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Abstract

Suppose that a decision maker provides a weak order on a given set of alterna-

tives, each alternative being described by a vector of scores, which are given on a

finite ordinal scale E. The paper addresses the question of the representation of this

weak order by some mean operator, and gives necessary and sufficient conditions

for such a representation, with possible shrinking and/or refinement of the scale E.
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1 Introduction

The representation of preferences is a central topic in decision making and measurement

theory. Usually, it amounts to finding a real-valued utility function U such that for any

pair of alternatives x, y in some set X of alternatives of interest, x % y iff U(x) ≥ U(y).

When alternatives are n-dimensional, i.e., X =
∏n

i=1
Xi, a widely studied model is the

decomposable model of Krantz et al. [11], where U has the form:

U(x1 . . . , xn) = G(u1(x1), . . . , un(xn)) (1)

where the ui’s are real-valued functions. Assuming that % is a weak order on X, it

is known that a representation is possible with G being strictly increasing iff % satisfies

independence and X is separable [11]. A similar condition for G being non decreasing was

found by Bouyssou and Pirlot, as well as many other results when % is not a weak order

[1]. It is to be noted that in measurement theory, only % is supposed to be known, and the

marginal utility functions ui’s and G are constructed. In this context, non decreasingness

of G appears to be a very natural condition.

Let us address a somewhat different although related problem. Suppose that the set

of alternatives is finite and that for each x ∈ X we know the ui(xi)’s, in addition to the

preference %. This situation arises in multicriteria evaluation problems, group decision

making, etc.: For each alternative x, a score is given on some scale E, representing the

satisfaction or adequacy of x w.r.t. some criterion or some individual. In real situations,

it has to be noted that E is most often a finite scale (e.g., {“bad”,”medium”,”good”}).

These scores play the role of the quantities ui(xi). It remains to find a suitable aggregation

function G to aggregate the marginal scores into a single overall score, which represents

the preference %.

Beside non decreasingness, a natural property for G is internality, which means that

the overall score should be comprised between the lowest and the highest marginal scores.

Internal and non decreasing aggregation functions are usually called mean operators.

Hence our main concern will be the representation of preferences by a mean operator.

Few studies have been done in the context of aggregation functions on finite scales,

and to the knowledge of the author, almost none deals with preference representation.

Conjunctive and disjunctive (hence not internal) aggregation functions on finite scales
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have been studied in detail by Fodor [6], and by Mas, Torrens et al. [17, 18]. Their

result are limited since they consider aggregation functions as mappings from En to E,

which is obviously very limitative as Examples 1 and 2 will show hereafter. On mean

operators on finite scales, there exists a fundamental paper by Ovchinnikov [19], followed

by Marichal and Mesiar [12, 13], but their point of view is rather different (although

complementary of ours) since they are not concerned with preference representation,

but with the meaningfulness of means, in the measurement theoretic sense. Concerning

this last topic, Rico et al. [20] have given necessary and sufficient conditions for the

representation of preference by a Sugeno integral [21, 15], a particular class of mean

operators. Again, their results are limitative since E is considered to be fixed. Therefore,

the point of view we adopt here to allow a modification of E in order to have a better

ability to represent preferences seems to be original, and opens new horizons.

The paper is organized as follows. We set the framework of the study in Section 2

and state the problem in a clear way. Section 3 gives the main representation result,

without considering a refinement of the scale, while Section 4 addresses the case where

a refinement is performed. Section 5 indicates possible applications and related works,

while Section 6 concludes the paper.

2 Statement of the problem

2.1 Framework and notations

Let E be a finite chain of k elements e1 < e2 < · · · < ek, and consider A ⊆ En, n > 1.

Any a = (a1, . . . , an) ∈ A is the vector of scores of some alternative or object belonging to

X (set of potential alternatives), expressing on E some performance, satisfaction, utility,

etc. This situation arises, e.g., in multicriteria decision making, group decision making,

decision under uncertainty or risk, and when the evaluation of a is given by an interval

[a1, a2] (n = 2) (see Section 6 for a comment about this case). We suppose that these

scores are given beforehand, and are meaningful according to the concerned domain of

decision making. As usual, for a, b ∈ A, a ≤ b stands for ai ≤ bi, i = 1, . . . , n.

We assume that the decision maker can express his/her preferences on A under the
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form of a weak order (transitive and complete) % on A×A. We denote as usual a ∼ b if

a % b and b % a hold, and a ≻ b if a % b and ¬(b % a).

We denote by A1, . . . , Ak′ the equivalence classes of ∼, i.e., ∀a, b ∈ Ai, a ∼ b, for

i = 1, . . . , k′, which we call indifference classes. We number them in such a way that

∀a ∈ Ai, ∀a
′ ∈ Aj, a ≻ a′ ⇔ i > j.

We call (A,%, E) the decision profile of the decision maker. Throughout the paper,

we will assume non triviality of %, i.e., there exist a, b ∈ A such that a ≻ b.

We introduce useful notations about indifference classes and alternatives. For any

class Ai, we define:

⌊Ai := min
a∈Ai

n

min
j=1

aj

Ai⌉ :=max
a∈Ai

n
max
j=1

aj .

The interval
[

⌊Ai, Ai⌉
]

is denoted ⌊Ai⌉ for simplicity. Note that this interval may reduce

to a singleton. In order to avoid cumbersome conditions for some definitions and proofs,

we introduce two (fictitious) additional elements e0 and ek+1 in E, such that e0 < e1 and

ek < ek+1, and the fictitious classes A0 and Ak′+1 (worst and best possible classes), with

⌊A0⌉ = {e0}, and ⌊Ak′+1⌉ = {ek+1}.

Considering two intervals [a, b], [c, d] (possibly reduced to singletons) of E, we say that

[a, b] is to the left (resp. to the right) of [c, d] if b < c (resp. a > d). This is denoted as

[a, b] ⋖ [c, d] (resp. [a, b] ⋗ [c, d]). Lastly, for any interval I = [a, b], we denote by ♯[a, b]

or |I| the number of elements in interval [a, b], and denote the bounds by ⌊I := a, and

I⌋ := b. This notation is extended to the span of alternatives a ∈ A (i.e. the interval

[mini ai,maxi ai]) by ⌊a :=
n

min
i=1

ai and a⌋ :=
n

max
i=1

ai. Following the above convention, the

span is denoted by ⌊a⌋.

