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Abstract

We overview different methods of modeling volatility of stock prices

and exchange rates, focusing on their ability to reproduce the empirical

properties in the corresponding time series. The properties of price fluctu-

ations vary across the time scales of observation. The adequacy of different

models for describing price dynamics at several time horizons simultane-

ously is the central topic of this study. We propose a detailed survey of

recent volatility models, accounting for multiple horizons. These mod-

els are based on different and sometimes competing theoretical concepts.

They belong either to GARCH or stochastic volatility model families and

often borrow methodological tools from statistical physics. We compare

their properties and comment on their practical usefulness and perspec-

tives.

Keywords: Volatility modeling, GARCH, stochastic volatility, volatil-

ity cascade, multiple horizons in volatility.

J.E.L. Classification: G10, C13.

Résumé

Nous présentons différentes méthodes de modélisation de la
volatilité des prix des actions et des taux de change en prêtant
une attention particulière à leur capacité à reproduire les pro-
priétés empiriques des séries temporelles. Nous montrons que
l’échelle de temps d’observation a une influence sur les propriétés
des variations des prix. Le thème de cette étude est de discuter
de la capacité des modèles de volatilité à décrire simultanément
la dynamique des prix à plusieurs échelles de temps. Nous effec-
tuons une analyse détaillée des modèles de volatilité récents qui
tiennent compte d’horizons multiples. Ces modèles sont fondés
sur des concepts théoriques différents et quelquefois en concur-
rence. Ils appartiennent à des familles de modèles GARCH ou
volatilité stochastique, les deux groupes empruntant souvent des
outils méthodologiques de la physique statistique. Nous com-
parons leurs propriétés et concluons sur leur utilité pratique et
les perspectives d’utilisation qu’ils ouvrent.

Mots clés: modélisation de la volatilité, GARCH, volatilité
stochastique, cascade de volatilité, horizons multiples dans la
volatilité.

J.E.L. Classification: G10, C13.
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1 Introduction

Modeling stock prices is essential in many areas of financial economics, such
as derivatives pricing, portfolio management and financial risk follow-up. One
of the most criticized drawbacks of the so-called “modern portfolio theory”
(MPT), including the diversification principle of Markowitz (1952) and the cap-
ital asset pricing model by Sharpe (1964) and Lintner (1965), is the non-realistic
assumption about stock price variability. Clearly, stock returns are not iid dis-
tributed Gaussian random variables, but alternatives to this assumption are
numerous, sometimes complicated and application-dependent. In this paper we
review empirical properties of stock price dynamics and various models, pro-
posed to represent it, focusing on the most recent developments, concerning
mainly multi-horizon and multifractal stochastic volatility processes.

The subject of this study is the variability of stock prices, referred to as
volatility. Usually introduction of scientific terminology aims at making a gen-
eral concept more precise, but this is rather an example of the contrary. De-
pending on the context and the point of view of the author, the term “volatility”
in finance can stand for the variability of prices (in this sense we used it above),
an estimate of standard deviation, financial risk in general, a parameter of a
derivative pricing model or a stochastic process of particular form. We will
continue using it in the most general sense, that is as a synonym of variability.
Before reviewing volatility models, we examine in more detail the evolution of
the notion itself. This will help for a better understanding of the logic of the
evolution of the corresponding models.

One of the first interpretations of the term “volatility” is due to the fact
that the name of variability phenomenon itself has been identified with the
most elementary method of its quantitative measurement - standard deviation
of stock returns. This interpretation is logically embedded in the concept of
MPT, also called mean-variance theory, because under its assumptions these
two parameters contain all relevant information about stock returns, distributed
normally1. Note that in Markowitz (1952) risk is modeled statically: returns
on each stock are characterized by constant volatility (variance or standard
deviation) and covariances with the returns on other assets. So volatility can
be seen as synonym for standard deviation, or as an estimate of a constant
parameter in the simplest model of stock returns. This definition of volatility
has deep roots and is still widely used among asset management professionals.

The appearance in 1973 of the option pricing models by Black and Scholes
(1973) and Merton (1973) led to significant changes in the understanding of
volatility. A continuous-time diffusion (geometric Brownian motion) is used to
model stock prices:

dSt

St
= µdt + σdWt (1)

with St the stock price, µ the drift parameter and Wt a Brownian motion. The
parameter σ is called volatility because it characterizes the degree of variability.
Since the log-returns, computed from stock prices that follow equation (1), are
normally distributed, this model is also called a log-normal diffusion.

Very soon it became obvious that equation (1) poorly describes reality. Its
parameters unambiguously define option prices for given exercise dates and

1In MPT a simplifying assumption, alternative to the normality of returns, is the quadratic
form of the utility function of investors. However, the latter can hardly be justified.
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strikes, so that volatility parameter can be inferred from observations of option
prices by using the inverse of the Black-Scholes formula. An estimate obtained
in this way is called implied volatility as opposed to historical volatility, mea-
sured as the standard deviation of returns. Contrary to the predictions of the
Black and Scholes model empirical results show that implied volatility varies
for option contracts with different parameters. This phenomenon is known as
volatility smile. Its name is due to a characteristic convex form of the plot of
the estimate of σ as function of the option exercise price.

The above remark does not mean that implied volatility is useless. It has
been shown that it contains information about future variability of returns and
thus it is often used in forecasting. In derivatives pricing implied volatility
is important because it allows to extrapolate the observed market data, e.g.
option prices, for the evaluation of other financial instruments, e.g. over-the-
counter options (see Dupire, 1993, 1994; Avellaneda et al., 1997). Despite these
partial successes, a more adequate model than log-normal diffusion could still
be useful in both derivatives pricing and asset management applications. In
Merton (1973) volatility parameter is already allowed to vary in time. Even
earlier Mandelbrot (1963) points to the empirical properties of stock returns
that to not correspond to the log-normal diffusion model and proposes a wider
class of Levy-stable probability distributions. Further developments in the led
to the understanding of volatility as a stochastic process and not merely as a
parameter, even time-varying.

The meaning of the term “volatility” in finance has come full circle: from a
general term for variability phenomenon to a statistical estimate, then a model
parameter and finally a stochastic process, which again is supposed to charac-
terize the whole structure of the stock price variability. More technically, the
modern understanding of volatility can be characterized as a time structure of
conditional second-order moments in the distribution of returns. In the simplest
case of log-normal diffusion this structure is described by one parameter and in
more complicated cases, by a separate stochastic process.

This paper starts with an overview of empirical properties of volatility, the
so-called “stylized facts”. Then we briefly discuss traditional approaches to
its modeling - conditional heteroscedasticity and stochastic volatility, that re-
produce empirical properties to some extent. Though many models are good
enough to describe separate stylized facts, we show that none of them is quite
sufficient to represent the whole structure of stock price variability. In particu-
lar, most traditional models do not allow for representing returns dynamics on
multiple time horizons (e.g. from minutes to days and months) simultaneously,
which is important both practically and theoretically. Stylized facts themselves
have features specific to the frequency, at which price dynamics is observed. We
analyze and compare recently proposed models of conditional heteroscedasticity
and stochastic volatility, based on the multi-horizon approach, and discuss the
main unsolved problems, related to them.

2 Empirical Properties of Volatility

Many empirical studies show that financial time series satisfy a number of gen-
eral properties, referred to as stylized facts. A realistic model for prices is
expected to reproduce these properties. We characterize them briefly, for a
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detailed survey on the subject see Cont (2001).

• Excessive volatility. The observed degree of variability in stock prices
can hardly be explained by variations in fundamental economic factors.
In particular, returns of large magnitude (positive and negative) are often
hard to explain by arrival of new information about future cash flows
(Cutler et al., 1989).

• Absence of linear correlations in returns. Stock returns, computed
over sufficiently long time periods (several hours and more) display in-
significant linear correlation. This results is in accordance with the stock
market efficiency hypothesis by Fama (1970) and the main results of MPT,
using martingale measures.

• Clustering of volatility and long memory in absolute values of

returns. Time series of absolute values of returns is characterized by
important autocorrelation, and the autocorrelation function (ACF) decays
slowly with time lags (slower than geometric decay). Long periods of high
and low volatility are observed (Bollerslev et al., 1992; Ding et al., 1993;
Ding and Granger, 1996).

• The link between the trading volume and volatility. Volatility of
returns is positively correlated with the trading volume, and the latter
time series displays the same long memory properties as in the absolute
returns (Lobato and Velasco, 2000).

• Asymmetry and leverage in the dynamic structure of volatil-

ity. Positive and negative returns of the same magnitude, observed over
the past period, have different effects on current volatility (asymmetry).
Current returns and future volatility are negatively correlated (leverage).
Presence of the leverage effect implies the asymmetry but the inverse does
not hold (Black, 1976).

• Heavy tails in the distribution of returns. Unconditional probability
distribution of daily returns is characterized by heavy tails, i.e. high prob-
ability of observing extreme values, compared to the normal distribution
(Mandelbrot, 1963; Fama, 1965).

• The form of the probability distribution of returns varies across

time intervals, over which returns are computed (Ghashghaie et al.,
1996; Arneodo et al., 1998). Distributions of log-returns over long time
intervals are relatively close to the normal law, while returns over short
time intervals (5 - 30 minutes) have very heavy tails.

Among these stylized facts we shall be particularly interested in the proper-
ties related to the ACF of returns and the form of the probability distribution of
returns and their magnitudes. We start with a definition of the above-mentioned
long memory phenomenon in terms of ACF.

