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A Monte-Carlo Method for Optimal Portfolios

Jérdme DetempleRené Garcig Marcel Rindisbacher®
Résumé / Abstract

Cet article établit des résultats nouveaux sur (i) la structure des
portefeuilles optimaux, (ii) le comportement des termes de couverture et (iii) les
méthodes numériques de simulation en la matiere. Le fondement de notre
approche repose sur l'obtention de formules explicites pour les dérivées de
Malliavin de processus de diffusion, formules qui simplifient leur simulation
numérique et facilitent le calcul des composantes de couverture des portefeuilles
optimaux. Une de nos procédures utilise une transformation des processus sous-
jacents qui élimine les intégrales stochastiques de la représentation des dérivées de
Malliavin et assure [I'existence d'une approximation faible exacte. Cette
transformation améliore alors la performance des méthodes de Monte-Carlo lors
de l'implémentation numérique des politiques de portefeuille dérivées par des
méthodes probabilistes. Notre approche est flexible et peut étre utilisée méme
lorsque la dimension de I'espace des variables d'états sous-jacentes est large. Cette
méthode est appliquée dans le cadre de modéles bivariés et trivariés dans lesquels
I'incertitude est décrite par des mouvements de diffusion pour le prix de marché
du risque, le taux d'intérét et les autres facteurs d'importance. Aprés avoir calibré
le modele aux données nous examinons le comportement du portefeuille optimal
et des composantes de couverture par rapport aux parametres tels que l'aversion au
risque, I'horizon d'investissement, le taux d'intérét et le prix de risque du marché.
Nous démontrons l'importance des demandes de couverture. L'aversion au risque
et I'horizon d'investissement émergent comme des facteurs déterminants qui ont
un impact substantiel sur la taille du portefeuille optimal et sur ses propriétés
économiques.

This paper provides (i) new results on the structure of optimal portfolios,
(if) economic insights on the behavior of the hedging components and (iii) an
analysis of smulation-based numerical methods. The core of our approach relies
on closed form solutions for Melliavin derivatives of diffusion processes which
simplify their numerical simulation and facilitate the computation and simulation
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of the hedging components of optimal portfolios. One of our procedures relies on
a variance-stabilizing transformation of the underlying process which eliminates
stochastic integrals from the representation of Malliavin derivatives and ensures
the existence of an exact weak approximation scheme. This improves the
performance of Monte-Carlo methods in the numerical implementation of
portfolio rules derived on the basis of probabilistic arguments. Our approach is
flexible and can be used even when the dimensionality of the set of underlying
state variables is large. We implement the procedure for a class of bivariate and
trivariate models in which the uncertainty is described by diffusion processes for
the market price of risk (MPR), the interest rate (IR) and other relevant factors.
After calibrating the models to the data we document the behavior of the portfolio
demand and the hedging components relative to the parameters of the model such
as risk aversion, investment horizon, speeds of mean-reversion, IR and MPR
levels and volatilities. We show that the hedging terms are important and cannot
be ignored for asset allocation purposes. Risk aversion and investment horizon
emerge as the most relevant factors. they have a substantial impact on the size of
the optimal portfolio and on its economic properties for realistic values of the
models’ parameters.

Mots Clés : Portefeuilles optimaux, demandes de couverture, dérivées de Malliavin, solutions
explicites, variables d'état multiples, couverture de taux d'intérét, couverture de
prix du risque de marché, simulation de Monte Carlo, transformation de Doss,
comportement des portefeuilles

Keywords. Optimal portfolios, hedging demands, Malliavin derivatives, explicit solutions,
multiple state variables, IR-hedge, MPR-hedge, Monte Carlo simulation, Doss
transformation, portfolio behavior

JEL: G11



1 Introduction.

Portfolio allocation models have received extensive attention in the past three decades. Prompted
by the seminal work of Merton (1969, 1971) researchers have explored various aspects of the prob-
lem in the context of financial markets with diffusion price processes (see for instance Richard
(1975)). Numerical methods based on the dynamic programming approach employed in this lit-
erature have also been used to examine some properties of optimal portfolios (Brennan, Schwarz
and Lagnado (1997)). Numerical schemes based on PDEs, however, become increasingly difficult
to implement when the dimensionality of the underlying state variables increases. More recent
contributions by Karatzas, Lehoczky and Shreve (1987) and Cox and Huang (1989) have proposed
an alternative resolution method based on martingale techniques. This methodology provides a
closed form solution for optimal consumption when markets are complete even when the underly-
ing prices follow Ito processes with progressively measurable coefficients. A representation formula
for optimal portfolios was derived by Ocone and Karatzas (1991) using the Clark-Ocone formula.
This representation expresses the optimal portfolio in terms of expectations of random variables
which involve the Malliavin derivatives of the coefficients of the model, namely the interest rate
(IR) and the market price of risk (MPR).

But while theoretical formulas are available for optimal portfolios in general contexts little is
known about their properties and in particular about the structure and behavior of the hedging
components. Indeed, even if we restrict attention to diffusion models, realistic specifications of
the uncertainty with stochastic IR and MPR give rise to complex hedging terms which depend on
multiple state variables and are often difficult to evaluate numerically. As a result attention has
been devoted to (i) state variable specifications for which closed form solutions are available (Kim
and Omberg (1996), Liu (1999), Wachter (1999)) or (ii) specifications which are computationally
tractable based on dynamic programming techniques (Brennan, Schwarz and Lagnado (1997)), or
(iii) discrete time models based on approximated Euler equations (Campbell and Viceira (1998,
1999)).

This paper provides three main contributions. First we exploit the diffusion structure of the
opportunity set in order to provide explicit expressions for the Malliavin derivatives arising in
the hedging components of the optimal portfolio. Hedging demands are expressed in the form
of conditional expectations of random variables which depend on the derivatives of the drift and
the variance of the relevant state variables. These formulas are valid for any structure of the
underlying processes and reduce the computation of the hedging demands to the computation
of expectations, as in traditional option pricing theory. Furthermore, they enable us to establish
new theoretical results about the hedging behavior. Second we also derive a second representation
of Malliavin derivatives of diffusion processes which simplifies their evaluation. Our formula
relies on a variance-stabilizing transformation of the underlying process and eliminates stochastic
integrals from their representation. Aside from its theoretical interest this new representation
has interesting benefits for computational purposes. Indeed, the absence of stochastic integrals
ensures the existence of an exact weak approximation scheme for the martingale part of the
Malliavin derivatives and this improves the rate of convergence of approximations of Malliavin
derivatives to their true values. The scheme also increases the speed of convergence of simulated
trajectories of hedging terms and of any statistic (such as confidence intervals) of simulated
hedging terms. Finally it may also help to reduce the second-order bias and therefore the size
distortion of asymptotic confidence intervals of the Monte Carlo estimator of the hedging demands



and portfolios given the realization of the state variables. Third we provide new results on the
economic properties of optimal portfolios. We examine bivariate and trivariate models of the IR
and MPR in a setting with constant relative risk aversion. In our benchmark bivariate model the
IR process is mean-reverting in the drift and has square-root volatility (MRSR process) and the
MPR process is either Gaussian with mean-reverting drift (MRG process) or with mean-reversion
and an interest rate interaction term in the drift (MRGID process). More elaborate trivariate
models with dividend-price ratio effects and with stochastic volatility are also examined. In these
contexts we document the magnitude of the hedging terms and their behavior relative to the
exogenous parameters of the model such as risk aversion, investment horizon, speeds of mean-
reversion, IR and MPR values, importance of the interaction between the IR and the MPR, and
IR and MPR volatilities. All our numerical and economic results are based on a representation
of the optimal portfolio which evolves from the Ocone-Karatzas portfolio formula. This modified
formula which emphasizes the role of relative risk aversion and of wealth in the hedging terms
sheds further light on the optimal portfolio behavior. It can be viewed as a minor contribution of
the paper.
Some of the lessons drawn from our simulations can be summarized as follows:

1. Our methodology involving the combination of Monte-Carlo simulation and our variance-
stabilizing transformation produces very reasonable values for the shares of wealth invested
in the stock. Unlike earlier studies of optimal portfolios interior solutions are obtained and
portfolio shares are stable relative to changes in the state variables (see Brennan, Schwarz
and Lagnado (1997), Campbell and Viceira (1998)).

2. Hedging components are important for asset allocation purposes. For long horizons the ad-
justment to mean-variance demands can represent up to 80% of the stock demand. Hedging
demands also exhibit low volatility and are therefore very stable over time.

3. Critical factors in optimal asset allocation are the risk aversion and the investment horizon
of the investor. For instance, in the context of our basic bivariate model, investors with
short (long) horizons and whose risk aversion exceeds 1 want to reduce (increase) their
stock demand relative to the logarithmic investor in order to hedge against MPR (IR)
fluctuations. The effects documented in the paper suggest that it might be of interest to
develop investment products tailored to different categories of investors classified according
to those criteria.

4. Allocation shares are remarkably stable relative to the other parameters of the model. Vari-
ations of the order of 2 standard deviations around estimated parameter values have little
impact on the magnitude of investment shares.

The second section of the paper states the portfolio choice problem. Section 3 presents a
closed form solution for the optimal portfolio and discusses its structure. Section 4 develops an
alternative representation of Malliavin derivatives of diffusion processes. Our basic bivariate model
with MRSR interest rate process and MRG/MRGID market price of risk process is presented in
section 5, estimated in section 7 and analyzed economically in section 8; the numerical performance
of our method is discussed in section 6 and illustrated in the context of this model. Sections 9 and



10 provide trivariate extensions of the basic model: section 9 incorporates a stochastic dividend-
price ratio effect and section 10 introduces stochastic, imperfectly correlated volatility. Proofs are
contained in Appendix A; appendix B extends our variance-stabilizing procedure to multivariate
diffusion models; appendix C contains results for the MRGID model.

