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Short Run and Long Run Causality in Time Series:
Inference

Jean-Marie Dufour’, Denis Pdlletier*, Eric Renault®

Résumé/ Abstract

Nous proposons des méthodes pour tester des hypotheses de non-causalité a différents
horizons, tel que défini dans Dufour et Renault (1998, Econometrica). Nous étudions le cas
des modeles VAR en détail et nous proposons des méthodes linéaires basées sur I’ estimation
d’ autorégressions vectorielles a différents horizons. Méme s les hypotheses considérées sont
non linéaires, les méthodes proposees ne requiérent que des techniques de régression linéaire
de méme que la théorie distributionnelle asymptotique gaussienne habituelle. Dans le cas des
processus intégrés, nous proposons des méthodes de régression étendue qui ne requierent pas
de théorie asymptotique non standard. L’ application du bootstrap est aussi considérée. Les
méthodes sont appliquées a un modele VAR de I’ économie américaine.
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We propose methods for testing hypothesis of non-causality at various horizons, as
defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR
models and we propose linear methods based on running vector autoregressions at different
horizons. While the hypotheses considered are nonlinear, the proposed methods only require
linear regression techniques as well as standard Gaussian asymptotic distributional theory.
Bootstrap procedures are also considered. For the case of integrated processes, we propose
extended regression methods that avoid nonstandard asymptotics. The methods are applied to
a VAR model of the U.S. economy.

Keywords: time series, Granger causality; indirect causality; multiple
horizon causality; autoregression; autoregressive model; vector
autoregression; VAR, stationary process; nonstationary process, integrated
process; unit root; extended autoregression; bootstrap; Monte Carlo;
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1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) is now a basic notion for
studying dynamic relationships between time series. The literature on this topic is considerable; see,
for example, the reviews of Pierce and Haugh (1977), Newbold (1982), Geweke (1984), Liitkepohl
(1991) and Gouriéroux and Monfort (1997, Chapter 10). The original definition of Granger (1969),
which is used or adapted by most authors on this topic, refers to the predictability of a vaf{ahle
wheret is an integer, from its own past, the one of another vari&lilg and possibly a vectar (¢)

of auxiliary variablespne period ahead more precisely, we say that causesX in the sense of
Granger if the observation &f up to timet (Y (7) : 7 < ¢) can help one to predicX (¢t + 1)

when the corresponding observations ®nand Z are available X (1), Z(7) : 7 < t); a more

formal definition will be given below.

Recently, however, Litkepohl (1993) and Dufour and Renault (1998) have noted that, for multi-
variate models where a vector of auxiliary variables used in addition to the variables of interest
X andY, itis possible that” does not causd in this sense, but can still help to preditseveral
periods ahead on this issue, see also Sims (1980), Renault, Sekkat and Szafarz (1998) and Giles
(2002). For example, the valu&q7) up to timet may help to predicX (¢ + 2), even though they
are useless to predigf(¢+1). This is due to the fact that may help to predicf one period ahead,
which in turn has an effect ol at a subsequent period. It is clear that studying such indirect effects
can have a great interest for analyzing the relationships between time series. In particular, one can
distinguish in this way properties of “short-run (non-)causality” and “long-run (non-)causality”.

In this paper, we study the problem of testing non-causality at various horizons as defined in
Dufour and Renault (1998) for finite-order vector autoregressive (VAR) models. In such models,
the non-causality restriction at horizon one takes the form of relatively simple zero restrictions on
the coefficients of the VAR [see Boudjellaba, Dufour and Roy (1992) and Dufour and Renault
(1998)]. However non-causality restrictions at higher horizons (greater than or equal to 2) are
generally nonlinear, taking the form of zero restrictions on multilinear forms in the coefficients
of the VAR. When applying standard test statistics such as Wald-type test criteria, such forms can
easily lead to asymptotically singular covariance matrices, so that standard asymptotic theory would
not apply to such statistics. Further, calculation of the relevant covariance matrices _ which involve
the derivatives of potentially large numbers of restrictions _ can become quite awkward.

Consequently, we propose simple tests for non-causality restrictions at various horizons [as
defined in Dufour and Renault (1998)] which can be implemented only through linear regression
methods and do not involve the use of artificial simulations [e.g., as in Litkepohl and Burda (1997)].
This will be done, in particular, by considering multiple horizon vector autoregressions [called
(p, h)-autoregressiorjswhere the parameters of interest can be estimated by linear methods. Re-
strictions of non-causality at different horizons may then be tested through simple Wald-type (or
Fisher-type) criteria after taking into account the fact that such autoregressions involve autocorre-
lated errors [following simple moving average processes] which are orthogonal to the regressors.
The correction for the presence of autocorrelation in the errors may then be performed by using an
autocorrelation consistent [or heteroskedasticity-autocorrelation-consistent (HAC)] covariance ma-
trix estimator. Further, we distinguish between the case where the VAR process considered is stable



(i.e., the roots of the determinant of the associated AR polynomial are all outside the unit circle)
and the one where the process may be integrated of an unknown order (although not explosive). In
the first case, the test statistics follow standard chi-square distributions while, in the second case,
they may follow nonstandard asymptotic distributions involving nuisance parameters, as already ob-
served by several authors for the case of causality tests at horizon one [see Sims, Stock and Watson
(1990), Toda and Phillips (1993, 1994), Toda and Yamamoto (1995), Dolado and Litkepohl (1996)
and Yamada and Toda (1998)]. To meet the objective of producing simple procedures that can be
implemented by least squares methods, we propose to deal with such problems by using an exten-
sion to the case of multiple horizon autoregressions of the lag extension technique suggested by
Choi (1993) for inference on univariate autoregressive models and by Toda and Yamamoto (1995)
and Dolado and Lutkepohl (1996) for inference on standard VAR models. This extension will al-
low us to use standard asymptotic theory in order to test non-causality at different horizons without
making assumption on the presence of unit roots and cointegrating relations. Finally, to alleviate
the problems of finite-sample unreliability of asymptotic approximations in VAR models (on both
stationary and nonstationary series), we propose the use of bootstrap methods to implement the
proposed test statistics.

