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Incorporating Second-Order Functional
Knowledge for Better Option Pricing

Charles Dugas*, Yoshua Bengio†, François Bélisle‡,
Claude Nadeau§, and René Garcia**

Résumé / Abstract

Incorporer une connaissance a priori pour une tache particulière aux algorithmes
d'apprentissage peut grandement améliorer leur performance en généralisation. Dans
cet article, nous étudions un cas où nous savons que la fonction à apprendre est non-
décroissante pour ses deux arguments, et convexe pour l'un d'entre eux. Pour ce cas
particulier, nous proposons une classe de fonctions similaires aux réseaux de neurones
multi-couches mais (1) avec les propriétés mentionnées plus haut, et (2) est un
approximateur universel de fonctions continues avec ces propriétés et avec d'autres.
Nous appliquons cette nouvelle classe de fonctions au problème de la modélisation du
prix des options d'achat. Nos expériences montrent une amélioration pour la régression
sur ces prix d'options d'achat lorsque nous utilisons la nouvelle classe de fonctions qui
incorporent les contraintes a priori.

Incorporating prior knowledge of a particular task into the architecture of a
learning algorithm can greatly improve generalization performance. We study here a
case where we know that the function to be learned is non-decreasing in its two
arguments and convex in one of them. For this purpose we propose a class of
functions similar to multi-layer neural networks but (1) that has those properties, (2)
is a universal approximator of continuous functions with these and other properties.
We apply this new class of functions to the task of modeling the price of call options.
Experiments show improvements on regressing the price of call options using the new
types of function classes that incorporate the a priori constraints.

Mots-clés : Connaissance a priori, algorithme d'apprentissage, approximateur
universel, options d'achat.

Keywords: Prior knowledge, learning algorithm, universal approximator, call options.
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1. Introduction

Incorporating a priori knowledge of a particular task into a learning algorithm helps reduce
the necessary complexity of the learner and generally improves performance, if the incorpo-
rated knowledge is relevant to the task and brings enough information about the unknown
generating process of the data. In this paper we consider prior knowledge on the positivity
of some first and second derivatives of the function to be learned. In particular such con-
straints have applications to modeling the price of European stock options. Based on the
Black-Scholes formula, the price of a call stock option is monotonically increasing in both
the “moneyness” and time to maturity of the option, and it is convex in the “moneyness”.
Section 3 better explains these terms and stock options. For a function f(x1, x2) of two
real-valued arguments, this corresponds to the following properties:

f ≥ 0,
∂f

∂x1
≥ 0,

∂f

∂x2
≥ 0,

∂2f

∂x2
1

≥ 0 (1)

The mathematical results of this paper (section 2) are the following: first we introduce a
class of one-argument functions that is positive, non-decreasing and convex in its argument.
Second, we use this new class of functions as a building block to design another class
of functions that is a universal approximator for functions with positive outputs. Third,
once again using the first class of functions, we design a third class that is a universal
approximator to functions of two or more arguments, with the set of arguments partitioned
in two groups: those arguments for which the second derivative is known positive and those
arguments for which we have no prior knowledge on the second derivative. All arguments
have the property that their first derivative is positive. The universality property of the
third class rests on additional constraints on cross-derivatives, which we illustrate below for
the case of two arguments:

∂2f

∂x1∂x2
≥ 0,

∂3f

∂x2
1∂x2

≥ 0 (2)

Comparative experiments on these new classes of functions were performed on stock option
prices, showing improvements when using these new classes rather than ordinary feedfor-
ward neural networks. The improvements appear to be non-stationary but the new class of
functions shows the most stable behavior in predicting future prices. The detailed results
are presented in section 5.

2. Theory

Definition
A class of functions F̂ from R

n to R is a universal approximator for a class of functions
F from R

n to R if for any f ∈ F , any compact domain D ⊂ Rn, and any positive ε, one
can find a f̂ ∈ F̂ with supx∈D |f(x)− ˆf(x)| ≤ ε.

It has already been shown that the class of artificial neural networks with one hidden
layer

N̂ = {f(x) = b0 +
H∑
i=1

wih(bi +
∑
j

vijxj)} (3)

1



e.g. with a sigmoid activation function h(s) = 1/(1 + e−s), is a universal approximator
of continuous functions (Cybenko (1988, 1989), Hornik et al. (1989), Barron (1993)). The
number of hidden units H of the neural network is a hyper-parameter that controls the
accuracy of the approximation and it should be chosen to balance the trade-off between
accuracy (bias of the class of functions) and variance (due to the finite sample used to
estimate the parameters of the model), see also (Moody (1994)). Because of this trade-off,
in the finite sample case, it may be advantageous to consider a “smaller” class of functions
that is appropriate to the task.