2.2 The representation problem

Generally speaking, a representation of a weak order % on the set of potential alternatives

En amounts to finding a mapping u from En to some chain C endowed with a total order

≤, such that a % b if and only if u(a) ≥ u(b).

The simplest representation in our case would be to take a function G : En → E

satisfying the above, i.e., C = E and u = G. The finiteness of E makes the task difficult
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since there may be not enough elements in E to perform the representation. Evidently,

this case arises when k′, the number of indifference classes, is greater than k, the number of

degrees of the scale. The situation is getting worse if one imposes some natural conditions

on G, for example internality, which means that the value of G(a) should be comprised

between the maximum and minimum scores of a. The following example, where k′ ≤ k,

illustrates this.

Example 1: A school director has to evaluate students on several subjects.

We consider only 2 subjects for simplicity, say mathematics and literature.

Four students a, b, c, d are evaluated on the 2 subjects by the respective pro-

fessors, using an ordinal scale {α, β, γ, δ, ǫ} (α corresponds to “excellent”, β

to “good”, and so forth). Finally, the following evaluation result is given to

the director.

student mathematics literature

a α α

b α β

c β α

d α γ

After some thought, the director decided that a is the best, then b, while c

and d are indifferent and worse than b (complete weak order). The problem is

however to give them an overall evaluation, reflecting the ranking. Obviously,

a should receive α since he/she has α on the two subjects. Then, b should

receive at most β, but no less since his/her scores are at least β. Then a

problem occurs since c should receive at most γ, but this is strictly lower

than his/her lowest score, and this will make him/her complain.

Obviously, the preference of the director cannot be represented on the scale

E. But nothing prevents the director from creating “half-degrees”, like α− or

β+. Then b could receive, say β+, and c, d could receive both β.

The example shows that an issue to the problem is to make a refinement of the scale E.

We say that E ′ refines E if E ′ ⊇ E and E ′ is a finite chain. It is important to stress here
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that the refinement of the scale is intended only for the overall score: marginal scores

a1, . . . , an remains unchanged (they have been given once for all).

Let us put aside the question of refinement, and suppose for the time being that we

have as many degrees as we want. What are the conditions on % so that a representation

can be done by some particular class of functions G, like internal functions, or more

generally by what is usually called mean operators? Let us introduce some usual classes

of mean operators.

Definition 1 Let G : En −→ E. We say that G is:

(0) weakly monotone if ∀a, a′ ∈ En, ⌊a ≥ a′⌋ implies that G(a) < G(a′) cannot occur.

(i) internal if ∀a ∈ En, ⌊a ≤ G(a) ≤ a⌋;

(ii) non decreasing if ∀a, a′ ∈ En, a ≥ a′ implies G(a) ≥ G(a′);

(iii) unanimously increasing if it is non decreasing, and ∀i ∈ {1, . . . , n}, ai > a′i implies

G(a) > G(a′);

(iv) (strictly) increasing if ∀a, a′ ∈ En, a ≥ a′ and ai > a′i for at least one i ∈ {1, . . . , n}

imply G(a) > G(a′).

The operator is said to be a mean in the weak sense or a weak mean operator for short

if only (i) holds, a mean operator if (i) and (ii) hold, a unanimously increasing mean if

(i) and (iii) hold, and a strict mean if (i) and (iv) hold.

Internality means that the overall evaluation should not be beyond the range of the scores,

while non decreasingness ensures that an improvement of one score cannot decrease the

overall score. One of the first to introduce the term “mean” (in the weak sense) seems

to be Cauchy [2]. Note that internality implies weak monotonicity, but not the converse.

Likewise, we introduce properties on the decision profile.

Definition 2 Let A ⊆ En and % be a weak order on A. The decision profile (A,%, E)

is

(i) weakly coherent if there is no a, b in A such that a ≻ b and a⌋ ≤ ⌊b;
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(ii) coherent if for no pair of alternatives a, b, we have both a ≻ b and a ≤ b (or

equivalently, a ≥ b implies a % b);

(iii) strongly coherent if it is coherent, and for a, b ∈ A, ai > bi for i = 1, . . . , n implies

a ≻ b;

(iv) strictly coherent if for a, b ∈ A, a ≥ b and ai > bi for at least one i in {1, . . . , n},

imply a ≻ b.

Obviously, strict coherence implies strong coherence, which implies coherence, which in

turn implies weak coherence. Remark that if we impose only coherence, we may have

a strictly greater than b and a ∼ b. Conditions (ii), (iii) and (iv) are sometimes called

monotonicity, weak Pareto and strong Pareto conditions respectively.

The above two definitions are strongly related, as shown in the following lemma.

Lemma 1 Let (A,%, E) be a weakly coherent decision profile, and G on En be a weak

mean representing %. Then the two following propositions are equivalent:

(i) (A,%, E) is coherent (resp. strongly coherent, strictly coherent)

(ii) G|A is a mean operator (resp. a strong mean, a strict mean), where G|A means the

restriction of G to A.

Proof: Let us define the weak order %G on A by a %G b iff G(a) ≥ G(b). Saying

that G represents % means that %=%G. Observe that G|A being non decreasing (resp.

unanimously increasing, strictly increasing) is equivalent to say that (A,%G, E) is coher-

ent (resp. strongly coherent, strictly coherent). By definition of a mean operator (resp.

strong mean, strict mean), the result follows. �

The lemma shows that we only have to focus on weak means and weak coherence,

other cases will follow immediately. In order to understand the essence of the relation

between weak coherence and weak means, let us still suppose that we have as many

degrees as we want. Formally, this amounts to say that E is “dense”, in the sense that

there is no hole in E. A hole is a pair (x, y) ∈ E2 with x < y such that there is no z

satisfying x < z < y.
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Theorem 1 Let us consider E to be dense, and A ⊆ En to be countable. A profile

(A,%, E) is representable by a weak mean operator (resp. a mean operator, a strong

mean, a strict mean) if and only if it is weakly coherent (resp. coherent, strongly coherent,

strictly coherent), and for any indifference class Aj, any a, b ∈ Aj, a and b have no disjoint

spans.

