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The Valuation of American Options
on Multiple Assets*

Mark Broadie’, Jéréme Detemple’

Abstract

In this paper we provide valuation formulas for several types of American options on two
or more assets. Our contribution is twofold. First we characterize the optimal exercises regions
and provide valuation formulas for a number of American option contracts on multiple
underlying assets with convex payoff functions. Examples include options on the maximum of
two assets, dual strike options, spread options, exchange options, options on the product and
powers of the product, and option on the arithmetic average of two assets. Second, we also
consider a class of contracts with nonconvex payoffs, such as American capped exchange
options. For this option we explicitly identify the optimal exercise boundary and provide a
decomposition of the price in terms of capped exchange option with automatic exercise at the
cap and an early exercise premium involving the benefits of exercising prior to reaching the
cap. Beside generalizing the current literature on American option valuation our analysis also
has implications for the macroeconomic theory of investment under uncertainty. A
specialization of one of our models also provides a new representation formula for an
American capped option on a single underlying asset.

Dans cet article nous établissons des formules d'évaluation pour un ensemble d'options
américaines sur deux ou plus actifs sous-jacents. Notre contribution est de deux ordres. En
premier lieu nous caractérisons la région d'exercice optimale et établissons des formules
d'évaluation pour un nombre de contrats d'options américaines a actifs multiples sous-jacents et
4 fonctions de gains convexes. Des exemiples incluent Ies options sur le maximum de deux actifs,
les options & double prix d'exercice, les options sur différentiels, les options d'échange, les options
sur le produit et les puissances du produit, et les options sur la moyenne arithmétique de deux
actifs. En deuxiéme lieu, nous considérons également une classe de contrats a gains non-convexes
tels que les options d'échange américaines avec plafond. Pour cette option nous identifions de
maniére explicite la frontiére d'exercice optimale et nous établissons une décomposition en termes
d'une option d'échange avec plafond avec exercice automatique lorsque le plafond est atteint et
d'une prime d'exercice prématuré qui dépend des bénéfices réalisés lorsque l'exercice précéde
l'atteinte du plafond. Outre la généralisation de la littérature présente sur I'évaluation des options
américaines, notre analyse a également des conséquences pour la théorie macro-économique de
linvestissement dans l'incertain, Une spécialisation d'un de nos modéles constitue également une
nouvelle formule de représentation pour une option américaine avec plafond sur un actif sous-
jacent unique.

Key words: option pricing, early exercise policy, free boundary, security valuation, multiple
assets, caps, investiment under uncertainty.
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1. Introduction

In this paper we analyze several types of American options on two or more assets. We study
options on the maximum of two assets, dual strike options, spread options, and others. For each
of these contracts we characterize the optimal exercise regions and develop valuation formulas.

Our analysis provides important new insights since many contracts that are traded in modern
financial markets, or that are issued by firms, involve American options on several underlying
assets. A standard example is the case of an index option which is based on the value of a portfolio
of assets. In this case the option payoff upon exercise depends on an arithmetic or geometric
average of the values of several assets. For example, options on the S&P 100, which have traded on
the Chicago Board of Options Exchange (CBOE) since March 1983, are American options on a value
weighted index of 100 stocks. Other contracts pay the maximum of two or more asset prices upon
exercise. Examples include option bonds and incentive contracts. Embedded American options on
the maximurn of two or more assets can also be found in firms choosing among mutually exclusive
investment alternatives, or in employment switching decisions by agents. American spread options
and options to exchange one asset for another also arise in several contexts. Gasoline crack spread
options, traded on the NYMEX (New York Mercantile Exchange), are American options written on
the spread between the NYMEX New York Harbor unleaded gasoline futures and the NYMEX crude
oil futures. Likewise, heating oil crack spread options, also traded on the NYMEX, are American
options on the spread between the NYMEX New York Harbor heating oil futures and the NYMEX
crude oil futures. Options on foreign indices with exercise prices quoted in the foreign currency
can now be bought by American investors (one example is the option on the Nikkei index traded on
the Osaka stock exchange; another is the option on the CAC40 on the MONEF). Stock tender offers,
which are American options to exchange the stock of one company for the stock of another, are
also common in financial markets.

In most cases the underlying assets in these contracts pay dividends or have other cash out-
flows. It is well known that standard American options written on a single dividend paying under-
lying asset may be optimally exercised before maturity. The same is true for options on multiple
dividend paying assets: the American feature is valuable and exercise prior to maturity may be op-
timal. However, when several asset prices determine the exercise payoff, the shape of the exercise
region often cannot be determined by simple arguments or by appealing to the intuition known
for the single asset case. Furthermore, the structure of the exercise region may differ significantly
among the various contracts under investigation. As a result it is important to identify optimal
exercise boundaries in order to provide a thorough understanding of these contracts.

European options on multiple assets have received attention earlier in the literature. European
options to exchange one asset for another were studied initially by Margrabe (1978). Johnson (1981)
and Stulz (1982) provide valuation formulas for European put and call options on the maximum
or minimum of two assets. Their results are extended to the case of multiple assets by Johnson
(1987).

In the last few years there has been much progress in the valuation of standard American op-
tions written on a single underlying asset (see, e.g., Karatzas (1988), Kim (1990), Jacka (1991), and
Carr, Jarrow, and Myneni (1992)). The optimal exercise boundary and the corresponding valuation
formula have also been identified for American call options with constant and growing caps, which
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are contracts with nonconvex payoffs (Broadie and Detemple (1994)). The case of American op-
tions on multiple dividend-paying underlying assets, however, has received little attention in the
literature. In recent independent work, Tan and Vetzal (1994) perform numerical simulations to
identify the immediate exercise region for some types of exotic options.

We start with an analysis of a prototypical contract with multiple underlying assets and a
convex payoff: an American option on the maximum of two assets. One of the surprising results
obtained is that it is never optimal to exercise this option prior to maturity when the underlying
asset prices are equal, even if the option is deep in the money and if dividend rates are very large.
This counterintuitive result rests on the fact that delaying exercise enables the investor to capture
the gains associated with the event that one asset price exceeds the other in the future. This gain
is sufficiently important to offset the benefits of immediate exercise even when the underlying
asset prices substantially exceed the exercise price of the option. Beyond its implications for the
valuation of financial options, this result is also of importance for the theory of investment under
uncertainty (e.g., Dixit and Pindyck (1994)). In this context our analysis provides a new motive for
waiting to invest: namely the benefits associated with the possibility of future dominance of one
project over the other investments available to the firm. In a global economy in which firms are
constantly confronted with multiple investment opportunities this motive may well be at work in
decisions to delay certain investments.

Another contribution of the paper is a new representation formula for a class of contracts with
nonconvex payoffs, such as capped exchange options. We show that the optimal exercise policy
consists in exercising at the first time at which the ratio of the two underlying asset prices reaches
the minimum of the cap and the exercise boundary of an uncapped exchange option. A valuation
formula, in terms of the uncapped exchange option and the payoff when the cap is reached, follows.
We also provide an alternative representation of the price of this option which involves the value
of a capped exchange option with automatic exercise at the cap and an early exercise premium
involving the benefits of exercising prior to reaching the cap. The optimal exercise boundary, in
turn, is shown to satisfy a recursive integral equation based on this decomposition. When one of
the two underlying asset prices is a constant our formulas provide the value of an American capped
option on a single underlying asset (Broadie and Detemple (1994)). Hence, beside generalizing the
literature on American capped call options we also produce a new decomposition of the price of
such contracts.

American max-options are analyzed in Section 2. Section 3 focuses on American spread options
and the special case of exchange options. In Section 4 we build on the results of Section 3 in order
to value American capped exchange options which have a nonconvex payoff function. American
options based on the product of underlying asset prices, such as options on a geometric average,
are analyzed in Section 5. In Section 6 American options on arithmetic averages are examined. Gen-
eralizations to the case of n underlying assets are given in Section 7 and proofs of the propositions
are relegated to the appendices.

2. American Options on the Maximum of Two Assets
We consider derivative securities written on a pair of underlying assets which may be inter-
preted as stocks, indices, or futures prices. The prices of the underlying assets at time £, S} and
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Sf, satisfy the stochastic differential equations

das} = st - 61)dt + ovdz}] 1)
ds? = S} (r — 8z)dt + 02dz?] 2)

where z! and z2 are standard Brownian motion processes with a constant correlation p. To avoid
trivial cases, we assume throughout that |p| < 1. Here 7 is the constant rate of interest, §; > 0
is the dividend rate of asset i, and o; is the volatility of the price of asset i, i = 1,2. The price
processes (1) and (2) are represented in their risk neutral form. Throughout the paper, E denotes
the expectation at time ¢ under the risk neutral measure. )

Let C;(S¢) denote the theoretical value of an American call option at time £ on a single asset (e.g.,
asset 1 above) that matures at time 7" and has a strike price of K. Throughout the paper, this option
is referred to as the standard option. Let C¥(S},S5?) denote the theoretical value of an American
call option on the maximum of two assets, or max-option for short. The payoff of the max-option,
if exercised at some time t before maturity T, is (max(S},S5?) — K)*. The notation x* is short for
max{x,0). The optimal or immediate exercise region of an American call on a single underlying
assetis F = {(S;,t) : C¢(St) = (S¢ —K)*}. Similarly, for an American call option on the maximurm of
two assets, the immediate exercise region is £% = {(S},57,t) : CX(S},52) = (max(S},$?) — K)*}.

Standard American Options

Before proceeding further, we review some essential results for standard American options
(i.e., on a single underlying asset). Let B; denote the immediate exercise boundary for a standard
option on a single underlying asset. That is, By = inf{S; : (S;,t) € £}. An illustration of B; is given
in Figure 1.

t T t

Figure 1. Hustration of B; for a Standard American Call Option
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Van Moerbeke (1976) and Jacka (1991) show that B, is continuous. Kim (1990) and Jacka (1991)
show that B, is decreasing in t. Kim (1990) shows that Br- = lim;..7 B; = max(r /8K, K). Merton
(1973) shows that B; is bounded above and derives a formula for B_., = lim;_._,, B;. Jacka (1991)
shows that the option value C;(S;) is continuous and the immediate exercise region Z is closed.

Exercise Region of American Max-Options

How do the properties of the exercise region for a standard option compare to those for a
max-option? For a standard American option, (S;,t) € E implies (AS;,t) € Efor all A > 1.1 By
analogy, an apparently reasonable conjecture for £X is

Conjecture 1: (S},S2,t) € E* implies (A;5},A252,t) € EX for all A; > 1 and

A > 1.