2 The portfolio choice problem.

We consider a portfolio choice problem in an economy with d state variables Yj;,j =1, ...,d, and
d sources of Brownian uncertainty Wy, i = 1, ...,d." The state variables follow the vector diffusion
process

dY; = p¥ (t, Y2)dt + 0¥ (t,Y;)dW, (1)

where the coefficients satisfy appropriate Growth and Lipschitz conditions for the existence of
a unique strong solution.? The investor allocates his wealth between d risky securities and one
riskless asset (a money market account) with instantaneous riskless rate of return r; = r(t,Y:).
The security prices S;,¢ = 1, ..., d, satisfy the stochastic differential equations

dSit = Sit[(p; (¢, Yy) — 6i(t,Y2))dt + o;(¢,Yy)dWy]; 1 <i<d (2)

where p; is the expected return, ¢; the dividend rate and o; the vector of volatility coefficients of
security . We assume that r(¢,Y:), ;(¢,Y%), 6i(t,Y:) are integrable (P — a.s.) and that o;(¢,Y?) is
square-integrable (P — a.s.). Let o denote the d x d-dimensional volatility matrix whose rows are
0i,i = 1,...,d. Suppose that ¢ is nonsingular almost everywhere and that the market price of risk

0, = 0(,Y:) = o(t,Ys) H(u(t,Yy) = r(t, Y2)1),

where 1 is the unit vector, is continuously differentiable and satisfies the Novikov condition
Eexp %_fOT 0,0:dt) < oo. Under this condition the risk neutral measure is well defined and

! 1t
1; = exp {—/ 0,dW; — —/ Qt(‘)tdt} .
0 2 0

The state price density is £, = B; 'n, where B; = exp[_f(;5 rsds| is the date t-value of a dollar
investment in the money market account. Relative state prices are written ¢, ,, = &, /&;. Under @

given by d@Q = n;dP where

the process VVtQ =W + ]g 0,dv is a Brownian motion.
Suppose that an investor seeks to maximize the expected utility of his terminal wealth by
selecting a dynamic portfolio policy composed of the d risky assets and the riskless asset

max U(Xr) = Eu(T,X7)] s.t. (3)

'Tt is straightforward to consider k # d state variables. To simplify notation, in particular for the expressions of
the Malliavin derivatives, we assume that k& = d.

?Note that the d state variables are joint solutions of the system (1), i.e. they influence each other. Remark 1
considers the special case of an autonomous system in which each state variable is determined independently.



dX; = rXydt + ) [(py — ri1)dt + o dWy), Xo==x ()
X >0 for all ¢t € [0,T).

Here X; represents the investor’s wealth at date ¢, x is his initial wealth and 7; the amounts in-
vested in the risky assets at date t. The nonnegativity constraint is a typical no-bankruptcy condi-
tion. The utility function is strictly increasing and concave with limiting values limx _,oc Qou (T, ) =
0 and limx_,0 Gou(T,x) = oo for all T' < oco. (For any function f(t,X) we write 0;f for the first
derivative relative to 4, ¢ = 1,2 and 0;;f the second derivative, 7,7 = 1,2; when the second
argument is a vector Oy f is the gradient and Oss f the hessian of second derivatives).

3 The optimal portfolio: the investor’s hedging behavior.

The portfolio choice problem described above can be resolved by using a martingale approach
(Karatzas, Lehoczky and Shreve (1987), Cox-Huang (1989)) to identify optimal terminal wealth
in explicit form and then applying the Clark-Ocone formula on the representation of Brownian
functionals to obtain the financing portfolio. This approach was adopted by Ocone and Karatzas
(1991) who provide formulas in the form of conditional expectations of random variables involv-
ing Malliavin derivatives. Due to the generality of their model in which asset prices follow Ito
processes (with unspecified coefficients) these Malliavin derivatives are abstract quantities without
an explicit structure. In this section we exploit the diffusion specification of the financial market
to derive explicit expressions for the Malliavin derivatives and hence for the optimal portfolio.

3.1 The optimal portfolio policy.

Let V(z) denote the value function in the optimization problem (3)-(4), I(T,y) the inverse mar-
ginal utility, ¥ the marginal value of initial wealth and X the optimal wealth. Our first result
identifies the general structure of the optimal portfolio and of its hedging components.

Theorem 1 If V() < co and {pI(T, gér) € DY? we have that?
- 1

7 = Xi————(o(t,Y;))710(t, Y:)c(t, Y, 5
¢ tR(t,Xt)(< 1)) 70, Ye)e(t, V) (5)
5 1
+X(——— — 1) (o(t, Y1) ta(t, Y,
t(R(t’Xt) )(a(t,Y1)) " a(t, V)
. 1
+ X (——— —1)(a(t,Y)) " 1(t, Y,
gy ~ Do) ey
where R(t,x enotes the Arrow-Pratt measure of relative risk aversion, an
here R(t,z) = —324lt g he Arrow-P f rel k d
Xr
Br [1—1 TX
a(t,y;) =EQ | Ez /R(T, Xr) /Dtrsds (6)
L\ 1-1/R(1, X))

3DY? is the domain of the Malliavin derivative. See Nualart (1995) for exact definitions.



b .
I — mQ z; 1_1/R(T7XT) g Qy/
b(t,Y}) = Et )'g_; < 1— 1/R(t,Xt) ) /5 (dWs ) Db (7)

b .
c(t,Yy) = E? B—;M
% R(T7 XT)

(8)

In these expressions optimal wealth equals X, = Ei[§, 7 I(T,9&r)]. The Malliavin derivatives in
(6)-(7) are given in explicit form by Dy, = 020(s,Ys)' DYy and Dyrs = Oor(s,Ys)DiYs where

DY, = ¥ (t,Y;) exp {/t dLU} : (9)

with the k x k random variable dL, defined by*

d d
1
dL, = | 0¥ (v,Ys) — 3 D 050 (1, ) (020 (v, Y2)) | dv + Y 0207 (v,Y,)d Wy (10)
j=1 j=1

where (f?;- denotes the j™ column of the matriz oY .

Note that the first component of the optimal portfolio (5) is a mean-variance component while
the two other components are intertemporal hedging terms (see Merton (1971)).% In this general
formula the mean-variance term varies with optimal wealth since the coefficient of relative risk
aversion is allowed to change with wealth. Hedging arises since the investor seeks insurance against
fluctuations in the interest rate (second component of (5)) and in the market prices of risk (third
component of (5)). That the second term is motivated by the desire to hedge interest rate risk
is evidenced by the presence of the Malliavin derivative D;rs which captures the interest rate’s
sensitivity to the underlying risk factors, i.e. the Brownian motion processes W;. In accordance
we call this term an IR-hedge.® Similarly the third term is seen to emerge when the market prices
of risk are sensitive to the W; (i.e. when D:f; # 0) and is called an MPR-hedge. When (r, ) are
constant or deterministic all these hedging terms are null since in the Malliavin derivatives D;r;
and D;0,, the partial derivatives dor(s,Ys) and 020(s,Ys) are zero.

Before discussing the behavior embedded in the hedging components it is also of interest to
point out that formula (5) expresses the hedging components in explicit form: hedging demands
are conditional expectations of random variables which depend entirely on the exogenous coeffi-
cients of the model and the utility function. The key to these explicit expressions is the derivation
of closed-form solutions for the Malliavin derivatives D;r; and D;8 which are obtained due the
diffusion structure of the uncertainty. As mentioned above these results improve on Ocone and
Karatzas (1991) who express the optimal portfolio in terms of abstract Malliavin derivatives.

*The exponential in (9) should be interpreted as the exponential of a matrix, i.e. (9) is short hand notation for
the solution of dD,Y; = (dLS + %d[L]s) DY, subject to the boundary condition D;Y; = o (¢, Y}), where [L] is the
quadratic variation process.

>The optimal portfolio formula extends easily to the case of intermediate consumption. It also extends to settings
with infinite horizon provided that the Novikov condition is satisfied.

SExpression (9) shows that the Malliavin derivative, in a Markovian model, corresponds to the derivative of
the stochastic flow of the SDE of state variables with respect to the initial position of the state variables (Colwell,
Elliott and Kopp (1991)).



3.2 The intertemporal hedging behavior.

Let us now focus on the hedging behavior of the investor. First, it should be noted that a
myopic individual (R(t,)?t) = 1) does not hedge”. The signs of the hedging terms will otherwise
depend on the signs of the conditional expectations a(t,Y;) and b(t,Y:). For example, when these
are positive, an individual who is more (less) risk tolerant than the logarithmic investor will
over- (under) invest in the risky assets. For the IR-hedge simple sufficient conditions ensure an
unambiguous behavior.

Proposition 2 Fizt € [0,T]. Suppose that the conditions

(i) (o(t,Y;) )1 (Dyrs) <0 for all s > t,(P-a.s)

(ii) R(t,X;) > 1 and R(T,X1) > 1 (P-a.s).
hold. Then, intertemporal hedging of interest rate risk raises the demand for stocks (i.e. the
IR-hedge is nonnegative). If (i)-(it) hold for all t € [0,T] the IR-hedge boosts the proportion of
wealth invested in stocks at all times.

Conditions (i)-(ii) are very general. The first condition holds in a variety of special cases that
are of interest for empirical or theoretical reasons. For instance it holds if state variables are
autonomous (see remark 1 below) and

(o(t,Y2)) * (Bar(t, Vi)™ (1, Y2)) < 0. (11)

In the single risky asset case this simply boils down to negative correlation between the interest
rate and the risky asset price, which is empirically verified if the risky asset is interpreted as
the SP500 index. Condition (11) also holds with multiple risky assets that are independent and
negatively correlated with the interest rate. In all these cases the particular structure of the
coefficients of the state variables processes (whether they are increasing, decreasing, convex or
concave functions) does not matter for the sign of the hedging term: the only aspect of relevance
is whether (11) is verified.

The second condition applies even to models in which relative risk aversion varies with optimal
wealth. As long as an investor displays more risk aversion than a myopic investor at date ¢ and
for all possible realizations of optimal terminal wealth the condition will hold.

When we combine both conditions we obtain, for instance, the intuitive proposition that
individuals that are more risk averse than the log investor (R(t,Xt) > 1,R(T, XT) > 1) will
increase their demand for the market portfolio of risky assets when the interest rate covaries
negatively with the portfolio return (single risky asset model) in order to hedge interest rate risk.

We conclude this discussion with a description of hedging demands and Malliavin derivatives
for the case of autonomous state variables.