Proof: ⇒) Assume there exists a weak mean operator G representing %, i.e., using

previous notations %G=%. Internality of G implies weak monotonicity, which in turn

is equivalent to weak coherence of %G, hence to weak coherence of %. Now, for any

a, b ∈ Aj , we have G(a) = G(b), and due to internality, a and b cannot have disjoint

spans.

Using Lemma 1, the other cases follow immediately.

⇐) Assume the profile is weakly coherent. Since A is countable, for each a ∈ A, we

can choose xa ∈ ⌊a⌋ and let G(a) := xa. Then G is internal. Since E is dense, and since

alternatives in an indifference class have no mutually disjoint span, xa can be chosen so

that a % b iff xa ≥ xb, otherwise there would exist a, b ∈ A with a ≻ b and no xa could

be strictly greater than xb, which means maxi ai ≤ mini bi, which is impossible by weak

coherence. Hence G is a weak mean operator representing %.

Using Lemma 1, the other cases follow immediately. �

This being established, suppose now that the number of degrees in E is limited. Then,

as Ex. 1 has shown, the conditions in Th. 1 do not suffice anymore (one can verify that

they are fulfilled in Ex. 1: the profile is weakly coherent and there are no alternatives

with disjoint spans in indifference classes). Our aim is to find necessary and sufficient

conditions for a representation of % on a finite scale.

For the sake of generality, let us come back on the disjoint span condition, and consider

the following example, where this condition is not fulfilled.

Example 2: A consumer is asked to espress his/her preference on four

cars a, b, c, d, knowing their scores on two qualitative criteria, say comfort

and safety. The qualitative scale has five degrees: e1=very bad, e2=bad,

e3=average, e4=good, and e5=very good.
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car criterion 1 criterion 2

a e1 e1

b e2 e2

c e3 e5

d e5 e4

The preference given is a ∼ b ≺ c ≺ d (hence k′ = 3), so that the profile

is coherent. Although there are several solutions for b, c, d (e.g., G(b) = e2,

G(c) = e3 and G(d) = e4) which are internal, no internal function G can

represent the indifference between a and b.

The above example can nevertheless be solved if one “shrinks” elements e1 and e2 into

a single one, say e′1. Denoting the shrunk scale by E ′ and the shrinking operation by

f : E −→ E ′, a representation on E ′ becomes possible through the function f ◦G, taking

G as above, and G(a) = e1, G(b) = e2. Note that E ′ is nothing else than a partition of E.

This situation can arise if the scale E contains elements which are in fact indiscernible

or non significant for the decision maker.

2.3 Aim of the paper

Summarizing the above discussion, the problem we want to address in its full generality

can be formulated as follows:

Given a decision profile (A,%, E), with E being a finite chain, under which

conditions is it possible to find a representation under the form u = f ◦ G,

with f : E −→ E ′ a non decreasing mapping defining a partition E ′ of E,

and G : En −→ E is a (weak, strong, strict) mean operator? In case of

impossibility, would a refinement of E solve the problem?

Our strategy for tackling this problem will be to find conditions for a representation f ◦G

assuming at first no refinement of E. Then we will obtain as a simple corollary conditions

for a representation where f is not needed (representation by a mean operator), which

is the most interesting case in practice. Finally, we will consider a possible refinement of

the scale.
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Remark 1: In general there will exist several partitions of E leading to a

solution. However, we will consider the finest one (in the sense of the usual

order relation on partitions), that is, with a minimum number of shrinks of E,

as in Ex. 2. Coarser partitions, provided |E ′| ≥ k′ may exist, but are to our

opinion of little practical interest, since they unnecessarily “blur” the scale.

3 Representation results without a refinement of the

scale

The following concepts play a central role.

Definition 3 Let (A,%, E) be a decision profile, and Aj be some indifference class of %,

j ∈ {1, . . . , k′}. The core of Aj is defined as:

Kj := ∅, if min
a∈Aj

n
max
i=1

ai > max
a∈Aj

n

min
i=1

ai

Kj := [min
a∈Aj

n
max
i=1

ai,max
a∈Aj

n

min
i=1

ai], otherwise.

The core is non empty every time there exist two alternatives a, b in Aj with disjoint

spans (or coinciding on only one point), i.e. such that mini ai ≥ maxi bi (see figure 1,

where the span of three alternatives a, b, c is figured on a 7-elements scale). An important

e e e e e e e
2 3 4 5 6 71

e e e e e e e
2 3 4 5 6 71

e e e e e e e
2 3 4 5 6 71

a
b

c

a
b

c

a
b

c

cores

Figure 1: The core of a class: (left) empty core, (center and right) non empty core

remark is that if a class Ai is such that ⌊Ai⌉ = {el}, then its core is the class itself, i.e.

Ki = {el}. In particular, this is always the case for the fictitious classes A0 and Ak′+1.
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Definition 4 Let (A,%, E) be a decision profile. For any indifference class Aj, j =

1, . . . , k′,

A>j⌉ := min
j′>j

min
aj′∈Aj′

aj′⌋

⌊A<j := max
j′<j

max
aj′∈Aj′

⌊aj′ .

Defining the open interval (whenever non empty)

〈Aj〉 :=
]

⌊A<j , A>j⌉
[

the interior of Aj, denoted by
◦

⌊Aj⌉, is defined by:

◦

⌊Aj⌉ := ⌊Aj⌉ ∩ 〈Aj〉.