For a call option on a single asset with a positive dividend rate, immediate exercise is optimal
for all sufficiently large asset values. That is, there exists a constant M such that (S;,t) € £ for all
St > M. Hence a reasonable conjecture for £X is

Conjecture 2: If 5 > 0 and &2 > 0 then there exist constants M; and M, such

that (S7,52,t) € ZX for all S} > M; and all 57 = M.
For standard options the exercise region F is convex with respect to the asset price. The analogous
conjecture for £X is

Conjecture 3: (S},S%,t) € EX and (§},52,t) € £X implies A(S}, S, 1) + (1 - A5}, §2,6) € EX

forall0 <A < 1.
Surprisingly, all three conjectures concerning £% turn out to be false.

However, by focusing on certain subregions of £%, properties similar to those for £ dohold. De-
fine the subregion £¥ of the immediate exercise region £X by X = £X 1 G; where G; = {(S}, 57, 1) :
Sf = max(S},5?)} for i = 1,2. Proposition 1 below states that, prior to maturity, exercise is subop-
timal when the prices of the underlying assets are equal. This result holds no matter how large the
prices are and no matter how large the dividend rates are. In particular, (S,S,t) ¢ £X forall S > 0
and t < T. Proposition 1 is the reason for focusing attention on the subregions £¥.

Proposition 1: If S} = S? > 0 and t < T then (S},S},t) ¢ EX. That is, prior to maturity exercise is
not optimal when the prices of the underlying assets are equal.

This proposition in proved in Appendix B. The intuition for the suboptimality of immediate
exercise follows. Delaying exercise up to some fixed time s > t provides at least

PV(s~1t) = Sle 016-t) _ geris-t)

plus a European option to exchange asset 2 for asset 1 which has value EF[e~"¢-(52 -S1)*]. As s
converges to t, the present value PV (s —t) converges to S} —K at a finite rate. The exchange option
value, however, decreases to zero at an increasing rate which approaches infinity in the limit. Hence
there is some time s > t such that delaying exercise until s provides a strictly positive premium
relative to immediate exercise.

The next proposition shows that subregions of the exercise region are convex.

1 See Proposition 21 in Appendix A for a proof.
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Proposition 2 (Subregion Convexity): Let S = (51,52) and § = (57, $2). Suppose (S,t) € E¥ and
(S,t) € EX forafixedi =1 or 2. Given A, with0 < A < 1, define S(A) = AS + (1 — A)S. Then
(S(A),t) € EF. Thatis, if immediate exercise is optimal at S and § and if (S,t) € G; and ($,1) € G;
then immediate exercise is optimal at S(A).

The convexity of the exercise region is a consequence of the convexity of the payoff function
with respect to the pair (S?, 52) and a consequence of the multiplicative structure of the uncertainty
in (1) and (2). Additional properties of the exercise region £* are summarized in Proposition 3. In
this proposition, B} represents the exercise boundary for a standard American option on the single
underlying asset i.

Proposition 3: Let £X represent the immediate exercise region for a max-option. Then FX satisfies
the following properties.

) (S},8%,t) € X implies (S},5%,s) € X forallt <s <T.
(i) (S}, S%,t) € EX implies (AS},S?,t) € Ef forallA = 1.
(i) (S$,8%,t) e £ implies (S},AS?,t) € Ef forall0 <A < 1.
(iv) (S},0,t) € £f implies S} = B}.
In (if), (iif), and (iv), analogous results hold for the subregion EX.

Property (i) says that the continuation region shrinks as time moves forward. Property (i)
holds since a short maturity option cannot be worth more than the longer maturity option and it
can attain the value of the longer maturity option if it is exercised immediately. Property (ii) states
that the exercise subregion is connected in the direction of increasing S* (right connectedness). This
follows since the option value at (AS}, S7,t) is bounded above by the option value at (S}, S7,t) plus
the difference in the stock prices )\Stl - Stl. Since immediate exercise is optimal by assumption at
(St,S2,t), the option value at (AS}, S?,t) is bounded above by its immediate exercise value (which
can be attained by exercising inumediately). Property (iii) is similar and states that the exercise
subregion is connected in the direction of decreasing $2 (down connectedness). Finally, since zero
is an absorbing barrier for 52, the max-option becomes an option on asset 1 only when 52 = 0.
In this case the optimal exercise region is delimited by the exercise boundary corresponding to an
option on asset 1 alone.

Let EX(t) = {(S1,57) : (§},52,t) € X} denote the t-section of £¥ and similarly define £X (t)
by {(5},57) : (S}, S%,1) € E¥}. Convexity of ¥ (1) is assured by Proposition 2. This implies that
the boundary of Z5 (t) is contiruous, except possibly at the endpoints where S} or §? is zero.
However, continuity is assured at these points by part (iii) of Proposition 3.

From the results in this section, we can plot the shape of a typical exercise region £*X. An exam-
pleis shown in Figures 2-4. Note in Figure 4 that B} = max((r/81)K, K) and B = max((r/52)K,K).
The figures also show that max(Stl,Sf) is not a sufficient statistic for determining whether imme-
diate exercise is optimal.
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X0
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5!
Figure 3. Ilustration of £X(s) for a Max-Option at time s witht <s < T
§2

0 BL. st
Figure 4. Iustration of FX(T") for a Max-Option at time T~
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Valuation of American Max-Options
Recall C}¥ (S}, S2) is the value of an American option on the maximum of two assets at time ¢
with asset prices (5%, $2). In some cases, we will use CX (5!, 52,t) to denote CX (S}, S?7).

Proposition 4:
(i) The value of the American max-option, CX(§!,52,t), is continuous on R* x R* x [0, T].
(i) CX(-,82,t) and CX(§1,-,t) are nondecreasing on R* for all §%, S? in R* and all t in [0, T).
(i) CX(8',82,-) is nonincreasing on [0, T] for all S! and §? in R*.
(iv) CX(-,-,t) is convex on R* x R* forall t in [0, T}.

The continuity of C¥(S!,52,t) on R* x R* x [0, T] follows from the continuity of the payoff
function (max(S},S?) — K)* and the continuity of the flow of the stochastic differential equations
(1) and (2). The monotonicity of C¥(S1,52,t) follows since (max (S}, $?) ~ K)* is nondecreasing in
S* and S2. Property (iii) holds since a shorter maturity option cannot be more vatuable. Convexity
is implied by the convexity of the payoff function. The next proposition characterizes the option
price in terms of variational inequalities (see Bensoussan and Lions (1978) and Jaillet, Lamberton,
and Lapeyre (1990)).

X cX
Proposition 5: CX has partial derivatives %g , i = 1,2 which are uniformly bounded and —— and
2 X
il , 4, J = 1,2 which are locally bounded on [0,T) X Rt x R*. Define the operator L on the
251087
value function CX by
ocX acX acX
10C7 _ 2 o
={r-— 51)5 351 +(r 52)5 52 + 3t
1T 5 01,2 0°C% , 02X 2y2 0 ]_ X
t5 [01 (s%) (851)2 +2p0102818% = 351352 +0%(5%) (532)2 rC2. (3)

Then C(S},S?) satisfies

ocX

act +LCX <0 (—éT+£cX)(max(sg,sf)—K)+—Ctx)=0 “)

ot
almost everywhere on [0,T) x R* x R*.

¢’ = (max(S}, $?) - K)*;

X

Corollary 1: The spatial derivatives —— o¢

FL i = 1,2 are continuous on [0, T) Xx R* x R*.

Proposition 5 establishes the local boundedness of the partial derivatives of the value function
CX(8},82,t). The continuity of the spatial derivatives follows from the convexity of CX(§1,52,t)
and the variational 1nequahty Y+ LcX so0. Although Proposition 5 provides a complete char-
acterization of the value of the max-opnon, it is of interest, for practical purposes, to provide a
representation of the price in terms of the optimal exercise boundary.

Define the continuation region C tobe the complement of £X, i.e., C = {{S},57,t) : CX (S}, S?) >
(max(S,S?) — K)*}. The properties in Proposition 4 imply that the continuation region C is open
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and the immediate exercise region £* is closed. Now define Bf (S?,t) to be the boundary of the
t-section £ (t) and BY (S}, t) to be the boundary of the t-section £ (¢). The optimal stopping time
can now be characterized by T = inf{t : S} > Bf (S2,t) or $Z = B¥ (S}, D)}.

The characterization of Cf*(S},$?) given in Proposition 5 enables us to derive a system of
recursive integral equations for the optimal exercise boundaries and to infer the value of the max-
option. Toward this end, define

¥ (8,87 = Ef[e7" T (max (S}, §2) — K)*] (5)
which represents the value of the Furopean max-option and the functions
T
aX(Sl,$2) = j €T IE 1S} = 7L sy a1 (6)
=
T
aX(st,s?) = J €7 OOE (6258 ) L sgpist o |4V @
=
which are defined for a pair of continuous surfaces {(Bf (§2,v), Bf(SL,v):v €[t,T], S} e R*,S2 €
R*}. An explicit formula for the value of a European max-option in (5) is given in Johnson (1981)

and Stulz (1982). Explicit expressions for (6) and (7) in terms of cumulative bivariate normal distri-
butions can also be given.

Proposition 6 (Valuation formula for max-options): The value of an American max-option is given
by
CX(SE 5P = ¢ (St S + af (S}, SR, B (-, )) + a¥ (SH S2, B (-, ), (8)

where B{‘ (-,-) and B§‘ (-, -) are the solutions to the system of recursive integral equations

BY(SE 1) - K = cX (B (S?,1),57) + a¥ BY(SE,1),S2,BY (-, )) + a¥ B (53,1),52,BX (-, ) (9)
BY(S},ty = K = ¥ (S}, BE(SL, 0)) + af (S} BE(SE, 1), BY (-, -)) + af (S}, BX(SE 1), BE(-,-)) (10)

subject to the boundary conditions

1%13{((33,:) = max (B}, §2), 135135‘(53, t) = max(B%,5}) (¢5))
B{(0,t) = B}, BX(0,t) = BZ. (12)

The sum af ($},5%,B¥ (-, -)) + af (S}, S2,B¥(-, -)) is the value of the early exercise premium.

For ease of exposition we have focused on max-options on two underlying assets. However, as
we show in Section 7, the results above extend to options on the maximum of n assets. Next we
show that similar results hold for dual strike options.
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American dual strike options

Dual strike options have the payoff function (max(S} ~ Kl,St2 — K3))*, i.e,, they pay the maxi-
mum of S} =K1, §2 - Kz, and zero upon exercise at time t. Dual strike options have optimal exercise
policies which are similar to options on the maximum of two assets. In particular, there exist two
exercise subregions which possess the properties of the subregions for the max-option. In this case,
however, immediate exercise prior to maturity is always suboptimal along the translated diagonal
S2 =5} + K~ K;.