A stationary stochastic process Xt with finite variance has long memory (or
long-range dependence) if its autocorrelation function C(τ) = corr(Xt, Xt−τ ) at
τ → ∞ decays with the time lag according to the power low (i.e. at hyperbolic
speed):

C(τ) ∼ L(τ)

τ1−2d
, (2)

5
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where 0 < d < 1
2 and where L(·) is some continuous function that for ∀x > 0

and τ → ∞ satisfies L(xt)
L(t) → 1. The process has short memory if its ACF decays

exponentially (with geometric speed), so that:

∃A > 0, c ∈ (0, 1) : |C(τ)| ≤ Acτ (3)

In this definition the technical condition, imposed on the function L(·), im-
plies that for infinite lag τ this function changes infinitely slowly. Notice that
the definition refers to the theoretical ACF of the time series model and not to
its sample estimate. As we will see, in many cases the sample ACF has prop-
erties, similar to those implied by definition (2), but the theoretical ACF does
not satisfy this definition.

Alternatively, long memory can be characterized by the power law divergence
of the spectral density of the time series Xt at the origin:

Ψx(u) ∼ cΨ|u|−α (4)

with Ψx(·) - spectral density function, α - scaling parameter and cΨ - a constant.
To illustrate the empirical properties of returns we use two types of stock

index data: high frequency (intraday) observations over a relatively short time
period (French CAC40 index) and daily observations for very long time pe-
riod (Dow Jones Industrial Average Index, DJIA). We will see that the main
empirical patterns are similar for these very different examples.

The return at time t ∈ 1 . . . T over the interval τ is defined as the change in
the logarithm of price S:

rt = ln(St) − ln(St−τ ). (5)

As a measure of volatility we take the magnitude of return |rt|. Note that
similar results could be obtained for squared returns and, most generally, for
|rt|α (Bollerslev et al., 1992; Ding et al., 1993; Ding and Granger, 1996), but
for α = 1 the long memory properties are more pronounced (Ding et al., 1993;
Ghysels et al., 2006; Forsberg and Ghysels, 2007).

Figures 1 and 2 represent the time series of index values and returns, com-
puted over different time intervals. For the CAC40 index we compute 15-
minutes, daily and weekly returns, and for the DJIA index - daily, monthly
and quarterly returns. On both data sets the phenomenon of volatility cluster-
ing can be easily identified: long-lasting and persistent periods of returns with
high magnitude (positive and negative) alternate with low volatility periods.
High volatility is rarely observed on up-going market trend. Large fluctuations
are characteristic of trend reversals and slumps.

Now consider the form of the probability distribution of returns, computed
over different time intervals (Figures 3 and 4). For 15-minutes returns on the
CAC40 index the distribution is clearly leptokurtic: the deviation from the nor-
mal curve in the tails is significant. As the frequency of observations is reduced
this deviation decreases. This can be interpreted as an effect of the central limit
theorem, though the the adequacy of hypotheses underlying its various forms is
subject to debate among researchers2. For weekly returns fat tails are still ob-
served, especially in the left side of the distribution, corresponding to negative

2The distribution of logarithmic returns at finite horizons can hardly be expected to follow
the normal law exactly due to the fact that the support of normal distribution is the whole
real line, while realizations of infinite prices of assets are impossible
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Figure 1: Returns on the CAC40 Index
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Source: Euronext, CAC40 index from 20/03/1995 to 29/12/2006 at 15-minutes intervals,
100881 observations. the figure shows a: index values; b: 15-minute returns, 100880 observa-
tions; c: daily returns, 2953 observations; d: weekly returns, 590 observations.
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Figure 2: Returns on the DJIA Index
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to 10/10/2007,
28864 observations. The figure shows a: index values (for visualization purposes the values of
index are reset to 100 at the beginning of the period and then again at 01/01/1979); b: daily
returns, 28863 observations; c: monthly returns, 2953 observations; d: quarterly returns, 444
observations.
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Figure 3: Probability Distribution of Returns on the CAC40 Index
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Source: Euronext, values of index CAC40 from 20/03/1995 to 29/12/2006 at 15-minutes
intervals, 100881 observations. The figure shows a1: histogram of the distribution density
and its log-normal approximation for 15-minutes returns, 100880 observations; a2: probability
plot for the same data, i.e. empirical cumulative distribution function (cdf), compared with
the theoretical normal cdf (if the normal distribution perfectly approximates the empirical
distribution, all points are on the diagonal straight line); b1,2: the same for daily returns,
2953 observations; c1,2: the same for weekly returns, 590 observations.
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Figure 4: Probability Distribution of Returns on the DJIA Index
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to 10/10/2007,
28864 observations. The figure shows a1: histogram of the distribution density and its log-
normal approximation for daily returns, 28863 observations; a2: probability plot for the same
data, i.e. empirical cumulative distribution function (cdf), compared with the theoretical
normal cdf (if the normal distribution perfectly approximates the empirical distribution, all
points are on the diagonal straight line); b1,2: the same for monthly returns, 2953 observations;
c1,2: the same for quarterly returns, 590 observations.
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Figure 5: Sample ACF for the Returns on the CAC40 Index

5 10 15 20 25 30 35 40 45 50

−0.1

−0.05

0

0.05
a

5 10 15 20 25 30 35 40 45 50

−0.1

−0.05

0

0.05

0.1

0.15
b

5 10 15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

c

Source: Euronext, values of index CAC40 from 20/03/1995 to 29/12/2006 at 15-minutes
intervals, 100881 observations. The figure shows a: ACF for 15-minutes returns, 100880 ob-
servations; b: the same for daily returns ,2953 observations; c: the same for weekly returns, 590
observations. Horizontal solid lines show confidence intervals for autocorrelations, computed
under assumption that returns are normal white noise.
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Figure 6: Sample ACF for the Returns on the DJIA Index
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to 10/10/2007,
28864 observations. The figure shows a: ACF for daily returns, 28863 observations; b: the
same for daily returns ,2953 observations; c: the same for quarterly returns, 590 observa-
tions. Horizontal solid lines show confidence intervals for autocorrelations, computed under
assumption that returns are normal white noise.
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Figure 7: Sample ACF for the Magnitudes of Returns on the CAC 40 Index
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Source: Euronext, values of index CAC40 from 20/03/1995 to 29/12/2006 at 15-minutes
intervals, 100881 observations. The same as on Figure 5, but instead of returns their absolute
values are used.
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Figure 8: Sample ACF for the Magnitudes of Returns on the DJIA Index
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to 10/10/2007,
28864 observations. The same as on Figure 6, but instead of returns their absolute values are
used.
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Figure 9: Sample Spectrum Density Function for the Returns on the CAC40
Index and their Magnitudes
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Source: Euronext, values of index CAC40 from 20/03/1995 to 29/12/2006 at 15-minutes
intervals, 100881 observations. the figure shows a: pseudospectrum for 15-minutes returns,
100880 observations; b: pseudospectrum for absolute values of returns. The spectral density is
estimated by the eigenvectors of the correlation matrix method with maximum lag 10 (Marple,
1987, p.373-378). On the X-axis: normalized frequencies (in radians per sample length), on
the Y-axis: pseudospectrum values in decibels.

Figure 10: Sample Spectrum Density Function for the Returns on the CAC40
Index and their Magnitudes
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Source: Dow Jones Indexes, daily values of the DJIA index from 26/05/1896 to 10/10/2007,
28864 observations. The same as on Figure 9, but using daily returns.
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returns. However, a relatively small number of observations at this frequency
(590) does not allow a precise judgment about the distribution of extreme val-
ues in returns. For the DJIA case we have a larger sample (2953 observations).
As in the previous case, extreme negative returns are observed much more fre-
quently than the normal probability model predicts. For monthly returns the
deviation in tails is smaller, but the size of the sample is not sufficient for final
conclusions.

We find that, as the time horizon of returns increases, the distribution ap-
proaches to the normal law, but this convergence is very slow. Indeed, monthly
logarithmic returns are obtained by summing up more than six hundred 15-
minutes returns, so if assumptions of the classical central limit theorem were
satisfied, the distribution would have been very close to Gaussian. But fat tails
do not disappear even at that horizon. As we will show later, the question of
whether a sufficiently long horizon, at which returns are normal, exists is im-
portant for building models of volatility at multiple horizons. Clearly, a strict
empirical answer to this question cannot be obtained: if such horizon exists, it
should be very long (longer than 3 month), but we do not dispose of sufficiently
long samples to accurately carry out normality tests at such horizons. In fact,
the DJIA time series is the longest time series currently available in financial
economics.

The analysis of the dependence structure in returns confirms the intuitions
from the visual observation of time series profiles. First, autocorrelations in
returns are weak at all frequencies (Figures 5 and 6). We only notice significant
positive autocorrelation between consecutive 15-minutes returns, which are in-
duced by the microstructure effects, falling out of the scope of this study (see
Zhou, 1996, for details). For the CAC40 index we also record small negative
autocorrelation in consecutive weekly returns, which can probably be explained
by the “contrarian” effect3, and positive correlation for lag 3 in weekly returns,
which is probably a statistical artifact. For the returns on DJIA index no sig-
nificant autocorrelations in returns are found.