Since the sigmoid h is monotonically increasing, it is easy to force the first derivatives
with respect to x to be positive by forcing the weights to be positive, for example with the
exponential function:

N̂+ = {f(x) = b0 +
H∑
i=1

ewih(bi +
∑
j

evijxj)} (4)

because h′(s) = h(s)(1− h(s)) > 0.
Since the sigmoid h has a positive first derivative, its primitive, which we call softplus,

is convex:
ζ(s) = log(1 + es) (5)

i.e., dζ(s)/ds = h(s) = 1/(1 + e−s).

2.1 Universality for functions with strictly positive outputs

Using the softplus function introduced above, we define a new class of functions, all of which
have strictly positive outputs:

N̂>0 = {f(x) = ζ(g(x)), g(x) ∈ N̂} (6)

Theorem Within the set of continuous functions from R
n to R+ = {x : x ∈ R, x > 0},

the class N̂>0 is a universal approximator.
Proof Consider f(x), a function with strictly positive outputs which we want to ap-

proximate arbitrarily well. Consider g(x) = ζ−1(f(x)) = ln(ef(x) − 1), the inverse softplus
transform of f(x). Choose ĝ(x) from N̂ such that supx∈D |g(x)− ˆg(x)| ≤ ε. The existence
of ĝ(x) is ensured by the universality property of N̂ . Set f̂(x) = ζ(ĝ(x)) = ln(1 + eĝ(x)).
Consider any particular x and define a = min(ĝ(x), g(x)) and b = max(ĝ(x), g(x)). Since
b− a ≤ ε, then,

|f̂(x)− f(x)| = ln(1 + eb)− ln(1 + ea)
≤ ln (1 + (eε − 1)ea/(1 + ea))
< ε

and the proof is complete. Thus, the use of the softplus function to transform the output of
a regular one hidden layer artificial neural network ensures the positivity of the final output
without hindering the universality property.
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2.2 The class c,nN̂++

In this section, we use the softplus function, in order to define a new class of functions
with positive outputs, positive first derivatives w.r.t. all input variables and positive second
derivatives w.r.t. some of the input variables. The basic idea is to replace the sigmoid of a
sum by a product of either softplus or sigmoid functions over each of the dimensions (using
the softplus over the convex dimensions and the sigmoid over the others):

c,nN̂++ = {f(x) = eb0 +
H∑
i=1

ewi(
c∏
j=1

ζ(bij + evijxj))(
n∏

j=c+1

h(bij + evijxj))} (7)

One can readily check that the output is necessarily positive, the first derivatives w.r.t. xj
are positive, and the second derivatives w.r.t. xj for j ≤ c are positive. However, this class
of functions has other properties. Let (j1, · · · , jm) be a set of indices with 1 ≤ ji ≤ c (convex
dimensions), and let (j′1, · · · , j′p) be a set of indices c + 1 ≤ j′i ≤ n (the other dimensions),
then

∂m+pf

∂xj1 · · · ∂xjm∂xj′1 · · ·xj′p
≥ 0,

∂2m+pf

∂x2
j1
· · · ∂x2

jm
∂xj′1 · · ·xj′p

≥ 0 (8)

The set of functions that respect these derivative conditions will be refered to as c,nF++.
Note that m or p can be 0, so as special cases we find that f is positive, and that it is
monotonically increasing w.r.t. all its inputs, and convex w.r.t. the first c inputs. Also
note that this set of equations, when applied to our particular case where n = 2, c = 1,
corresponds to equations 1 and 2.

2.3 Universality of c,nN̂++

We now state the universality theorem and present the associated proof:
Theorem Within the set c,nF++ of continuous functions from R

n to R whose set of
derivatives as specified by equation 8 are non-negative, the class c,nN̂++ is a universal
approximator.