Proposition 7: Let ED represent the immediate exercise region for a dual strike option. Define the
subregions EP = EP n {(S},52,t) : S} — K; = max(S} —K1,S? —K»)} fori = 1,2. Then the following
properties hold.
() (St,S8%,t) € EP implies (S}, 5%,5) € EP forallt <s < T.

(i) (S},82.t) € ED implies (AS},S?,t) € EP forall A = 1.

(i) (8},5%,t) € EP implies (S},AS?,t) € ZP forall0 <A < 1.

v} (S},0,t) € EP implies S} = B}.

(V) If S? = S} + K» — Ky and min(S}, S?) > 0 and t < T then (S},S2,t) ¢ EP.

(vi) (S},S%,t) € ED and (§},82,t) € EP implies A(S},52,8) + (1-A) (8L, 82,t) €

ZP for all 0 < A < 1 (subregion convexity).

In (if), (iif), (iv), and (vi) analogous results hold for the subregion E%.

A representation formula for the price of the dual strike option can also be derived as in
Proposition 6.

3. American Spread Options

A spread option is a contingent claim on two underlying assets that has a payoff upon exercise
at time t of (max(S? ~ S},0) — K)*. The payoff can be written more compactly as (s? - st -K)*.
In the special case K = 0, the spread option reduces to the option to exchange asset 1 for asset 2.
Exchange options were first studied by Margrabe (1978).

Let C§ (S}, S2) denote the value of the spread option at time t with asset prices (S!,S2). As
before, let B denote the immediate exercise boundary for a standard option with underlying asset i.
Define the immediate exercise region for a spread option by Z5 = {(S},8?,t) : C (S},52) = (57 —
St -K)*h

Proposition 8: Let Z5 represent the immediate exercise region for a spread option. Then ES satisfies
the following properties.

@ (S},S2,t) € 5 implies S? > S} + K.

(i) (S},S%,t) € S implies (S},5%,5) € ES forallt <s <T.

(iii) (S},S%,t) € ES implies (S},AS2,t) € 5 forallA = 1.

(v) (AS},S2,t) € ES forall0 <A < 1.

(v) (0,52,t) € E5 implies S? = B?; S? = B} and S} = 0 implies (0, S?,t) € ES.

i) (S},S%,t) € ES and (§},5%,t) € ES implies (S}(A),S2(A),t) € ES for all

0 < A < 1, where S{(A) = AS} + (1 — A)$} fori=1,2.
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Property (i) in Proposition 8 follows since immediate exercise at $2 < S — K is dominated by
any waiting policy which has a positive probability of giving a strictly positive payoff at some fixed
future date. This property implies that the exercise region for the spread option can be thought of
as a one sided version of the exercise region for the max-option. The intuition behind properties (ii)-
(vi) parallels the corresponding properties for the max-option. An illustration of the exercise region
is given in Figure 5.

-

0 st

Figure 5. Nlustration of £5(t) for a spread option at time t witht < T

The price of the spread option can also be characterized in terms of variational inequalities as
in Proposition 5. This characterization gives the following representation of the value of the spread
option. Define

ci (S, 52) = Ef[e " T-9(s2 — 5} — K)*] (13)

which represents the value of the European spread option and the function

T
as(st,$%) = I . eV DEF[(8253 ~ 818} ~ TK) 535 p5 (st vy 1AV (14)

V=

which is defined for a continuous surface {B3 (§},v):v € [¢,T],5} € R*}.

Proposition 9 (Valuation formula for spread options): The value of an American spread option is
given by
CF(5L.82) = c§(5],82) + a3 (S}, S2, B3 (-, ), (15)

where B3 (-, ) is a solution to the integral equation

B3 (S} t) — K = cf(SE B3 (SL,6)) +aS(SL, BS (SL, 1), B3 (+,)) (16)
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subject to the boundary conditions

xr
82
B3 (0,t) = B2 (18)

Lim BS (S},t) =max(ﬁs}+ K, S} +K) a7)
1T 52

Here a3 (S}, S%,B3 (-, -)) is the value of the early exercise premium.

Arnerican options to exchange one asset for another
When K = 0 the spread option becomes an American option to exchange one asset for another
with payoff (57 — S!)* upon exercise. This payoff can also be written as

(82 - s =sHR, ~- 1)*

where R; = S? /S¢. Hence the exchange option can be thought of as S} options on an asset with
price R and exercise price one. Of course, prior to the exercise date the random mumber of options
S} is unknown. The next proposition summarizes important properties of the optimal exercise
region for exchange options. Some of these properties are specific to exchange options and do not
follow from Proposition 8. See Figure 6 for an illustration.

Proposition 10: Let FF denote the optimal exercise region for an exchange option. Then EE satisfies
@) (5},8%,t) € FE implies Ry > 1
(i) (S},S2,t) € EF implies (S},AS3,t) € FE for A=1 (up connectedness)
(i) (S},82,t) € F implies (AS},AS%,t) € EE forA >0 (ray connectedness)
(iv) S' = 0 implies immediate exercise is optimal for all $2 > 0.

o
-

51

Figure 6. Ilustration of E£ (t) for an American exchange option
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Properties (i) and (ii) are particular cases of (i) and (iii) of Proposition 8. Property (iii) is new and
states that if immediate exercise is optimal at a point (§1, $?) then it is optimal at every point of the
ray connecting the origin to (1, §2). This feature of the optimal exercise region is a consequence
of the homogeneity of degree one of the payoff function with respect to (S!,52). Properties (i)-
(iii) imply that there exists BE(t) > 1 such that immediate exercise is optimal for all S} > 0 when
R; = BE(t). Hence, immediate exercise is optimal when $? > BE(t)S} for all S} € R* and all
t € [0, T). Property (iv) follows from (v) in Proposition 8 by noting that B2(t) = 0 when K = 0.

Recall now that the price processes satisfy (1) and (2) and Cov(dz},dz?) = pdt. By Itd’s lemma
R¢ = §7/S} has the dynamics

dRy = R;[(r — Sp)dt + ordz}]
where 6g = 82 + 7 = 81 — 0 + po102, 0 = 0 + 0F - 2po10z, and dzf = [02d2? - 61dz} 1/ o%.
The next proposition provides a valuation formula for the American exchange option. Rubinstein

(1991) originally showed how the valuation of American exchange options could be simplified to
the case of a single underlying asset in a binomial tree setting.

Proposition 11: The value of the American option to exchange oue asset for another, with payoff
(87 - S})+ at the exercise date, is given by

T
CE(8Y,5%,t) = cE(S',82,1) + f 82852~ "ON(~b(Ry, BE,v ~ t,61 — 62,0%))dv
t
T
—J 5151e " ON(~b(Ry, BE,v ~ t, 81 - 82,0R) — OV — t)dv  (19)
t
where cE(S1,52,t) = Ef[e " T-9(SZ ~ $})*] is the value of the European exchange option and

BE 1
b(Re, B, v ~ 1,81 = b2,0%) = [log (") = (51 = &2 + 300 (v ~ D] e (20)

The optimal exercise boundary BE (-) solves the recursive integral equation

T
Bf —~1=cE(1,BE, 1) + J 82BEe 02 -DN(~b(BE,BE,v ~ 1,81 - 62, 00))dV
t

T
- J 81”1 -ON(~b(BE, BE,v ~ t,81 — 82,08) ~ OrVY - t)dv (21)

t

with boundary condition BE = %; v 1.

Hence the American exchange option with payoff (S? ~ S})* has the same value at time ¢ as S}

American options on a single asset with value R, dividend rate §;, and volatility o, in a financial
market with interest rate §;.
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Options on the Product with Random Exercise Price

This type of contract, which has a payoff of (S} S? ~ KS})*, is an option to exchange one asset
for another where the value of the asset to be received is a product of two prices. An example is an
option on the Nikkei index with an exercise price (K) quoted in Japanese Yen (see Dravid, Richardson,
and Sun (1993)). Then S? is the Yen-value of the Nikkei, S} represents the $/Y exchange rate and
K is the Yen-exercise price. The payoff can also be written as

SHSE-K)*.

Upon exercise, the contract produces a random number times the payoff on an option written
on the asset S? only. When 6p = §; + 8, — ¥ — po102 equals zero, early exercise is subopti-
mal. When 6p > 0, the properties of the immediate exercise region can be inferred from Proposi-
tion 10 by replacing (S1, S2,R) by (KS*,5152,52/K). Replacing (81, 82, O, 01,02, 0r) in (19)-(21)
by (61, 8p, 52,01, 0p, 03), together with the previous substitutions, produces a valuation formula
and a recursive integral equation for the optimal exercise boundary.

4, American Exchange Options with Proportional Caps

This contract has a payoff equal to (5% ~ S1)* A LS! where L > 0. An example is a capped
call option on an index or an asset which is traded on a foreign exchange or issued in a foreign
currency. In the currency of reference the contract payoff is (S - K)* A L’ where S is the price of
the asset in the foreign currency, X is the exercise price, and L' is the cap. From the perspective
of a U.S. investor the payoff equals ¢(S — K)* A L’e or equivalently (eS — Ke)* A L’e. With the
identification $? = eS, S! = Ke, and L = L’ /K we obtain the payoff structure of an exchange option
with a proportional cap.

Since the payoff of an exchange option with a proportional cap is nonconvex (and since the
derivative of the payoff is discontinuous at the cap), the approach which derives the exercise bound-
ary from the standard integral representation of the early exercise premium does not apply. How-
ever, it is still possible to identify the exercise boundary explicitly and to derive a valuation formula
by using dominance arguments. Proposition 12 gives a characterization of the exercise boundary.
See Figure 7 for an illustration.

Proposition 12: The immediate exercise boundary for an American exchange option with a propor-
tional cap LS! is given by
S? = BEC(t)S} = BE(t)S! A (1 + L)S},

ie., the immediate exercise boundary is the minimum of the exercise boundary for a standard
uncapped exchange option (BE(t)S}) and the cap plus S*.

Since the option payoff is bounded above by (§2 — S1)* ALS! itis easy to verify that the option
price is bounded above by the minimum of the price of an uncapped American exchange option
CE(S1,5%,t) and LS}. The optimality of immediate exercise when 57 > BE(£)S}! A (1+L)S} follows.
If S? < BE(t)S} A (L +L)S} and 1 + L > (81/82) v 1 it is always possible to find an uncapped
exchange option with shorter maturity, To, whose optimal exercise boundary BE(t; Ty) lies below
(1 + L) today and at all times s,t < 5 < Tp and is greater than the ratio $?/S} at date . Hence the
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EF(1)

s

0 T st

Figure 7. Exercise Region for an American Exchange Option with a Proportional Cap

optimal exercise strategy of this short maturity exchange option is implementable for the holder
of the capped exchange option. It follows that

CEC(S, 82, 1) = CE(SY, $2,1; To).