Remark 1 When the system of stochastic differential equations (1) is composed of d autonomous
equations dY; = ,uZY(t,Y;t)dt + JZY(t,Y;t)dVthori =1,....,d, we can write

D;Y;s = o) (t,Yi) exp { / dLZ;} (12)
Jt

"When R(t,)A(t) and R(T, )?T) tend to one, the ratio inside the conditional expectations (6)-(7) tends to one as
seen by applying I’Hopital’s rule.



; 1 /
dLi, = [02p1] (v, Yiu) = 50207 (v, V) (D207 (v, Vi) Jdv + D0 (v, ViAW, (13)
In this instance the sign of the Malliavin derivative (12) is positive (negative) when o} (t,Y;) is
positive (negative). The results discussed above follow immediately from this property.
3.3 Constant relative risk aversion.

Since our numerical results in later sections assume constant relative risk aversion we specialize
the formulas of theorem 1 to that case.

Theorem 3 (CRRA) When the utility function exhibits constant relative risk aversion R the
optimal portfolio is

N 1 1 1
e = Xi(o(t,Y2)) 1 | 5004, Y2) + (5 — Dalt, Yz) + (5 — 1)b(t, Y7) (14)
R R R
where \-1/R
Xr .1 E; f Dyryds
a(t,Y;) = E? ﬁ/ Dyryds| = { - tl = } (15)
Xy Et|: / }
% T E, |: 1-1/R It de) Db, }
b(t,v;) = BQ | - / DL AW | = . (16)
¥ ]

and &, 7 = exp(— _];T(rv 202)dv — ft 0,dW,). The Malliavin derivatives in a and b are given in
theorem 1.

In this formula two expressions are provided for the coefficients a, b in the hedging components.
The first is simply the specialization of the previous result to the case under consideration. The
second formula uses the relation between optimal wealth and state prices in order to express a,b
in terms of the relative state price density & ; between periods ¢ and T'. This formula clearly
demonstrates that the functions a,b depend only on the state variables Y.

The formulas described in theorems 1 and 3 provide useful information about the qualita-
tive behavior of the investor. In order to assess the magnitude of the various components, and
hence their relevance for asset allocation purposes, it is nevertheless necessary to get quantitative
estimates. Practical implementations require the computation of the conditional expectations
appearing in the portfolio formulas. Clearly Monte Carlo simulation appears to be an appealing
way to proceed. In the next section we pursue this avenue and suggest a further transformation
which facilitates the computation of Malliavin derivatives and may also help in the estimation of
the hedging demands.

4 An alternative formula for Malliavin derivatives of diffusions.

The key to our simplification is a change of variables which transforms a stochastic differential
equation into an ordinary differential equation. In effect this (variance-stabilizing) transformation



removes stochastic integrals from expressions such as a(t,Yz) and b(t,Y;). Changes of variables
of this type are used by Doss (1977) to prove that an SDE can be solved pathwise, since it can
be reduced to an ordinary differential equation. This result also plays an important role in the
approximation of solutions for stochastic differential equations (see Talay and Pardoux (1985) for
example) since it can be used to conclude, by the continuous mapping theorem applied to the flow
of the SDE, that convergence of the underlying Wiener process implies the convergence of the
solution of the SDE. In appendix A we show how Doss’ arguments can be used to derive Malli-
avin derivatives of solutions of one-dimensional SDE’s which do not involve stochastic integrals
anymore; this result implies the same rate of convergence as that of an Euler approximation of
the solution of an ODE. In this section we state the result and discuss its implications.

4.1 The main result.

Consider a process Y which satisfies the one-dimensional SDE
dY; = p(t, Yo)dt + o (t,Y))dWy Yo = .
The Malliavin derivative of Y has the following alternative representation.

Proposition 4 If the following conditions hold®

(i) differentiability of drift: u € C*([0,T] x R)

(ii) differentiability of volatility: o € C*([0,T] x R)

(tit) growth condition: p(t,0) and o(t,0) are bounded for all t € [0,T],
then we have for t < s that

poso 1
2

DY, = (s, V) exp [ J ()0 — A7)0, ) o (17)

Note that (17) expresses the Malliavin derivatives entirely in terms of Riemann-Stieltjes inte-
grals of first and second derivatives of the coefficients of Y. Thus the stochastic integrals which
appeared in the earlier formulas ((10) and (13)) have been entirely eliminated. Formula (17) is
therefore easily computed using standard methods to approximate the Riemann integrals involved.
With the variance stabilizing transformation the numerical calculation of the Malliavin derivatives
is therefore of the same complexity as the numerical solution of an ODE. A second difference with
the earlier expressions is that the leading term is the future volatility of the process at date s
instead of the current volatility at ¢t. This implies that this leading term cannot be factored out
of conditional expectations at date ¢ as was the case in (5) or (9). Randomness of the leading
term however does not increase the computational difficulty involved in evaluating the Malliavin
derivative.

With this numerically appealing expression for the Malliavin derivative we obtain a formula
for the interest rate hedge which does not involve stochastic integrals any longer. To achieve
the same result for the MPR-hedge we introduce a second transformation which enables us to
write the SPD and, as a consequence, also the MPR-hedge without any stochastic integral. We
illustrate the idea in the univariate case.

*The space C*([0,T] x R) is the space of i times continuously differentiable functions on the domain [0,7] x R.



Proposition 5 Let d = 1. If the following conditions hold
(i) differentiability of MPR: 6 € C*([0,T] x R)
(ii) differentiability of volatility: o € C*([0,T] x R)
then the SPD can be written as

Lo 0 1
£ = exp [—/ [r+ 592 k- oY — 5(6290 — 00:50)](s,Y5)ds — (t,Y;) +4(0,Yp) (18)
0
where the function 1 € C*([0,T] x R) solves dytpa = 6. Consequently, we obtain

‘T 9 ‘T
/ Deb,[dW, + 0.ds] = (T, Y\ DiYir — 6(t,V3) — / (1(5,Y2) + go(s,Y)) DiYods  (19)
Jt Jt

g

where
. 619 0 810'
nev) = |22 6y
1 000 000 0
92(s,Ys) = [5@290 — 00200) + —=j1 — p—— 4 — oy — 0050 (5,Y3)

4.2 A bivariate state variable example.

To illustrate the formulas above consider the model with CRRA of theorem 3 and suppose that
the state variables are given by the pair (r,6) which satisfies’

dry = kp(F — 1)dt + opr]"dW, ro given (20)

df; = Kg(? — Qt)dt + O‘gezedVVt, 0o given (21)

where (K, T, 0, 7,, kg, 0,7y) are nonnegative constants, (c,,7y) are constants (possibly negative)
and (v,,79) € [0,1]. The Brownian motion W is unidimensional. This model nests standard
formulations as special cases. The class of interest rate processes (20) is used in another context
in Chan, Karolyi, Longstaff and Sanders (1992). The class of models (21) for the MPR has not
been explored in the literature yet. We also assume that the stock volatility is stochastic and
equal to o(r, 0;). This financial market is then described by two state variables (7, 6).

The transition from the general model with state variables Y to the model (20)-(21) with state
variables (r,#) is immediate since the Malliavin derivative D:#,, can now be computed directly
from the process (21). In order to state the result define the process

bl i) = =1 =9) [ (W0 + 72 2) = gt (0 )
t

T il
1 —vyzy Ty

for a quadruple of constants (v,k,0,T) and some process x. Taking account of the specific
structure (20)-(21) then leads to

9This is equivalent to a model with two state variables Y = (Y1,Y2) in which the equations (7, = r(t,Y1),0: = 6
(t,Y2)) can be inverted and the state variables can be expressed as Y; = (f1(r¢), f2(0:)).



Corollary 6 In the financial market (20)-(21) the optimal portfolio for CRRA wtility is given by
(14)-(16) where
Dyry = 1970y exp [h o (Y, Ky Or, T 7)]
D6, = 0% 0gexp [htﬂ)('}/a’ Ko, g, 0; 9)] .

and

T T
S = exp [— / rods — / 62+ 79 (1 — 7)01" +2226,79(8 - 6,)]ds — 6(0r) + 6(61)
’ t t 0

with ¢(x) = 2=7. The stochastic integral in the MPR-hedge (16) can also be written

1
—T
a6(2—79)

T T
/ DO [dW + 05ds] = O exp [ht,v(%, Ko, 09,0; 9)] — 6 — / 92(8,Ys)Dibsds
Jt Jt

with ga(s,Ys) = 30079(1 —70)0° " + oy ((1 — )00, 7" — (2 — 79)9576) .

When 7,,7, = 0 (Ornstein-Uhlenbeck IR and MPR processes) the formulas above simplify
even further.

Corollary 7 Suppose thatu € CRRA. When the interest rate and the market price of risk follow
Ornstein- Uhlenbeck processes (7y,,v9 = 0) the optimal portfolio is given by (14)-(16) where

a(t,r) = == (1 — expl =, (T — 1)) (22)

T

B e300 (e mte-0w Q)

[

The analytical expression for the interest rate hedge in (22) clarifies the influence of the
parameters of the interest rate process and the time horizon. Given the expressions provided in
corollary 6 the MPR-hedge in (23) also has an analytical expression, albeit more complicated than
the interest rate expression.

b(t,0;) = g (23)

5 Numerical implementation.

It follows from the results in the prior sections that the problem of finding the optimal portfolio
for power utility function reduces to the identification of the functions a and b. When closed form
expressions for a,b are not available, one must resort to a numerical scheme to estimate their
values. As explained before Monte-Carlo simulation is naturally suggested by the structure of
the problem and this is the approach that we adopt. In our context the simulation procedure
involves two sources of error. First, since the joint law of the SPD and the Malliavin derivatives
involved in the IR- and MPR- hedge terms are generally unknown we have to use a discretization
scheme to approximate these random variables. It is well-known that such a discretization proce-
dure produces a bias. Second, since we do not know how to calculate analytically the conditional
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expectation we rely on a law of large numbers to evaluate the expectation using independent repli-
cations of the random variables which enter in the hedging terms. This Monte-Carlo estimation
of the conditional expectation also introduces an error.

In the discussion which follows we shall restrict attention to the model with CRRA utility.
In this context, to obtain the IR- and MPR- hedges we estimate the functions a and b with M
replications and N discretization points for the investment horizon by

S quft(YN(y')))1—1/RH%:ﬁ:i(YN(y)) |
S (e (YN (y))) 1=/

M (N (VN (@) -V EEEN (YN ()
SM (€N (YN () 1/ R

where HE™ (YN (y)) and H2N (YN (y)) are estimators of ]tT Dyrsds and ]tT Dl [dWs + 05ds]
respectively. In these expressions we have emphasized that these quantities are functionals of the
approximated state variables starting at Y¥ = y.