Proof
We develop a constructive proof for which we define the threshold functions θ(x) = Ix≥0

and the positive part x+ = max(0, x). These two functions are part of the closure of the
set c,nN̂++ since

θ(x) = lim
a→∞

h(ax) (9)

x+ = lim
a→∞

ζ(ax) (10)

Let D be the compact domain over which we wish to obtain an approximation error
below ε in every point. Suppose the existence of an oracle allowing us to evaluate the
function in a certain number of points. Let T be the smallest hyperrectangle encompassing
D. Let us partition T in hypercubes with sides of length L so that the variation of the
function between two neighboring points is bounded above by ε. For example, given s,
an upper bound on the gradient of the function in any direction, setting L ≤ ε/s would
do the trick. The number of hypercubes is N1 over the x1 axis, N2 over the x2 axis,
. . ., Nn over the xn axis. The number of points on the treillis formed within T is H =
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(N1 + 1) · (N2 + 1) · . . . · (Nn + 1). We define treillis points ~a = (a1, a2, · · · , an) and ~b =
(b1, b2, · · · , bn) as the innermost (closest to origin) and outermost corners of T , respectively.
Figure 1 illustrates these values. The points of the grid are defined as such: ~p1 = a, ~p2 =
(a1, a2, . . . , an + L), . . . , ~pNn+1 = (a1, a2, . . . , bn), . . . , ~pH = b.

T
L

a

b

D

Figure 1: Two dimensional illustration of the proof of universality: The ellipse D corre-
sponds to the domain of observation over which we wish to obtain a universal
approximator. The rectangle T encompasses D and is partitioned in squares of
length L. Points a and b are the innermost (closest to origin) and outermost
corners of T , respectively.

Starting with an approximating function f̂0 = f(~a), we scan the grid in an orderly
manner, according to the definition of the set of points {~ph}. At each point along the grid,
we add a term to the current approximating function so that it becomes exact at that point:

f̂h = gh + f̂h−1

=
h∑
k=1

gk (11)

The increment term gh must be such that f̂h(~ph) = f(~ph). We therefore compute the
term δh as the difference between the value of the function evaluated at point ~ph and the
value of the currently accumulated approximating function f̂h−1 at the same point:

δh = f(~ph)− f̂h−1(~ph) (12)

However, gh must not affect the value of the approximating function at grid points that have
already been visited. According to our sequencing of the grid points, this corresponds to
having gh(~pk) = 0 for 0 < k < h. Enforcing this constraint ensures that f̂h(~pk) = f̂k(~pk) =
f(~pk), 0 < k < h. We define

β(~y, ~z) =
c∏
j=1

(y(j)− z(j) + L)+ ·
n∏

j=c+1

θ(y(j)− z(j)) (13)
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where y(j) is the jth coordinate of ~y and similarly for ~z. We have assumed, without loss
of generality, that the convex dimensions are the first c ones. One can readily verify that
β(~pk, ~ph) = 0 for 0 < k < h. We can now define the incremental term:

gh(~p) = δhβ(~p, ~ph) (14)

so that after all treillis points have been visited, our final approximation is

f̂H(~p) =
H∑
k=1

gk(~p) (15)

with f(~p) = f̂H(~p) for all treillis points.
So far, we have devised a way to approximate the target function as a sum of terms

from the set c,nN̂++. We know our approximation to be exact in every point of a grid
tight enough so that the function varies at most by ε between neighbor points. The target
function respects a set of constraints on its derivatives as expressed in equation 8. The terms
of our final approximate function f̂H also individually respect the constraints. One essential
question remains: does f̂H , the sum of all these terms, also respect these constraints ? In
order to ensure this, we need to show that δh ≥ 0 ∀h.

Let pk(j) be the value of the jth coordinate of point ~pk. Also, let pk(j) = a(j)+ik(j)L. In
other words, ~pk = ~a + L · (ik(1), ik(2), . . . , ik(n)) and this defines the bijective relationship
between k and the {ik(j)}nj=1 values. Note that for any pair of points (~y, ~z), we have
y(j) − z(j) = L(iy(j) − iz(j)). Let us first express the target function in terms of the δ
values.

f(~ph) = f̂H(~ph)

=
H∑
k=1

gk(~ph)

=
∑

{k:pk(j)≤ph(j) ∀j}

gk(~ph)

=
∑

{k:pk(j)≤ph(j) ∀j}

δk

c∏
j=1

(ph(j)− pk(j) + L)+ ·
n∏

j=c+1

θ(ph(j)− pk(j))

=
∑

{k:pk(j)≤ph(j) ∀j}

δk

c∏
j=1

(ih(j)− ik(j) + 1)L ·
n∏

j=c+1

1

=
ih(1)∑
ik(1)=1

ih(2)∑
ik(2)=1

. . .