In section 2, we describe the model considered and introduce the notion of autoregression at
horizonh [or (p, h)-autoregression] which will be the basis of our method. In section 3, we study
the estimation of p, h)-autoregressions and the asymptotic distribution of the relevant estimators
for stable VAR processes. In section 4, we study the testing of non-causality at various horizons for
stationary processes, while in section 5, we consider the case of processes that may be integrated.
In section 6, we illustrate the procedures on a monthly VAR model of the U.S. economy involv-
ing a monetary variable (nonborrowed reserves), an interest rate (federal funds rate), prices (GDP
deflator) and real GDP, over the period 1965-1996. We conclude in section 7.

2. Multiple horizon autoregressions

In this section, we develop the notion of “autoregression at hortZaand the relevant notations.
Consider &VAR (p) process of the form:

p
W(t)=pnt)+ > mW(t—k) +a(t), t=1,...,T, (2.1)
k=1
whereW (t) = (w1, war, - .. , wmt)/ is anm x 1 random vectoru(t) is a deterministic trend, and
Ela(s)a(t)] =0, ifs=t,
—0,if s £t (2.2)
det(£2) #0. (2.3)

The most common specification fo(t) consists in assuming thatt) is a constant vector.e.

p(t) = p, (2.4)



although other deterministic trends could also be considered.
The VAR (p) in equation (2.1) is an autoregression at horizon 1. We can then also write for the
observation at time + A:

p h—1
W(t+h):M<h>(t)+z7r,(j‘)W(t+1—k)+zzpja(t+h—j) ,t=0,...,T—h,
k=1 j=0

wherey, = I,,, andh < T'. The appropriate formulas for the coefficiem%l), p) (t) andy; are
given in Dufour and Renault (1998), namely:

D = mHZM prd =7 4 aP s 20 =1, 7P =m, @5
=1
h—1
pM) = S aPut+h—k), =", vh>0. (2.6)
k=0

The;,, matrices are the impulse response coefficients of the process, which can also be obtained
from the formal series:

() =m(2) " = I+ Y U, w(2) =L =Y st (2.7)
k=1 k=1
Equivalently, the above equation fir (¢ + k) can be written in the following way:

p
Wt+n) = a0 +Y W+1-k) 7 +u® (4 n)
k=1
= W) +w(t, p) 7™ +u™ E+n), t=0, ..., T—h, (2.8)

/
whereW (t, p) = (W @), W(t—1), ..., W(t—p+1)], =" = H‘% SN m(oh)} and
h—1
o ) = [ul” ¢+ h), w0 =Y alt+h— ) v
7=0

It is straightforward to see that™ (¢ + h) has a non-singular covariance matrix.

We call (2.8) an “autoregression of ordeat horizonh” or a “(p, h)-autoregression”. In the
sequel, we will assume that the deterministic part of each autoregression is a linear function of a
finite-dimensional parameter vectoe.

pM (t) = 7 (h) DM (t) (2.9)

wherey(h) is am x n coefficient vector and(") (¢) is an x 1 vector of deterministic regressors. If



1(t) is a constant vectore. u(t) = pu, thenu(® (t) is simply a constant vector (which may depend
onh):
pM () = - (2.10)
To derive inference procedures, it will be convenient to consider a number of alternative formu-
lations of(p, h)-autoregression autoregressions.
a) Matrix (p, h)-autoregression _ First, we can put (2.8) in matrix form, which yields:

wy, (h) =W, (W) I™W + U, (R) , h=1,..., H, (2.11)

wherewy, (k) andUy, (k) are(T — k + 1) x m matrices andV , (k) isa(T — k + 1) x (n + mp)
matrix defined as

C W (0+h)
W (1+h)
wn (k) = : —fwr (B, k) e wm (B )] 2.12)
| W(T—k+h)
W, Eo;’
—— Wy (1) [ DMy
Wy (k) = : , Wp(t) = [ W(mp)} : (2.13)
| Wy (T — k)
n® = G =18 ), By ). B ()] (2.14)
u™ (04 h)’
u™ (14 h)
Uy (k) = : (B K)o s um (B, B)], (2.15)
| uM (T — k4 h)
wi(h k) = [ ©+n), u (en), (- km)] (2.16)

We shall call the formulation (2.11) &, h)-autoregression in matrix form”.
b) Rectangular stacked(p, H)-autoregression_ To get the same regressor matrix on the right-
hand side of (2.11), we can also consider:

wy (H) =W, (H)II™ + U, (H) , h=1, ..., H. (2.17)

This, however, involves losing observations. Using (2.17), we can also staék slystems above
as follows: o
wH:Wp(H)HH—I-UH (218)

wherewy andUy are(T — H + 1) x (mH) matrices andV), (H) is an(mp) x (mH ) matrix such



that

wy [wl(H),wg(H),..