Figure 2 illustrates the definition, with three classes, and a, b, c ∈ A1, d, e in A2, and

f, g, h ∈ A3. The interior of a class indicates the allowable range for scores of any

alternative of that class. For example, in Figure 2, e9 is not in the interior of A2, otherwise

there would be no available degree in E for the score of h, ranked higher than alternatives

of class A2. Subsequent theorems 2 and 3 will indeed show that the nonemptiness of the

interiors is a necessary condition for the existence of a representation. Note that A>k′⌉

a
b

c

d

g
h

f

e e
1 11

e

<A > interior of A
22

class
class
class

A
A
A

1
2

3

Figure 2: Interior of class A2

and ⌊A<1 are properly defined thanks to the additional classes A0 and Ak′+1. Indeed,

〈A1〉 =
[

e1, A>1⌉
[

and 〈Ak′〉 =
]

⌊A<k′, ek

]

. Note also that the interior could be empty,

even if the decision profile is coherent, as shown by the following simple example.
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Example 3: Let us consider n = 3 and 3 alternatives a, b, c such that

c ≻ b ≻ a, denoted on a scale with k = 7, defined in the table below.

alternative criterion 1 criterion 2 criterion 3

a e4 e6 e4

b e4 e7 e4

c e1 e5 e5

As it can be verified, the decision profile is coherent, but since ⌊A<2 = e4 and

A>2⌉ = e5, we have 〈A2〉 = ∅ and thus the interior too is empty (see figure

3).

e e e e e e e

c

b

1 2 5 6 743

a

Figure 3: Case of empty interior

We give some properties of the interior, denoting the successor (resp. the predecessor) of

an element e on E by ↑ e (resp. ↓ e).

Lemma 2 Let (A,<, E) be a decision profile. For any class Aj, the following properties

hold.

(i) A>j⌉ and ⌊A<j are non decreasing with j, for j = 1, . . . , k′.

(ii) the intervals
◦

⌊Aj⌉, j = 1, . . . , k′, whenever nonempty are such that
◦

⌊Aj and
◦

Aj⌉ are

non decreasing with j, where
◦

⌊Aj ,
◦

Aj⌉ are respectively the left and right bounds of
◦

⌊Aj⌉. Moreover, for any j′ < j,
◦

Aj′⌉ =
◦

Aj⌉ if and only if

A>j′⌉ = A>j⌉ and Aj′⌋ ≥↓ A>j′⌉

while
◦

⌊Aj′ =
◦

⌊Aj if and only if

⌊A<j′ = ⌊A<j and ⌊Aj ≤↑ ⌊A<j .
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(iii) ∀j, ∀j′ < j such that Kj′ 6= ∅ and
◦

⌊Aj⌉ 6= ∅, Kj′ and
◦

⌊Aj⌉ are disjoint, and the

latter is to the right of the former (and symmetrically for j′ > j).

(iv) if for some j′ < j such that
◦

⌊Aj⌉ 6= ∅,
◦

⌊Aj′⌉ 6= ∅, and
◦

⌊Aj⌉ ∩
◦

⌊Aj′⌉ 6= ∅, then no

a ∈ A can be such that ⌊a⌋ ⊆
◦

⌊Aj⌉ ∩
◦

⌊Aj′⌉.

(Proof: see appendix)

Let us give some properties of the core and interior when the decision profile is (weakly)

coherent.

Lemma 3 If the decision profile (A,<, E) is weakly coherent, then the non empty cores

(if any) are disjoint, and they are ordered the right way, i.e. Kj ⋗Kj′ whenever j > j′.

Proof: Suppose Kj′ ∩Kj 6= ∅, j > j′, so that there exists say el ∈ E in the intersection.

Since el ∈ Kj′, there exist a, b ∈ Aj′ such that a⌋ ≤ el ≤ ⌊b. Similarly, since el ∈ Kj ,

there exist c, d ∈ Aj such that c⌋ ≤ el ≤ ⌊d. This entails c⌋ ≤ ⌊b. But by definition

of Aj′, Aj, we have c ≻ b, which violates weak coherence. Now, Kj′ is to the left of Kj ,

otherwise weak coherence will be clearly violated too. �

Lemma 4 Let (A,<) be a weakly coherent decision profile. For any class Aj, the follow-

ing properties hold.

(i) ♯
[

⌊A<j , A>j⌉
]

> 1.

(ii) for any aj ∈ Aj, if 〈Aj〉 6= ∅, then necessarily ⌊aj⌋ ∩
◦

⌊Aj⌉ 6= ∅, otherwise ♯
(

⌊aj⌋ ∩
[

⌊A<j , A>j⌉
])

= 2.

(iii) if 〈Aj〉 6= ∅, then
◦

⌊Aj⌉ 6= ∅.

(iv) if Kj 6= ∅, then
◦

⌊Aj⌉ 6= ∅, and
◦

⌊Aj⌉ ⊇ Kj.

(Proof: see appendix)

Let us give some results when we want a representation by a (weak) mean operator

G, i.e., no f is needed.
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Lemma 5 Let (A,%, E) be represented by some weak mean operator G. Then:

(i) G is constant over each Ai.

(ii) Each core Kj has at most one element.

Proof: (i) clear.

(ii) Suppose |Kj| > 1 for some j. Then there exist a, b ∈ Aj with disjoint spans.

Internality of G implies that necessarily G(a) 6= G(b), hence due to (i), G does not

represent %, a contradiction. �

We are now able to state the main result.

Theorem 2 Let (A,<, E) be a decision profile with k′ indifference classes. It exists a

representation of (A,<, E) by f ◦G, where G : En −→ E is a weak mean operator (resp.

a mean operator, a strong mean, a strict mean), and f defines a partition of E, if and

only if the following conditions are satisfied:

(i) (A,<, E) is weakly coherent (resp. coherent, strongly coherent, strictly coherent)

(ii) ∀j, j′ ∈ {0, . . . , k′ + 1} such that j > j′ and Kj , Kj′ 6= ∅,

♯
[

Kj′⌋, ⌊Kj

]

≥ j − j′ + 1.

(iii)
◦

⌊Aj⌉ 6= ∅ for j = 1, . . . , k′.

(iv) ∀j, j′ ∈ {1, . . . , k′} such that j > j′,

♯
[ ◦

⌊Aj′ ,
◦

Aj⌉
]

≥ j − j′ + 1.

(Proof: see appendix)

Remark 2: In condition (iii),
◦

⌊Aj⌉ can be replaced by 〈Aj〉 (see proof). Also,

condition (iii) is a special case of (iv) if we allow j = j′.

Remark 3: Taking (iv) with j = k′, j′ = 1, we get ♯
[ ◦

⌊A1,
◦

Ak′⌉
]

≥ k′, which

entails k ≥ k′.
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Remark 4: Condition (iv) is sound since due to Lemma 2 (ii), interiors are

ordered, so that
[ ◦

⌊Aj′ ,
◦

Aj⌉
]

is never empty.