ih(n)∑
ik(n)=1

δkL
c

c∏
j=1

(ih(j)− ik(j) + 1) (16)

Then, we define the finite difference of the function along the lth axis as such:

∆lf(~ph) = f(~ph)− f(~pk:ik(l)=ih(l)−1) (17)

5



so that k is a neighbor of h on the hypergrid of points within T . All coordinates of k and h
are the same except along the lth axis where ik(l) = ih(l) − 1. Using equations 17 and 16
we get:

∆lf(~ph) =
ih(1)∑
ik(1)=1

. . .

ih(l)∑
ik(l)=1

. . .

ih(n)∑
ik(n)=1

δkL
c

c∏
j=1

(ih(j)− ik(j) + 1)

−
ih(1)∑
ik(1)=1

. . .

ih(l)−1∑
ik(l)=1

. . .

ih(n)∑
ik(n)=1

δkL
c

c∏
j=1

(ih(j)− ik(j) + 1) (18)

We then reorder the summations so that the lth axis comes last. We also factor out the
terms that are independent of l. Let us first consider the case where l ≤ c, i.e., the lth

dimension bears the convexity property:

∆lf(~ph) =
ih(1)∑
ik(1)=1

. . .

ih(n)∑
ik(n)=1

Lc
c∏

j=1,j 6=l
(ih(j)− ik(j) + 1) · α(l)

where,

α(l) =
ih(l)∑
ik(l)=1

δk(ih(l)− ik(l) + 1)−
ih(l)−1∑
ik(l)=1

δk(ih(l)− 1− ik(l) + 1)

=
ih(l)∑
ik(l)=1

δk (19)

so that ∆lf(~ph) still bears a dependency on its lth dimension. We therefore differentiate
once more along the lth axis:

∆2
l f(~ph) =

ih(1)∑
ik(1)=1

. . .

ih(n)∑
ik(n)=1

Lc
c∏

j=1,j 6=l
(ih(j)− ik(j) + 1) ·

 ih(l)∑
ik(l)=1

δk −
ih(l)−1∑
ik(l)=1

δk


=

ih(1)∑
ik(1)=1

. . .

ih(n)∑
ik(n)=1

δk:ik(l)=ih(l) L
c

c∏
j=1,j 6=l

(ih(j)− ik(j) + 1) (20)

so that we remove any dependency on the lth dimension. Now in case l > c, our task is
simpler since:

α(l) =
ih(l)∑
ik(l)=1

δk −
ih(l)−1∑
ik(l)=1

δk

= δk:ik(l)=ih(l)

and we obtain:

∆lf(~ph) =
ih(1)∑
ik(1)=1

. . .

ih(n)∑
ik(n)=1

δk:ik(l)=ih(l) L
c

c∏
j=1,j 6=l

(ih(j)− ik(j) + 1) (21)

6



Note the similarity of equations 20 and 21. Both remove dependency along the dimension of
differentiation. They address the cases where l ≤ c and l > c, respectively. This procedure
can be applied recursively over all dimensions so that in the end,

∆2
1 . . .∆

2
c∆c+1 . . .∆nf(~ph) = Lcδk:ik(1)=ih(1)...ik(n)=ih(n)

= Lcδh (22)

and we have finally isolated the value of δh as a function of L and a finite difference of order
n+ c of the function. The value of δh is non negative iff this finite difference value also is.

Now, according to the mean value theorem,

∆f = f(b)−f(a)
b−a =

1
b− a

∫ b

a
f ′ dx (23)

so that if f ′ ≥ 0 over the range [a, b], then consequentely, ∆f ≥ 0. Applying this to our
case, we set

∂n+cf(ph)
∂x2

1∂x
2
2 . . . ∂x

2
c∂xc+1 . . . ∂xn

≥ 0 (24)

over the hyperrectangle T so that

∆2
1 . . .∆

2
c∆c+1 . . .∆nf(~ph) ≥ 0 (25)

over T as well and consequently, δh ≥ 0∀h and the proof is complete.
Corollary Within the set of positive continuous functions from R to R whose first and

second derivatives are non-negative, the class 1,1N̂++ is a universal approximator.