Since immediate exercise is suboptimal for the Ty-maturity option it is also suboptimal for the
capped exchange option. If S? < BE(t)S} A (1 +L)S} and 1 + L < (8,/62) v 1 immediate exercise is
dominated by the strategy of exercising at the cap. This follows since the difference between these
two strategies is the negative cash flows 6285 - 61811, on the event {f < v < 71}, where 17 is the
hitting time of the cap. This proves Proposition 12.

Proposition 13: The value of the American exchange option with proportional cap is given by
CEE(SY,8%,8) = LE* [0St 1 ooy | + E* [ D CE(SL, SB, ) 1graem |

fort < T At* wheret =inf{v € [0,T]:S2 = BE(v)S1}, T = T if no such time exists in [0, T], and
where t* is the solution to the equation

BE(t)=1+L

if a solution exists. If BE(t) > 1+ L forallt € [0,T] sett* = T; if BE(t) <1+ L forallt € [0, T}
sett* = 0.

The proposition above provides a representation of the option value in terms of the value
of an uncapped American exchange option and the payoff at the cap. We now seek to establish
another decomposition of the option price which emphasizes the early exercise premium relative
to an exchange option with automatic exercise at the cap.
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Define
T =inf{ve[0,T1:82 = (1 +L)SL} 2)

or Ty = T if no such time exists in [0, T]. Proposition 12 shows that immediate exercise is optimal
when $? = (1+ L)S'. Hence for t < T, the value of the American capped exchange option can also
be written as
CHC($Y,8%,1) = sup E*[emAm-0(s2  —s1 y*].
TE[LT]

That is, the American capped exchange option has the same value as an exchange option with
automatic exercise at the cap that can be exercised prior to reaching the cap at the option of the
holder of the contract. The value function for this stopping time problem solves the variational
inequality

EC
CEC(sl,Sz,t)2(32—51)+,a—%'t—+£c“so on R*xR*n {(51,5%): §2 < (1 +L)S'}

EC
(agt +L‘CEC)((SZ—51)+—CEC)=O on  R*xR*N{(5),5%): 5% < (1+L)S}}
CEC(S',82,T) = ($2 ~ s1)* at =T
CEC(st,s%,t) =s2 - 51 on $%=(1+L)S.,

defined on the domain R* x R* n {(S1,52): 82 < (1 + L)S'}.
Consider now a capped exchange option with automatic exercise at the cap. The value of this
contract is
CEL - E*[e—r(TL/\T—t)(S_IZ_lAT —S}-LAT)+] (23)

for t < 71, where Ty is the stopping time defined in (22). Define the function
u(s,5%,t) = CFC(5,8%,t) - CEL(S,82,1) (24)

which represents the early exercise premium of the American capped exchange option over the
capped option with automatic exercise at the cap. It is easy to show that (24) satisfies

uz0, %’ti+£uso on R*xXR*n{($%,5?%):82 <(1+L)S'}
(% + cu)is2-sH) ~CB —ul=0 on R*xR*n{(5),52): 8% <1+ DS}
u(s4,$2,T) =0 at t=T

u(S1,52,t) =0 on S%2=(1+L)SL.

An application of 1t6’s lemma enables us to prove the following representation formula.

Proposition 14: The value of the American capped exchange option has the representation
TLAT

CEC(SL,5%,8) = CFL(S1, 82, ) + E Ut e TV (5,82 - 61511,)1{352556'5‘1,}‘1'\’] (25)

fort < 1r, where C*L(S', 52, 1) represents the value of a capped exchange option with automatic
exercise at the cap defined in (23). In (25) 1, = inf{v € [0,T]:S2 = (1 +L)S$1} or 11 = T if no such
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v exists in [0, T]. The exercise boundary BEC = {BEC(t),t € [0, T1} satisfies the recursive integral
equation
SHBEC (1) — 1) = CEL(S}, S} BEC (1), 1)

TLAT
+E* U eV (5,82 — 61511,)1{35235c5¢}dv] (26)
t

SZ=S}BEC(t)

BEC(T)=(1V2—;)/\(1 +1) (27)

It is easy to verify that the solution to the recursive integral equation (26) subject to (27) is the
optimal exercise strategy BEC = BF A (1 + L) of Proposition 12. Indeed, by the optional sampling
theorem, the value of the uncapped exchange option can also be written as

*

AT
CE(S},S3,1) = E* [e 7T T-0(82, - — SL., 1) |+ E* [ J e TV (5,82 6155)1{55285(”3;}@}
t

for any stopping time 7* such that 7* = T = inf{v € [0,T] : $2 = BE(v)Sl}. In particular if
t < 7 and Tgr < T we can select T* = T, to obtain a representation of the American exchange
option which is similar to equation (25). Hence, as long as BY < 1 + L the capped and the uncapped
exchange options have the same representation. It follows that (BEC, s < [t,T]) and (BE,s € [t, TT)
solve the same recursive equation subject to the same boundary condition. If t < t* = inf{v €
[0,T]:BE =1+ L} we know that Bf > 1 + L. Substituting BEC(t) = 1 + L in the righthand side of
(26) yields

Stl (BEC(t) - 1) = (Stz _Stl)l512=(1+1“)5t1 = (1 +L)S¢1

where the first equality follows since 1; = t if BEC(t) = 1 + L. Hence BEC(t) = 1 + L solves (26)
when t < t*.

The representation formula (25) differs from the standard early exercise premium representa-
tion since it relates the value of the option to a contract that expires when the asset price reaches
the cap.

By setting S = K (i.e, 8§} = K, 81 = 7, o7 = 0) the American capped exchange option reduces
to a capped option on a single underlying asset with exercise price K (see Broadie and Detemple
(1994)).2 Proposition 14 then provides a new representation for an American capped call option
(on a single underlying asset) in terms of the value of a capped call option with automatic exercise
at the cap and of an early exercise premium. It also provides a recursive integral equation for the
optimal exercise boundary of American capped options.

2 In Broadie and Detemple (1994) the payoff on a capped option is written as (S A L’ ~ K)*. This is equivalent
to (S - K)* A (L'/K — D)K. Hence a cap of L in the analysis above corresponds to L’ = (1 + L)X in our previous
notation.
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5. American Options on the Product and Powers of the Product of Two Assets
In this section we consider options which are “essentially” written on the product of two assets.
For instance, if S and $? are the underlying asset prices the payoffs under consideration are
() product option:  (S}S7 —K)* = (P, —K)* where P, =S}S?%.
(i) power-product option: (PY ~K)* forsome Yy >O0.
Note that power-product options inchude as a special case product options (y = 1) and options on
a geometric average of assets (y = %).
Define Y; = P} = (5}$?)7. An application of 1td’s lemma yields

dY, = Y [(r - 8y)dt + oydz!] (28)

where 8y = §p+{(1-y)(r —8p+303), 0y = yop = y(oE+2p010 +0§)%, Op = 81+82—7-pO102,
and dzf = 5‘;—[01112} + 02dz}]. In the remainder of this section, we assume Sy > 0. Now consider
an American option on the single asset Y. Let B¢ (Sy, o) denote its optimal exercise boundary and
Cy (Yy) its value.

Proposition 15: The optimal exercise boundary for an American power-product option is

1

(By)¥
st

where B, = B,(3y, 0§) is the exercise boundary on an asset whose price Y satisfies (28). The power-
product option value is

BPP(sht) = (29)

CPP(S}E,SE,t) = Cr(Yy). (30)

where C;(Y;) is the American call option value on the single asset Y.

The shaded region in Figure 8 illustrates the exercise region for an American product option
withy = 1.

ol (!

BP(sL Y

0 “s!

Figure 8. Ilustration of the exercise region for a product option (y = 1) at time t witht < T
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Remark 1: (i) If y = 1 we get 8y = 6p and Oy = 0p. In this case we recover the American option on
a product of two assets.

(i) If y = } we get 6y = 3(5p +7) + 0 and 0y = 10p. In this case we recover the American
option on a geometric average of two asset prices.

6. Options on the Arithmetic Average of Two Stocks

We now consider American options which are written on an arithmetic average of assets. An
example of such a contract is the (American) option on the S&P100 which has traded on the CBOE
since 1983. For simplicity we focus on the case of two underlying assets. Consider an option
with payoff (% (S} + S2) — K)* upon exercise. The next proposition gives properties of the optimal
exercise region.

Proposition 16: Let £Z denote the optimal exercise region. Then
(i) (0,8%,t) € £* implies S? = 2B? where B} is the exercise boundary on $2-option.
(i) (S},0,t) € E* implies S} = 2B} where B} is the exercise boundary on $-option.
(iti) (§},S7,t) € E* implies (A1S}, X282, t) € E= with A; 2 1, A; = 1 (NE connectedness).
(iv) (S},8?%,t) € % and (§},5%,1) € Z% implies (AS} + (1 ~ S} AS? + (1 - A)§?) € 22
(convexity).
(v) (S},82,t) € E% implies (S},S%,s) € B forT = s = t.

Properties (i), (i), (iv), and (v) are intuitive. Property (iii) states that the exercise region is
connected in the northeast direction. Indeed, for A; > 1 and A, > 1 the payoff (%(AIS} +A287)-K)*
is bounded above by

B8t +5H) K + LA~ 1)SE+ (A - 1)SP).
It follows that the option value at (A; S}, A2S?, t) is bounded above by the option value at (S}, SZ,t)
plus £ (A1 — 1)S} + (A2 = 1)S?).
The next proposition provides a valuation formula for an American arithmetic average option.

Proposition 17: The value of the American option on the arithmetic average of 2 stocks is

T
CE(s1,8%,1) = (51,82, 6) + | 16,Ste 81D (S2 BE(-,v),v — 1,0,01V¥ - D)dv
¢ 2 t t
T
+ J $6252e~%20"0§(S2, BE(-,v),v — t,02\1 — p5 VYV — 1, 02p21Y ~ Dydv
t

T
- I rKe " $(S2,BE(-,v),v — t,0,0)dv
t

where ® (57, B=(-,v),v — t,x,¥) = [T nlw - y)N(~d(S?, BE(SL (W), v),v — t,p,w) — x)dw and
where S(w) = S} expl(r — 8, - }02)(v - t) + LWV = T].
The optimal exercise boundary B>(5},t) solves

$(S1 + BE(SH ) —K = E(SHL B8], 1), 1) + m (S}, B3(SH 1), 1) te[0,T]
3(815} + 82B5(SH,T)) = 7K v 82K

where 11, (S!, §2,t) denotes the early exercise premium.
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Figure 9. Hlustration of the exercise region for an arithmetic average option at time ¢ with ¢ < T

7. American Options with n > 2 Underlying Assets

In this section we treat the case of American options with n > 2 underlying assets. We focus
on the option on the maximum of n assets; optimal exercise policies and valuation formulas for
other contracts, such as dual strike options and spread options, written on 7 assets can be deduced
using similar arguments.