Remark 5: The proof is constructive, and gives all solutions for G (if any),

considering that f defines the finest partition (see Remark 1). This partition

is very easy to obtain, it is merely the partition obtained by shrinking into a

single element all elements in a core, for those having more than one element.

Figure 4 illustrates the theorem. We consider 8 alternatives a, b, c, d, e, f, g, h, 3 criteria

and a scale E with 9 elements. The decision profile is defined as follows.

1 2 4 5 6 7 8 93

A1 A2 A4 A5A3
a

b

c d

e

f

g h

a b

E

E’

f
e

d

c

h

g

K1 K3

Figure 4: An example of preference representation
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alternative criterion 1 criterion 2 criterion 3 class

a e1 e2 e2 A1

b e4 e3 e3 A1

c e1 e1 e6 A2

d e3 e5 e4 A3

e e4 e4 e6 A3

f e8 e7 e7 A3

g e9 e8 e7 A4

h e5 e9 e7 A5

Classes are such that A1 ≺ A2 ≺ · · · ≺ A5. There are two cores K1 and K3. It can be

verified that the profile is coherent, and conditions (ii), (iii) and (iv) of the theorem are

satisfied. Hence there exists a mean operator G and a partition of E representing the

preference. The finest partition is indicated by the brackets. Note that e1 is not used in

the representation. Solutions for G are: G(a) = e2, G(b) = e3, G(c) = e4, G(d) = e5,

G(e) = e5 or e6, G(f) = e7, G(g) = e8 and G(h) = e9. Note that even if a ∼ b, G(a) = e2

and G(b) = e3 is possible since elements e2 and e3 are shrunk into a single one.

We turn now to the case where no partitioning of E is needed.

Theorem 3 Let (A,<, E) be a decision profile with k′ indifference classes. It exists a

representation of (A,<, E) by a weak mean operator (resp. a mean operator, a strong

mean, a strict mean) G, if and only if the following conditions are satisfied:

(i) (A,<, E) is weakly coherent (resp. coherent, strongly coherent, strictly coherent)

(ii) ∀j, j′ ∈ {0, . . . , k′ + 1} such that j > j′ and Kj , Kj′ 6= ∅,

♯
[

Kj′⌋, ⌊Kj

]

≥ j − j′ + 1.

(iii)
◦

⌊Aj⌉ 6= ∅ for j = 1, . . . , k′.

(iv) ∀j, j′ ∈ {1, . . . , k′} such that j > j′,

♯
[ ◦

⌊Aj′ ,
◦

Aj⌉
]

≥ j − j′ + 1.
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(v) |Kj| ≤ 1, j = 1, . . . , k′.

Remark that the additional condition (v) means that in an indifference class, the pairwise

intersection of alternatives is never empty. This was the condition we expected.

Proof: ⇒) Taking f = Id, Th. 2 shows that necessarily (i) to (iv) hold. Using Lemma

5 (ii), we deduce condition (v).

⇐) Using Th. 2, by conditions (i) to (iv), we know that there exists a representation

under the form f ◦G. Suppose among all possible solutions, there exists one with G being

constant over each Aj . Then a partitioning of E would be useless, and the representation

could be achieved by G alone. It suffices then to show that condition (v) implies that it

is possible to choose G constant on each Aj . Refering to the “only if” part of the proof

of Th. 2, we see that the set of possible values for G(a), for a ∈ Aj is the interval [ψj , φj].

We are done if we show that there exists xj ∈ [ψj , φj] belonging to the span of each

a ∈ Aj , hence to ∩a∈Aj
⌊a⌋, since in this case it suffices to put G(a) = xj for all a ∈ Aj .

By the proof of Th. 2, we know that [ψj , φj] ∩ ⌊a⌋ 6= ∅, for all a ∈ Aj . Suppose

there is no common point of intersection in the interval [ψj , φj]. This would mean that

it exist two alternatives a, a′ ∈ Aj with disjoint spans. But this contradicts the fact that

|Kj| ≤ 1. �

4 Refinement of the scale

Theorem 2 tells us that the representation of preference is not possible with f ◦G when:

• either the decision profile is not coherent in some sense (condition (i) of Th. 2)

• or the scale E has not enough elements (conditions (ii), (iii) and (iv)).

In the first case, we may say that the decision maker exhibits a preference which is

incompatible with a mean operator, and so our model cannot work anyway. In the

second case, it is just a matter of poorness of the scale, and we can remedy to this.

In this section, we address the second case. We suppose that the decision profile is

such that one or several among the conditions (ii) through (iv) does not hold. The aim
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is to build a refined scale Ē from E so that all conditions hold (i.e. the preference is

representable). A refinement of E is any scale Ē such that Ē ⊇ E.

As we assume that scores of alternatives are given beforehand on E by the decision

maker, we cannot change this assignment, and the only element of freedom we have is to

assign global scores on Ē. Thus, G maps En to Ē, and f performs a partitioning of Ē.

It is clear that to fulfill conditions (ii) through (iv), it suffices to add a finite number

of elements to E. The exact places where to add these elements are dictated by the

conditions themselves. The problem to find a minimal number of elements to add requires

however a careful study, which is outside the scope of this paper. An algorithm of

refinement has been proposed by the author, which gives a minimal refinement, see [9]

for details.

In conclusion, one can give the following result, coming directly from Th. 2 and 3

and the above considerations.

Corollary 1 Let (A,%, E) be a decision profile, E being a finite chain.

(i) There exists a representation of % by f ◦G, where G is weak mean operator (resp.

a mean operator, a strong mean, a strict mean) valued on Ē, f defines a partition

of Ē, and Ē is a finite refinement of E, if and only if the profile is weakly coherent

(resp. coherent, strongly coherent, strictly coherent).

(ii) There exists a representation of % by G, where G is weak mean operator (resp.

a mean operator, a strong mean, a strict mean) valued on Ē, where Ē is a finite

refinement of E, if and only if the profile is weakly coherent (resp. coherent, strongly

coherent, strictly coherent), and for any indifference class Aj, any a, b ∈ Aj, a and

b have no disjoint spans.