Since the state variables, the SPD and the Malliavin derivatives of the state variables are all
given as solutions of SDEs, the simplest approach is to use the Euler scheme to estimate them.
It has been shown by Kurtz and Protter (1991) that the order of convergence for this scheme is
1/v/N'0 due to the discretization error in the martingale parts of the SDEs. In Detemple, Garcia
and Rindisbacher (DGR) (1999) we show that our variance-stabilizing transformation eliminates
discretization errors in the martingale part of the SDE of the transformed state variables and
therefore attains a rate of convergence of order 1/N, which is the same convergence rate as for the
Euler scheme of an ODE.!! In order to illustrate this difference in performance between the two
schemes we estimate the respective absolute computational errors in the Malliavin derivative of
the IR for different discretizations N of the time interval [0,7]. We estimate errors by the strong
criterion

aVM(T —t,y) = (24)

VNM(T —t,y) = (25)

M
~ A 1 . )
M = BM DY vy — Dorr| = = S| D re — Dir
i=1

where Dorp denotes the true value of the derivative and Dév rp its approximation based on N
discretization points using M independent replications. We also compute the respective errors
with and without transformation for the state variable rr. Since the computation of this statistic
requires the true distribution of the Malliavin derivative we assume that the IR follows the MRSR
process ((20) with v, = 1) with parameters T = 1, k, = .004,7 = .06, 0, = .0309839, ro = .06.12

YThat is VN(YY —Y) = UY where convergence is in the weak sense and the error process in non-trivial
UY (#0).

“That is N(G(ZN) —Y) = V¥, where G(Z") is an estimator of the state variables Y and Z% is obtained using
the Euler scheme for the transformed state variables.

2Since o, = 2\/m_F the interest rate r is the square of an Ornstein-Uhlenbeck process X; = \/7"_t The true value
can then be calculated by using the exact simulation of the transformed state variables

Xitn = XteaA + ﬂ(UreaA\/Z(WtJrA — W) + V/|s22]2)

where 7 is a Gaussian variate independent of W, a = -5, 8 = or/2,A = % and so9 = eQaA(i —A)+ 2(A -
1)+ 2. This choice of coefficients ensures that X has the correct variance and covariance with the increment of

the Brownian motion Wyya — W;.
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To compute the expectation above we take 20 batches of 1,000 simulations each. For each batch
an absolute error is estimated. Estimated absolute errors are then averaged over the batches.
Table 1 below reports the results. Columns 2 and 4 show that the speed of convergence of the
Euler scheme is roughly of order 1/y/N. Columns 3 and 5 illustrate the increase in the speed of
convergence to 1/N when the scheme with transformation is used.

[Insert Table 1 here].

However, to compute hedging terms, we evaluate expectations of functionals of the state
variables. In DGR (1999), we show that the increased speed of convergence obtained with the
transformation for the numerical solution of SDEs of state variables fails to increase the speed of
convergence of expectations of functionals of the state variables. This extends a result of Talay
and Tubaro (1991). They have shown that, for the Euler scheme, E[f(Y/) — f(Y7)] is of order
% for functions f and diffusion coefficients i and o satisfying certain boundedness assumptions.
Even though our problem is more complicated since we are not evaluating a function of a terminal
point of a numerical solution to a SDE but a functional which depends on the whole trajectory
of the solution, the same result holds. Nevertheless, as we will discuss next, the transformation
may still be useful as it may reduce the asymptotic second order bias.

Denoting estimators without our transformation (by direct application of the Euler scheme)
by * and estimators with the transformation by °, we obtain under certain integrability conditions
(see DGR (1999) for details) for the a(-) function:

VM@EM(T —t,y) — a(T — t,y)) = ek + M) (26)
VM@ENM(T —t,y) — a(T — t,y)) = eKg) + M) (27)
where € = @ is fixed for all M, N. Corresponding limit laws are also obtained for the b(-)

(v)

—t
M) (resp. M b(y)) is a Gaussian martingale. As indicated both types of processes depend on
the initial position of the state variables, y.

In these expressions, the deterministic processes K correspond to the discretization error
resulting from the approximation scheme and therefore depend on the approximation method
used. Ideally, they should be zero. Using our transformation this is indeed the case if the
underlying state variables are given by an invertible, twice continuously differentiable function of
lognormal processes. It happens in this case that the approximation using the transformation is
also exact for the part of the SDE involving Riemann integrals. But in general K~ will be different
from zero. Therefore, although the estimators are consistent, a smaller K reduces the second
order bias. If in the construction of confidence intervals we do not correct for this second order bias
the size distortion!® will be smaller with the transformation whenever K* < K. Consequently, a
reduced second order bias will also improve the validity of statistical tests based on the law of M-
only. Furthermore, a small second order bias is potentially important for a good performance of
the estimators given a finite number of replications and discretization points.

function. The vector processes K*¥) and K’; (resp. K"®) and K’ibp(ﬂ) are deterministic whereas

13Gize distortion refers to the fact that the actual coverage probability is different from the prescribed level.
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The processes M are for both approximation methods the same. They result from the Monte
Carlo estimation of the conditional expectation and would not vanish even if we could sample
from the true joint law of H and the SPD £. The expressions for both processes K and M are
obtained in explicit form and described in detail in DGR (1999) and can therefore be used to
implement error corrections and variance reductions.

All the results discussed above are conditional on the knowledge of the state variables at a given
moment in time. If we are only interested at point estimators of the optimal composition of our
portfolio given a certain state the estimators of @ and b are all we have to calculate. But for other
purposes, such as risk management, we may well be interested in testing a given portfolio strategy
against a specific benchmark. Since this type of exercise requires the probabilistic structure of the
optimal portfolio strategy, we need the distribution of conditional estimators of the mean-variance
component, the IR-hedge and the MPR-hedge. Since we cannot sample from the true law of the
state variables it follows that we have to rely on an approximation of their dynamic evolution
described by the SDE. As we show in DGR (1999) the conditional estimators converge weakly

with order % with transformation and order ﬁ without. The limit laws of these conditional

estimators are non-Gaussian ' but known and therefore can be used to construct asymptotically
valid confidence intervals or statistical tests.

6 Calibration of the model.

In order to examine the economic properties of optimal portfolios we need to specify and calibrate
our model of the financial market. We will focus on the class of bivariate processes for (r,6)
described in the section above. Specifically we estimate the following IR-MPR model

dry = K (T —1y)dt — O‘r’/’tl/deVt, ro given (28)

dfy = kg(0 — 0,)dt + gpdWy, 0 given (29)

where (K,,7,0r,7,, ko,0,09,7y) are constants.

We assume that the approximate discrete-time process is the true time-series model.'> The
econometric procedure described in this section is based on the maximization of the loglikelihood
of the following discrete-time model:

rt(_}f_)l = rt(h) + k(T — rt(h)) + UT,h\/rt(h)stH, ro given (30)
19,54.1 = 9,5 -+ Kg(? — 9,5) + 0gVt41, 00 given. (31)

1

where 7, = Th and 0., = o.V/h. In our estimations, we consider a monthly frequency with h = 15"

"The reader is referred to DGR (1999) for the exact expressions.

15 Estimating the parameters of a continuous-time diffusion model based on a discrete-time approximation of the
likelihood function leads to a discretization bias (Lo (1988)). However, for the monthly estimation of interest rate
processes, Broze, Scaillet and Zakoian (1995) use an indirect estimation to correct for the bias and find that the
bias is small for the mean-reversion .., the mean 7 and the variance o,. We therefore follow the simpler approach
to calibrate the parameters. We also investigate the sensitivity of the results to changes in the parameters.
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The market price of risk (6; = o, }(y4; — 7¢)) is an unobservable state variable. To filter it, we
will take two approaches.! First we assume that the stock volatility o is constant. In other words,
we estimate the MPR from the conditional mean g, of the stock return series (taken as the SP500
index). We assume a simple AR(1) process for the conditional mean of the stock return. Second,
we relax the assumption of a constant stock volatility and filter x; and oy through a GARCH
process for the stock returns, with an AR(1) process for the conditional mean. We estimate all
the models over the period January 1965-June 1996.

In the continuous-time model the same Brownian motion applies to » and 6, but with a
perfect negative correlation. We therefore produce two sets of estimates, one with the correlation
coefficient between e;y1 and viy1 left unconstrained, another one with a negative correlation
of —0.9'7. The results are presented in Tables 2 and 3 respectively. The estimates obtained
for the parameters of the interest rate CIR process are comparable to the values obtained by
Broze, Scaillet and Zakoian (1995) and Chan et al. (1992). The process slowly reverts to an
annualized mean of about 6% with a yearly volatility of about 1.76% for the unconstrained model
and around 3.6% for the constrained estimate. The estimation results for the MPR Orstein-
Uhlenbeck process show that the market price of risk reverts rather quickly to its mean. The
mean is about 8%, which is low compared with the standard estimates of the market price of
risk. The MPR volatility is about ten times the volatility of the interest rate process in both
the unconstrained and constrained estimations; almost perfect negative correlation between the
interest rate and the MPR forces upwards the volatilities of the two processes by a factor of two.
Given the low value of the MPR, we also investigate a specification where the interest rate enters
in the drift of the market price of risk, since excess returns are known to be predictable by the
interest rate. Equation (32) replaces equation (31)

Ori1 = O + Kkg(0 — 0;) + (5rt(h) + ogULy1, 0o given. (32)

The estimation results, reported in Table 4, are quite similar to the previous specification, except
for the mean level of the MPR, which is more in line with the usual estimate of 0.3. The expected
negative coefficient of the interest rate § comes out quite significantly different from zero. As we
will see, this specification will change only the absolute magnitude of the stock position and the
hedging terms, but not the relative importance of the later with respect to the former.