., WH (H)} N
Iy = [H(I), o, . gl
Up [Uy(H),Us (H), ..., Uy (H)] .
Since the elements @fy are linear transformations of the random vecto(s), ¢t = 1, ..., T,
which contairil’m random variables, it is clear that the vecter: (U,,,) will have a singular covari-
ance matrix when

Tm < (T — HymH = TmH — mH?,
which will be the case wheH > 2 andT'm > H.

c) Vec-stacked(p, H)-autoregression _We can also write equation (2.8) as

w(t+h) = [LnoW,®)]T™ +a™ (t+ h)
W, @) ™ +a™ (t+h), t=0,...,T—h, (2.19)
where
i
(h)
a® = yec (H(h)) = b2 )
0
W, () 0 0
_ 0 W, 0
W, (1) . o |
0 0 W, (t)
which yields the linear model
Wp, = Zhﬁ(h) + up, (2.20)
where
[ W (0+ h)
W({1+h )
wp = . = vec [wh (h) ] ,
L WA(T)
[ W, (0) Ly @ W, (0)
W, (1) Ly ® Wy (1)
Zh . . )
| W, (T —h) Im @ W, (T — 1)’



u™ (14 h
ap, = : = vec [Uh (h)/]
uh (T)
It is also possible to stack together the models (2.20kferl, ..., H
w(H)=Z(H)IIg+u(H) (2.21)
where
wy Uy Z1 0 0
Wy U9 0 Zs 0
o =| | |am=| " |.zmm=| .
D i 0 0 - Zy
d) Individual (p, H)-autoregressions_Consider finally a single dependent variable
Wi(t+h) =W, (&) B (h)+u™ (t+h), t=0,...,T—H, (2.22)
for1 < h < H,wherel <i < m. We can also write:
Wi (t+H)=[Iy @ W, ()] B; (H) + @ (t+H), t=0,...,T—H, (2.23)
where
Wi (t+1) w; (t+1) B; (1)
W (t+ H) = m(t,+2) U (t+ H) = w(t+2) , B; (H) = ﬁi:@) ,
Wi (t + H) wi (¢ + H) 8, (H)
which yields the linear model o
Wi (H) = ZuB,; (H) + iin (2.24)
where
Wi (0+ H) B, (1)
v = | MO = | PP
w; '(T) B, (H)



IH®Wp<0)/ ﬂ,'(0+H)
. Iy @ W, (1) ;

Iy @W,(T — HY U {T)
In the sequel, we shall focus on prediction equations for individual variables and the (patiix
autoregressive form of the system in (2.11).
3. Estimation of (p, h) autoregressions
Let us now consider each autoregression of opdgrhorizonh as given by (2.11):
wp, (h) =W, (W) I™W + U, (h) , h=1,..., H. (3.1)
We can estimate (3.1) by ordinary least squares (OLS), which yields the estimator:

-1

1" = [W, (h) Wy ()] W, () w (k) = 1T 4 [W, () Wy ()] W, () Un ()

hence 1
. 1 _ B -
VIR 1) = | 130, (0 W, (0] 37, (0 U (1)
where
1 o 1 I=h 1 | Toh
TV ) Wy () = 5 3 Wy (O Wy (1)), =Wy () Un () = —= > Wy (0)u® (14 1)’
t=0 t=0
Suppose now that
1 T—h
o W, ()W, (t) TL I, with det(I},) #0. (3.2)
=0 e

In particular, this will be the case if the proced5(t) is second-order stationary, strictly indeter-
ministic and regular, in which case

E[W, ()W, (t)] =1, Vt. (3.3)

Cases where the process does not satisfy these conditions are covered in section 5. Further, since

h—1
u (t+h) =a(t+h)+> Ypa(t+h—k)
k=1



(where, by convention, any sum of the fo@ﬁ;} with h < 2 is zero), we have:

E [Wp () u® (t + h)’} =0,forh=1,2, ..,
\Y {vec [Wp (t) u™ (¢t + h)’} } = A, (h) .

If the procesdV (¢) is strictly stationary with i.i.d. innovations(t) and finite fourth moments, we
can write:

EIW, (s)uf (s + h)ul™ (¢ + ) W, (8)'] = Tij(p, by t — 5) = Li(p, by s — 1) (3.4)
wherel <i <m, 1 < j < m,with
Lij(p, h, 0) = E [Wp (&) ul" (¢ + h)ul (¢ + h) W, (t)'}
= O'Z‘j (h) E [Wp (t) Wp (t)/] = O'ij (h) Fp, (35)
Lij(p, hyt —s) =0, if [t —s|>h. (3.6)

In this casé,
Ap (h) = [o45 (h) I]

whereX'(h) is nonsingular, and thus, (%) is also nonsingular. The nonsingularityoth) follows
from the identity

=Xh) e, (3.7)

i,5=1,...,m

uM (4 R) = [ty Yy ooy U1y I [a 4+ 1) at+2) ... a(t+0)].

Under usual regularity conditions,

T—h

1 h L Y

7T Z vee[W, (t) u™ (t + n)'] . N [0, A, ()] (3.8)
t=0

where A, (k) is a nonsingular covariance matrix which involves the variance and the autocovari-

ances of¥, (t) u® (¢t + h)' [and possibly other parameters, if the proc&E¢t) is not linear].