This result can be seen as a complement of Th. 1, since it gives the minimal requirement

for having a representation by a mean operator on a finite scale.

We give a last example to illustrate the refinement process. These results have been

obtained from an implementation in C language of the refinement algorithm in [9] and of

the constructive proof of Th. 2.

Example 4: We consider a list of 11 students labelled from A to K, who

are evaluated on 3 subjects (say mathematics, physics and literature), on a
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qualitative scale E with 5 degrees. The degrees of the scale are simply referred

to by their number, with 1 being the worst degree and 5 the best one. Table 1

gives the scores obtained by the 11 students. The following ranking has been

Student Math. Physics Liter.

A 1 1 3

B 1 2 1

C 1 3 2

D 2 2 2

E 3 2 2

F 2 2 5

G 4 4 4

H 4 4 3

I 5 3 3

J 4 3 5

K 5 3 5

Table 1: Scores obtained by the 11 students

determined by the teachers:

A ∼ B ≺ C ≺ D ∼ E ∼ F ≺ G ∼ H ≺ I ≺ J ≺ K.

There are 7 indifference classes, labelled from 1 (worst) to 7 (best). One can

verify that the decision profile is coherent. Table 2 gives the span, core and

interior of all classes. We remark that the cores are empty or reduced to

singletons, hence no partitioning of the scale is needed (Th. 3). However,

since empty interiors exist, a refinement of the scale is necessary. It can be

checked that a minimal refinement so that all conditions in Th. 3 are satisfied

is:

1 < 1′ < 2 < 3 < 4 < 4′ < 4′′ < 5.

19



Class Span Core Interior

1 [1,3] empty [1,1]

2 [1,3] empty empty

3 [2,5] [2,2] [2,3]

4 [3,4] [4,4] [3,4]

5 [3,5] empty empty

6 [3,5] empty empty

7 [3,5] empty [5,5]

Table 2: Characteristics of the indifference classes

Then it can be checked that the only solution for G is:

G(A) = G(B) = 1, G(C) = 1′, G(D) = G(E) = G(F) = 2, G(G) = G(H) = 4,

G(I) = 4′, G(J) = 4′′, G(K) = 5.

5 Applications and related works

We indicate here in which cases the results we develop could be useful, and mention

related research.

In most of applied domains, computing an overall score from individual scores (coming

from criteria, experts, etc.) is done through a mean operator (most often the weighted

arithmetic mean). The additional restriction we find in social sciences is that often scales

are qualitative, and hence finite. This explains why we focus on the representation of

preferences by a mean operator on finite scales.

The question arises why a representation G (or f ◦ G) should be useful, considering

that this representation could be complex, and that finally the weak order % contains

all the information. The representation is useful in at least the following situations. To

detail them, we consider that underlying dimensions are criteria.

• Knowing G or f ◦G enables an analysis of the model in terms of importance of crite-

ria, or any other useful index putting into light the behaviour of the decision maker

(DM): interaction indices which detect subsets of substitutive and complementary
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criteria [7, 10], veto or favor indices showing which criteria must be necessarily

satisfied or which criteria it is sufficient to satisfy [8, 14], “andness/orness” which

show if aggregation of scores is done conjunctively (by an “and” operator) or dis-

junctively (by an “or” operator) [14], etc. Of course, this analysis is possible only

if an analytical expression of G is known. Since our results provide only values of

G on A, to get an analytical form is a fitting problem with some family of mean

operators, a topic outside the scope of this paper (see below for more details).

Also, the simple fact to have a representation with G alone or necessarily with f ◦G

already gives information on the perception of scales by the DM: if f is necessary,

then some degrees are useless or indiscernable by the DM. In summary, the aim is

to analyse the observed preference or to give an explanation about the preference

shown by the DM. In interactive decision systems, it is mandatory to be able to

explain the preference or the decision made.

• Most of the time, the size of the set of alternatives A is kept small in order to

avoid any burden on the DM, and A should contain what is called prototypical

alternatives. Hence the preference is far to be known on the whole set of potential

alternatives En. But having a representation in an analytical form, it is now possible

to compute an overall score for all potential alternatives, and thus to extend % on

En. Hence, it is possible to predict the behaviour of the DM on any new alternative.

• Even if no analytical form of G is available, knowing the values G(a) for alternatives

a ∈ A is more informative than knowing % on A, if some semantics is attached to the

elements of E, like in Ex. 1 and 2. Particularly in Ex. 1, it could be of importance

to know if a given student has achieved an average score at least as good as, e.g.,

γ =fair, since “fair” could be the minimum required score for receiving the diploma.

Analysis/explanation and prediction are very common in multicriteria decision making,

but in a numerical context. Our results provide the first necessary steps to do the same

in an ordinal context. We recall that the proof of theorems 2 and 3 are constructive

and give all solutions (when they exist) for f ◦ G restricted on A, and that we have an

algorithm of refinement of scales providing minimal refinements when the scale is too

coarse (see Ex. 4) [9]. The extension of G (or f ◦ G) from A to En is just a matter of
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choosing a family of operators, and to search for those operators which fit the best on A.

A family of operators which is of particular interest is provided by the so-called Sugeno

integral [21], which is a mean operator, not strong in general. As shown by Marichal

[16], they coincide with lattice polynomials P (x1, . . . , xn) which are non decreasing w.r.t

all arguments, and such that P (0, . . . , 0) = 0, P (1, . . . , 1) = 1, hence they cover a wide

range of ordinal operators.

We address now related works. As said in the introduction, there are few studies

related to aggregation functions on finite scales (see Rico et al. [20]), but we think that

our approach can be linked to interval orders, and to qualitative models of preference.

Rico et al. [20] have found necessary and sufficient conditions for the existence of a

Sugeno integral representing a given complete weak order on a set of alternatives A. Our

study both completes and can benefit from these results, since on one hand we provide

general results about any kind of mean operators, and we allow for scale refinement or

shrinking, a feature which is not in the study of Rico et al., and on the other hand, their

results can be readily applied once we have done the necessary refinements and shrinkings

of the scale, to see if a Sugeno integral is a possible candidate for a representation.