To assess the robustness of the results obtained with a constant o,we use a GARCH (1,1) model
for the stock returns to construct the series for the market price of risk 6;. We keep as before
an AR(1) specification for the conditional mean of the stock returns. The results are reported in
Tables 5 and 6, where as before we estimate two versions of the model, with correlation coefficient
pro left unconstrained (Table 5) and constrained to a value of —0.9 (Table 6). The most notable
differences are a moderate increase (decrease) in the interest rate (MPR) speed of mean-reversion
by about 10%, an increase in the long run mean of the MPR by about 5% and a decrease in the
MPR volatility by about 7%. The estimates obtained for the other parameters are roughly the
same as before. Overall these differences should not exert much influence on the magnitude of
the hedging terms and will not be considered in our numerical computation of optimal portfolios.

YSThis filtering approach is in the spirit of Nelson and Foster (1994), although we do not claim any optimality
property for the GARCH(1,1) process we use.

"Since at a correlation of -1, the variance-covariance matrix would be singular, we chose the closest approximation
that did not create numerical problems.
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7 Economic properties of optimal portfolios.

We now implement our numerical procedure for the model with (i) constant relative risk aversion,
(ii) a single risky stock with constant volatility and (iii) MRSR (mean reverting - square root)
process for the interest rate and (iv) a MRG (mean-reverting Gaussian) process or a MRGID
(mean-reverting with interest rate dependence in the drift) process for the MPR. The uncertainty
is thus captured by a bivariate system of state variables (r, ). For this specification of preferences
and uncertainty we recall that the stock demand is

L1 L (1 5 (1
iy = Xtﬁa_let + Xy <E - 1) o ta(t,ry) + X, (Tz — 1) o tu(t,6y) (33)
Et { i}l/R /tT ,DtT’st}
a(t,ry) := =y ) (34)
B[
E, & " [T D awl
b(t,0,) = ! | (35)

e
where Dyrs, Difls and &, ;- are provided in corollary 6. For the MRGID model see Appendix C.
Parameter values are set at their estimated values reported in Tables 3 and 4 and at values
equal or close to the means for rg and 6y; the volatility of the stock is set at its historical average
0.2. Specifically, in the first model (Table 3), we take k, = .0824, 7 = .0050 x 12, v, = .5,
o, = .01050 x /12 (recall that there is a minus sign in front of o, in (28)), 7o = .0050 x 12,
o = .20, kg = .6950, § = .0871, 75 = 0, 0g = .21, g = .10. In the second model, we take the
following values: &k, = .0005, 7 = .0050 x 12, v, = .5, 0, = .01050 x /12, 7 = .0050 x 12,
o= .20, kg = .T771, 0 = .2675, 75 = 0, 09 = .205,6 = —26.29/12, g = .30. Simulations are
carried out using daily increments and 5, 000 paths with variance reduction by antithetic variables
method (M = 5,000, h = 1/365). Since the results are very similar, except for the difference in
the absolute magnitude of the hedging terms as mentioned earlier, we only report in Table 7

summary results for the first model and provide a full-fledged analysis with graphs for the second
model'®.

7.1 Optimal portfolios and hedging components.

Figures 1-5 illustrate the behavior of the optimal portfolio and the hedging components relative
to the risk aversion coefficient and the investment horizon. Risk aversion varies from .5 to 5;
the investment horizon from 1 year to 5 years. As expected the fraction of wealth invested
in the stock decreases as risk aversion increases and increases as the horizon increases. The
hedges, however, display strikingly different behavior. The MPR-hedge displays mildly humped
decreasing-increasing behavior relative to risk aversion and appears to decrease relative to horizon.
The interest rate hedge increases relative to both variables. As noted before the signs of the hedges

120f course the expressions for the Malliavin derivatives with respect to the interest rate and the MPR as well
as the state price density change compared to our previous expressions in section 5. The new expressions are given
in Appendix C.
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change depending on whether risk aversion exceeds or falls short of 1. This illustrates the standard
knife-edge behavior of (myopic) logarithmic utility. For investors that are more risk averse than
the Bernoulli investor the negative values of the MPR-hedge stem from the positive correlation
between the stock return and the MPR. Such an investor tries to hedge the additional risk away
by reducing his/her stock demand. Similarly the interest rate hedge tends to boost stock demand
since it covaries negatively with the stock return. Note also that the combination of the two
hedges is negative for short investment horizons (less than 4 years in the numerical example)
and positive for longer holding periods. Thus, hedging behavior reduces (increases) the stock
investment for short run (long run) horizons relative to a pure mean-variance investor. In fact,
the increase in stock holdings increases with longer investment horizons.

[Insert figures 1-5 here]

Figures 6-10 display the behavior relative to the levels of the interest rate and the MPR. 1, 8
for risk aversion R = 2 and investment horizon 7" — ¢ = 1. Again the fraction invested in the
stock varies considerably over the range of initial values investigated, from over 90% of wealth
to nearly 25%. The hedge components’ ranges are much narrower: while the interest rate hedge
varies between about 1.8% and 2.6%, the MPR-hedge lies between —1.8% and about —6%.

Second note that the fraction invested in the stock is an increasing function of the MPR and
is almost insensitive to the interest rate. As 6y increases the interest rate hedge stays flat (figure
7) while the MPR-hedge becomes more negative (figure 8). These effects, however, are of second
order relative to the increase in the mean-variance component of the stock demand. When rg
increases the interest rate hedge increases moderately and becomes more positive (see figure 7):
it tends to increase stock demand. The MPR-hedge also increases but even more moderately.
Combining these two effects produces a mildly increasing total stock demand. Figures 9 and
10 also illustrate the behavior of the shares of the two hedges relative to total stock demand;
note that these shares decrease substantially when the MPR increases but exhibit more moderate
sensitivity to the interest rate. For typical values of the MPR (between .20 and .40) the sum of
the hedging terms is negative and tends to reduce the demand for the stock.

[Insert figures 6-10 here].

7.2 Market timing strategies.

In order to assess the importance and stability over time of our hedging demand estimates we
perform two market timing experiments. The first consists in drawing trajectories of the under-
lying state variable processes r, 0 and computing the portfolio and hedging demands along these
trajectories. The second experiment simulates the optimal portfolio for very long horizons and
using actual market data.

Results for the first experiment are reported in figures 11-14. A typical trajectory of the pair
(r,0) is drawn in figures 11 and 12. The interest rate is seen to vary between 3.9% and 5.4%;
the MPR takes values between —.08 and .30. Figure 13 illustrates the stock demand behavior for
an investor with risk aversion of 4 and a fixed horizon of 5 years. For the trajectory drawn the
proportion invested in the stock evolves between —3% and 40%. Close inspection of the graph,
however, shows that changes superior to 30% in the portfolio share are usually spread over periods
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of 6 month or more. There are also long stretches of time, of duration larger than a year, over
which the stock share varies within at 10% interval.

Figure 14 which shows the respective contributions of the IR-hedge, the MPR-hedge and the
sum of the two hedges sheds further light on this issue. First note that the IR-hedge is remarkably
stable over time. It experiences very small fluctuations and decreases slowly toward zero due to
the maturity effect of the fixed horizon. It also remains positive throughout the period. The
MPR-hedge is negative and exhibits stronger volatility, which is not surprising since it is sensitive
to the MPR level which is more volatile. Within intervals of a year though the fluctuations rarely
exceed 5%. Again a trend toward zero is observed due to the fixed investment horizon. Both
hedges work in opposite direction and partly offset each other. The net hedging correction is
of the order of 5% — 10% at the beginning of the investment horizon, thus boosting the stock
demand. It then slowly converges toward zero taking negative values along the way, thus reducing
stock demand, in the last couple of years of the period. The net hedging correction inherits the
stability of its two components: its fluctuations rarely exceeds 5% over periods of a year or longer.
Over the whole 5 year period the hedging correction varies between —3% and 10%.

Although not reported in the paper similar properties are recorded when the analysis is per-
formed for rolling horizons of 2 years and 5 years (though hedging terms do not converge to zero
in that case) and for risk aversions in the range 2 — 4.

We conclude from this (representative) experiment that hedging components are remarkably
stable over time in the sense that they exhibit low volatility. The variation in the total stock
demand which is observed in figure 13 stems primarily from the variation of its mean variance
component.

[Insert figures 11-14 here]

Our second experiment examines the actual behavior, based on market data, of the portfolio
over time for an investor with long horizon of about 30 years at the beginning of the period.
Hedging demands and portfolio positions are computed using our model along the realized trajec-
tory of the IR and the MPR in the last 31.5 years (our estimation sample). Based on these data,
we compute each month of the sample the optimal share of the stock in the portfolio with and
without hedging for an investor with a relative risk aversion of 4 (computations are performed
using 25,000 replications and variance reduction, i. e. 50,000 replications). As figure 15 shows,
intertemporal hedging will increase the optimal share to a reasonable level of about 60% at the
beginning of the investment horizon to roughly 10% at the end, with an average holding of 44%.
This is in sharp contrast with the myopic mean-variance optimal share which varies substantially
around an average level of about 10%. Note also that the hedging investor will short the stock
by 15% only once during his/her investment period (during the 1987 crash) and only because
the triggering event happened shortly (10 years) before the end of the investment horizon. The
observed increase in stock holdings comes mainly from the positive interest rate hedge. From this
realistic situation we then conclude that intertemporal hedging has a fundamental impact when
the investment horizon is long. As in the previous experiment it tends to stabilize the overall
stock demand.

[Insert figure 15 here]
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8 Stochastic dividends (trivariate model).

Suppose now that the dividend-price ratio (DPR), denoted by p, is a relevant stochastic factor
which influences the evolution of the market price of risk. The following trivariate process for
(r,0,p) generalizes the MRGID model by incorporating such an effect

dry = k(T — ry)dt — O'TTtl/2th, ro given (36)
df; = [ke(0 — ;) + 6,7 + Oppi)dt + ogdWy, Ao given (37)
dpy = kp(Pp — pr)dt — O'ppt1/2th, ro given. (38)

In this specification the DPR follows a mean-reverting square root process and has a linear effect
on the drift of the MPR.