We use the following notation: £%™ denotes the optimal exercise region for the max-option
on »n assets, C*" is the corresponding price, § = (S',...,5™) denotes the vector of underlying
asset prices, and g,?"" = {(S,t) : St = max(§',...,5M)} for i = 1,...,n. Our first result parallels
Proposition 1 of Section 2.

Proposition 18: If max(S!,...,S") = St = S/ fori # j,ie {1,...,n}, j€ {1,...,n} and ift < T
then (S,t) ¢ X", That is, prior to maturity immediate exercise is suboptimal if the maximum is
achieved by two or more asset prices.

Proposition 18 states that immediate exercise is suboptimal on all regions where the maximum
asset price is achieved by two or more asset prices. The intuition for the result is straightforward.
Itis clear that CX™(S,t) > C¥2(S%, 57, t) where CX2(S%, §7,t) is the value of an American option on
the maximum of $* and $/. The result follows since immediate exercise of this option is suboptimal
when St = §/ (see Proposition 1). When n = 3 these regions are the 2-dimensional semiplanes
connecting the diagonal (S = §? = §3) to the diagonals in the subspaces spanned by two prices
((S? = 52,83 = 0), (S! = 53,52 = 0), (52 = §3,S! = 0)). There are three such semiplanes. Figure 10
below graphs the trace of these semiplanes on a simplex whose vertices lie on the three axes S, §2
and S3.
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Figure 10. Figure 11.

Figure 11 graphs the trace of the optimal exercise sets on this simplex. In the upper portion of
the triangle, above the segments of line S* = §2 > $3 and §! = §3 > 5? the maximum is achieved by
S1. Hence, X lies in this region. Similarly £ lies in the lower right corner and £33 in the lower
left corner with vertex S3. The structure of these sets and in particular their convexity follows from
our next propositions.

Proposition 19 (Subregion Convexity): Consider two vectors S € R? and § € R". Suppose that
(S,t) € £ and (5,t) € EX™ for the same i € {1,...,n}. Given A with 0 < A = 1 denote
S(A) = AS + (1 - A)$. Then (S(A),t) € EX™. That is, if immediate exercise is optimal at S and $
and if (S,t) € GF™ and (§,t) € GI* then immediate exercise is optimal at S(A).

Proposition 20: X" satisfies the following properties.
i) (S,t) € EX" implies (S,s) € EX" forallt <s < T;
(i) (S,t) € EX™ implies (S',...,AS2,...,5",t) € EX" forallA = 1;
@) (S,t) € EX™ implies (A1S1,A282,..., 8%, A+1§i1  Angn) e EX™ for all
O0<Ai<l, j=1,..,i-1,i+1,...,n;
(iv) S{ =0 and (S,t) € "™ implies (S!,..., 51,8141, s 1) e gL,

The proof of these results parallels the proofs of Propositions 2 and 3 for the case of two un-
derlying assets. Combining Propositions 18, 19 and 20 we see that the properties of the max-option
with two underlying assets extend naturally to the case of n underlying assets. Similarly, the char-
acterizations of the price function in Propositions 4, 5, and 6 can be extended in a straighiforward
manner to the max-option written on n underlying assets.
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8. Conclusions

In this paper we have identified the optimal exercise strategies and provided valuation formulas
for various American options on multiple assets. Several of our valuation formulas express the value
of the contracts in terms of an early exercise premium relative to a contract of reference. For the
contracts with convex payoff functions that we have analyzed, the benchmarks are the corresponding
European options with exercise at the maturity date only. For a nonconvex payoff with discontinuous
derivatives the appropriate benchmark may be a related contract with automatic exercise prior to
maturity. For the case of an American exchange option with a proportional cap the benchmark in this
case captures the benefits of exercising prior to reaching the cap. The early exercise premium in this
case captures the benefits of exercising prior to reaching the cap. These representation formulas are
also of interest since they can be used to derive hedge ratios and may be of importance in numerical
applications. In addition our analysis of the optimal exercise strategies has produced new results of
interest to macroeconomists. In particular we have shown that firms choosing among exclusive
alternatives may optimally delay investments even when individual projects are well worth
undertaking when considered in isolation.

One related contract which is not analyzed in the paper is an option on the minimum of two
assets. When one of the two asset prices, say S, follows a deterministic process this contract is
equivalent to a capped option with growing cap written on a single underlying asset. The underlying
asset is the risky asset price S the cap is the price of the riskless asset S*. When the cap has a
constant growth rate and the risky asset price follows a geometric Brownian motion process the
optimal exercise policy is identified in Broadie and Detemple (1995). The extension of these results
to the case in which both prices are stochastic is nontrivial. The determination of the optimal exercise
boundary and the valuation of the mon-option in this instance are problems left for future research.

9. References

[1]1 A. Bensoussan, and J.L. Lions, Applications des Inéquations Variationnelles en Contréle
Stochastique, Bordas (Dunod), Paris, 1978.

[2] M. Broadie and J B. Detemple, “American Capped Call Options on Dividend Paying Assets,”
forthcoming in Review of Financial Studies, Vol. 8, No. 1, 1995.

{3] P. Carr, R. Jarrow, and R. Myneni, “Alternative Characterizations of American Put Options,”
Mathematical Finance, 2, 1992, 87-106.

[4] A.Dixit, and R. Pindyck, /nvestment Under Uncertainty, Princeton University Press, 1994.

[5] A. Dravid, M. Richardson, and T.S. Sun, “Pricing Foreign Index Contingent Claims: An
Application to Nikkei Index Warrants,” Journal of Derivatives, Vol. 1, No. 1, Fall 1993, 33-51.

[6] S.D.Jacka, “Optimal Stopping and the American Put,” Mathematical Finance, 1, 1991, 1-14.

[7] P.Jaillet, D. Lamberton, and B. Lapeyre, “Variational Inequalities and the Pricing of American
Options,” Acta Applicandae Mathematicae, Vol. 21, 1990, 263-289.

[8] H. Johnson, “The Pricing of Comples Options,” Working Paper, Louisiana State University, Au-



The Valuation of American Options on Multiple Assets 22

gust 1981.

[9] H. Johnson, “Options on the Maximum or the Minimum of Several Assets,” Journal of Financial
and Quantitative Analysis, 22, 1987, 227-283.

[10] 1. Karatzas, “On the Pricing of American Options,” Appl. Math. Optim., 17, 1988, 37-60.

{11] 1J. Kim, “The Analytic Valuation of American Options,” Review of Financial Studies, Vol. 3,
No. 4, 1990, 547-572.

[12] W. Margrabe, “The Value of an Option to Exchange One Asset for Another,” Journal of Finance,
Vol. 33, No. 1, 1978, 177-186.

[13] R.C. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics and Management
Science, 4, 1973, 141-183.

{14] R. Myneni, “The Pricing of the American Option,” Annals of Applied Probability, Vol. 2, No. 1,
1992, 1-23.

{15] M. Rubinstein, “One for Another,” Risk, July-August, 1991.

[16] R.M. Stulz, “Options on the Minimum or the Maximum of Two Risky Assets,” Journal of Financial
Economics, Vol. 10, 1982, 161-185.

[17] K. Tan, and K. Vetzal, “Early Exercise Regions for Exotic Options,” Working Paper, University
of Waterloo, February, 1994.

[18] P. van Moerbeke, “On Optimal Stopping and Free boundary Problems,” Arch. Rational Mech.
Analysis, Vol. 60, 1976, 101-148.



The Valuation of American Options on Multiple Assets 23
Appendix A
Standard American Options

Proposition 21: For a standard American option (i.e., on a single underlying asset), whose price
follows a geometric Brownian motion process,

Ce(ASe) — Ce(Se) = (A-1)S,
forallA = 1.

Proof of Proposition 21: Let A = 1 and suppose that the price of the underlying asset is AS;. Let
T denote the optimal exercise strategy. Using the multiplicative structure of geometric Brownian
motion processes, we can write

Cr(AS) = Ef[e”" " D(AS, — K)*]
=Ef{e7" T (A - 1)Sr + (S¢ — K))™*]
< Efle™ TP (A~ 1)Sr + (Sr = K)H)]
< (A—1)St + C(Sy).

The first inequality follows from (a + b)* < a* + b* for any real numbers a and b. The second
inequality follows by the supermartingale property of S; and by the suboptimality of the exercise
policy T for the standard American option. +

Remark 2: For a standard American option, ($,t) € Z implies (AS,t) € Z for all A = 1. This
follows immediately from Proposition 21 by noting (S,t) € £ implies C;(S) = S =K > 0 and so
Cr(AS) < (A~ 1)S + C(S) = AS - K. Hence (AS,t) € £.

American Options on Multiple Assets
Next we consider derivative securities written on n underlying assets. Throughout this ap-
pendix, we suppose that the price of asset i at time ¢ satisfies

dsi = Sil(r - &)dt + oydzi] 31)

where z%, i = 1,...,% are standard Brownian motion processes and the correlation of z' and 27 is
pij- As before, 7 is the constant rate of interest, §; > 0 is the dividend rate of asset i, and the price
processes indicated in (31) are represented in their risk neutral form. We use this setting for ease
of exposition. However, many of the results in this section hold in more general settings.
Consider an American contingent claim written on the n assets that matures at time T. Suppose
that its payoff if exercised at time t is f (S} s Sf, ..., 8. For convenience, let S; represent the vector
(8%,52,...,5%). Denote the value of this “f-claim” at time t by th (S¢) and note that

cl(s) = Efle ™Y £(S0))
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where T is a stopping time representing the optimal exercise policy. Define the immediate exercise
region for the f-claim by £ = {(S;,t) e R* x [0, T]: th(Sc) = f(S)}.

Let To,r denote the set of stopping times taking values in [0, T]. For any stopping time T € T 1
and fori = 1,...,n we can write

8t = Stexpl(r - 6; - 30)T +0:2' VT = Stexpl(r — 6; — §07)0T + 0:2'VOVT]

where 6 € To,). Now define N = exp[(r ~§;~ $07)0T +0:2'/BT] andlet Nor = Ny, ..., Nip).
In what follows, we write SN to indicate the product of two vectors. It is easy to verify that

¢l ($) = sup E*e T f£(SNo(r_))].
8eTy,

Proposition 22: Suppose immediate exercise is optimal at time t with asset prices S, Le., (S,t) € Ef.
Then immediate exercise is optimal at all later times at the same asset prices. That is, (S,s) € Ef
foralls such thatt <s <T.