Concerning interval orders, we notice that weak coherence, as well as the notion of

weak mean operator, involve only the boundaries of the span of alternatives, not the scores

individually. In other words, these notions can be used as well when the evaluation of

an alternative a is mono-dimensional, but interval-valued. Let us denote by [a, a] the

interval in E assigned to alternative a. We know that (see e.g. Fishburn [5]) % is a

complete interval order iff it can be represented by intervals, such that

• a ≻ b⇔ [a, a] ⋗ [b, b]

• a ∼ b⇔ [a, a] ∩ [b, b] 6= ∅.

Any interval order can be represented by a function and a variable threshold.

The difference with our model is that we assume to have a complete weak order on

intervals, but strict preference is less restrictive than the above condition, since we just

require weak coherence, i.e. if a ≻ b then we can have neither [a, a] ⋖ [b, b] nor a = b.

Then Theorem 2 tells that such a weak order can be represented by a weak mean operator

22



(assuming there is enough elements in E), in other words, each interval is represented by

a single number contained in the interval.

Concerning qualitative models of preference representations, a great deal of work

has been achieved in the framework of decision under uncertainty, trying to adapt the

Savagian model to a qualitative finite framework (see, e.g., [3], and more recently [4]).

The representation is done through a Sugeno integral in [3], while Fargier and Sabbadin

in [4] advocates the use of a lexicographic version of Sugeno integral, in order to have a

better representation power (for example, the Sugeno integral can never be a strict mean).

Fargier and Sabbadin show that their lexicographic model can equivalently be represented

by a weighted arithmetic mean after a suitable mapping of the qualitative finite scale into

the real line. This is undoubtly close to our view, although many assumptions and aims

in our respective models differ.

6 Concluding remarks

The philosophy of the paper and main results can be summarized as follows:

• Suppose that for representing a decision profile, you have at disposal as many

degrees in E as you want. What are the relations between the various type of

means, and various types of coherence of the decision profile? This is given in Th.

1.

• Suppose that you have a limited scale E. Is the decision profile representable on

E by a suitable mean operator (whose type is known from Th. 1)? If interiors of

indifference classes are nonempty and are enough large in case of overlapping, and

if cores (if any) are enough far from each others, then a representation is possible,

with perhaps a shrinking of the scale E. This Th. 2. If in addition there is no

pairwise disjoint spans of alternatives in indifference classes, then no shrinking is

necessary. This is Th. 3.

• Suppose that the representation is not possible because there is not enough degrees.

Then add degrees in E so that conditions (ii), (iii) and (iv) of Th. 2 are fulfilled.

This is Section 4.
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To finish, we would like to indicate future study. An interesting topic for future research

would be to find similar conditions for representation in the case of other aggregation

operators, or more specific ones. In the context of ordinal aggregation, we know from

Ovchinnikov [19] that the only meaningful (in the sense of measurement theory) mean

operators on ordinal scales are the operators returning one of the input scores. This is

clearly a particular class of our mean operators, and it would be interesting to know under

which conditions on the decision profile a representation by such a meaningful mean is

possible.
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Proofs of lemmas and Theorem 2

Proof of Lemma 2

(i) for any j1 < j2:

max
j′<j1

max
aj′∈Aj′

⌊aj′ ≤max
j′<j2

max
aj′∈Aj′

⌊aj′

min
j′>j1

min
aj′∈Aj′

aj′⌋ ≤ min
j′>j2

min
aj′∈Aj′

aj′⌋.

(ii) Let us suppose j′ < j. First, we show that
◦

Aj⌉ <
◦

Aj′⌉ is impossible. This amounts

to show that

min(Aj⌉, ↓ A>j⌉) < min(Aj′⌉, ↓ A>j′⌉)

is impossible. We observe that ↓ A>j′⌉ < Aj⌉ (simply remark that A>j′⌉ ≤ Aj⌉). Also

by Lemma 2 (i), A>j′⌉ ≤ A>j⌉.
↓ A>j′⌉ Aj⌉

possible positions of ↓ A>j⌉

Then if ↓ A>j⌉ ∈
[

↓ A>j′⌉, Aj⌉
]

, the above inequality becomes ↓ A>j⌉ < min(Aj′⌋, ↓

A>j′⌉), which is impossible (see the above figure). If on the contrary ↓ A>j⌉ > Aj⌉, the

above inequality becomes Aj⌉ < min(Aj′⌉, ↓ A>j′⌉), which is also impossible. Necessary

and sufficient conditions to have equality come from the examination of the figure.

Using the same way, we show that
◦

⌊Aj <
◦

⌊Aj′ is impossible. This amounts to show

that

max(⌊Aj, ↑ ⌊A<j) < max(⌊Aj′, ↑ ⌊A<j′)

is impossible. We observe that ↑ ⌊A<j > ⌊Aj′ . Also, by Lemma 2 (iv), ⌊A<j′ ≤ ⌊A<j .

Then if ↑ ⌊A<j′ ∈
[

⌊Aj′, ↑ ⌊A<j

]

, the above inequality becomes impossible, the same for

the other case.

(iii) We suppose Kj′ 6= ∅, j′ < j. Let us call a ∈ Aj′ an element such that ⌊a = Kj′⌋

(which exists since the core is non empty). From the definition, we have:

⌊A<j ≥ ⌊a = Kj′⌋
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which implies ↑ ⌊A<j > ⌊a, so that 〈Aj〉 (and consequently
◦

⌊Aj⌉) is to the right of Kj′.

(iv) Let us suppose that ∃j′, j, j′ < j, ∃a ∈ A such that ⌊a⌋ ⊆
◦

⌊Aj⌉ ∩
◦

⌊Aj′⌉. Then

either a belongs to Aj′′, j
′′ < j, or a belongs to a class Aj′′, with j′′ > j′. In the first case,

⌊A<j ≥ ⌊a, which means that ⌊a⌋ cannot be included in
◦

⌊Aj⌉, hence not in the intersection

too. In the second case, A>j′⌉ ≤ a⌋, which means that ⌊a⌋ cannot be included into
◦

⌊Aj′⌉.

�

Proof of Lemma 4

For any Aj let us denote by a>j and a<j the alternatives (possibly non unique) corre-

sponding to the bounds of 〈Aj〉, i.e. such that a>j⌋ = A>j⌉, and ⌊a<j = ⌊A<j .