2.4 Illustration of proof for 1,2N̂++

In order give the reader a better intuition as to how we were able to isolate the δh factor
in equation 22, we apply the finite difference method to 1,2N̂++, the set of functions that
include call price functions, i.e., positive convex w.r.t. the first variable and monotone
increasing w.r.t. both variables. Figure 2 illustrates the two dimensional setting of our
example with the points of the grid labelled in the order in which they are scanned according
the constructive procedure. We will show how to isolate δ6.

For the set 1,2N̂++, we have,

f(~ph) =
H∑
k=1

δk · (ph(1)− pk(1) + L)+ · θ(ph(2)− pk(2)) (26)

Applying this to the six grid points of Figure 2, we obtain f(~p1) = Lδ1, f(~p2) = L(δ1 +
δ2), f(~p3) = L(2δ1 + δ3), f(~p4) = L(2δ1 + 2δ2 + δ3 + δ4), f(~p5) = L(3δ1 + 2δ3 + δ5), f(~p6) =
L(3δ1 + 3δ2 + 2δ3 + 2δ4 + δ5 + δ6).

7



p6p4p2

p1 p5p3

Figure 2: Illustration in two dimensions of the constructive proof. The grid is scanned
along the abscissa axis, then along the ordinates axis. The points are labelled
accordingly from 1 to 6. The function is known to be convex w.r.t. to the first
variable (abscissa) and monotone increasing w.r.t. both variables.

Differentiating w.r.t. the second variable, then the first, we have:

∆2f(~p6) = f(~p6)− f(~p5)
∆1∆2f(~p6) = (f(~p6)− f(~p4))− (f(~p5)− f(~p3))
∆1∆2f(~p6) = (f(~p6)− f(~p4))− (f(~p4)− f(~p2))

− (f(~p5)− f(~p3)) + (f(~p3)− f(~p1))
= δ6

This procedure can be repeated for any point on the grid. The conclusion associated
with this result is that the third finite difference of the function must be positive in order
for δ6 to be positive as well. As stated above, enforcing the corresponding derivative is a
slightly stronger condition which is respected by all element functions of 1,2N̂++.

For points close to the boundary, it is simpler to isolate the δh value as fewer finite dif-
ference values need to be computed. The constraint for the associated δh values is therefore
set on derivatives of lower orders which are still respected by all elements of 1,2N̂++.

3. Estimating Call Option Prices

An option is a contract between two parties that entitles the buyer to a claim at a future
date T that depends on the future price, ST of an underlying asset whose price at time t is
St. In this paper we consider the very common European call options, in which the value
of the claim at maturity (time T ) is max(0, ST − K), i.e. if the price is above the strike
price K, then the seller of the option owes ST − K dollars to the buyer, otherwise, the
option expires worthless. In the no-arbitrage framework, the call function is believed to be
a function of the actual market price of the security (St), the strike price (K), the remaining
time to maturity (τ = T − t), the risk free interest rate (r), and the volatility of the return
(σ). The challenge is to evaluate the value of the option prior to the expiration date before
entering a transaction. The risk free interest rate (r) needs to be somehow extracted from
the term structure of interest rates and the volatility (σ) needs to be forecasted, this latest
task being a field of research in itself. We have (Dugas et al. (2000)) previously tried to
feed in neural networks with estimates of the volatility using historical averages but so far,

8



the gains remained insignificant. We therefore drop these two features and rely on the ones
that can be observed: St,K, τ . One more important result is that under mild conditions,
the call option function is homogeneous of degree one with respect to the strike price and
so our final approximation depends on two variables: the moneyness (M = St/K) and the
time to maturity (τ).

Ct/K = f(M, τ) (27)

Simple arbitrage theory imposes the properties of equation 1 on the call option function1

(Garcia and Gençay (1998)). Stronger parametric assumptions yield the Black-Scholes
formula (Black and Scholes (1973)):

f(M, τ, r, σ) = MN (d1)− e−rτN (d2) (28)

where N (·) is the cumulative gaussian function evaluated in points

d1, d2 =
lnM + (r ± σ2/2)τ

σ
√
τ

(29)

i.e., d1 = d2 + σ
√
τ . Let’s confront this formula to our set of constraints.