The ACF computed for the absolute values of returns presents a big con-
trast (Figures 7 and 8). For magnitudes of returns on CAC40 positive auto-
correlations are persistently significant up to very large lags at all frequencies
of observation (15-minutes, daily and even weekly). Thus, at a 100-days lag
correlations in daily volatilities are still significant, and for weekly returns they
vanish no sooner than at lag 30 weeks (more than half of a year). The form
of ACF can hardly be described by exponential decay, which characterizes the
ARMA (autoregressive moving average) models. This illustrates long-range de-
pendence in volatility. Daily volatilities of DJIA index display even stronger
autocorrelations - they are still significant at 100-days lag and exceed 10% level.
Autocorrelations in weekly absolute returns disappear at lags over 35 weeks,
and in quarterly absolute returns - at 4 quarters. So long-range dependence can
be observed both in high-frequency and in daily observations of volatility.

Figures 9 and 10 show the estimated spectrum of fluctuations of returns
and their absolute values (data are taken at the highest available frequency).
The spectral density is estimated by the eigenvectors of the correlation matrix
method with maximum lag 10 (Marple, 1987, p. 373-378). Normalized frequen-

3Contrarian strategy consists in selling stock that outperformed in past and buying those
that underperformed, expecting trend reversal (see Conrad et al., 1997, and other behavioral
finance literature)
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cies (in radians per sample length) are shown on the X-axis and pseudospectrum
values in decibels are on the Y-axis. The spectrum of fluctuations in returns’
magnitudes (volatility) has a peak at frequency close to zero, so that a signif-
icant part of the variation in volatility corresponds to the fluctuations, whose
duration is comparable with the sample length. This observation also character-
izes long memory: if the ACF decays at linear speed, the longest fluctuations’
“cycle”4 that can be observed equals the length of the sample.

Our empirical results illustrate the presence of long memory in volatility time
series and the non-Gaussian character of the distribution of returns, especially at
high observation frequencies. In the next section we explain how these properties
can be reproduced by the models proposed in financial literature.

3 ARCH/GARCH Family of Volatility Models
and Extensions

The key feature of the models proposed for stock price dynamics, has always
been their capacity to reproduce the empirical properties of volatility in finan-
cial time series, and above all, the phenomenon of volatility clustering. It is
appropriate to start the survey with autoregressive conditional heteroscedastic-
ity (ARCH) models, used for the first time by Engle (1982) to represent inflation
and later by Engle and Bollerslev (1986) for stock and FX market data. Returns
in the ARCH model are represented as the sum of their conditional expectation
and a Gaussian5 disturbance of varying magnitude:

rt = E(rt|It−1) + σtǫt (6)

with εt ∼ iid N(0, 1), It the information set at date t, defined as the natural
filtration of the price process, and σt the magnitude of the disturbance term,
satisfying:

σ2
t = α0 + α1r

2
t−1 + . . . + αqr

2
t−q (7)

with α0 > 0, αi ≥ 0 for ∀i > 0 and
∑q

i=1 αi < 1. The parameter q specifies the
depth of memory in the variance of the process.

A natural extension of ARCH is the generalized ARCH model (GARCH),
first proposed in Bollerslev (1986) and widely used until know in the context of
volatility forecasting (for example, see Bollerslev, 1987; Bollerslev et al., 1992;
Hansen and Lunde, 2005). The model reads:

σ2
t = α0 +

q
∑

i=1

αir
2
t−i +

p
∑

i=1

βiσ
2
t−i = α0 + α(L, q)r2

t + β(L, p)σ2
t (8)

with Ln the lag operator of order n and a(L, n) the operator of the form
∑n

i=1 aiL
i, applied to a time series. So a(L, q)Xt stands for

∑q
i=1 aiXt−i and

equation (8) can be rewritten:

[1 − α(L, q) − β(L, p)] r2
t = α0 + [1 − β(L, p)]

(

r2
t − σ2

t

)

, (9)

4In this context the term “cycle” is used in stochastic sense rather than in strict determin-
istic sense.

5In general, normality condition for the noise is not necessary
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which corresponds to an ARMA model for the squared returns with parameters
max{p, q} and p because E(r2

t −σ2
t |It−1) is an iid centered variable. To provide

for the stability of the process, i.e. finite variation of the disturbances σtεt, all
roots of the equations α(Lq) = 0 and 1 − α(Lq) − β(Lp) = 0 must lie outside
the unit circle. For GARCH(1,1) this constraint takes a simple form α + β < 1.
Sufficient and necessary conditions of strict stationarity, ergodicity and existence
of moments of the GARCH-models are studied in Ling and McAleer (2002a,b).

GARCH models reproduce volatility clustering, observed empirically in fi-
nancial time series (this is why volatility clustering is sometimes called GARCH-
effect). The theoretical ACF of the process GARCH(1,1) decays at geometric
speed, given by the sum α+β. The closer this sum gets to unity, the more per-
sistent autocorrelations are. In practice the estimates of α + β are often close
to unity (Bollerslev et al., 1992). So the sample ACF for GARCH(1,1) is hard
to distinguish from the long memory case, for which property (2) is verified.

The parameters of ARCH/GARCH models are usually estimated by the
maximum likelihood method. The log-likelihood function for the Gaussian error
case reads:

lnL = −1

2

T
∑

t=1

(

2 ln σt + ε2
t

)

(10)

If the normality assumption is violated, a quasi-maximum likelihood (QML)
estimation procedure is possible (the prefix “quasi” means that statistical infer-
ence is made under possible model misspecification). QML estimates of param-
eters are consistent under finite variance of disturbances (i.e. if α + β < 1) and
asymptotically normal if the fourth moment of disturbances is finite (Ling and
McAleer, 2003).

The main drawback inherent to GARCH(1,1) is that its memory is not long
enough, because the ACF decreases too fast, though possibly from high values
of autocorrelation. When α + β is not very different from one, GARCH(1,1)
degenerates to a process, called integrated GARCH by Engle and Bollerslev
(1986). This model is non-stationary and implies permanent (non-vanishing)
effect of initial conditions on the price dynamics and thus can hardly pretend
to correctly represent reality.

An alternative approach consists in using processes, whose theoretical prop-
erties imply the presence of long memory. An early example of such process
is the fractal Brownian motion of Mandelbrot and Van Ness (1968). It is a
continuous-time Gaussian process with zero drift, whose ACF has the form:

C(τ) = E(WH
t Wt−τ ) =

1

2

(

|t|2H + |t − τ |2H − |τ |2H
)

, (11)

where WH
t denotes a fractional Brownian motion with parameter H ∈ (0, 1) at

time t ∈ [0, T ], t ∈ ℜ, such as 0 ≤ τ ≤ t ≤ T . The spectral density of the process
reads:

Ψ(x) = 4σ2cH sin2(πx)

∞
∑

i=−∞

(|x + i|)−2H−1
(12)

with − 1
2 ≤ x ≤ 1

2 , σ2 the variance of the process and cH a positive constant. It is
easy to notice that with H = 1

2 the process degenerates to an ordinary Brownian
motion and with H > 1

2 it has stationary dynamics with long memory.
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In the ARCH/GARCH framework the fractionally integrated process pro-
posed in Granger and Joyeux (1980); Hosking (1981) is a discrete analogue of
the fractional Brownian motion and it is defined by:

(l − L)dXt = εt (13)

with εt ∼ iid N(0, σ2
ε) and operator (l − L)d, 0 < d < 1 is an infinite series of

the below form:

(l − L)d =
∞
∑

i=0

Γ(i − d)

Γ(−d)Γ(k + 1)
Li, (14)

where Γ(·) stands for the Gamma-function. The spectral density of the process
reads:

Ψ(x) =
σ2

ε
(

4 sin2(πx)
)d

cH sin2(πx)

∞
∑

i=−∞

(|x + i|)−2H−1
(15)

with − 1
2 ≤ x ≤ 1

2 . For |d| < 1
2 the process has stationary dynamics with

hyperbolic decay of the ACF, thus displaying long memory.
Fractional Brownian motion was proposed as a model of price dynamics

in Mandelbrot (1971) and later in many studies that aimed at estimating the
parameter H in (11) empirically (see Mandelbrot and Taqqu, 1979)). But taking
this approach means to accept the presence of long-range correlations in returns
themselves and not only in their magnitudes. As shown in Heyde (2002), to
generate long-range dependence in magnitudes of returns the memory parameter
of the process must satisfy 3

4 ≤ H ≤ 1, which clearly contradicts empirical
evidence.

As follows from the above discussion, models that straightforwardly exhibit
long-range dependence in magnitudes of returns rather than in returns them-
selves could be more realistic. One of the most popular models of this kind is
fractionally integrated GARCH (FIGARCH) proposed in Baillie et al. (1996)
and Bollerslev and Mikkelsen (1996). The process for the variance of returns is
given by:

[1 − β(L, p)] σ2
t = α0 +

[

1 − β(L, p) − φ(L)(1 − L)d
]

r2
t (16)

with φ(L) = [1 − α(L, q) − β(L, p)] (1 − L)−1. If d tends to one the model
degenerates to IGARCH, discussed above.

A large number of other models, belonging to the GARCH family, were pro-
posed to improve the forecasting power of GARCH(1,1). Among these models,
the GARCH-in-mean first proposed by Engle et al. (1987) supposes that ex-
pected return increases with volatility and thus takes into account the effect
of the varying risk premium. Other models include the effects of asymmetry
and leverage, introduced in section 2. Among the most influential models we
can mention the GJR model (from Glosten-Jagannathan-Runkle), proposed in
Glosten et al. (1992), the exponential GARCH with leverage effect, in addition
eliminating some undesirable constraints on the values of parameter estimates
(Nelson, 1991) and generalized quadratic ARCH (GQARCH) by Sentana (1995).
Non-linear extensions of GARCH (often called NGARCH) have also been pro-
posed. They generalize the form of dependence of current variance on past
observations of returns. This class includes models where volatility switches
between “high” and “low” regimes (Higgins and Bera, 1992; Lanne and Saikko-
nen, 2005). The study by Hansen and Lunde (2005) of the predictive power
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of ARCH-models uses 330 various specifications. A more detailed description
of some of them can be found in Morimune (2007). Derivatives pricing under
the GARCH-like dynamics of the underlying asset is discussed in Duan (1995);
Ritchken and Trevor (1999); Barone-Adesi et al. (2008).