Then,

ﬁvec[ﬁ(m_ n(h)} — {Im Bwp(h)’w,,(h)}‘l}vec {1TWp(h)'Uh(h)]

T—h

l— RS h) '
_ {Im [Twp(h) Wp(h)} }ﬁgovec[Wp(t)u( (t+h)}

'Note that (3.5) holds under the assumption of martingale difference sequeade)omBut to get (3.6) and allow the
use of simpler central limit theorems, we maintain the stronger assumption that the innowétjoase i.i.d. according
to some distribution with finite fourth moments (not necessarily Gaussian).




L N[0, (I @ I, Ay (B) (I @ ;1) ] (3.9)

T—o0

For convenience, we shall summarize the above observations in the following proposition.

Proposition 3.1 ASYMPTOTIC NORMALITY OF LS IN A (p,h) STATIONARY VAR. Under
the assumption$2.1), (3.2), and (3.8), the asymptotic distribution of T vec[II"") — [T(M] is
N[0, Z(II™)], whereX(IT"W) = (I, @ I, 1) Ay (h) (In @ ;1) .

4. Causality tests based on stationaryp, h)-autoregressions
Consider the-th equation1 < ¢ < m) in system (2.11):
w; (h) =Wy (h) B; (h) + @i (h), 1 <i<m, (4.2)

wherew; (h) = w; (h, h) andw; (h) = wu; (h, h), wherew; (h, h) andu; (h, h) are defined in
(2.12) and (2.15). We wish to test:

Ho(h) : RB; (h) = (4.2)
whereR is ag x (n + mp) matrix of rankg. In particular, if we wish to test the hypothesis that

w;; does not cause;; at horizonkh [i.e., using the notation of Dufour and Renault (1998}, 77
w; | I(j), whereI(;(t) is the Hilbert space generated by the basic information/&gtand the
variableswy,, w < 7 < t, k # j, w being an appropriate starting tinfe < —p + 1)], the
restriction would take the form:
h h
Y =0, k=1,....p, (4.3)

j»i

where n,gh) = [wgﬂ . ok = 1,...,p. In other words, the null hypothesis takes
the form of a set o%jze7r07 restrictions on the coefficients (f(h) as defined in (2.14).
The matrix of restrictionsR in this case takes the fornrR = R(j), where R(j) =
[01(7), 62(4), -, 0p(4)) I1s ap x (n + mp) matrix, 6x(j) is a(n + pm) x 1 vector whose
elements are all equal to zero except for a unit value at postion (kK — 1)m + j, i.e.
or(j) =0, n+(k—Dm+4), ..., 5Mn+pm,n+(k-)m+j)] , k=1,...,p, with
6(i, j) = 1if i = j,andd(i, j) = 0if i # j. Note also that the conjunction of the hypothesis
H](i)z, h=1,...,(m—2)p+ 1, is sufficient to obtain noncausality at all horizons [see Dufour
and Renault (1998, section 4)]. Non-causality up to hori#ois the conjunction of the hypothesis
H" h=1,...,H.

We have:

Bi (h) = B; (h) + [W () Wy (h) |~ W, (h) @i (R),



hence

VT [ (h) - 8, () = [1W (h) W <h>]_11HW () (¢ + 1)
e ]_ T 7 P \/T; p(t)u; "+ n).

Under standard regularity conditions [see White (1999, chap. 5-6)],
VT [B:(h) = B;(M)] = N[0, V(5,)]

T—oo

with det [V(3;)] # 0, whereV(3;) can be consistently estimated:

More explicit forms forV(3;) will be discussed below. Note also that

r, = pim % W, (h) T, (h) , det (I) £0.
Let
1 L[5 (h)
!/ —
Vip (') = Var [\/TWP (h)" u; (h)] = TVar ; Wy (t)u;’ (t+h)
T—h

ht—zloT—h

- EW, (0wl (¢4 h)ul (¢ =7+ R) W, (2 = 7)']
7=1t=7+1

+E Wy (b= r)u (6 =7+ h)ul (¢ + )Wy (1) ]] }-

Let us assume that
Vip (T) == Vip , det (Vip) # 0, (4.4)

whereV;, can be estimated by a computable consistent estimgi¢i) :

Vip (T) == V. (4.5)

Then,
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sothatV(3;) = I, 'V;, I, L. Further, in this case,

T—o0
T—h
By= 2 ST W, ()W, (1) = ST, (b T, (h) > T,
p T — p P T p P T o0 p

We can thus state the following proposition.

Proposition 4.1 ASYMPTOTIC DISTRIBUTION OF TEST CRITERION FOR NONAUSALITY AT
HORIZON h IN A STATIONARY VAR. Suppose the assumptions of Proposiabhold jointly with
(4.4) — (4.5). Then, under any hypothesis of the foffp(h) in (4.2), the asymptotic distribution of

WIHo(h)] = T [RB; (h) — 7] [RVz(B;) R') ' [RB; (h) — 7] (4.6)

is x2(q). In particular, under the hypothesH(h) of non-causality at horizor from w;; to

71
wit (w; - w; | I;)), the asymptotic distribution of the corresponding statit¢H, (k)] is x* (p) .
e /
The problem now consists in estimatifg,. Let u; (h) = { M (t+h):t=0,...,T—h

be the vector of OLS residuals from the regression (@gﬁ, t+h) =W,(t)u, oM (t+h),and
set

(h) A(h ~(h) Y
RV (1) = T hz (t+h)g,  (t+h—7),7=0,1,2,....
If the innovations are i.i.d. or, more generally, if (3.6) holds, a natural estimatdy ofvhich would

take into account the fact that the prediction erra?d (¢ + h) follow an MA(h — 1) process, is
given by:

Ve (1) = R )+ 3[R () + R (r)

Under regularity conditions studied by White (1999, Section 6.3),

VT ~vi, 2.