The model is estimated as previously: we maximize the loglikelihood of the discretized model
using for the MPR the filtered series based on an AR(1) specification and a constant stock
volatility. For the sake of brevity, we just report the estimated values of the parameters. These
are k, = 0.06977, 7 = 0.005 x 12, rg = 0.9088, 0 = 0.1685, 6, = —23.90/12, &, = 17.63/12, k), =
0.0344, p = 0.003x 12, o, = —0.01227/12, 09 = 0.16127, 7, = 0.004578y/12. It should, however,
be noted that these estimates, in particular those corresponding to the impact of the IR and the
DPR on the drift of the MPR, are statistically different from zero. Other parameters are also
seen to be close to the values obtained for the model with two state variables only.

Table 8 shows that optimal behavior changes when stochastic dividends are accounted for. The
most notable feature is the reversal in the sign of the MPR-hedge. Inspection of the trivariate
process reveals the root of this behavior. Recall that the estimated model displays positive impact
of the dividend-price ratio on the drift of the MPR (¢, = 17.63/12) and negative correlation
between stock returns and the dividend-price ratio (—oo, = 0.2 x 0.0045781/12). Under these
conditions hedging MPR-risk will involve two components. The first results from the positive
association between stock returns and innovations in the MPR. This hedge against direct MPR-
risk is negative, as in the earlier models. The second is the consequence of the indirect negative
association between the drift of the MPR and innovations in the dividend-price ratio. This hedge,
against indirect MPR-risk, is positive. Evidently, the two hedging motives work in opposite
direction. As illustrated in the table (see also figure 16) the second effect dominates in the
context of our estimated model and results in a positive overall MPR-hedge when risk aversion
exceeds unity.

9 Stochastic volatility with imperfect correlation (trivariate model).

Consider now the trivariate state variable model (7,8, 0) described by

dry = Kp(F —1¢)dt — Urrtl/2dW1t, To given (39)
dby = [kg(0 — ;) + &ry]dt + o9dWry, 6o given (40)

doy = [ke(T — 0¢) + 01{01001119>01 + 620011 {90y }dt
—}—(Ttl/z[)\ldWlt + AQdWZtL o given (41)
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where the coefficients (ky,7, 0., Kg,0,8,00, ko, 7,019,629, M1, A2) are all constant and Wy, Wy are
independent Brownian motion processes.

The model (39)-(41) contains several innovations relative to the prior MRSR-MRGID model.
The most important feature is that volatility is now stochastic. Furthermore, the volatility process
is imperfectly correlated with the interest rate and the MPR processes. As a result our basic model
is one with (apparently) incomplete markets. The drift of the volatility process also permits an
asymmetric dependence on the MPR process, conditioned on positive or negative realizations of
the MPR. This structure seeks to capture the notion that volatility is high when the magnitude
(absolute value) of the MPR is large. As in the MRGID model the MPR process also involves an
interaction in the drift with the rate of interest.

Even though this trivariate model (39)-(41) is driven by two underlying Brownian motions, and
hence appears to have incomplete markets since there are only two assets, the portfolio formulas
of the previous sections are still valid. The intuition for this seemingly surprising result is that
the state price density ¢ depends only on (r,0) which are independent of the risk Wa. Since the
investor’s marginal utility is proportional to the state price density at the optimum it follows
that optimal terminal wealth is independent of W5. The portfolio that finances optimal wealth,
in turn, will be independent of this idiosyncratic volatility risk. It follows that the individual
valuation of the risk W5 is null at the optimum.

Assuming CRRA preferences gives the optimal stock demand

. ~ 1 _ N 1 _ N 1 _
Ty = XtEUt 0, + X, (E - 1> o ta(t,r, ) + Xy (E - 1> o7 (t, e, 04) (42)
B E; [(ft,T)l_l/R ftT Dﬂ"sds}
a(t7rt7 et) — Et [(ét T)l—l/R] ) (43>
E; [(gt,T)lil/R /tT DtedeS}
b(t,re,0;) = (44)

Eq (&) ~1/A]

where &, 1 is defined in corollary 6 and where D;rs, Difs are given in explicit form in appendix
C. The only notable impact of stochastic volatility is that it implies a continuous rescaling of the
stock demand as it changes over time: the volatility-scaled portfolio demand o7 is immune to
volatility risk.

The economic properties of the optimal portfolio follow directly from the scaling property.
The fraction of each hedging demand relative to total stock demand is insensitive to volatility
fluctuations. Since the magnitude of each component is simply rescaled as volatility changes the
portfolio components exhibit more volatility. This behavior is illustrated in figure 17.?

19 Again for this extension of the basic two-state variable model, we maximize the loglikelihood of the discretized
model. The MPR series is now filtered with a GARCH(1,1) model with an AR(1) conditional mean as described in
section 6. The estimates of the parameters in (r,0) are found to be stable relative to those obtained in the earlier
bivariate model. For the volatility process we find evidence of different effects for the positive and negative values of
the MPR. This confirms the asymmetry reported in the literature. Estimated parameters are x, = 0.004575, 7 =
0.007 x 12, kg = 0.7772, 6 = 0.2689, 6§ = —26.3514/12, K, = 0.0445, 7 = 0.0594V/12, 619 = —0.2159/12, 629 =
0.1254/12, o, = —0.01045v12, 0y = 0.185, A\; = 0.00081, and Ay = /0.012522 + 0.001742. The numerical
simulation is based on these estimates.
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10 Conclusions.

In this paper we have developed a comprehensive approach for the calculation of the optimal
portfolio in the asset allocation problem. One major benefit of our method which relies on
Monte-Carlo simulation is its flexibility. Indeed the approach can be easily adapted to encompass
(i) any finite number of state variables, (ii) any process for the state variables which satisfies
the conditions described and (iii) any number of risky assets. This flexibility provides a distinct
advantage over alternative approaches to the problem.

The paper also derives a number of economic results which can be used as guidelines for sound
asset allocation rules. The lessons drawn from our simulations can be summarized in the following
observations:

1. Hedging components cannot be ignored for asset allocation purposes. Even for short invest-
ment horizons they imply an adjustment to mean-variance demands which may represent
up to 20% of the stock demand. For long investment horizons hedging behavior has a major
impact: the adjustment to mean-variance demands can represent up to 80% of the stock
demand.

2. Hedging corrections are fairly stable over time: market timing experiments show that the
volatility of the hedging components is low relative to the variation in the mean-variance
component.

3. The most important factors in optimal allocation shares are the risk aversion of the investor
and the investment horizon. Of particular interest is the behavior of the optimal stock
demand relative to the investment horizon, namely the fact that long (short) investment
horizons mandate an increase (decrease) in stock holdings relative to myopic behavior. Al-
though this effect was only recorded in the context of our basic bivariate model, it suggests
that it might be of interest to develop investment products and strategies tailored to different
categories of investors classified according to their risk tolerance and investment horizon.

4. Allocation shares are also remarkably stable relative to the other parameters of the model.
Variations of the order of 2 standard deviations around estimated parameter values have
little impact on the magnitude and the behavior of investment shares.

Naturally, the performance of any asset allocation rule will also depend on the soundness of the
underlying model of financial markets. Clearly we do not suggest that the models investigated
in this paper are adequate in that respect. However, the approach that we have proposed is
universal in the sense that it can be used to address the asset allocation problem for any realistic
specification of the uncertainty structure no matter how complex.

11 Appendix.

11.1 Appendix A: proofs.

Proof of Theorem 1: It follows from

¥>0 X1 eL2(Q,F7,P) y>0
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where &, = exp (— [Ot rsds — [Ot 0, dW, — 4 ](f Q;QSds) is the state price density and I = [Oqu] !
that optimal final wealth must be given by

XT = I(T7 géT)
where § satisfies E[¢,1(T, §¢;)] = z. Since &,X; = By[¢,.X7] we have for J(t,y) := yI(t,y) that
Xy = I(t,5¢,)Eel i 7]

where .
— J(T7 yéT)
T = e
J(taygt)
Using the chain rule of Malliavin calculus and the relation —021(t,y) = m (which
follows from the definition dyu(t, I(t,y)) = y) we obtain
D, X 1 DEi[J]
At D+ t[Ji,7]
X §R(t, I(E,96,)) E¢[J 7]
where R(t,x) = %&S)Z is the relative risk aversion of the investor. Taking the limit as

s Tt on both sides of this equation and using limgq DXy = ﬁ';O't, limge Ds&; = —&,;0; and the
commutativity of the conditional expectation and Malliavin derivative operator then leads to

1 ) EJI%Jth 1
R(LI(9€)) " Bulder] |70

ﬁ;:Xt[

But since
DtJt = 62J(T7 géT) X Af _ J(T7 yfT) aQJ(tayft)
’ J(t,9€,) TU9€) I 98,)

where Diféy = —§¢7(6; + Hi ) with

Dy,

T T T T T
Ht,T = / Dt’f‘st + / dWS’DtQS + / dSQISDtQS = / Dt’f‘st -+ / (dWSQ)/DtQS
Ji Ji Ji Ji Jt

and since BT (t.y) J8oI(t9) 1
T(ty) 7~ Itty) ~ R&Ity) o(t,y)
the second term in the expression for the optimal portfolio can be written
B = B | e P TG sk P
= ™ e e ()| + S
= - Et[}]ﬂ] E. ﬁ]((j; 52)) o(T, I(T, &) (0} + Ht’,T)} +alt, I(t,9€,))0,

= |q¢—E Jur e} 0, — E Jur e} /TDrds
t t Et[JtT} T t t Et[JtyT} T.t t''s

)

JtT T /
—-E; | =—=—arp / {dWS + Qsds] D:0s
Jt
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where oy = «(t, I(t, g)ft)) (note that ar = a(T (T, j¢7)) = T, X1))

Finally using ioh| JTT] %)% where 4 dP = = By, we obtain

. e .