Among all extensions including the jump component in the price dynamics
is of particular importance (Bates, 1996; Eraker et al., 2003). This generates fat
tails in the distribution of returns, a property that is characteristic of empirical
data. As early as in 1960s, Mandelbrot proposed to use stable Levy processes
(power law processes with infinite variance) for this purpose (Mandelbrot, 1963).
The properties of long memory processes, in which innovations are generated
by Levy processes, are studied in Anh et al. (2002). Chan and Maheu (2002)
proposed a rather general model, in which the intensity of price jumps is modeled
by an ARMA process and volatility exhibits GARCH-effect.

All the above-mentioned extensions of GARCH are defined in discrete time.
A continuous-time analogue of GARCH(1,1) was first studied by Drost and
Werker (1996). They establish a link between GARCH and stochastic volatility
models, which are are discussed in the next section. It is important that the
estimates of the parameters of the discrete time GARCH(1,1) in, obtained for
arbitrary chosen frequency of observation, can be converted to the parameters
of a continuous process. This result is related to the time aggregation property
of GARCH models that will be discussed in section 6. Continuous-time GARCH
models with innovations driven by jump processes are described in Drost and
Werker (1996) and more recently in (Klüppelberg et al., 2004).

Portfolio management and basket derivatives pricing applications motivate
the study of multi-dimensional conditional heteroscedasticity models, account-
ing for correlations between assets. The first model of this kind, called con-
stant conditional correlation model (CCC), was developed by Bollerslev (1990).
The returns on each asset follow a one-dimensional GARCH process and con-
ditional correlations are constant. So any conditional covariance is defined as
the product of a constant correlation by the time-varying independent stan-
dard deviation of returns. The main advantage of CCC is the simplicity of
estimation and interpretation. The main drawback is the absence of interde-
pendence in conditional volatilities of assets. Besides, it does not account for
leverage, asymmetry and, clearly, for possible changes in correlations. A more
general model with constant correlations, introducing asymmetry, is studied in
Ling and McAleer (2003). Engle (2002) further generalized CCC, allowing for
GARCH-like dynamics in correlations. The model was named DCC, standing
for dynamic conditional correlations. The dynamics of correlations in DCC is
similar for all assets. This constraint is weakened in Billio et al. (2006).

4 Stochastic Volatility Models

Conditional heteroscedasticity models have only source of randomness. The
variance of the returns process is some function of its past realizations (for ex-
ample, a linear combination of lagged squared returns). An alternative approach
is to set up a simple model for returns, for instance given by (1). Instead of
considering σ as a parameter, one can model it as a separate stochastic process.
Two sources of randomness thus emerge. This idea is the concept of stochastic
volatility.
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The first stochastic volatility model was proposed in Taylor (1982). It as-
sumes that log-volatility is an AR(1) process:

rt = µσtεt

lnσ2
t = φ lnσ2

t−1 + νt,
(17)

where µ is some positive constant, included in the model to get rid of the con-
stant term in the volatility process, and φ is the autoregression parameter that
determines memory in volatility. The properties of the autoregressive stochas-
tic volatility (ARSV) models were studied by Andersen (1994); Taylor (1994);
Capobianco (1996). In particular, under the constraint of the log-volatility pro-
cess being stationary, the distribution of returns is fat-tailed and symmetric Bai
et al. (2003). Returns are uncorrelated (but clearly not independent). The ACF
for returns and squared returns decays at geometric speed, a characteristic of
ARMA models.

Stochastic volatility have become popular in applications, related to pricing
and hedging of financial derivatives. The returns are always given by a relation
analogous to (1) where volatility is given by σt = f(Xt). Usually Xt is an Ito
process, so the whole model reads:

dS(t)

S
= µdt + σdW (t)

σt = f(Xt)

dXt = θ(ψ − Xt)dt + g(Xt)dBt

< W,B >t= ρt

(18)

with θ and ψ two constant parameters, f(·) and g(·) two continuous functions,
verifying some regularity conditions (depending on the concrete specification),
and ρ the correlation parameter, used to model the dependence between two
Brownian motions that drive the price dynamics. Hull and White (1987) use
the specification f(Xt) = Xt with θ < 0, µ = 0 and g(Xt) = νXt, which
corresponds to the geometric Brownain motion for volatility. This model allows
for easy derivation of closed-form formulas for option prices, but its properties
are far from being realistic: the variance of returns is not bounded because the
volatility process is not stationary.

An alternative specification proposed in Scott (1987) uses an Ornstein-
Uhlenbeck (OU) process for volatility, taking f(Xt) = Xt, g(Xt) = ν, so that,
after a shock, volatility converges to its long-term average ψ at speed θ with
“volatility of volatility” ν. Another possibility is the exponential OU model
(Stein and Stein, 1991) with f(Xt) = expXt and g(Xt) = ν, which is a con-
tinuous time analogue of ARSV(1) . Perhaps, the most popular is the Heston
(1993) model, where f(Xt) =

√
Xt, g(Xt) = ν

√
Xt. In this case volatility is

represented by a Cox-Ingersoll-Ross (CIR) model (see Cox et al., 1985).
The logic of the evolution of stochastic volatility models echoes the logic

of GARCH extensions. Harvey and Shephard (1996) and later Jacquier et al.
(2004) include the leverage effect in ARSV, letting two innovations in (17) be
negatively correlated (in a continuous model of the form (18) this corresponds
to the choice of ρ < 0). A stochastic volatility model with the effect of volatil-
ity on expected return, analogous to GARCH-M, is proposed in Koopman and
Uspensky (2002). Jump component can be added to the stochastic volatility
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model by means of non-Gaussian processes. Instead of Brownian motion distur-
bances are generated by Levy processes (see Barndorff-Nielsen and Shephard,
2001; Eraker et al., 2003; Chernov et al., 2003; Duffie et al., 2003).

Various methods were proposed to incorporate long memory. Breidt et al.
(1998); Harvey (1998) build discrete-time models with fractional integration,
Comte and Renault (1998) propose a continuous time model with fractional
Brownian motion. Chernov et al. (2003) considers models, in which stochas-
tic volatility is driven by various factors (components). Such models generate
price dynamics with slow decay in sample ACF, a characteristic of long mem-
ory models, though the data generating processes themselves do not possess
this property (LeBaron, 2001a). In Barndorff-Nielsen and Shephard (2001) long
memory effect is produced by superposition if an infinite number of non-negative
non-Gaussian OU processes, which incorporates long-range dependence simulta-
neously with jumps. Besides, long-range dependence in stochastic volatility can
be achieved using regime-switching models (So et al., 1998; Liu, 2000; Hwang
et al., 2007).

Multi-dimensional extensions of stochastic volatility models are also avail-
able. Their comparative surveys can be found in Liesenfeld and Richard (2003);
Asai et al. (2006); Chib et al. (2006). For some particular cases, notably for the
Heston (1993) model, the problem of the optimal dynamic portfolio allocation is
solved (Liu, 2007). Finally, similar to the GARCH literature, methods of deriva-
tives pricing are developed for the case, when the underlying asset has stochastic
volatility (Heston, 1993; Hull and White, 1987; Henderson, 2005; Maghsoodi,
2005).

Notice that realizations of volatility process, defined by models of type (17)
and (18), are not observable (with reservations, discussed below), so that for
their estimation we have to use returns and their transformations. Estimation
methods can either be based on the statistical properties of returns (efficient
method of moments, quasi-maximum likelihood method, etc.) or on building
linear model for squared returns. A detailed survey of these methods can be
found in Broto and Ruiz (2004).

The interest in SV models especially increased in recent years because an
unobservable variable volatility turned to be an “almost observable” one. This
occurred thanks to the availability of the intraday stock quotations, making
possible precise non-parametric estimation of volatility. The concept of realized
volatility (RV), defined as the square root of the sum of squared intraday returns
(Andersen et al., 2001; Barndorff-Nielsen and Shephard, 2002b; Andersen et al.,
2003):

σ̂RV
t =

(

∑M−1
i=1 r2

t,δ

M − 1

)

1
2

(19)

with σ̂RV
t realized volatility of returns, ri,δ logarithmic returns on the time in-

terval [i, i + δ] c δ = τ(M − 1)−1, τ the length of period, over which volatility
is computed (for example, one day) and M the number of price observations,
available for that period. If in formula (19) we omit squared root and normal-
ization on the number of observations, we obtain a realized variance estimation
over the period τ , which is also often used in practice (Barndorff-Nielsen and
Shephard, 2002a; Hansen, 2005).

Using realized volatility and variance is complicated by the correlation of re-
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turns at high frequencies, induced by market microstructure effects (also called
microstructure noise, see Biais et al., 2005)). Methods of correction of real-
ized variance for this noise and of the optimal choice of sampling frequency
were proposed in (Bandi and Russel, 2008) and partially in some earlier stud-
ies. But the simplest method, most frequently used in practice, is to compute
returns over sufficiently long time intervals, where correlations are negligible,
but short enough to benefit from the information, contained in high-frequency
data. A survey of the properties of realized volatility and its use in the context
of stochastic volatility models is given in McAleer and Medeiros (2008).