T—o00

A problem Wi'[hf/;éw) (T') is that it is not necessarily positive-definite.
An alternative estimator which is automatically positive-semidefinite is the one suggested by
Doan and Litterman (1983), Gallant (1987) and Newey and West (1987):

m(T)—1
@) = BP0+ > wirm@) [RY (1) + RP ()] (4.7)

T=1

11



wherer: (r, m) =1 —[r/(m +1)], lim m (T) = o0,and lim [m (T) /T*4] = 0 . Under the
regularity conditions given by Newey and West (1987),
VW)

wp

(T) = Vip = 0.

Other estimators that could be used here includes various heteroskedasticity-autocorrelation-
consistent (HAC) estimators; see Andrews (1991), Andrews and Monahan (1992), Cribari-Neto,

Ferrari and Cordeiro (2000), Cushing and McGarvey (1999), Den Haan and Levin (1997), Hansen
(1992), Newey and McFadden (1994), Wooldridge (1989).

The cost of having a simple procedure that sidestep all the nonlinearities associated with the
non-causality hypothesis is a loss of efficiency. There are two places where we are not using all
information. The constraints on th:éch) 's are giving information on the;’s and we are not using
it. We are also estimating the VAR by OLS and correcting the variance-covariance matrix instead
of doing a GLS-type estimation. These two sources of inefficiencies could potentially be overcome
but it would lead to less user-friendly procedures.

The asymptotic distribution provided by Propositibrd, may not be very reliable in finite sam-
ples, especially if we consider a VAR system with a large number of variables and/or lags. Due to
autocorrelation, a larger horizon may also affect the size an power of the test. So an alternative to
using the asymptotic distribution chi-squareWf H,(h)], consists in using Monte Carlo test tech-
niques [see Dufour (2002)] or bootstrap methods [see, for example, Paparoditis (1996), Paparoditis
and Streitberg (1991), Kilian (19881998)]. In view of the fact that the asymptotic distribution of
W|[Hy(h)] is nuisance-parameter-free, such methods yield asymptotically valid tests when applied
to W[Hy(h)] and typically provide a much better control of test level in finite samples. It is also
possible that using better estimates would improve size control, although this is not clear, for impor-
tant size distortions can occur in multivariate regressions even when unbiased efficient estimators
are available [see, for example, Dufour and Khalaf (2002)].

5. Causality tests based on nonstationaryp, h)-autoregressions

In this section, we study how the tests described in the previous section can be adjusted in order to
allow for non-stationary possibly integrated processes. In particular, let us assume that

W(t) = u(t)+n), (5.1)
p
p(t) = So+0it+---+0647, n(t)=> mn(t—k) +a(t), (5.2)
k=1
t=1,...,T,whered, di, ..., 6, arem x 1 fixed vectors, and the procegst) is at most/(d)

whered is an integer greater than or equal to zero. Typical valuegd &e0, 1 or 2. Note that these
assumptions allow for the presence (or the absence) of cointegration relationships.

12



Under the above assumptions, we can also write:

p
W(t) =75+t + - +7t+ > mWEt—k) +at), t=1,...,T, (5.3)
k=1
whereyy, 71, ... , 7, arem x 1 fixed vectors (which depend @@, 41, ... , 64, andmy, ..., Tp);

see Toda and Yamamoto (1995). Under the specification (5.3), we have:
W(t+h)= +an t+1—k) +u™(t+h), t=0,....,T—h (5.4

wherep ™ (t t) = véh) + 7(1h)t + - +fy§h)tq andfy(()h), 75’“, cee yf]h) arem x 1 fixed vectors. For

h = 1, this equation is identical with (5.3). Fér> 2, the errorsu) (¢ + h) follow a MA(h — 1)
process as opposed to being i.i.d.. For any intggee have:

W(t+n) = u®O)+Y aP[Wt+1-k) -W(t+1-j)]

k£

p
+ (Z w,ﬂf”> W(t+1—j)+u® (t+hn), (5.5)

W(t+h) —W(t+1—j) = M<h>(t)+zp:7r,§h)[W(t+1 — k)= W(t+1—j)]
k=1
ki

p
—(Im - Zw,(j))W(t t1-H+uP @t +h), (56)
k=1

fort = 0,...,T — h. The two latter expressions can be viewed as extension®,tf)-
autoregressions of the representations used by Dolado and Lutkepohl (1996, pp. 372-373) for
VAR (p) processes. Further, on takifig= p + 1 in (5.6), we see that

p
W(t+h)—W(t—p) = )+ > AVAW (t+1 - k)
k=1

h h
BMW (¢ — p) +u™ (t + h) (5.7)

whereAW (t) = W(t) — W(t — 1), Ag’) = Zf 1 wlg andB( Ag’) — I,,, . Equation (5.7)
may be interpreted as an error-correction form at the honbzwrth baselV (¢t — p).