Proof of Proposition 22: Consider the new stopping time ' = 9%. Since 6 € Tp,; we have

0’ € Tox where k = I=L > 1 for t < s. It follows that

cf$) = sup E*[e77T9 f(SNg (1-5))]
0'eTox

> sup E*[e”"T~9 f(SNg (1-5))]
0eTo,

=cf©)

where the inequality above holds since Ty C Tox for k > 1. Suppose now that (S, s) ¢ Ef. Then
Csf(S) > f(S) and the inequality above implies th(S) > f(S). This contradicts (S,t) € Ff. ¢

Define A o; S by
Ao; S = (81,82,...,801 AsE, st+1 &™),

Proposition 23 gives a sufficient condition for immediate exercise to be optimal at time t with asset
prices A o; Sy and A = 1 if immediate exercise is optimal at time ¢ with asset prices S;.

Proposition 23 (Right/up connectedness): Consider an American f-claim with maturity T that has
a payoff on exercise at time t of f(S;). Suppose immediate exercise is optimal at time t with asset
prices Sy, i.e., (St,t) € Ff, or equivalently, th(St) = f(St). Fix an index i and A > 1. Suppose that
the payoff function f satisfies

FhoiSe) = f(8) +cSi (32)

When f(St) > 0 and where ¢ = 0 is a constant that is independent of S}, but may depend on A and
8] for j + i. Also suppose that
SflAeiSr) < f(5r) +cSE (33)

for all S; (with the same c as in (32)). Then (A o; S;,t) € /.
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Proof of Proposition 23: Suppose not, i.e., suppose C,f (A o; 8t) > f(A ;) for some fixed i and
A = 1. We have

cf(ao;$) = sup E*[e"®T £((A o; S)Nor-1))]

€T,

< sup E*[e""TD(f(SNor-1)) + €S Nr.p)] (by (33))

feTo,
=cf($) +cst
= f(8) + ¢St (since (S,t) € Ef)
=f(Ao; S) (by assumption (32)).

This contradicts our assumption th (AoiSt) > f(Ao;St).

Conditions (32) and (33) are satisfied by the following option payoff functions (for the indicated
values of i):

Option payoff function Valid i
() F(St) = (max(S},...,8) ~K)*  {i:S}=max(S},...,ST)}
®)  f(S},S?) = (8¢ -5t -K)* i=2

First consider payoff function (a). We prove that conditions (32) and (33) hold for all i such
that S} = max(S},...,ST'). Note that for £(S;) = (S} — K)* = S} — K > 0 and for A > 1 we have
FAo;S) =ASf-K
=St—K+(A~-1)S}
= f(S) +cSh
So (32) holds for ¢ = A — 1. To prove (33), define I = argmax;_; _,A o; 54 and note that if I # i,
FAo;Sr) = (St~ K)*
s (SL-K)y + (A~ 1)SL
= f(Sr) +cSE.

If L = i, then ,
FdoiSr) = (ASE - K)*

=[S} ~K) + (A~ 1SE*
<(SE-K)* +(A-1)Sk
= f(S¢) +cSt.
The inequality follows since (a + b)* < a* + b* for any real numbers a and b.
For payoff function (b), conditions (32) and (33) hold for i = 2. To prove this, note that for
f(S8;) = S? — $} ~ K > 0 we have
f(Ao;8) =ASf - S} -K
=SP-S}~K+@A-1)8?
= f(Se) + ¢S,
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$0 (32) holds for ¢ = A — 1. To prove (33), note that
fQoiSr) = (AS2 - St—K)*
=[(83-S1-K)+@A-1sZ)
S ($2-8S1-K)" +(A-1)S2
= f(S) +cS2.

Proposition 24 gives a sufficient condition for immediate exercise to be optimal at time ¢ with
asset prices A o; Sy and 0 < A < 1 if immediate exercise is optimal at time ¢ with asset prices S;.

Proposition 24: Consider an American f-claim with maturity T that has a payoff on exercise at
timet of f(S;). Suppose immediate exercise is optimal at time t with asset prices S;, i.e., (Si,t) €
Ef, or equivalently, th(St) = f(St). Fix an index i and fix A with 0 < A < 1. Suppose that the
payoff function f satisfies

F(Ao;8t) = f(Se). (34)
Also suppose that

f(A °iST) Sf(sr) (35)
for all Sy. Then (A o; S, t) € E/.

Proof of Proposition 24: The proof is similar to the proof of Proposition 23. Suppose not, ie.,
suppose th()\ 0;St) > f(Ao; §¢). We have

Cl(AoiS) = sup E*[e7"0TD f((A o; S)Nor-p))]

0eTo,1

< sup E*[e7 T8 f(SNgir-1))] (by assumption (35))
BeTo,

=c/ )

= f($) (since (S, 1) € )

Hence th(/\ 0; §) < f(S) = f(A 0; §) by (34). This contradicts C{(A 0;8) > f(Ao;85). ¢

Conditions (34) and (35) are satisfied by the following option payoff functions (for the indicated
values of i)

Option payoff function Valid i
(@ f(S) = (max(SF,..., Sy —K)*  {i:Sf <max(S},...,57)}
®)  f(S1,82) = (S?-SI-K)* i=1

It is trivial to verify that conditions (34) and (35) hold for payoff functions (a) and (b) for the
indices indicated.
Define oS by the usual scalar multiplication
oS = (aS1, a8?,..., a8™).

Proposition 25 gives a sufficient condition for immediate exercise to be optimal at time t with asset
prices oSy (ox = 1) if immediate exercise is optimal at tirne t with asset prices S;.
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Proposition 25 (Ray connectedness): Consider an American f-claim with maturity T that has a
Dayoff on exercise at time t of f(S;). Suppose immediate exercise is optimal at time t with asset
prices Sy, Le., (S;,t) € Ef, or equivalently, th (S¢) = f(St). Also suppose that for all ¢ = 1 the
payoff function f satisfies

flase) = af(Se) +¢ (36)

when f(S;) > 0 and where ¢ = 0 is a constant that is independent of S, but may depend on «. Also
suppose that
flas) s af(S) +c¢ 37)

for all S. Then for all « = 1 we have («S;,t) € E/.

Proof of Proposition 25: Suppose not, i.e., suppose C,f (aS) > f(aS) for some o > 1. A contradic-
tion follows from the string of inequalities

¢/ (xS) = sup E*[e™"0T-D f(oSNocr—s))]

0eTo,y
< sup E*[e”"0T-8 (& f(SNgr-1y) +¢)]  (by assumption (37))
feTo,1
<acf§) +c
=of($) +c (since (S,t) € E)
= f(aS) (by (36))¢

Conditions (36) and (37) are satisfied by the option payoff functions

(a S(S) = (max(S},..., 8P ~K)*
®)  f(S}, S} = (S-S} -K)*

For payoff function (a), conditions (36) and (37) hold. To prove this, note that for f(S;) > 0 we

have

flasy) = max aSf —K
J=lun

=a( max S} -K)+ (a-1)K
J=l,..n
= of(S) +c,
50 (36) holds for ¢ = (& — 1)X. To prove (37), define [ = argmax;_; _» ${ and note that
FlaSe) = (ask - K)*
= [o(St ~K) + (@ ~ DK}

<o(SE Ky + (- 1)K
=of(Sy) +c.
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For payoff function (b), conditions (36) and (37) hold. To prove this, note that for f(S;) =
$2 -5} — K > 0 we have
floSt) = oS} ~aS} - K
= &(Sf ~ 5} -K) + (a— 1)K
=of(S) +c,
S0 (36) holds for ¢ = (x — 1)K. To prove (37),

SloSy) = (xS2 — oS} ~ K)*
= [o(§} - S} — K) + (o — DK]*
<o(S2 -8 -K)* +(x— 1)K
= o f(S:) + c.

Proposition 26 (Convexity): Consider an American f-claim with maturity T that has a payoff on

exercise at time t of f(S:). Suppose that f is a (strictly) convex function. Then C{ (S) is (strictly)
convex with respect to S.

Proof of Proposition 26: Using the convexity of the payoff function, we can write
th(S(A)) = 9s1;p E*[e 7071 f(ASNg(r_py + (1 — MSNor-n)]
€To,x

< QS‘;P E*[e T (A f(SNor-) + (1 - AV F (SNa—py))]
€Tg,1

=acf®)+a-ncfG). o
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Appendix B

Proof of Proposition 1: Suppose not, i.e., suppose C¥ (5}, 5}) = (S} —K)* for some t < T. Consider
a portfolio consisting of (1) a long position in one max-option, (2) short one umnit of asset 1, and (3)
$K invested in the riskless asset. The value of this portfolio at time ¢, denoted V;, is zero since st
must be greater than K for the assumption to hold.3

Let u be a fixed time greater than t. Since exercise of the max-option may not be optimal at
time u, the value of the portfolio at time t, Vi, satisfies

Vi = E}[e™™ ™9 (max(SL, S2) —K)*1 ~ S} + K.

Next we show that the righthand side of the previous inequality is strictly positive for some u > t.
That is, V; > 0 which contradicts V; = 0 asserted earlier.
To show V¢ > 0, first let A(u) denote Effe "%~ (max(SL,52) — K)*]. Then

Alu) 2 Ef[e™ ™% (max (5}, 52) - K)]
=EffeT0[S) — K + 15,013 (S2 - S1)]]
=T D(EX(SL) — K + Ef (152,51, (5% - SD])
= Sle~1t _ ottt 4 g T WDER[] oo (SE - SD

Clearly (a) Sje™61®=8) — Ke=r=t) — (5} — k) ~ 0 as u — ¢. Also, (b) e DEF[1(z_ 1, (S —
S1)110asu — t. However, Lemma 1 below shows that convergence is faster in case (a). That is,
there exists au > t such that A(u) > S} ~ K. This implies V; > A(u) - S} +K > 0 which contradicts
Vi = 0. Hence CX(S1,5H) > (S} —K)* forallt < T. ¢

Lemma 1: Suppose S} = S? > 0 and t < T. Then there exists a time u, t <u < T, such that

S¢1 (e—61(u~t) -1) - K(e—r(u—t) -1)+ e—r(u—-t)Ezk[l{s'%”q]‘)(S]Zt _,S;)] > 0.

Proof of Lemma 1: Let u = t + At and B(At) = e T4 E}[1,2.51,(S2 — SD)1.