A alternative non-parametric estimation of volatility can be obtained by
aggregation of artificially computed returns, corresponding to the difference
between the maximal Ht,i and the minimal Lt,i values of stock price over K
intervals of time length [i, i + ∆], onto which a time period of interest τ is
divided (Alizadeh et al., 2002; Christensen and Podolskij, 2007; Martens and
van Dijk, 2007):

σ̂RR
t =

1

4 ln 2

M−1
∑

i=1

(lnHt,i − lnLt,i) , (20)

where σ̂RR
t is called realized range estimate. Clearly, the length of interval

∆ must be chosen so as to contain several observations of prices. Statistical
properties of the estimates, obtained in this way, can sometimes be better than
those of realized variance. Another complement to realized variance is provided
by the estimates with the process of bipower variation, which in particular
allows estimation of the input of the jump component to the integrated variance
(Barndorff-Nielsen and Shephard, 2002c; Woerner, 2005).

One of the main challenges in building volatility models has always been
its forecasting (Andersen and Bollerslev, 1998; Andersen et al., 1999; Christof-
fersen and Diebold, 2000; Granger and Poon, 2003; Martens and Zein, 2004;
Hansen and Lunde, 2005; Ghysels et al., 2006; Hawkes and Date, 2007). The
development of non-parametric methods of estimation with intraday returns al-
lowed, on the one hand, to increase the quality of forecasts, based on the time
series of historical prices, compared to implicit volatility methods, based on op-
tions prices calibration (Martens and Zein, 2004) and, on the other hand, made
it possible to compare various SV models, taking non-parametric estimate of
volatility for its actually observed values (Brooks and Persand, 2003; Corradi
and Distaso, 2006).

5 Aggregation of Returns in Time

In section 2 we compared returns on stock indices CAC40 and DJIA, computed
from observations at different frequencies. We showed that the form of the
probability distribution of returns changes across frequencies of observation. At
the same time dynamic properties of volatility, such as long memory in absolute
returns and absence of linear correlations in returns themselves, are common for
time series, corresponding to different frequencies. A series of practically impor-
tant questions arises in this context. In what way the long memory phenomenon
is related to the properties of returns at different horizons? Can volatility mod-
els, calibrated on data of some frequency, reproduce the properties of returns
at other frequencies? Does it make sense to make estimations at several time
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horizons for the same time series of stock prices, and if yes, how to reconcile the
results?

The answer to the first question was largely given by Mandelbrot and Van
Ness in 1968. They pointed out that for some class of stochastic processes,
their properties eswtablished on short horizons allow to completely describe the
properties at longer horizons. A process Xt is called self-affine if there exists a
constant H > 06, such as for any scaling factor c > 0 random variables Xct and
cHXt are identically distributed:

Xct
L
= cHXt (21)

Fractal Brownian motion, defined through the form of its ACF in (11) is an
example of self-affine process. When the condition 1

2 < H < 1 is verified, this
process possesses long memory, and for H = 1

2 it is a standard Brownian motion
with independent increments.

Notice that in general self-affinity with H > 1
2 does not imply presence of

long-range dependence and vice versa. As a counter-example we can evoke L-
stable processes, verifying self-similarity condition (21), whose increments are
independent and generated by stationary random variables whose probability
distribution satisfies P (X > x) ∼ cx−α, with 0 < α < 2. These processes have
discontinuous paths and thus are helpful to represent heavy tails in returns.
Thus two very different phenomena - long-range dependence and extreme fluc-
tuations - can be observed within the class of the self-affine processes.

Intuitively, saying that a probability distribution is L-stable means that the
form of distribution does not change (i.e. is invariant upto a scaling parameter)
when independent random variables, following this probability law, are summed
up. In particular, the normal distribution is L-stable and Brownian motion is an
example of an L-stable process. It is the only L-stable process with continuous
trajectory and independent increments. As explained above, the independence
property is lost for fractional Brownian motion. But random variables with
heavy tails (infinite variance) can also be used to generate self-affine processes.

A generalization of the class of self-affine processes is the class of multifractal
processes, for which the self-affinity factor is no longer constant, so that the
aggregation property reads:

Xct
L
= M(c)Xt (22)

with M(·) - independent of X positive random function of scaling factor c, such

as M(xy)
L
= M(x)M(y) for ∀x, y > 0. For strictly stationary (i.e. stationary in

distribution) processes the following local scaling rule is verified:

Xt+c∆t
L
= M(c) (Xt+∆t − Xt) (23)

In the multifractal case we can define a generalized Hurst exponent as H(c) =
logc M(c) and rewrite (22) in the form:

Xct
L
= cH(c)Xt (24)

From (22) we can obtain scaling rules for the moments of Xt:

E(|Xt|q) = c(q)tζ(q)+1 (25)

6This parameter is called Hurst exponent. The name was given by Mandelbrot in honor
of hydrologist Harold Hurst, who studied long-range dependence on the river Nile data.

24

Document de Travail du Centre d'Economie de la Sorbonne - 2009.36

ha
ls

hs
-0

03
90

63
6,

 v
er

si
on

 1
 - 

2 
Ju

n 
20

09



with c(q) and ζ(q) deterministic functions. The function ζ(q) is particularly
important and is called scaling function. Substituting q = 0 in 25, it is straight-
forward to notice that that the constant term in this function must be equal to
one. For a self-affine process, which can also be called monofractal, the scaling
function is linear and can be written ζ(q) = Hq−1. Applying Hölder inequality
to (25) we can show that ζ(q) is always concave and that it becomes linear
when t → ∞. This implies that a multifractal process can only be defined for a
finite time horizon, because beyond some horizon monofractal properties must
prevail.

Alternatively (see Castaing et al., 1990) a multifractal process can be defined
through the relation between the probability density functions of the increments
of the process, computed for time intervals of different lengths l and L, such as
L = λl, λ > 1. This relation reads:

Pl(x) =

∫

G(λ, u)e−uPL(e−ux)du (26)

with Pl(·) the probability density function of the increments δlXt of the pro-
cess Xt at time horizon l, so that x = δlXt = Xt+l − Xt (remember that for

stationary processes δlXt
L
= Xl). So if Xt is the logarithm of stock price, then

the increments of the process represent returns at different time horizons. The
function G(λ, u), whose form depends exclusively on the relation between the
lengths of two horizons, is called a self-similarity kernel. In the simplest case of
a self-affine process it takes the form:

G(λ, u) = δ(u − H lnλ) (27)

with δ(·) the Dirac function7. In this monofractal case one point is enough to
describe the evolution of the distributions, since Pl and PL are different only by
the scaling factor. This explains the degenerated form of (27).

In the general multifractal case equation (26) has a simple interpretation.
The distribution Pl is a weighted superposition of scaled density functions PL,
with the weights defined by the self-similarity kernel. In other words, Pl is a
geometric convolution between the self-similarity kernel and the density function
PL. Self-similarity kernel is also called propagator of a multi-fractal process. We
will further need definition (26) to establish the multifractal properties of the
multiplicative volatility cascade.

The scaling properties in stock prices and FX rates volatility have recently
been studied in several papers. In particular, Schmitt et al. (2000) and Pasquini
and Serva (2000) show that the non-linearity of the scaling function ζ(q), ob-
served empirically, is incompatible with additive monofractal models of stochas-
tic volatility, based on Brownian motion. So far this class of models has been
most popular both among practitioners and researchers in finance. Multifractal
properties can be due to a multiplicative cascade of disturbances (information
flows or reactions to news), similar to the cascade used to model the turbulence
in liquids and gazes. We discuss this issue later in more detail.

Interestingly, the time aggregation properties of simple models of the type
GARCH and ARSV do not provide an adequate representation of stock returns

7The Dirac function δ(x) is equal to 0 in all points except x = 0, and to infinity at x = 0,
so that the integral of the function is equal to 1.
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at multiple horizons simultaneously. As regards the most popular GARCH(1,1)
and its continuous time stochastic volatility analogue Drost and Nijman (1993)
and Drost and Werker (1996) show that they verify the scale consistency prop-
erty, i.e. if returns at some short scale follow GARCH(1,1), they must do so at
any long scale with the same parameters. To prove this result the authors had
to relax the assumption of the independence of errors in the model (8), assuming
only that α and β are the best linear predictors of variance and that residuals
εt are stationary (the so-called weak form of GARCH). Scale consistency is at
the same time a strength and a weakness of the GARCH model. On the one
hand, the results of statistic inference are independent of the frequency of ob-
servation. On the other hand, strict scale invariance does not allow reproducing
the evolution in the form of the volatility distribution with time horizons and
thus contradicts the empirical evidence.

The above arguments demonstrate the need for a model of volatility, that
would not only reproduce long-range dependence and/or the presence of heavy
tails in stock return, observed at some fixed frequency, but would give adequate
results for other horizons. Ideally, this would give the possibility to model the
change in the form of the probability distribution of returns at different time
horizons and to reproduce the multifractal properties of the corresponding time
series.

6 The Hypothesis of Multiple Horizons in Volatil-

ity

Up to now we discussed the time aggregation of returns from a purely statistical
point of view. We noticed that the time series of returns, observed at different
frequencies, have different properties. Can these properties be related to the
real economic horizons, at which economic agents act?