2~ X pao|B REXY |y

t 5 t o 5 tvt
R(t, X;) £ R(T, Xr)

. [ Xp . B
Xt—l R(tiXt)E? Bz R(t’)ft) R(T, XT 1 / Dyrsds | o —1
R(t, X¢) % R(T, X7) \ R(t, Xt) -1

—_ X -& X A - =
g R g | 2 LR (B2 1) [y, | o,
R(t, X,) 2 R(T, Xp) \ R(t,X;) =1 ) Jy

Now note that the chain rule of Malliavin calculus gives

Db = 829(571/5)Dtys
Dyrys = 0ar(s,Ys)DiYs

Furthermore (1) and Nualart (1995), section 2.2, p. 99-108, imply that D;Ys = (D1Y5, ..., DatYs)

solves the d systems (one for each of the d Malliavin derivatives) of d stochastic differential
equation

DuYs = DuYi+ / Daats (v, Yy)dv + Dy / oY (v, Y,)dW,
Jt Jt

= %)+ [ D @Yo+ [ Dl . Y)aw,)

= V(LY + /aw vY)DthdQH-/ Di Za (0, Y,)dW;,
t
7j=1

= oL(t,Y) + / Dot¥ (v,Yy) Dyt Yodv + / Zagag(v,n)pkmdwjv
Jt Jt i—1

S S d
- a?;(t,Yt)Jr/ aguy(u,y;)pkmdw/ D 050 (v,Y,)dWjy | DYy
t t X
7j=1

for k =1, ...,d. The solutions of these systems of linear equations are as stated in the theorem using
the fact that that the quadratic variation of the martingale part is Z?:l 820?;-(1), Ys) (820?; (v,Yy)) dv
where O'Y] denotes the j* column of the matrix ¢¥. W

Proof of Proposition 4: Following the arguments of Doss (1977) we consider a function F :
[0,7] x Ry ~— Ry such that 0oF = 1. Using 00 F = (0:1) = —% and Ito’s lemma implies that

1
dF(t,Y;) = [g — 0o + 81F] (t,Y;)dt + dW;.
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so that F'(¢,Y;) has the decomposition F(t,Y;) = Ny + W; where

1
dN; = [“

Since F' has an inverse G defined by G(t, F(t,y)) = y we can write Y; = G(t, Ny + W;) and

therefore

N, = [g _ %320 + 81F] (t, G(t, Ny + Wi))dt.

with Ny = F(0,y). Then since from assumptions (i) and (ii) G is continuously differentiable and
by theorem 2.2.1 of Nualart (1995) which needs assumption (iii) the process is in the domain of
the Malliavin derivative operator N € D2 we have for ¢ < s that

DtY; = GQG(S, NS + WS)Zt,S

where
dZt,s =0y |:§ - %620’ + a1-F:| (S7G(57N5 + WS))(62G(57 Ns + WS))Zt,SdS

with Z; 4 = 1. Solving this linear SDE for Z; , and using the relations for derivatives of F' and its
inverse G produces the result stated. B

Proof of Proposition 5: We have that since dY; = u(t,Y;)dt + o(t,Y;)dW; that

/OtQ(S,Ys)dWS = — /Ot[gu](s,Y;)ds + /()t[g}(sﬁfs)dl/;

Then for ¢ such that dx1po = 6 we have that

t

V(LX) = 0(0.Y0) = [ [0r+ Gome(s. Vs + [ (2G5, VY.

But 0201 = % — ga%‘” and therefore

[ ot v == [ 1236, s +00,%0) ~ 000,%5) ~ [ 00 + 510 — 00301)(5, i)
Jo Jo O Jo

Using this expression for the stochastic integral in the expression of the SPD provides (18).

To establish (19) use ]tT Db [dWs+0,ds] = Dt{(['ot 0s[dW,+30,ds]}, substitute the expression
for ]g 0(s,Ys)dWs above on the right hand side, and compute the Malliavin derivative of the
expression in bracket. B

Proof of Corollary 7: Substituting ,.,7 = 0 in the expressions for the Malliavin derivatives
in Proposition 4 gives
Dyry = 0y exp [_"QT(U - t)]

D0, = ogexp [—kg(v —t)].
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Since R is constant and Dyr, is deterministic we can then write

B Ey {(ft,T)l_% (ItT o exp [~k (v — t)] d”)} /T
a(t,rt,St) = 5 {(ét,T)lfﬂ = /t orexp [—kp(v —t)] dv.

Substituting the expression for D6, in b(t,r¢,0;) gives the formula in the lemma. B

Proof of equations (42)-(44): We conjecture that the individual price of Wa-risk is null. The
SPD is then given by the formula in theorem 3 where (r,0) satisfy (39)-(40). Since (7,0) is
independent of Wh-risk, optimal wealth X7 = I (T,y¢r) is independent of Wy. The Martingale
representation theorem and the Clark-Ocone formula imply the existence of a unique financing
portfolio which is given by (42)-(44). B

11.2 Appendix B: A representation of Malliavin derivatives of multivariate
diffusion processes.
Consider a d-dimensional process Y which satisfies the system of SDEs
dY; = p(t, Y)dt + o(t, Y1) dW; Yo = y

where W is a d-dimensional Brownian motion process. For any d x 1 vector of functions f(¢,Y) let
01 f represent the d x 1 vector of first derivatives relative to time and 0y f the d x n matrix whose
rows are composed of the gradients relative to Y of the elements of f. The Malliavin derivative
of Y has the following alternative representation.

Proposition 8 If the following conditions hold
(i) differentiability of drift: u € C1([0,T] x R%)
(ii) differentiability of volatility: o € C*([0,T] x R%)
(tit) growth condition: pu(t,0) and o(t,0) are bounded for all t € [0,T)
(iv) invertibility condition: det(co(t,y)) # 0 for all t € [0,T] and y € R?

(v) wolatility condition: the Lie algebra of the vector fields generated by the columns of o,
L{o1,...,04} is Abelian, i.e. (020;)0; = (020;)0; for alli,j =1,...,d where 0z0; is the
d x d Jacobian matrix with respect to y of the d x 1 vector function o;.

then we have for t < s that
DiYs = U(S7YS)Zt,8

where the d x 1 process Z; s satisfies

1
dZ;s = {32 [(0)_1M+ 51{} + 81(0)—1] (s,Y5)o(s,Ys) Zy sds (45)
subject to the boundary condition Zyy = 1, where

H=(I®1) (Ko (1edo)l (46)
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with K for the Jacobian matriz of o' given by
1
K =—5[(c®0)70:(0") + [(920') (0! ®0) ], (47)

The operators ® and © represent, respectively, the Kronecker and Hadamard products,®’ whereas
the stack operator [-], operates on a d x d*> matriz B = [B, ..., Bg) where B; are d-dimensional
square matrices as follows: [B], = [(B1),...,(Ba)']".

Assumption (v) in this proposition guarantees that there exists F such that 0oF = o~ 1.

Since by (iv) F' has an inverse G, say, condition (v) could equivalently be written as 0;G;(t,2) =
0;,i(t,G(t,z)). The assumption is automatically satisfied if the state variables do not interact
with each other, ie. if 0;(t,Y;) = (fj(t,Ytj) for 5 = 1,...,d. The one dimensional case treated
earlier falls in this category.

Proof of Proposition 8: The proof parallels the one dimensional case. Assumption (v) ensures
the existence of a d x 1 vector of functions F : [0,T] x RY +— R% such that §,F = ¢~!. Using
Oy F = 0,0~ ! we get by the identification theorem for Hessian matrices of vector functions

(theorem 6.7. of Magnus and Neudecker (1988)) that

1
0nF(t,y) = —5[(c ® o)1 05(0") + [(B20') (0 ® 7) 7L (1) (48)
where the stack operator [], acts in the following manner: for a d x d* matrix B = [By, ..., By
where B; are d-dimensional square matrices we have [B], = [(B1),...,(Bg)"]. The use of the

stack operator is necessary to guarantee that the components 0s2F;(t,y) which arise in blocks in
022 F(t,y) remain symmetric.
Using Ito’s lemma applied to each element of F' we get

1
dF‘Z'(t, Y;g) = [81F2 + (92E,M + §tT’CLC€(822FZ'O'IO')](t, Y;g)dt + [82EO‘] (t, Y;g)dVVt

for i = 1,...,d. Stacking these SDEs for ¢ = 1,...,d one below the other gives the stochastic
differential for dF'(¢,Y?) as

1
dF(t,Y;) = |0 tu+ 5H + O\ F| (t,Y;)dt 4+ dW;

where H' = [trace(0oF10'0),. .. trace(0xFy0'c)]. To obtain the expression (46) for H note that
trace(AB') = 1'(A® B)1 where © is the Hadamard product, i.e. A® B = [[a; jb; ;]]. Now we can
write the matrix H as follows

H = [1/((822F1)/ ® 0'/0')]_, ey 1/((822Fd)/®0'/0')1}/
which is equivalent to
H=[I® 1/)[((322F1)/ © O'/O'), R ((822Fd)/ O] O'/O')}ll.
*0The Kronecker product of a vector Y and a matrix A = [a;] is X ® A = [Yasj]. The Hadamard product of

two matrices A and B is A ©® B = [ai ;b j], i.e. the matrix composed of the direct products of the corresponding
elements in the two matrices.
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But since 622F = [(622F1)’, ceey (822Fd),]/ we get
[((02F1) ©0'a),...,((02Fu) ©®0'0)]' = (0F © (1 ®0'0))

and therefore that
H=(I®1)(0x2F®(1®d0))l

where 092 F'(t,y) is as given in (48). Thus, H is obtained by multiplying the Hessian of each element
of F element by element with the matrix o’c then summing over all elements and arranging the
result in a column vector whose first element is obtained by performing the same operation for
F1, the second for F and so on until Fy. This establishes (46).

Thus, using these expressions we see that F'(t,Y;) has the decomposition F(t,Y:) = Ny + W;
where

1
dN; = |07t + §H + 0, F| (t,Y;)dt.

Since the determinant of the Jacobian 0o F differs from 0 (assumption (iv)) the vector F'(¢,y) has
a unique inverse G defined by G(t, F(t,y)) =y. We can then write

Y: = G(t, Ny + Ws)

and therefore

1
dNt = 071p+ EH + alF (t,G(t,Nt + M))dt

with Ng = F(0,y). Then since from assumptions (i)-(ii) G is continuously differentiable and by
theorem 2.2.1 of Nualart (1995), which requires assumption (iii), the process is in the domain of
the Malliavin derivative operator N € D12 we have for ¢ < s that

DY = 0oG(s, Ns + W) Zy
where
dZ;s =0y |07+ %H + 01 F| (5,G(s, Ns + W;))(02G(3, Ns + W;)) Zt 5ds
with Z;; = 1.