∂f

∂M
= N (d1) (30)

∂2f

∂M2
=
N ′(d1)√
τMσ

(31)

∂f

∂τ
= e−rτ

(
N ′(d2)σ

2
√
τ

+ rN (d2)
)

(32)

∂2f

∂M∂τ
=
N ′(d1)
2στ3/2

(
(r + σ2/2)τ − lnM

)
(33)

∂3f

∂M2∂τ
=

N ′(d1)
2Mσ3τ5/2

(
ln2M − σ2τ − (r + σ2/2)2τ2

)
(34)

where N ′(·) is the gaussian density function. Equations 30, 31 and 32 confirm that the
Black-Scholes formula is in accordance with our prior knowledge of the call option function:
all three derivatives are positive. Equations 33 and 34 are the cross derivatives which will be
positive for any function chosen from 1,2N̂++. When applied to the Black-Scholes formula,
it is less clear whether these values are positive, too. In particular, one can easily see that
both cross derivatives can not be simultaneously positive. Thus, the Black-Scholes formula
is not within the set 1,2N̂++. Then again, it is known that the Black-Scholes formula does
not adequately represent the market pricing of options, but it is considered as a useful guide
for evaluating call option prices. So, it is not clear whether these constraints on the cross
derivatives should or not be present in the true price function.

4. Experimental Setup

As a reference model, we use a simple multi-layered perceptron with one hidden layer (eq. 3).
We also compare our results with a recently proposed model (Garcia and Gençay (1998))

1. The convexity of the call option w.r.t. the moneyness is a consequence of the butterfly spread strategy.
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that closely resembles the Black-Scholes formula for option pricing (i.e. another way to
incorporate possibly useful prior knowledge):

yBS = α+M ·
nh∑
i=1

β1,i · h(γi,0 + γi,1 ·M + γi,2 · τ)

+ e−rτ ·
nh∑
i=1

β2,i · h(γi,3 + γi,4 ·M + γi,5 · τ). (35)

We evaluate two new architectures incorporating some or all of the constraints defined in
equation 8.

We used european call option data from 1988 to 1993. A total of 43518 transaction prices
on european call options on the S&P500 index were used. In section 5, we report results
on 1988 data. In each case, we used the first two quarters of 1988 as a training set (3434
examples), the third quarter as a validation set (1642 examples) for model selection and
the fourth quarter as a test set (each with around 1500 examples) for final generalization
error estimation. In tables 1 and 2, we present results for networks with unconstrained
weights on the left-hand side, and weights constrained to positive and monotone functions
through exponentiation of parameters on the right-hand side. For each model, the number
of hidden units varies from one to nine. The mean squared error results reported were
obtained as follows: first, we randomly sampled the parameter space 1000 times. We picked
the best (lowest training error) model and trained it up to 1000 more epochs. Repeating
this procedure 10 times, we selected and averaged the performance of the best of these 10
models (those with training error no more than 10% worse than the best out of 10). In
figure 3, we present tests of the same models on each quarter up to and including 1993 (20
additional test sets) in order to assess the persistence (conversely, the degradation through
time) of the trained models.

5. Forecasting Results

As can be seen in tables 1 and 2, the positivity constraints through exponentiation of the
weights allow the networks to avoid overfitting. The training errors are generally slightly
lower for the networks with unconstrained weights, the validation errors are similar but
final test errors are disastrous for unconstrained networks, compared to the constrained
ones. This ”liftoff” pattern when looking at training, validation and testing errors has
triggered our attention towards the analysis of the evolution of the test error through time.
The unconstrained networks obtain better training, validation and testing (test 1) results
but fail in the extra testing set (test 2). Constrained architectures seem more robust to
changes in underlying econometric conditions. The constrained Black-Scholes similar model
performs slightly better than other models on the second test set but then fails on latter
quarters (figure 3). All in all, at the expense of slightly higher initial errors our proposed
architecture allows us to forecast with increased stability much farther in the future. This
is a very welcome property as new derivative products have a tendency to lock in values for
much longer durations (up to 10 years) than traditional ones.
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Simple Multi-Layered Perceptrons
Mean Squared Error Results on Call Option Pricing (×10−4)

Units Unconstrained weights Constrained weights
Train Valid Test1 Test2 Train Valid Test1 Test2

1 2.38 1.92 2.73 6.06 2.67 2.32 3.02 3.60
2 1.68 1.76 1.51 5.70 2.63 2.14 3.08 3.81
3 1.40 1.39 1.27 27.31 2.63 2.15 3.07 3.79
4 1.42 1.44 1.25 27.32 2.65 2.24 3.05 3.70
5 1.40 1.38 1.27 30.56 2.67 2.29 3.03 3.64
6 1.41 1.43 1.24 33.12 2.63 2.14 3.08 3.81
7 1.41 1.41 1.26 33.49 2.65 2.23 3.05 3.71
8 1.41 1.43 1.24 39.72 2.63 2.14 3.07 3.80
9 1.40 1.41 1.24 38.07 2.66 2.27 3.04 3.67