The economic hypothesis of multiple horizons in volatility supposes that the
heterogeneity in horizons of decision-taking by investors is the key element of
explaining the complex dynamic of stock prices. For the first time the idea that
price dynamics is driven by actions of investors at different horizons was ad-
vanced in Müller et al. (1997). They suppose that one can distinguish volatility
components, corresponding to particular ranges of fluctuation frequencies, that
are of unequal importance to different market participants. The latter include
speculators that use intraday trades, daily traders, portfolio managers and in-
stitutional investors, each having its own characteristic time of reaction to news
and frequency of operations on the market. From the economic point of view,
frequencies of price fluctuations are associated with the periods between asset
allocation decisions, or frequencies of portfolio readjustments by investors.

A parametric model of volatility at multiple horizons in the spirit of ARCH
approach has been proposed in Müller et al. (1997) and further studied in Da-
corogna et al. (1998). Current volatility is represented as a linear function of
squared returns over different time periods in the past:

σ2
t = c0 +

n
∑

j=1

cj

(

j
∑

i=1

rt−i

)2

(28)

with ck ≥ 0 for all k = 0, ..., n, so that for k = 0 and k = n the inequality is strict,
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and with rt the logarithmic return. Thus the expression
∑j

i=1 rt−i represents
log-return over the period of length j. By construction the resulting hetero-
geneous ARCH (HARCH) model accounts for the hierarchical structure of the
correlations in volatilities. The main problems of this model are a big number of
parameters and high correlations between independent variables, that make its
identification very complicated. The authors propose to reduce the dimension of
the problem, using the principal components method. Later Corsi (2004) pro-
posed a model, having the same form as HARCH, but using realized volatilities
at different horizons (daily, monthly, weekly) as independent variables. This
reduces correlations between regressors and the number of parameters.

Zumbach (2004) proposed to define current (or efficient) volatility as a
weighted sum of several components, corresponding to different time horizons.
He considers n+1 representative horizons, whose length τk, k = 0 . . . n increases
dyadically: τk = 2k−1τ0. The component of volatility, corresponding to horizon
k, is defined by the exponential moving average:

σt,k = µkσ2
k,t−δt + (1 − µk)r2

t

µ0 = exp(− δt

τ0
) µk = exp(− δt

τ02k−1
), k = 1 . . . n

(29)

with rt current return at the minimum time interval δt, at which prices are
observed (δt ≤ τ0). Supposing that time is measured in units of length δt, we
choose for simplicity δt = 1. Then, using (29), we can obtain the expressions
for returns and volatility at different horizons:

rt,k =
1√
τk

[

ln(St) − ln(St−
τk

τ0

)
]

σt,k = µkσ2
k,t−1 + (1 − µk)r2

t,k

(30)

with the return rt,k at horizon k = 2k−1 defined as the change in the logarithm of
price, scaled to the minimal time period δt = 1. Finally, the resulting (efficient)
volatility, corresponding to the unit time period, reads:

σt =

n
∑

k=1

c 2−(k−1)λ σt,k =

n
∑

k=1

ωkσt,k (31)

with 1/c =
∑n

k=1 2−(k−1)λ, which provides
∑n

k=1 ωk = 1. The decay of weights
in (31) according to the power law provides for long memory in the magnitudes
of returns. This model is close to FIGARCH that uses the fractional differencing
operator to create long-range dependence (see section 3), but Zumbach’s model
has a clear interpretation in terms of multiple horizons hypothesis. Compared
to HARCH, it uses less parameters (only four). Note, however, that empirical
tests of (31) showed only a very slight increase in the forecasting power of the
model, compared to GARCH(1,1).

Another model of volatility at multiple horizons, this time based on a mod-
ification of the ARSV model, was proposed in Andersen (1996) and Andersen
and Bollerslev (1997). Here the heterogeneity of time horizons is interpreted in
terms of different persistence of information flows that influence price variability.
These information flows can be seen as factors of volatility, important to differ-
ent types of investors. Current return is defined through the latent volatility,
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which is assumed proportional to the intensity of the aggregated information
flow Vt:

rt = V
1
2

t ξt (32)

where ξt is an iid random process with zero expectation and unit variance. The
information flow Vt is the result of simultaneous action of n different information
flows Vt,j , each following a log-normal ARSV model of the type (17):

vt,j = αj + vt−1,j + εt,j (33)

with vt,j = lnVt,j − µj , µj = E(lnVj,t) and εt,j ∼ iid N(0, σ2
j ). The parameter

αj represents the persistence of the information flow j, supposed to be station-
ary (0 ≤ αj < 1). Aggregation of information flows is accomplished with the
geometric mean rule:

lnVt =

N
∑

i=1

vt,j

N
∑

i=1

µj (34)

According to this definition the spectrum of lnVt is the mean spectrum of all
autoregressive processes, defined by equations of the form (33).

Representing the heterogeneity of the parameter αj by a standard β-distribution,
the authors study the dynamics of returns’ magnitudes and of the odd moments
of returns, finding evidence in favor of long-range dependence. Besides, the pro-
cess, obtained through the mixture of distributions, is self-affine. In particular,
this implies that the ACF of volatility process decays at the same hyperbolic
speed, whatever the frequency of returns observation.

Andersen and Bollerslev (1997) model has mostly explicative character (the
authors try to explain long-range dependence by the heterogeneity of infor-
mation flows), unlike the models described earlier that suppose identification
of parameters and practical use in forecasting. It still does not explain the
multifractality property, which is empirically observed in stock price volatility.
Besides, the model does not have a direct microeconomic justification, based on
decision-taking behavior of investors.

Explanation of the properties of volatility in the market microstructure mod-
els with heterogeneous investors is proposed in several studies. In particular,
Brock and Hommes (1997) introduce the notion of adaptive rational equilib-
rium which is reached by investors, rationally choosing the predicting functions
for future prices. The set of predictive functions is specified a priori and the
criterion of choice is the quality of the forecasts, obtained by using these func-
tions on historical data. Artificial markets of this type are also studied in Lux
and Marchesi (2000), Chiarella and He (2001) and Anufriev et al. (2006), where
investors choose between chartist (extrapolating the past) and fundamentalist
strategies. Reproducing some of the empirical properties of stock prices, these
models explain the paradox of excessive price volatility and volatility cluster-
ing to some extent. However, none of them accounts for the heterogeneity of
time horizons. In a similar context LeBaron (2001b) studies the choice between
strategies, based on historical data collected over different horizons. However, he
does not explicitly model the rational choice of agents that rebalance portfolios
at different frequencies.

Subbotin and Chauveau (2009) study the effect of multiple investment hori-
zons on the price dynamics in a context of a pure exchange economy with one
risky asset, populated with agents maximizing expected utility of wealth over
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discrete investment periods. Investors’ demand for the risky asset may depend
on the historical returns, so a wide range of behaviorist patterns is exploited.
They establish necessary conditions under which the risky return can be an iid
stationary process and study the compatibility of these conditions with differ-
ent types of demand functions in the heterogeneous agents’ framework. It is
explicitly shown that conditional volatility of returns on the risky asset cannot
be constant in many generic situations, especially if agents with different in-
vestment horizons exist on the market. So volatility clustering can be seen as
an inalienable feature of a speculative market, which can be present even if all
investors are so-called “fundametialists”. Thus it is demonstrated that hetero-
geneity of investment horizons is sufficient to generate many stylized facts in
returns’ volatility.

A general weak point of artificial market models is the a priori character of
assumptions about economic agents’ behavior (which apparently has impact on
the form of resulting market dynamics), and absence or insufficiency of analytic
relation with the specification of volatility processes, used in practice. Thus,
almost simultaneously with the model of artificial market, mentioned above,
LeBaron (2001a) proposes a simple model of stochastic volatility with three
factors, each given by an OU process (see section 4) with different speed of mean
reversion, which has no direct link to the former theoretical model. A similar
stochastic volatility model with multiple horizons was proposed in Perello et al.
(2004). Molina et al. (2004) study its estimation by the Monte Carlo Markov
Chains method. Models with multiple factors, given by OU processes, can
successfully reproduce long-range dependence and leverage effect, but are scale-
inconsistent due to the finite (and small) number of factors and do not have any
analytic relation to the economic microstructure models, which could justify
multiple horizons. The model by Barndorff-Nielsen and Shephard (2001) that
uses a superposition of an infinite number of OU processes avoids the first of
these two problems.

7 Modeling Multiple Horizons in Volatility and

Econophysics Approach

The models of volatility at multiple horizons, described above, represent current
volatility as a result of impact of factors (or components), varying at different
frequencies. Such description of volatility has straightforward analogy in physics
of liquids and gases. Hydrodynamics studies the phenomenon of turbulence,
characterized by the formation of eddies of different sizes in the flows of fluids
and gases, leading to the random fluctuations in thermodynamic characteristics
(temperature, pressure and density). Most of the kinetic energy of a turbulent
flow is contained in the eddies at large scales. Energy cascades from large
scales to eddies structures at smaller scales. This process continues, generating
smaller and smaller eddies, having hierarchical structure. The condition, under
which laminar (i.e. normal) flow becomes turbulent, is determined by the so-
called Reynolds number that depends on the viscosity of the fluid and on the
properties of the flow. A statistical theory of turbulence was developed by
Kolmogorov (1941), and a contemporaneous survey can be found, for example,
in Pope (2000).
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For the first time analogy between turbulence and volatility on the financial
market was proposed in Ghashghaie et al. (1996). The authors noticed that
the relation between the density of distribution of returns at various horizons is
analogous to the distribution of velocity differentials for two points of a turbulent
flow, depending on the distance between these points (so instead of physical
distance, in finance we use distance in time). The cascade of volatility can be
interpreted in terms of the multi-horizon hypothesis of Müller et al. (1997).

