (6) for all states s for which one self-

enforcing constraint becomes binding. In these states, consumption is left unchanged following the

small increase in Vt.
23 For all those ex post self-enforcing constraints, for �rst-order conditions

to continue to hold we have that d�s = �d if the binding constraint is that of agent 2, and

(u0(cst)=v
0(e+ yst � cst))d�

s = d if it is that of agent 1. If we substitute these changes in condition

(20), we have X
s

ps
�
�u0(yst + Bt) �

v0(e+ yst � cst)

u0(cst)
� v0(e�Bt)

�
d = 0

for this condition to continue to hold. Because d > 0, this expression cannot be equal to 0 if

Bt remains constant. This implies that for any marginal change in the state variable Vt, the ex

ante payment Bt must change and therefore Bt is monotonic in the state variable Vt over the range�
0; �V

�
.

Suppose that Vt = �V and �x Bt = 0. In this case, only agent 1 has some ex post self-enforcing

constraints that bind. We know from Proposition 2 that agent 1 pays the maximum ex ante

payment. Because our problem is a concave problem, this implies that at Vt = �V , the optimal

value of Bt is negative. A similar argument shows that the optimal Bt is positive at Vt = 0.

Because Bt is monotonic in Vt the relationship between Bt and Vt must be decreasing. Q.E.D.

Proof of Proposition 5 We know from Lemma 2 that there exist states s1 and s2 such that

�s1 > 0 and �s2 > 0. Suppose that �2 > 0 and �1 > 0. This implies that �1 = 0 and �2 = 0.

23
This follows from the results of Proposition 3 which show that for Bt = 0, the optimal lower (and

upper) optimal consumption bounds that satisfy the ex post self-enforcing constraints are time-invariant.

This result can easily be generalized to any �xed value of Bt.
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First-order conditions then imply

(1 + �1)
u0(c1t )

v0(e+ y1t � c1t )
= �f 0(Vt)

u0(c2t )

v0(e+ y2t � c2t )
� �2 = �f 0(Vt)

which yields

(1 + �1)
u0(c1t )

v0(e+ y1t � c1t )
=

u0(c2t )

v0(e+ y2t � c2t )
� �2:

But this implies that c1t = c1 > c2t = �c2 which is inconsistent with the results of Proposition 3.24

Consequently it must be the case that �1 > 0, �2 > 0, and �2 = �1 = 0.

(i) First-order conditions imply that, for state 1,

(1 + �1)f 0(V 1
t+1) + �1 + �1 = f 0(Vt):

If �1 > 0, then V 1
t+1 =

�V � Vt. If �
1 = 0, the above expression reduces to

f 0(V 1
t+1) + �1 + �1 = f 0(Vt)

which implies that V 1
t+1 > Vt by the concavity of the Pareto frontier f . In state 2 we have that

(1 + �2 + �2)f 0(V 2
t+1) + �2 = f 0(Vt):

If �2 > 0, then V 2
t+1 = 0 � Vt. If �

2 = 0, the above expression reduces to

(1 + �2 + �2)f 0(V 2
t+1) = f 0(Vt)

which implies that V 2
t+1 < Vt by the concavity of the Pareto frontier f . We then have V 2

t+1 �

Vt � V 1
t+1 which proves the result. For future reference, note that these inequalities imply that

�1 = �2 = 0.

(ii) If 0 < Vt < �V , �rst-order conditions in period t � 1 imply that u0(ct�1)=v
0(e + yt�1 � ct�1) =

�f 0(Vt). We then have

(1 + �2)
u0(c2t )

v0(e+ y2t � c2t )
=

u0(c1t )

v0(e+ y1t � c1t )
� �1 =

u0(ct�1)

v0(e+ yt�1 � ct�1)
:

This yields the following inequalities.

u0(c2t )

v0(e+ y2t � c2t )
<

u0(ct�1)

v0(e+ yt�1 � ct�1)
<

u0(c1t )

v0(e+ y1t � c1t )

These inequalities imply that c1t < c�(ct�1; yt�1; 1) and c
2
t > c�(ct�1; yt�1; 2). Q.E.D.

24
The results of Proposition 3 to the e�ect that the optimal bounds on consumption are increasing in the

states of the world hold for Bt = 0. In any period this can be easily generalized to any value of the ex ante

payment, namely the optimal value.
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