Since 02G(s, N5 + Ws)02F (s,Ys) = I we have that 0oG(s, Ns + W) = 0(s,Ys). Substituting
in the equation above leads to the result in the proposition. B

11.3 Appendix C: the MRGID model.

We consider the following interest rate - market price of risk model with interaction in the drift

of the MPR

dry = kp(T — 1¢)dt + 00 /Ted W, ro given (49)
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df; = (H@(@ — 915) + 697}) dt + ogdWy, 0o given (50)

where (k,,7, 0., kKg,0,089,09) are nonnegative constants. The transition from the general model
with state variables Y to the model (49)-(50) with state variables (r,6) is immediate since the
Malliavin derivative D6, can now be computed directly from the process (50). Taking account
of the specific structure (49)-(50) then leads to

Proposition 9 In the financial market (49)-(50) the optimal portfolio is given by (5) with

Dyry = /7,0 exp [—% /t <nr(1 —i—Fi) — Za?(i)> du]

Ty Ty

D,0, = oge o1 4 69/ e KW=, ds.
t

The SPD is then

t 1 Ko, Ko 0 Lo oy 1
£ = exp [—/0 o+ (5 = 0082 — 2006, — ~,1)ds] - 5(6% — 63) + 50975]

and the stochastic integral for the MPR-hedge becomes

T T K¢ Ko - 1)
/ DOs[dWy + 05ds] = / {[(1 +20) - 2o+ —
t t g9 T (o]

5| Dy + %esptrs:| ds + O_ieeT,DteT — 04
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Table 1- Comparison of the speeds of convergence of the discretization

schemes when the IR follows a MRSR process.

N r Dr
Euler Euler-Transform Euler Euler-Transform

2 0.000115598  5.49255e-06 5.81463e-07  3.47457e-07
4 0.000111128 3.37985e-06 3.58341e-07 2.13681e-07
8 8.74541e-05  1.82631e-06 2.33208e-07 1.15422e-07
16 6.50156e-05 9.41716e-07 1.6312e-07  5.9616e-08
32  4.66084e-05  4.7979e-07 1.16983e-07  3.03396e-08
64  3.336e-05 2.40698e-07 8.29213e-08  1.52396e-08
128 2.3761e-05 1.20386e-07 5.97503e-08  7.63041e-09
256 1.68824e-05  5.83759e-08 4.18739e-08  3.69586e-09
512 1.19618e-05  2.53747e-08 3.00371e-08 1.60477e-09

Table 2 - Unconstrained monthly estimates of the bivariate interest
rate-MPR process with constant stock volatility

Parameters | ML estimates | Standard Errors
Kr M 0.0265 0.0107
T 0.0053 0.0007
Ko 0.6528 0.0482
[ 0.0846 0.0084
o 0.0049 0.0002
o 0.1052 0.0039
Pro -0.1651 0.0539

Table 3 - Constrained (with p,q set at -0.9) monthly estimates of the bivariate
interest rate-MPR process with constant stock volatility

Parameters | ML estimates | Standard Errors
Kr M 0.0824 0.0116
T 0.0050 0.0005
K¢ 0.6950 0.0507
0 0.0871 0.0161
o 0.0105 0.0004
g 0.2125 0.0080
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Table 4 - Constrained (with p,¢ set at -0.9) monthly estimates of the bivariate
interest rate-MPR. process with constant stock volatility with r;_; in the drift of MPR

Parameters | ML estimates | Standard Errors
Koy M 0.0005 0.0185
T 0.0051 0.0010
Ko 0.7771 0.0484
[ 0.2675 0.0348
o 0.0105 0.0004
o 0.2050 0.0073
1) -26.2469 4.9686

Table 5 - Unconstrained monthly estimates of the bivariate
interest rate-MPR, process with a GARCH stock conditional variance

Parameters | ML estimates | Standard Errors
Kr M 0.0290 0.0106
T 0.0053 0.0006
Ko 0.5975 0.0464
[ 0.0882 0.0083
o 0.0049 0.0002
o 0.0979 0.0035
Pro -0.1863 0.052

Table 6 - Constrained (with p,g set at -0.9) monthly estimates of the
bivariate interest rate-MPR process with a GARCH
stock conditional variance

Parameters | ML estimates | Standard Errors
Kr M 0.0947 0.0128
T 0.0050 0.0004
K¢ 0.6826 0.0507
0 0.0900 0.0147
o 0.0104 0.0004
o 0.1928 0.0070
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Table 7 - Shares of the portfolio in the stock and Hedging Components for Model 1.

Investment horizon 1 2 3 4 5
R_9 Stock demand 25.4 1 26.1 | 27.0] 29.2 | 30.5
MPR-hedge -1.71-3.01] -39 ] -3.5 ]| -3.7
Interest rate hedge | 2.1 | 4.1 | 59 | 7.6 | 9.2
Risk aversion 0.5 1 1.5 4 5)
T—1 Stock demand 113.0 | 50.0 | 33.2 | 144 | 12.3
MPR-hedge 172 | 0.0 | -1.6 | -1.3 | -1.24
Interest rate hedge | -4.3 | 0.0 | 1.4 | 3.2 3.4

Table 8 - Dividend-Price Ratio Model - Shares of the portfolio in the stock
and Hedging Components for Model 1 (o = 0.20).

Investment horizon 1 2 3 4 5!
R4 Stock demand 30.18 | 39.92 | 46.88 | 52.45 | 57.27
MPR-hedge 13.90 | 20.13 | 23.82 | 26.35 | 28.33
Interest rate hedge | 3.78 | 7.29 [ 10.56 | 13.60 | 16.43

Risk aversion 0.5 1 1.5 2 9

71 Stock demand 81.42 | 50.0 | 40.86 | 36.49 | 28.94
MPR-hedge -13.56 | 0.0 | 5.85 | 8.98 | 14.91

Interest rate hedge | -5.02 | 0.0 | 1.68 | 2.52 | 4.03
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Figure 1: Share of portfolio invested in stock as a function of time and risk aversion.

R Investment horizon 1 2 3 4 5
o Stock demand 7271 73.2 | 74.4 | 76.7 | 78.3
T—1 Risk aversion 0.5 1 3 4 5

o Stock demand | 339.1 | 150.0 | 48.9 | 37.3 | 30.5
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Figure 2: Share of the MPR hedge as a function of time and risk aversion.

R Investment horizon 1 2 3 4 5
N MPR-hedge -45|-63|-74|-73]-8
T—1 Risk aversion | .05 1 3 4 5

MPR-hedge | 43.5| 0.0 | 4.1 | -3.5|-3.5
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Figure 3: Share of the interest rate hedge as a function of time and risk aversion.

R Investment horizon | 1 2 3 4 5
- Interest rate hedge | 2.2 | 4.5 6.7 | 9.0 | 11.3

T—1 Risk aversion 05| 1 3 4 5
N Interest rate hedge | -4.4 | 0.0 | 3.0 | 3.4 | 3.6
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Figure 4: Interest rate hedge relative to total stock demand: behavior with respect to time and
risk aversion.

9 Investment horizon 1 2 3 4 5
N Relative size of interest rate hedge | 3.1 | 6.1 | 9.1 | 11.7 | 144
T—1 Risk aversion 05 |1 3 4 )

- Relative size of interest rate hedge | -1.3 | 0| 6.1 | 9.0 | 11.7
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Figure 5: MPR-hedge relative to total stock demand: behavior with respect to time and risk
aversion.

R2 Investment Horizon 1 2 3 4 5
a Relative size of MPR-hedge | -6.2 | -8.6 | -9.9 [ -9.5 | -10.2
T—1 Risk aversion 05 |1 3 4 5
n Relative size of MPR-hedge | 12.8 | 0 | -8.3 | -9.5 | -10.3
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Figure 6: Stock demand behavior relative to rg and y. Interest rate varies between 0.04 and 0.08;
MPR between .05 and .40.

6% MPR 0.10 | 0.20 | 0.40

=970 | I"Stock demand | 25.4 | 49.1 | 96.4

B Interest rate (%) | 4 6 8
MPR=.25 Stock demand | 60.3 | 60.9 | 61.5
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Figure 7: Interest rate hedge behavior relative to rg and 6g. Interest rate varies between 0.04 and
0.08; MPR between .05 and .40.

—6% MPR 0.10 | 0.20 | 0.40
7% | [ Interest rate hedge | 2.2 | 2.2 | 2.2
B Interest rate(%) 4 1 6 | 8

MPR=25 Interest rate hedge | 1.8 | 2.2 | 2.6
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Figure 8: MPR -hedge behavior relative to 7o and 6g. Interest rate varies between 0.04 and 0.11;
MPR between .10 and .45.

6% MPR 0.10 [ 0.20 | 0.40
Y | [ MPR-hedge | -1.8 [ -3.2 | 5.8

B TR(%) 116 ]38
MPR=25 | /PR hedge | 4.0 | 3.8 | 3.6
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Figure 9: Interest-rate hedge relative to total stock demand: behavior with respect to rg and 6g.

o MPR 0.10 [ 0.20 | 0.40

P27 1 [Relative size of IR-hedge | 8.8 | 4.6 | 2.3
B Interest rate(%) 4 16 |8

MPR=.25 Relative size of IR-hedge | 3.0 | 3.7 | 4.2
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Figure 10: MPR hedge relative to total stock demand: behavior with respect to rg and 6g.

o MPR 0.10 | 0.20 | 0.40

P07 MRelative size of MPR-hedge | -7.2 | -6.3 | -6.1

B Interest rate(%) 4 6 8
MPR=.25 Relative size of MPR-hedge | -6.7 | -6.3 | -5.9
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Figure 11: Simulated Path for Interest Rate.
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Figure 12: Simulated Path for Market Price of Risk.
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Figure 13: Fixed 5-year Horizon - Share in Stocks - R = 4.
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Figure 14: Fixed 5-year Horizon - Hedging Shares (top to bottom): Interest Rate, Total, MPR-R
=4.

43



100

80 1

60 1

40} 1

20} 1

40+ 4

-60 L L L L L L L
0 50 100 150 200 250 300 350 400

Figure 15: Share of Stock in Portfolio with (top) and without (bottom) hedging - Fixed Horizon
of 31.5 years (our sample).
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Figure 16: Model with Stochastic Dividends - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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Figure 17: Model with Stochastic Volatility - Share of Stock in Portfolio with (top) and without
(bottom) hedging - Fixed Horizon of 31.5 years (our sample).
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