An analytical multiplicative cascade model (MCM) was proposed in Brey-
mann et al. (2000). Volatility is represented as a product of disturbances at
different frequencies. Denote St a discrete stochastic process for the stock price
and rt = lnSt − lnSt−1 the log-return. In MCM the returns are driven by
equation:

rt = σt εt, (35)

with ε(t) some iid noise, independent from the scale structure of volatility, and
σt stochastic volatility process that can be decomposed for a series of horizons
τ1, . . . , τn (here we suppose that τ1 is the longest horizon), so that volatility at
horizon k ∈ {2, . . . , n} depends on volatility at the longer horizon k − 1 and
some renewal process Xt,k:

σt,k = σk−1(t)Xt,k (36)

So the multiplicative cascade for volatility reads:

σt = σt,n = σ0

n
∏

k=1

Xt,k (37)

At the initial time period t0 all renewal processes Xt,k are initialized as
iid lognormal random variables with expectation E(lnXt,k) = xk and variance
Var(lnXt,k) = λ2

k. For transition from time tn to time tn+1 = tn + τn (recall
that τn is the shortest time scale) we define:

Xtn+1,1 =
(

1 − I
{

Atn+1,1

})

Xtn,1 + I
{

Atn+1,1

}

ξtn+1,1 (38)

with Atn+1,1 an event, corresponding to the renewal of process Xt,1 at time tn+1,
I{·} the indicator function and ξt,1 lognormal iid random variables with expec-
tation µ and variance λ2. At any moment tn the event {Atn+1,1} happens with
probability p1. By analogy {Atn+1,k} is defined as the renewal of process Xt,k

at moment tn+1. The dynamics at horizons k = 2, ...,m is defined iteratively
by means of equation:

Xtn+1,k = (1 − I
{

Atn+1,k−1

}

)
[

(1 − I
{

Atn+1,k

}

)Xtn,k+

I
{

Atn+1,k

}

ξtn+1,k

]

+ I
{

Atn+1,k−1ξtn+1,k

}

,
(39)

where for any k the random variables ξt,k are iid log-normal with parameters µ
and λ2.

It follows from equation (39) that renewal at horizon k at moment tn+1

occurs if it has already occurred at the preceding, longer horizon k − 1, or in
case of the event {Atn+1,k} that happens withy probability pk. Probabilities of
renewal pk must be calibrated so that the average interval between to renewal
events would be equal to the length of the corresponding horizon τk. For sim-
plicity we can consider only dyadic horizons, i.e. those satisfying τk−1/τk = 2
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for k ∈ {2, . . . , n}. Using the properties of Bernoulii process, one can easily
show that:

p1 = 21−n, pk =
2k−n − 2k−n−1

1 − 2k−n−1
, k = 2, . . . , n (40)

Empirical adequacy of the model is confirmed by the properties of ACF of
returns and their absolute values at different horizons, defined in a standard
way: rt,k = lnSt − lnSt−τk

. Arneodo et al. (1998) shows that under MCM
assumptions the ACF of logarithms of absolute values of returns at all horizons
decays at logarithmic speed:

Cov(ln |r(t+∆t),k|, ln |rt,k|) ∼= −λ2 ln
∆t

τ1
, ∆t > τk (41)

The last relationship can be used for identification of the “longest scale” in
volatility (Muzy et al., 2001). From a practical point of view it is convenient
to analyze MCM in an orthonormal wavelet basis, which simplifies simulations
and allows to obtain analytical results of the the type of equation (41) (Arneodo
et al., 1998).

Figure 11: Simulation with Multiplicative Cascade Model and Real Data: Daily
Returns
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Left (a): daily returns on index CAC40 (source: Euronext, values of index CAC40 from
20/03/95 to 24/02/05). Right (b): daily returns, simulated with MCM at 14 horizons (from
15 minutes to 256 days). Returns are simulated for every 15 minutes and then are aggregated
to daily time intervals.

Figures 11 and 12 show the results of simulation of MCM, compared with
real data of index CAC40. The number of horizons in simulation is equal to 14,
which allows to fit the speed of decay in the ACF, and other parameters are cal-
ibrated so as to match unconditional long-term estimates of the first two sample
moments in the returns’ distribution. Note that the figure shows the ACF for
returns, aggregated into daily intervals, whereas the simulation itself was carried
out at 15-minutes frequencies. This illustrates the most important property of
the volatility cascade: clustering of volatility and long-range dependence robust
to time aggregation, i.e. coexisting at multiple horizons.

The MCM, described above, is called log-normal, because disturbances to
volatility are log-normal. This does not mean that that the resulting distribution
of returns is log-normal. Nothing prevents from specifying the model in a way
that provides for fat tails at short horizons (see more about it below). In a form
described above MCM allows to simulate data, corresponding to the observed
financial time series in many properties. But its practical use is complicated
because of the absence of strict parametrization and estimation methods.
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Figure 12: Simulation with Multiplicative Cascade Model and Real Data: Sam-
ple ACF
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Left (a): sample ACF for the magnitudes of daily returns on index CAC40 (source Euronext,
daily values of index CAC40 from 20/03/95 to 24/02/05). Right (b): sample ACF for data,
simulated with MCM at 14 horizons (from 15 minutes to 256 days). Returns are simulated
for every 15 minutes and then are aggregated to daily time intervals. ACF is computed for
daily data.

The link between MCM (here we talk about multiplicative cascade in more
general sense, not focused on Breymann et al. (2000) specification, described
above) and multifractal processes is studied in Muzy et al. (2000). Consider
dyadic horizons of length τn = 2−nτ0. The increment of some process Xt on
interval τk, denoted δkXt, is linked to the increment on the longest scale through
equation:

δkXt =

(

k
∏

i=1

Wi

)

δ0Xt (42)

with Wi some iid stochastic factor. In MCM the stochastic volatility process
was defined in a similar way. The expression (42) can be rewritten in terms of
a simple random walk in logarithms of local volatility:

ωt,k+1 = ωt,k + lnWk+1 (43)

with ωt,k = 1
2 ln(|δkXt|2). Notice that equation (41) with new notations cor-

responds to Cov (ωt+δt,k, ωt,k). If disturbances lnWi are normally distributed
N(µ, σ2), the distribution density ωt,k denoted Pk(ω), satisfies:

Pk(ω) =
(

N(µ, σ2)∗k ∗ P0

)

(ω) (44)

with ∗ denoting the convolution operator, defined for two function f(t) and g(t)
by the expression (f ∗ g)(t) =

∫

f(u)g(t − u)du. Now it is straightforward to
show that that equation (44) corresponds to the definition of multifractality in
(26) with log-normal propagator of the form:

Gτk,τ0
= N(µ, σ2)∗k = N(kµ, kλ2) (45)

In a similar way, a multifractal process, corresponding to (26), can be repre-
sented as a multiplicative cascade.

It follows from the above analysis that the MCM can be specified using
a multi-fractal random walk. The class of these processes was proposed for
volatility modeling in Bacry et al. (2001) and then generalized in Muzy and
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Bacry (2002); Pochart and Bouchaud (2002). A discrete version of MRW with
step ∆t can be obtained by summing up t/∆t random variables:

X∆t(t) =

t/∆t
∑

k=1

δX∆t,k (46)

with δX∆t,k a noise, whose variance is given by stochastic process:

δX∆t,k = exp (ω∆t,k) ε∆t (47)

where ω∆t,k is the logarithm of stochastic volatility, like in (43), and ε∆t is
Gaussian noise, independent of ω. The definition of ω∆t,k is based on the form
of the autocovariance function, corresponding to the described above for MCM:

Cov(ω∆t,k, ω∆t,l) = λ2 ln ρ∆t,|k−l|

ρ∆t,m =
T

(|m| + 1)∆t
, |m| ≤ T

∆t
− 1

ρ∆t,m = 1, |m| >
T

∆t
− 1

(48)

Here T is the integral time, i.e. the longest horizon, after which multifractal
properties are no more observed. To provide for finite variance of the increments
of the process X∆t(t) at transition to the continuous time by taking ∆t → 0,
we need to define the mean log-volatility in the following way:

E(ω∆t,k) = −Var(ω∆t,k) = −λ2 ln

(

T

∆t

)

(49)

The MRW model is identified by three parameters: the variance of the pro-
cess X∆t(t), the variance of logarithmic volatility process (λ2) and the integral
time T . These parameters can be easily clibrated using the form of the spectrum
and of the ACF. MRW can also be extended to multidimensional space (Muzy
and Bacry, 2002). But the price to pay for the parsimony in parametrization of
the model is the impossibility of direct and exact modeling of the interdepen-
dence between volatilities at different horizons, compared to the flexibility in
this aspect, allowed by the HARCH or Zumbach model (see section 6). Lynch
and Zumbach (2003) study the volatility cascade empirically through the cor-
relations of historical and realized volatility and find that the structure of this
cascade is different from the one observed in turbulence. This can be explained
by the existence of “characteristic” horizons, corresponding to the frequencies of
market operations, specific to investors of different types (daily traders, portfolio
managers, pensions funds, etc.). Compared to traditional models of stochastic
volatility of the form (18), MRW processes do not allow for leverage effect.
Besides, the intuitively attractive property of volatility reversion to its mean
level, present in OU processes, is lost. Anteneodo and Riera (2005) proposes an
additive-multiplicative model of cascade that enriches the one described in this
section by the mean-reversion effect. But its complexity is considerably higher.