13



Let us now consider the extended autoregression

P p+d
W(t+n) =u®O)+ Y 7w+ 1-k+ Y aPW+1-k)+u® (t+h), (5.8)
k=1 k=p+1
- . h
t=d, ..., T—h.Undermodel (5.3), the actual values of the coefficient matmé%, ceey wéﬁd
are equal to zer(prH = ... = w;’jr)d = 0), but we shall estimate the, h)-autoregressions
without imposing any restriction omg_?l, cee w(}jr)d.

Now, suppose the processt) is eitherI(O)por I(1), and we takel = 1 in (5.8). Then, on
replacingp by p + 1 and settingi = p in the representation (5.6), we see that

W(t+h) -Wt-p-1) = @)+ aP[W(t+1—k) —W(t—p—1)]

k=1
—BY Wt —p—1)+u®(t+n), (5.9)
whereB]f,Jr)1 = (I, Z,’Zﬂ 7rk ) In the latter equatlomg . wz(,h) all affect trend-stationary

variables (in an equation where a trend is included along with the other coefficients). Using argu-
ments similar to those of Sims et al. (1990), Park and Phillips (1989) and Dolado and Litkepohl

(1996), it follows that the estimates @ﬁh), cee wz(gh) based on estimating (5.9) by ordinary least

squares (without restrictin@gfjr)1 ) _ or, equivalently, those obtained from (5.8) without restricting

w;}fl __are asymptotically normal with the same asymptotic covariance matrix as the one obtained

for a stationary process of the type studied in sectiérChnsequently, the asymptotic distribution
of the statistid/V[Hj(’;)i] for testing the null hypothesiHJ(’;)i of non-causality at horizoh from w;

to w; (w; - w; | 1;)), based on estimatin.8), is x*(p). When computingHj(i)i as defined in

(4.3), itis important that only the coefficientsmsﬁ), cee w,(gh) are restricted (but notgfl).

If the process) (¢) is integrated up to ordef, whered > 0, we can proceed similarly and add
extra lags to the VAR process studied. Again, the null hypothesis is tested by considering the restric-
tions entailed omgh), cee wl(oh). Further, in view of the fact the test statistics are asymptotically
pivotal under the null hypothesis, it is straightforward to apply bootstrap methods to such statistics.
Note finally that the precision of the VAR estimates in such augmented regressions may eventually
be improved with respect to the OLS estimates considered here by applying bias corrections such
as those proposed by Kurozumi and Yamamoto (2000)]. Adapting and applying such corrections to

(p, h)-autoregressions would go beyond the scope of the present paper.

2For related results, see also Choi (1993), Toda and Yamamoto (1995), Yamamoto (1996), Yamada and Toda (1998),
and Kurozumi and Yamamoto (2000).
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Table 1. Rejection frequencies using the asymptotic distribution and the bootstrap procedure
a) i.i.d. Gaussian sequence

h = 1 2 3 4 5 6 7 8 9 10 11 12

Asymptotic
5% level 27.0 278 324 36.1 357 426 479 485 510 557 59.7 63.6
10% level 374 394 422 465 478 520 581 593 603 663 69.2 725

Bootstrap
5% level 5.5 5.7 4.7 6.5 4.0 5.1 55 39 47 6.1 52 3.8
10% level 100 9.1 101 109 9.6 106 10.2 94 95 109 103 8.9

b) VAR(16) without causality up to horizof

Asymptotic
5% level 241 279 358 375 559 443 523 559 541 601 626 720
10% level 355 383 466 472 651 550 647 646 648 698 720 79.0

Bootstrap
5% level 6.0 5.1 3.8 6.1 46 47 44 45 43 6.3 4.9 5.8
10% level 9.8 88 87 104 103 9.9 8.7 74 103 111 9.3 9.7

6. Empirical illustration

In this section, we present an application of these causality tests at various horizons to macroeco-
nomic time series. The data set considered is the one used by Bernanke and Mihov (1998) in order
to study United States monetary policy. The data set considered consists of monthly observations
on nonborrowed reserved’(B R, also denotea, ), the federal funds rate:, w.), the GDP deflator

(P, ws) and real GDRGDP, wy4). The monthly data on GDP and GDP deflator were constructed

by state space methods from quarterly observations [see Bernanke and Mihov (1998) for more de-
tails]. The sample goes from January 1965 to December 1996 for a total of 384 observations. In

what follows, all the variables were first transformed by a logarithmic transformation.

Before performing the causality tests, we must specify the order of the VAR model. First, in
order to get apparently stationary time series, all variables were transformed by taking first differ-
ences of their logarithms. In particular, for the federal funds rate, this helped to mitigate the effects
of a possible break in the series in the years 1979-298tarting with 30 lags, we then tested the
hypothesis ofK" lags versusk + 1 lags using the LR test presented in Tiao and Box (1981). This
led to a VAR(16) model. Tests of a VAR(16) against a VAR(for K = 17, ... , 30 also failed to
reject the VAR(16) specification, and the AIC information criterion [see McQuarrie and Tsai (1998,
chapter 5)] is minimized as well by this choice. Calculations were performed using the Ox program
(version 3.00) working on Linux [see Doornik (1999)].