B(AL) = e M EF 161, (52 ~ SD)]
>e_rAtE¢*[1{s,%>saeem}(55”Silt)] foralle >0
> e A (e VBY — 1)EF (1525 s1eem; S
> 1= pre M o) [7 Nawynedy
= Y(AL). o

where d(v) = av + by/Af and a and b > 0 are constants depending on oy, 02, 81, 82, and p. It can
be shown that ¥(0) = 0 and ¥'(0) = +oo. Let ®(AL) = S} (7518 —1) ~K (e " - 1), Then &(0) = 0

3 St1 = Sf < K we can always find an exercise strategy whose value is strictly positive. It follows that
c¥st.sh > o.
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and ¢ has a finite derivative at zero given by ' (0) = K ~ 615}. Hence, there exists a At > 0 (or
equivalently, u > t) such that the assertion of the lemma holds. ¢

Proof of Proposition 2: Since (S,t) € £ and (5,1) € £ wehave CX(S) = S'~K and C¥($) = §i-K.
Since (S* v 5% — K)* is convex in §* and $2 we can apply Proposition 26 and write

CES(A) < ACK(S) + (1 = ACE(S) = AST = K) + (1 = A(§ - K) = S{(A) — K.
On the other hand, since immediate exercise is a feasible strategy CX(S(A)) = (S'(A) v $2(A) —

K)* = Si(A) - K when (5,t) € £X and (§,t) ¢ Z¥. Combining these two inequalities implies
SQAL eEL »

Proof of Proposition 3: (i) This assertion follows immediately from Proposition 22 in Appendix A.
(ii) This is immediate from Proposition 23 and the remarks for payoff function (a) which follow that
proposition.

(iti) This assertion follows from Proposition 24 and the remarks for payoff function (a) which follow
that proposition.

(iv) If 7 = 0 then §2 =0 forall v = t. Hence the max-option is eguivalent to a standard option on
the single asset S1. By definition, the optimal exercise boundary for this standard option is B}. +

Proof of Proposition 5:

(i) Uniform boundedness of the spatial derivatives: We focus on the derivative relative to $1. The
argument for $? follows by symmetry. Consider two stock values (S}, 57, t) and (5}, 52, t). For any
stopping time T € 7,1 we have

I(SEvSE—K)* — (SLvS2—K)*| < |(Sk v §2) — (5L v §2)|
< |8} -8
= I8! = SHew[(r - 81t — 1) - Jo2(r — ) + oy (2} - 2})]
<ISt-SHep[rr-H-Ltofr-+aE -2)]. (38)
Without loss of generality, suppose S} > $}. Let 7, represent the optimal stopping time for
(S},S2,t). We have
ICX (St SE,8) ~ CX (8}, S3, 1)) < EF[e 7™M D|(SE, v S —K)* — (S, V2 —K)*[]
< ISt - SHE exp(~30f (11 ~ 1) + 01(2}, ~ 2}))] (by (38)
=8} - 8.

CX (s} S0 -CX (5] st .t : - .
Hence, 176 | sl) -s'1|<5 LU 1, i.e., one is a uniform upper bound.
t t

(i} Local boundedness of the time derivative: Define u(t) = CX(S!,S2,t) and let 8(t) denote the
optimal stopping time for this problem. We have

lu(®) —u()l < |E*[e7OT0 (max SN p_yy - K)* = e 70OT=) (max S'Njyr—s) ~ K)*1]
(since 9(t) is suboptimal for u(s))
< E*“e—ra(t)(T—t) —_ e—rﬂ(t)(T-—s)l(miaXSiN‘i;m(T’t) - K)+

+ e OT (max SING ) 7y, — KO — (max SNy regy - K)*1]. (39)
1 1
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Since G(t) = e "¥{T~1) i5 convex in £, we can write

[e TOOT-1) _ =r0UNT-5)| < [ sup (#8e~"T-Y))]|r0(t)(t — 5)| < kit — 5] (40)
#€0,1]
v€[0,T}

for some constant k.
Also E*(maX SINjyr_p — K)* < 321 E*(S'N)yyr_py), Where
12

E*(S'Njyir-) = S E* (N rop) < Stexplly - 8:/(T - )] = k;S?, (41)

for some constants k;.
Finally, let o¢; = v~ §; — %01-2, i=1,2, and define a;(s) = 0;@{ T ~5) + 0:28/8 () VT — 5. We
can write
Y o= |(Slea1(t) VSZQ“Z(t) _K)+ _ (Sleal(s) v Szeaz(x) —K)+|
< ‘Sleal(t) v §2e@2(t) __ gloai(s) y, 52eaz<s)[
< [Sleay(t) v Szeag(t) _ Sleal(s) v SZeaz(t)' + ISleul(_v) v SZeaz(t) - Sleux(s) v SZeaz(s)I
= SHeM® v en )y (t) — ai(s)] + S2(e%2® v e@2)ay(t) — an(s)|

= (ST + $H)elm Ol +la@HaMN (1 g, (£) — a; ()] + a2 (t) — az(s5)), (42)

where the third inequality follows from the convexity of the exponential function. But |a;(s)| <
[0l 0T ~ 5) + 0312 V@) VT =5 < |ou|T + 03l zE[VT, and 3; 1as(t) - as(s)| < 3 (o |0CE)N(E —
$)+ 04| 2 VO (VT =t~ VT = 5)) < AUt — 5| + 33 |zi| (VT = £ — /T —5)) = h. Substituting these
inequalities in (42), taking expectations, and using the Cauchy-Schwartz inequality yields

E*[¥] < (S? +S?—)E*[e(ziIaiI)T+(§:¢aiIz1()ﬁh]
< (8! + §2)(E*[2Se ol Tr2(Si oulzid VT g | o 2) 3

1
< B(S' + $2)(E*|h1®)2, (43)
for some constant B. Furthermore

2 <D (s = ¢+ B (1221 + 122)) (VT =1 -T=5)°),

1
for some constant D. Since ¢(t) = /T — t has ¢/ (t) = -%(T~t)‘§ < 0and ¢"(t) = -%(T—t)‘% <
1
0, we have 0 < ¢p(t) — P(s) < %(T —$)"2|s — t] for t < 5. 1t follows that

E*IRI? < D(Is ~ tf? + 2(E*(z)? + B* (292 =t |s - t12) = Dls ~ 112, (44)

Substituting (40), (41), (43), and (44) in (39) vields

Jut)y —u(s) < (S + S?)Ngit — s

where N; depends on s. Local boundedness of %% follows.
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To show that CX satisfies the variational inequalities (4) we use Theorems 3.1 and 3.2 in Jaillet,
Lamberton, and Lapeyre (1990) (see also chapter 3 in Bensoussan and Lions (1978)) and apply a
two-dimensional version of the procedure followed in the proof of their Theorem 3.6. 4

Proof of Corollary 1: Using the transformation S§! = ¢! and §2 = €>2 we can rewrite equation (4)

as
X X X
oflsrC¥ - 0(1%— g Lo

L 22X PV L S S
v G0y ot

2
5[ oy? 71 +28y 2y

22X
g1 po2 + a 5
where o =¥ ~8§; ol ,i=1,2. Convemty also implies z'Hz = 0 for all z € R? where H represents

the Hessian of CX. Let C,’j = ai,%y fori,j=1,2. For 2’ = (poy, 02) we get

Cll C{‘Z

po1 X
ck C;{é) ( o ) po? Cf +2p0102C8 + 0'2C22 >0,

(po1,02) (

which implies 07 C + 2p0102Cf + 03¢ 2 (1 - p2)o2CE = 0. Hence

acX  ac*  acX

- o1 By1 —D(2~a—y;+-5t‘. (45)

031 -podck <rcX
Consider the domain

= {2 1 v: <32 < Y5, v7 (02) = B (1) —€ = 1 < Bf (32, 1) + € = ¥{ (02)}

for given constants y; < 5 and € > 0. Integrating (45) over 3; x [t1,t2] yields

1 2 2 t2 7 (02) x t2 X
o<ii-p )(rlJ J J y )Cudyldyzdtsrf f CXdyidydt
Y1 2

acx
f ] ay dyldyzdt—azj J 5 dyldyzdt+I J 0T ydynt,

for all € > 0. Equivalently
1 2y 52 i ed X ( X fn,—
0= 3(1-p%)oj L J (C1 7 (2), 2) = T (g (yz),yz))dyzdt
1 Y32
t2 t2 ey
=) (sgpc")mzt)dt—al [ (X 030 - X7 (), 30) et
1 ¢ 1 YY2
tz oo x ty acX
e [ [ (oot om - Koz o) andr+ [ | Eaydyoar
t Jyg 4y Jz Ot

where A(Z;) is the Lebesgue measure of the set 3.

As € | O the first 3 terms on the righthand side converge to zero since A(Z;) | 0 and C¥ is
locally bounded. By reversing the order of integration, the fourth term on the righthand side can
be written as

o (CF 022, (01,20 = C¥ (1, 72, (1, 720)) A
O

for some appropriate domain Zo. This expression also converges to zero as g — @.
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We conclude that Cf¥ (y7 (), 32) — CX (7 (v2),372) 1 Oase ) @ forallt € [t1,t,] and all
¥2 € [¥7,25]. Since C{‘(yf' ,2) = 1 it follows that C{(y7,7) = 1. Proceeding along the same
lines we can show C¥ (31,F) = 0 across the boundary BX (y»,t). ¢

Proof of Proposition 6: Since the partial derivatives exist and since the spatial derivatives are
continuous on [0,T) X R* x R* (by Proposition 5 and Corollary 1) we can apply It6’s lemma and
write
T 2 acx .
eTIOCK ST = N SLSE )+ [ e Y S orsiaz
= i=1
T ac}(
] tereocry v eren g, (46)
s=t os

On the continuation region C we have a—g; + £CX = 0. On the immediate exercise region X we
have CX(5},52,t) = max(S},5?) — K. Thus

acX {—(51 -7)St ~¥(S} ~K)=-6:S} +vK onEf

CvrcX =
ot (82~ 7)S} 7 (S} —K) = ~6,5? +vK onEf.

Also CX(S},5%,T) = (max(S},S3) - K)*. Substituting and taking expectations on both sides of
(46) gives

T
EF[e™T-Y (max(S}, $3) - K)*1 = CX(SE,52,1) + J tE;*[e“”“'”(rK = 815D 1 (slanX (2.0
=
+e 7O (K — 52511 (2. 5351,y 1S 47)

Rearranging (47) produces the representation (8). The recursive equations (9) and (10) for the
optimal exercise boundaries are obtained by imposing the boundary conditions C¥ (B} (52,1}, S2) =
BY(SZ,t) ~ K and CF(S},B¥ (S}, 1)) = BY(SLt) - K. +

Proof of Proposition 8: (i) Clearly immediate exercise is suboptimal if S? < S}! + K.

(i) This assertion follows immediately from Proposition 22 in Appendix A.

(iif) This is immediate from Proposition 23 and the remarks for payoff function (b) which follow
that proposition.

(iv) This assertion follows from Proposition 24 and the remarks for payoff function (b) which follow
that proposition.