Black-Scholes Similar Networks
Mean Squared Error Results on Call Option Pricing (×10−4)

Units Unconstrained weights Constrained weights
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.54 1.58 1.40 4.70 2.49 2.17 2.78 3.61
2 1.42 1.42 1.27 24.53 1.90 1.71 2.05 3.19
3 1.40 1.41 1.24 30.83 1.88 1.73 2.00 3.72
4 1.40 1.39 1.27 31.43 1.85 1.70 1.96 3.15
5 1.40 1.40 1.25 30.82 1.87 1.70 2.01 3.51
6 1.41 1.42 1.25 35.77 1.89 1.70 2.04 3.19
7 1.40 1.40 1.25 35.97 1.87 1.72 1.98 3.12
8 1.40 1.40 1.25 34.68 1.86 1.69 1.98 3.25
9 1.42 1.43 1.26 32.65 1.92 1.73 2.08 3.17

Table 1: Left: the parameters are free to take on negative values. Right: parameters are
constrained through exponentiation so that the resulting function is both positive
and monotone increasing everywhere w.r.t. to both inputs. Top: regular feed-
forward artificial neural networks. Bottom: neural networks with an architecture
resembling the Black-Scholes formula as defined in equation 35. The number of
units varies from 1 to 9 for each network architecture. The first two quarters of
1988 were used for training, the third of 1988 for validation and the fourth of 1988
for testing. The first quarter of 1989 was used as a second test set to assess the
persistence of the models through time (figure 3). In bold: test results for models
with best validation results.

6. Conclusions

Motivated by prior knowledge on the derivatives of the function that gives the price of
European options, we have introduced new classes of functions similar to multi-layer neural
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Products of SoftPlus and Sigmoid Functions
Mean Squared Error Results on Call Option Pricing (×10−4)

Units Unconstrained weights Constrained weights
Train Valid Test1 Test2 Train Valid Test1 Test2

1 2.27 2.15 2.35 3.27 2.28 2.14 2.37 3.51
2 1.61 1.58 1.58 14.24 2.28 2.13 2.37 3.48
3 1.51 1.53 1.38 18.16 2.28 2.13 2.36 3.48
4 1.46 1.51 1.29 20.14 1.84 1.54 1.97 4.19
5 1.57 1.57 1.46 10.03 1.83 1.56 1.95 4.18
6 1.51 1.53 1.35 22.47 1.85 1.57 1.97 4.09
7 1.62 1.67 1.46 7.78 1.86 1.55 2.00 4.10
8 1.55 1.54 1.44 11.58 1.84 1.55 1.96 4.25
9 1.46 1.47 1.31 26.13 1.87 1.60 1.97 4.12

Sums of SoftPlus and Sigmoid functions
Mean Squared Error Results on Call Option Pricing (×10−4)

Units Unconstrained weights Constrained weights
Train Valid Test1 Test2 Train Valid Test1 Test2

1 1.83 1.59 1.93 4.10 2.30 2.19 2.36 3.43
2 1.42 1.45 1.26 25.00 2.29 2.19 2.34 3.39
3 1.45 1.46 1.32 35.00 1.84 1.58 1.95 4.11
4 1.56 1.69 1.33 21.80 1.85 1.56 1.99 4.09
5 1.60 1.69 1.42 10.11 1.85 1.52 2.00 4.21
6 1.57 1.66 1.39 14.99 1.86 1.54 2.00 4.12
7 1.61 1.67 1.48 8.00 1.86 1.60 1.98 3.94
8 1.64 1.72 1.48 7.89 1.85 1.54 1.98 4.25
9 1.65 1.70 1.52 6.16 1.84 1.54 1.97 4.25

Table 2: Similar results as in table 1 but for two new architectures. Top: products of
softplus along the convex axis with sigmoid along the monotone axis. Bottom:
the softplus and sigmoid functions are summed instead of being multiplied. Top
right: the fully constrained proposed architecture.

networks that have those properties. We have shown universal properties for these classes,
and we have shown that using this a priori knowledge can help in improving generalization
performance. In particular, we have found that the models that incorporate this a priori
knowledge generalize in a more stable way over time.
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