3Bernanke and Mihov (1998) performed tests for arbitrary break points, as in Andrews (1993), and did not find
significant evidence of a break point. They considered a VAR(13) with two additional variables (total bank reserves and
Dow-Jones index of spot commodity prices and they normalize both reserves by a 36-month moving average of total
reserves.)
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Vector autoregressions of ordgrat horizonh were estimated as described in section 4 and
the matrixVi;NW), required to obtain covariance matrices, were computed using formula (4.7) with
m(T)—1 = h—1.% Onlooking at the values of the test statistics and their correspopeliatuies at
various horizons it quickly becomes evident that #ié7) asymptotic approximation of the statistic

W in equation (4.6) is very poor. As a simple Monte Carlo experiment, we replaced the data by
a 383 x 4 matrix of random draw from atv (0, 1), ran the same tests and looked at the rejection
frequencies over 1000 replications using the asymptotic critical value. The results are in Table 1a.
We see important size distortions even for the tests at horizon 1 where there is no moving average
part.

We next illustrate that the quality of the asymptotic approximation is even worse when we move
away from an i.i.d. Gaussian setup to a more realistic case. We now take as the DGP the VAR(16)
estimated with our data in first difference but we impose that some coefficients are zero such that the
federal funds rate does not cads® P up to horizomh and then we test th;eﬁh» G D P hypothesis.

The constraints of non-causality frofrto ¢ up to horizonh that we impose are:

ﬁ'z‘jl = 0 for 1<I<p, (61)
i = 0 for 1<I<h, 1<k<m. (62)

Rejection frequencies for this case are given in Table 1b.

In light of these results we computed theralues by doing a parametric bootstrap, doing
an asymptotic Monte Carlo test based on a consistent point estimate [see Dufour (2002)]. The
procedure to test the hypothesis - Wi | Iy is the following.

1. An unrestricted VAR{) model is fitted for the horizon one, yielding the estimatgd) and
2 for I ands?.

2. An unrestrictedp, h)-autoregression is fitted by least squares, yielding the estifgteof
),

3. The test statisti¢V for testing noncausality at the horizénfrom w; to w; [H](’;‘ZZ twj
w; | I(;)] is computed. We denote by/](’jli(o) the test statistic based on the actual data.

4. N simulated samples from (2.8) are drawn by Monte Carlo methods, @isihig= 17" and
2 = 2 [and the hypothesis thatt) is Gaussian]. We impose the constraints of non-causality,
71'1(;2 =0,k =1, ..., p. Estimates of the impulse response coefficients are obtained from
II™M through the relations described in equation (2.5). We denoW}ﬁQ(i(n) the test statis-

tic for Hj@l based on the-th simulated samplél < n < N).

“The covariance estimator used here is relatively simple and exploits the truncation property (3.6). In view of the vast
literature on HAC estimators [see Den Haan and Levin (1997) and Cushing and McGarvey (1999)], several alternative
estimators foiV;, could have been considered (possibly allowing for alternative assumptions on the innovation distribu-
tion). It would certainly be of interest to compare the performances of alternative covariance estimators, but this would
lead to a lengthy study, beyond the scope of the present paper.
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5. The simulateda—valueﬁN[Wj@i(0)] is obtained, where

N
pnla] = {1 +3 " 1w (n) —x]} /(N +1),
n=1

I[z] =1if z > 0andI[z] = 0if z < 0.
6. The null hypothesisH(.h)

j-»1

is rejected at level if ﬁN[W}gZi(h)] < a.

From looking at the results in Table 1, we see that we get a much better size control by using
this bootstrap procedure. The rejection frequencies over 1000 replicationg\(witl999) are very
close to the nominal size. Although the coefficientés are functions of the;'s we do not constrain

them in the bootstrap procedure because there is no direct mappingrﬁj;bmm T andy;. This

certainly produces a power loss but the procedure remains valid becauigésthea computed with

the 7, which are consistent estimates of the tneboth under the null and alternative hypothesis.

To illustrate that our procedure has power for detecting departure from the null hypothesis of non-
causality at a given horizon we ran the following Monte Carlo experiment. We again took a VAR(16)
fitted on our data in first differences and we imposed the constraints (6.1) - (6.2) so that there was
no causality from to GD P up to horizon 12 (DGP under the null hypothesis). Next the value of
one coefficient previously set to zero was changed to induce causality-ftor@ D P at horizons

4 and higherrs(1, 3) = 6. As 6 increases from zero to one the strength of the causality from

to GDP is higher. Under this setup, we could compute the power of our simulated test procedure
to reject the null hypothesis of non-causality at a given horizon. In Figure 1, the power curves are
plotted as a function of for the various horizons. The level of the tests was controlled through the
bootstrap procedure. In this experiment we took agéie 999 and we did 1000 simulations. As
expected, the power curves are flat at around 5% for horizons one to three since the null is true for
these horizons. For horizons four and up we get the expected result that power goésnpvas

from zero to one, and the power curves gets flatter as we increase the horizon.

Now that we have shown that our procedure does have power we present causality tests at
horizon one to 24 for every pair of variables in tables 2 and 3. For every horizon we have twelve
causality tests and we group them by pairs. When we say that a given variable cause or does not
cause another, it should be understood that we mean the growth rate of the variablgsaltfes
are computed by takingy = 999. Table 4 summarize the results by presenting the significant
results at the 5% and 10% level.