(WIf S} =0 then S} = 0 forall v = t. Hence the spread option is equivalent to a standard option
on the single asset S°. By definition, the optimal exercise boundary for this standard option is B2.
(vi) The proof is similar to the proof of Proposition 2. +

Proof of Proposition 10: (i) If R; < X there exists a waiting policy which has positive value.
(i) Let A > 1 and suppose that (S}, AStz, t) ¢ ZF. Then there exists a stopping time T such that
T >t and

C(S§,ASZ, 1) = Ef[e" " DSYAR, ~ 1)*]
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= Ef[e"TOSH R - 14 (A - 1)Ry)*]

< Efle”USHR, - 1)* 1+ (A~ 1EF[e7 T DSIR, ]
< C(SHSED) + (A~ 1)8?

=S7-S+(A~1)S2 = ASZ2 - 8!

(iit) Consider A > 0 and suppose that (AS},AS?,t) ¢ F£. Then

1 2 1 ASlZ
CASEASE 1) > ASH(E2E — 1)
as]

e Ef[e"TUAS Ry ~ 1T > ASH(R - 1)Y
= E}e T USHR, —1)*] > SHR, - 1)*

Since C(S7,52,1) = Ef[e"(""DSL(R, - 1)*] we get C(SE,S2,£) > SH(R: — 1)*. This contradicts the
assumption.

(iv) If S} = 0 we have S} = 0 for all v > t. Hence, S2 - S} = S2 for all stopping times 7. But
S22 E}[e~"~152] for all stopping times 7. The result follows. *

Proof of Proposition 11: The value of the option in the exercise region is S? — S} which has dynamics
d(S? - 81 = S2[(r ~ 82)dt + 02d22] — S (r ~ 81)dt + o1dz}] on (R, = BE}.
The value of the option can then be written as
CE(SE,SE,t) = cE(SL, 82,0 + E:‘[J:e~*<v-f>(5zsg ~ 81831 g, g, dV]

where cE(S},52,1) = Ef[e="(T-D (52 - S1)*] is the value of the European exchange option.
ButR, = Bf <« zR > d(Ry,BE,v - t), where

BE 1
En )= 2V L — 152 — )] ———e
d(R¢,B;, v —t) = [log(Rt) (r—8r — 308) (v t)]GR —-
For i = 1,2, define z* = p;gz®R +./1 -~ p% uik where

dsi dr 1
Sit'T = '&*i'(;;[O'iz—PCTle]dt-
t

uik = z' — pig2R

1
and pjrdt = ——Cov(
V1 -pk l Oi0R

Let d(R;,BE,v — t) = d. Taking account of the fact that u2® and u'® have standard normal
distributions and are each independent of z¥, we can write the early exercise premium as

T
L J’ 8257670 exp[ 102 (v ~ t) + 02 (parzR + 1 ~ pip u)v — tIn(Z®)n(uR)dzRdu?Rdv
ulﬁél(zf:.-m)}
T
- f 81517 exp[~0F (v — 1) + 01 (p1r2R + 1 — pl u PV ~ EInzF ) n(uR)dzRdu R dy

t R
zRzq
{ulké(-w‘+w)}
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T po oo
= J; J-d j 62827020 D (ZR — oy pap v — DnR — 03y|1 — plev — DdzRduRdy
T peo poo
- L L j 815}e 8O0 (2R — gy p1p Vv~ DNUIR — 041 — ppVv — DdzRdu'Rdy
T poo o
- Jt Jd T202R VY tJ‘ 8287e 2 Dn(wRyn(w)dwrdwdv
—02P2R - -
T oo £
- L L op «/v_t.[ 815}e= 1 Im(w  n(w)dwrdwdv
—O01P1R e —oo

T
- f 52522V DN(d(Re, BE, v — 1) + 02papv —D)dv
t

T
- J 515e Y ON(~d(Ry, BE,v - t) + uprrvv — D)dv
t

where
AR BE,Y = ) - 0apordv =T = llog(22) — (5, — 8, + LoR) (v — )] —
Rt ORvVvV ~1
= b(R,BE,v —t,6, — 62,0%)
and
E
d(Re,BE,v —t) —oipirVv =t = {log(%‘;) (61 -8+ 2o (v - t)]ﬁ +orvv —t

=b(Ry,BE,v ~ 1,81 — 62,0R) + OpvV ~ L.
The recursive integral equation for the optimal boundary is obtained by dividing by S} through-
out and setting CE(S}, S2,t) = S} (B ~ 1) at the point S?/S} = R, = Bf. #

The proof of Proposition 12 follows from the next lemma.

Lemma 2: The price of the exchange option with proportional cap satisfies the following inequali-
tes,

0 = (S?-$H* ALS! < CFC(sY,8%,t) < CE(SY,S%,6) AVLSLE)
where V(LS',t) is the date t value of a contract which pays LS! upon exercise. When §; > 0 we
bave V(LS1,t) = LS}.

Proof of Lemma 2: The lower bound on the price follows since immediate exercise is always a
feasible strategy. To obtain the upper bound note that (52 — S1)* A LS! < (§2 — S)*. Hence
CEC(S81,52,t) < CE(S*, $%,1). On the other hand (52 —§1)* ALS! < LS!. This yields CEC(S1,52,t) <
V(LS',t). Combining these two bounds yields the upper bound in the lemma. Finally note that
when 6; > O it does not pay to delay buying the stock $? since this amounts to a loss of dividend
payments. ¢

Proof of Proposition 12: From the lemma it is straightforward to see that immediate exercise is
optimal if S? = BE(t)S! A (1+L)S}. When S? < BE(t)S} A (1+L)S}, the suboptimality of immediate
exercise is proved in the text. ¢

Proof of Proposition 14: We first establish the continuity of the derivatives of CEC(S!, §2,¢) across
the exercise boundary BEC.
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aCEC

T (51,52,1),1=1,2 are continuous on {S? = BECS1} n {82 < (1 + L)S}.

Lemma 3:

Proof of Lemma 3: On {S? = BEC$1} 1 {$2 < (1 + L)S!} we know that BEC = BE, Thus if §2 > BES!
we can write (5% — §1)* = CEC(S?, 2 t) = CE(S1,52,¢). On the other hand, if $2 < BES! we have
(52 — §1)*+ < CEC(S1,$2,1) < CE(SL, S2,1).

Consider now §? = BES? and let §2 = §2 + ¢, S2 = §2 —¢ for € > 0. The following bounds hold

(§2 ~ Syt — (52 — 1) N CEC(S1,82 1) — CEC(S1,82,1) - CE(81,82,t) — CE(S1,82,t)
2¢ - 2€ - 2€

for all € > 0. Taking the limit as € | 0 yields

L »1[2Ci acke]  fack | ack
~ 2] as2? 0S2 | T 215382 " as?

where the subscripts + and — denote the right and left derivatives, respectively. By continuity of
dCE/28? across the boundary and since CE/3S? = 1 at that point the result follows. A similar
argument holds for the derivative relative to S!. +

To prove the proposition it now suffices to apply Itd’s lemma noting that %‘t— + Lu = 0 in the
continuation region and %—}‘ +Lu = —5,5% + 515! in the exercise region. This establishes (25). The
recursive equation (26) follows by imposing the boundary condition CEC(S1, 52, t) = S} (BEC(t) —1)
when 52 = BECS1, o

Proof of Proposition 16: (i) and (ii) are obvious. To prove (iii), suppose that there exists T > t such
that C*(A;:8f, 2257, 1) = EX e D (3 (A182 + 4,52) - K)*]. Then

C¥(AsSE, M282,8) = Ef[e D38t + 182 -k + 1A, - 1ISE+ 1Az - 1)$D)*]
< Efle T (G(8E+ 5B ~ KT+ 3 (A - DEf[e 7051
+ 32 = DEF e 852)]
= CHSHSE D + 5 (AL~ 1)S} + 2(Az - 1)§7
=3P+ SH-K+ 1A - DSt + 1A - 1S?
= 1St + .87 - K.
Assertion (iv) follows from the convexity of the payoff function and Proposition 26.
To prove (v), note that if (5},S2,5) ¢ £ then there exists T > s such that waiting until T
dominates immediate exercise. But since t < s < T, the strategy T is feasible at t, and dominates

immediate exercise. This contradicts (S}, $2,t) € £Z. &

Proof of Proposition 17: We have

T
CE(sh, 82, t) = Et*[e-“T-”(g(s;+s%)—1<>+]+[ e " TDEF(3(8185+8282) ~TK) (225353 4y JAV
t
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Let 11 denote the early exercise premium. We have

BX(sL,v) 1
S22 B¥HSLv) == 28 > [log(—-?t;——) ~(r-6-305)(v-1 oodv =
<= z2 2 d(S},BE(SL,v),v —t)
= pzl +4/1-p2u? > d(S2, BE(SL,v),v ~ 1)
1 P

21 2 pEoel 1

o= us 2 d(S;, BA(SE,v), v~ ) - ez
t v ("1' —pz 1 _pz

= uM zd(s},BE(SL,v), v - t,p,2h).

Hence we can write

T o 0
v 1 Yo o s
T = e "v-tils Sle(T—él)(V—t)J J e~ 3@ -ov=t) nwVdu?ldz'dvy
t L 2010t N P> ( )

® o0 ]
+ 3828700000 [ [ ggoRtvtitontonst iR Ty ) (420 a4
—o0 Jd
o0 o
-TKJ j n(zl)n(u“)du“dzldv]
~w Jd

T +00
= L 3815fe 100 f nOw — 01V — DN (~d(S?, BE(SE (W), ¥),v ~ t,p, w))dwdv

—o0

T ca o0
+J %525}29—62@'4)] f 1 e—%‘(21~0'2921\/V—t)2—%(u21“0‘21/1—P§1\/1’*5)2___!‘_
t —wJa 21 V2

1 1 ; 1
e 505(v-t)+ 50805, (v—t)+7022(1—p§1)(v-—t)duZIled,v

T ®
- J rKe b J R(W)N (~d(S2, BE(SL (W), v), v — t, p, w)ydwdv
t —00
It is easy to verify that the double integral in the second term equals

+00
J n(W — 02pn VY —~ LIN(~d (S, BE(SL (W), V),V — £,0, W) + O2/1 ~ p3,\v — D)dwdv.
Defining &(S7, B>(-,v),v ~ t,p, X, ¥) = [% n(w — »)N(~d(S, BX(SL(W),v),v — t, p, W) + x)dw
and substituting in the expression above yields the formula in the proposition. 4

Proof of Proposition 18: Let S(™) denote an m-dimensional subset of {§1,...,8"}. Then Vm < n
we have,
CEn(s, 1) = CXm(stm 1)

In particular for m = 2 the lower bound is C¥2($® t). Now suppose that there exists i and
Ji# j, (Lj) € {1,...,n} such that max(S?,...,57) = S' = §/. Then selecting $@ = (si,s7)
yields C¥(S, t) = CX2(S!,57,t). An application of Proposition 1 now shows that CX2(St,87.¢) >
(St —K)* = (87 -~ K)*. The result follows. +
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