An alternative approach to studying the properties of volatility, related to
econophysics, consists in direct estimation of the evolution of probability distri-
bution at different horizons. A necessary assumption for such analysis is Markov
property of the cascade. Consider a series of horizons τ0 < τ1 < . . . < τn (in this
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case, unlike the description of MCM, it is more convenient to numerate horizons
in increasing order) and a process δkX of increments at horizons τk, k ∈ {0, . . . n}
of process Xt at some fixed time t (this can be a process of stochastic volatility
or a trend-corrected price process, or its logarithm). By definition, Markovity
for δkX means:

Pk|k+1,...,n(x) = Pk|k+1(x), k = 0, . . . , n − 1, (50)

where Pk|k+1(·) stands for the conditional density of the distribution of δkX,
given δk+1X. Since

Pk|k+1,...,n(x) =
Pk,...,n(xk, . . . , xn)

Pk+1,...,n(xk+1, . . . , xn)
, (51)

it suffices to know the conditional densities at consecutive horizons and the
distribution at the longest scale to define the joint distribution P0,...,n of all
increments. The last property is of special importance in finance. Using it, we
can design an algorithm of simulation of a process with the same probability
distribution of increments as in the empirical data (Nawroth and Peinke, 2006).
Such algorithm can be useful for the implementation of a Monte Carlo algorithm
in derivative pricing and portfolio management applications.

To verify if the Markov property is satisfied one can use the necessary con-
dition, given by Chapman-Kolmogorov equation:

Pm|k(x) =

∫

Pm|δlX=u(x) Pl|k(u)du, k < l < m (52)

that can be checked for three different series of increments by direct comparison
of the left and the right side of the equation. Empirical data for increments
of exchange rates and stocks’ volatilities are in good agreement with (52) and
do not reject the Markovity hypothesis (Friedrich et al., 2000; Renner et al.,
2001a; Ausloos and Ivanova, 2003; Buhbinder and Chistilin, 2005; Cortines et al.,
2007). Notice that in MCM we did the Markov assumption implicitly, saying
that volatility at each horizon is the result of adding multiplicative disturbance
to the volatility at longer horizon.

For Markov processes conditional densities satisfy the Kramers-Moyal evo-
lution equation (Risken, 1989, p.48-50):

−τ
∂

∂τ
Pτ |τ0

(x) =

∞
∑

k=1

(

− ∂

∂x

)k

Dk(x, τ)Pτ |τ0
(x) (53)

Here we assume the length of horizons τ to be continuous. Coefficients Dk(x, τ)
in Kramers-Moyal decomposition are defined as the limit at ∆τ → 0 of condi-
tional moments Mk(δτX, τ,∆τ):

Dk(x, τ) = lim
∆τ→0

Mk(x, τ,∆τ)

Mk(x, τ,∆τ) =
τ

k!∆τ

∫

(u − x)kPτ−∆τ |τ (u)du
(54)

In a general case all coefficients are different from zero, but according to Pawula’s
theorem, if D4(x, τ) = 0, then all coefficients in the decomposition starting
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from the third one are also equal to zero. This condition can also be verified
empirically. If it is satisfied, (53) becomes a simple Fokker-Plank equation (also
know as the second Kolmogorov equation):

−τ
∂

∂τ
Pτ |τ0

(x) =

[

− ∂

∂x
D1(x, τ) +

∂2

∂x2
D2(x, τ)

]

Pτ |τ0
(55)

Unconditional density of the distribution of δτX at horizon τ satisfies the same
differential equation.

Fokker-Plank equation describes the density of the stochastic process, given
by Langevin equation:

−τ
∂

∂τ
x(τ) = D1(x, τ) +

√

D2(x, τ)f(τ) (56)

with f(τ) the so-called Langevin force, which is usually modeled by Gaussian
white noise. Thus, under a series of constraints, equation for stock prices and
their volatilities can be obtained by estimation of Kramers-Moyal coefficients
from (54) (Renner et al., 2001a; Buhbinder and Chistilin, 2005; Cortines et al.,
2007). This unambiguously defines the evolution of the distribution from normal
to fat tails. For example, Renner et al. (2001a) obtains the following form of
coefficients, studying the increments in FX rates:

D1(x, τ) = −γx

D2(x, τ) = ατ + βx2
(57)

For a standard multifractal model of turbulent cascade (Castaing et al., 1990),
described above, Kramers-Moyal coefficients take the form:

D1(x, τ) = −γ(τ)x

D2(x, τ) = β(τ)x2
(58)

The resemblance of (58) and (57) evidences in favor of the analogy between
turbulence and volatility. In Ausloos and Ivanova (2003) similar type of analysis
is made for logarithmic returns on S&P500 index. The results for D2 are the
same, but D1 turned out to be very close to zero, which corresponds to the
absence of the restoring force in terms of Langevin equation (i.e. no friction
in the liquid). The last result is not confirmed in Cortines et al. (2007) on the
logarithmic returns on the Brazilian index Ibovespa. Besides, the authors find
significant linear trend in the equation for D2 at horizons longer than one day.
This is an important deviation from the classical multifractal model of turbulent
cascade. Notice that the same deviation has been independently found on the
empirical data for turbulence in liquids (Renner et al., 2001b).

In Buhbinder and Chistilin (2005) coefficients of Fokker-Plank equation are
estimated for daily realized volatility of DJIA index, computed from 5-minutes
returns. They find that the resulting estimates of Kramers-Moyal coefficients
are well described by the equations:

D1(σ, τ) = −σ(a1 + a2 lnσ)

D2(σ, τ) = b1σ
2(exp b2σ)

(59)

The first equation in (59) accounts for non-linearity in the coefficient of the
restoring force at low volatility levels, the second models higher than quadratic
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speed of the increase in diffusion coefficient, observed at high volatility levels.
With small σ replacing (59) in (55) results in the stochastic differential equation,
corresponding to the exponential OU model of stochastic volatility. This model
is also advocated in Masoliver and Perello (2006), based on entirely different
considerations, related to the properties of ACF.

A huge number of methods and models that were proposed for describing
volatility at multiple horizons evidences for rapid development of this research
area in finance. It is too early to talk about a consistent theory, because for
the moment there is no clear leadership among competing approaches. Besides,
developing such a theory requires practical extensions, related to forecasting,
optimal asset allocation and derivatives pricing. Some progress is made in each
of these directions. Calvet and Fisher (2001) and Richrads (2004) propose
methods of forecasting of multifractal time series. Some studies treat option
prices under multi-horizon stochastic volatility, driven by a factor model (Fouque
et al., 2003; Fouque and Han, 2004). Finally, solution of an asset allocation
problem for the case when prices are driven by multifractal processes is given
in Muzy et al. (2001).

Another direction of research, related to the multi-horizon models of volatil-
ity, deserves a special mention. Its aim is constructing indicators of volatility,
that would represent the current state of the market, taking into account not
only the magnitude of fluctuations, but also there frequency. As follows from
the above theoretical arguments, considering volatility simultaneously at var-
ious horizons brings in important information, compared to measuring it at
some particular horizon. This information can be used primarily for decision
taking in dynamic portfolio management, based on volatility timing. Different
multiple-horizon indicators, applicable to volatility measurement independently
of the specification of the stochastic volatility process, were proposed in Zum-
bach et al. (2000); Maillet and Michel (2003); Maillet et al. (2007); Subbotin
(2008). All of them are defined as probability transforms of volatility at differ-
ent scales, based on an analogy with the Richter-Gutenberg scale in geophysics
(Richter, 1958). Probability transform measures rareness of fluctuations of a
given magnitude at the financial market. Thus by constructions they are uni-
versal in the sense that their values are comparable in time and over different
assets. This is an important advantage from the practical point of view. The
differences in indicators lie in how volatilities at multiple horizons are estimated,
how the importance of each horizon is measured and how the results over dif-
ferent horizons are aggregated.

8 Conclusion

Modeling and measurement of stock price and exchange rate variability is one
of the key elements of the theory and practice of investment portfolio man-
agement and other areas of finance. We discussed the notion of volatility and
two approaches to its modeling in discrete and continuous time (conditional
heteroscedasticity and stochastic volatility), pointing to the differences in how
they capture the changes in the parameters of conditional returns’ distribution.
Evolution of these models has always been directed to reproduce more exactly
the empirical properties in time series of prices, such as long-range correlations
in magnitudes of returns, their absence in returns themselves and fat tails in
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returns distributions at short horizons.
Among all models we draw special attention to those that represent volatility

at multiple horizons, because they seem to be the most promising. Multi-horizon
representation allows to take into account the properties of returns, that man-
ifested themselves when the latter are aggregated in time. The challenge is
to capture the evolution in the form of the probability distribution of returns,
computed over time intervals of different length. We described several classes of
multi-scale models, from heterogeneous ARCH to multiplicative cascades. An
important role in multi-horizon analysis belongs to methods and techniques,
borrowed from hydrodynamics and other areas of statistical physics. Such bor-
rowing became possible thanks to the discovery of the analogy (though possible
incomplete) between volatility and turbulence in liquids and gases.

The concept of volatility at multiple horizons suggests the development of
methods of its measurement, that account not only for the magnitude of fluc-
tuations, but also for their frequency. Information, obtained from measurement
at different levels of time aggregation (i.e. at various horizons) can be used
jointly. This can be helpful, in particular, in asset management applications
and in forecasting. An interesting further development may include forecasting
volatility at multiple horizons simultaneously. Another important issue is the
study of derivatives hedging strategies with regards to the frequency of opera-
tors’ interventions on the market.
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