The first thing to notice is that we have significant causality results at short horizons for some
pairs of variables while we have it at longer horizons for other pairs. This is an interesting illustration
of the concept of causality at horizéanof Dufour and Renault (1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal funds rate at
horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does not cause the other two variables
at any horizon and except the GDP at horizon 12 and 16 (10% level) nothing is causing it. We see
that the impact of variations in the nonborrowed reserves is over a very short term. Another variable,
the GDP, is also causing the federal funds rates over short horizons (one to five months).
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Table 4. Summary of causality relations at various horizons for series in first difference

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR —-» r ok

r -» NBR
NBR -» P *hk  kk kK *

P -» NBR
NBR -» GDP
GDP -» NBR *

r —-» P

P -» r

r -» GDP * * * * kK kk kk kk kk kk
GDP —» r *k kk kk xkk kK

P -» GDP
GDP —» P * * *

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR —-» r

r —-» NBR
NBR —-» P

P -» NBR
NBR -+ GDP
GDP -» NBR *

r -» P

P - r

r s GDP | ¥k 4% Hkk Ak  kk Ak K *
GDP -» r

P -» GDP
GDP —» P

Note _ The symbols andxx indicate rejection of the non-causality hypothesis at the 10% and 5%
levels respectively.

An interesting result is the causality from the federal funds rate to the GDP. Over the first few
months the funds rate does not cause GDP, but from horizon 3 (up to 20) we do find significant
causality. This result can easily be explained by, e.g. the theory of investment. Notice that we
have the following indirect causality. Nonborrowed reserves do not cause GDP directly over any
horizon, but they cause the federal funds rate which in turn causes GDP. Concerning the observation
that there are very few causality results for long horizons, this may reflect the fact that, for stationary
processes, the coefficients of prediction formulas converge to zero as the forecast horizon increases.

Using the results of Proposition 4.5 in Dufour and Renault (1998), we know that for this example
the highest horizon that we have to consider is 33 since we have a VAR(16) with four time series.
Causality tests for the horizons 25 through 33 were also computed but are not reported. Some
p-values smaller or equal to 10% are scattered over horizons 30 to 33 but no discernible pattern
emerges.

We next consider extended autoregressions to illustrate the results of section 5. To cover the
possibility that the first difference of the logarithm of the four series may not be stationary, we ran
extended autoregressions on the series analyzed. Since we used a VAR(16) with non-zero mean for
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the first difference of the series a VAR(1¥E. d = 1, with a non-zero mean was fitted. The Monte
Carlo samples witlv. = 999 are drawn in the same way as before except that the constraints on the

VAR parameters at horizolis WEZB; =0fork=1,...,pandnotk =1, ..., p+d.
Results of the extended autoregressions are presented in Table 5 (horizons 1 to 12) and 6 (hori-

zons 13 to 24). Table 7 summarize these results by presenting the significant results at the 5% and

10% level. These results are very similar to the previous ones over all the horizons and variable

every pairs. A few causality tests are not significant anym@t® P — r at horizon 55 -+ GDP

at horizons 5 and 6) and some causality relations are now significanti® at horizon one) but we

broadly have the same causality patterns.

7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing non-causality
hypotheses at various horizons in finite-order vector autoregressive models. The methods described
allow for both stationary (or trend-stationary) processes and possibly integrated processes (which
may involve unspecified cointegrating relationships), as long as an upper bound is set on the order
of integration. Further, we have shown that these can be easily implemented in the context of a
four-variable macroeconomic model of the U.S. economy.

Several issues and extensions of interest warrant further study. The methods we have proposed
were, on purpose, designed to be relatively simple to implement. This may, of course, involve ef-
ficiency losses and leave room for improvement. For example, it seems quite plausible that more
efficient tests may be obtained by testing directly the nonlinear causality conditions described in
Dufour and Renault (1998) from the parameter estimates of the VAR model. However, such proce-
dures will involve difficult distributional problems and may not be as user-friendly as the procedures
described here. Similarly, in nonstationary time series, information about integration order and the
cointegrating relationships may yield more powerful procedures, although at the cost of complexity.
These issues are the topics of on-going research.

Another limitation comes from the fact we consider VAR models with a known finite order. We
should however note that the asymptotic distributional results established in this paper continue to
hold as long as the orderof the model is selected according to a consistent order selection rule [see
Dufour, Ghysels and Hall (1994), Potscher (1991)]. So this is not an important restriction. Other
problems of interest would consist in deriving similar tests applicable in the context of VARMA
or VARIMA models, as well as more general infinite-order vector autoregressive models, using
finite-order VAR approximations based on data-dependent truncation rules [such as those used by
Litkepohl and Poskitt (1996) and Litkepohl and Saikkonen (1997)]. These problems are also the
topics of on-going research.
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Table 7. Summary of causality relations at various horizons for series in first difference with
extended autoregressions

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR -» r *

r —-» NBR *
NBR -» P L s I = 3 *

P -» NBR
NBR -+ GDP
GDP -+ NBR

r -» P *

P -» r

r -» GDP * * *hk kk kk kK kk kK
GDP —-» r *k  okk kK X

P —-» GDP
GDP —» P * *

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR -» r

r —-» NBR
NBR -» P

P —-» NBR
NBR -» GDP
GDP -» NBR *

r -» P

P - r

r o GDP | xx %% 4k Kk Kkk Kk Kk
GDP —-» r

P -» GDP
GDP -» P

Note _ The symbols andxx indicate rejection of the non-causality hypothesis at the 10% and 5%

levels respectively.
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