(i) Suppose that ⌊A<j ≥ A>j⌉. This implies that ⌊a<j ≥ a>j⌋. But a<j ≺ a>j , and

the weak coherence assumption is violated. Thus, ⌊A<j < A>j⌉.

(ii) Since Aj is nonempty, there exists a ∈ Aj , and in particular a ≺ a>j and a ≻ a<j .

Due to the weak coherence assumption, we cannot have ⌊a ≥ a>j⌋. Similarly, a⌋ ≤ ⌊a<j

is also impossible. This entails ⌊a⌋ ∩ 〈Aj〉 6= ∅ when 〈Aj〉 6= ∅, and since ⌊a⌋ ⊆ ⌊Aj⌋, the

result holds. Now if 〈Aj〉 = ∅, then we know from lemma 4 (i) that ♯
[

⌊A<j , A>j⌉
]

= 2.

Then it is easy to check that the result holds.

(iii) We have to prove that ⌊Aj⌉ ∩ 〈Aj〉 6= ∅. Due to lemma 4 (ii), we know that

∀a ∈ Aj , ⌊a⌋ ∩ 〈Aj〉 6= ∅. Since ⌊aj⌋ ⊆ ⌊Aj⌉, the result holds.

(iv) Assume that Kj⌋ ≥ A>j⌉. Let a ∈ Aj such that ⌊a ≥ Kj⌋. We have ⌊a ≥ a>j⌋,

but a ≺ a>j , which violates weak coherence. Doing the same on the left side, we conclude

that Kj⌋ < A>j⌉ and ⌊Kj > ⌊A<j . Since Kj 6= ∅, this entails ♯
[

⌊A<j , A>j⌉
]

≥ 3, i.e.

〈Aj〉 6= ∅, and by Lemma 4 (iii),
◦

⌊Aj⌉ 6= ∅. Also Kj ⊆ 〈Aj〉, and since Kj ⊆ ⌊Aj⌉, we get

Kj ⊆
◦

⌊Aj⌉. �

Proof of Theorem 2

⇒) Let f ◦ G represents %, with G being a weak mean and show that (i) to (iv) hold.

To show this, it suffices to assume f = Id.

(i) If (A,%, E) is not weakly coherent, then there exist a′ ∈ Aj′ and a ∈ Aj , j
′ < j, and

⌊a′ ≥ a⌋. Since G is a weak mean, this entails G(a′) ≥ G(a), so that the representation
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condition does not hold.

(ii) Suppose j′ < j such that Kj′, Kj 6= ∅. There are j− j′ +1 classes between Aj′ and

Aj (including them). By definition of the core, there exist aj , aj′ in Aj , Aj′ respectively

such that Kj′⌋ = ⌊aj′ and ⌊Kj = aj⌋. At best G will be such that G(aj′) = ⌊aj′ and

G(aj) = aj⌋, so that we need at least j − j′ − 1 elements between cores Kj , Kj′ to rank

classes Aj′+1, . . . , Aj−1.

(iii) From Lemma 4 (i), we know that ♯
[

⌊A<j, A>j⌉
]

> 1. Let us show that the case

♯
[

⌊A<j , A>j⌉
]

= 2 is impossible. Suppose it holds (this is indeed the situation of Ex. 1.

Then it means that ⌊a<j =↓ a>j⌋. At best G will assign to a<j and a>j the elements ⌊a<j

and a>j⌋, so that there is no element left for alternatives in Aj , and representability is

violated. This proves 〈Aj〉 6= ∅. Since the profile is weakly coherent by (i), using Lemma

3 (iii), we deduce that
◦

⌊Aj⌉ 6= ∅.

(iv) We know by (iii) that the interiors are not empty. A first fact to notice is that

if we assume representability, we must have ♯
[

⌊Aj′, Aj⌋
]

≥ j − j′ + 1, since this is the

number of available elements on E for assigning scores by a weak mean G to classes Aj′

to Aj (included).

Let us assume that ♯
[

⌊Aj′, Aj⌋
]

= j − j′ + 1, so that there is exactly one element on

E per class Aj′ to Aj. Thus, if we denote by aj , aj′ the alternatives in Aj, Aj′ such that

aj⌋ = Aj⌋ and ⌊aj′ = ⌊Aj′, necessarily for any a ∈ Aj (resp. a′ ∈ Aj′), G(a) = Aj⌋ (resp.

G(a′) = ⌊Aj′). Let us consider j′′ < j. Then for any a ∈ Aj′′, ⌊a < ⌊aj′, otherwise since

G is a weak mean operator, G(a) ≥ G(aj′), which violates the representation condition.

This means that ⌊A<j′ < ⌊Aj′. Doing the same reasoning with j′′ > j, we obtain

A>j⌉ > Aj⌋. Hence ♯
[

〈Aj′, Aj〉
]

≥ j − j′ + 1, and by the assumption on ♯
[

⌊Aj′ , Aj⌋
]

, we

have ♯
[ ◦

⌊Aj′,
◦

Aj⌉
]

= j − j′ + 1.

Lastly, consider the case ♯
[

⌊Aj′, Aj⌋
]

> j−j′+1. We denote by 〈〈Aj′, Aj〉〉 the interval

of the scores assigned to classes Aj′, . . . , Aj, which is contained in
[

⌊Aj′ , Aj⌋
]

(G is a weak

mean operator). Remark that ♯〈〈Aj′, Aj〉〉 ≥ j−j′+1. Doing the same reasoning as above,

we obtain that ⌊A<j′ < 〈〈Aj′, and A>j⌉ > Aj〉〉, hence the result.

Let us now suppose that G is a mean operator. We have to show in addition that the

profile is coherent. If (A,%, E) is not coherent, there exist a′ ∈ Aj′ and a ∈ Aj , j
′ < j,
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such that a′ ≥ a. Since G is a mean operator, this entails that G(a′) ≥ G(a), and the

representability condition does not hold.

⇐) Let us suppose that the profile is weakly coherent and that (ii) to (iv) hold. We

propose to construct f and E ′ as follows (finest partition): for every non empty Kj , define

f(xj) = e′j for all xj ∈ Kj , ensuring e′j < e′j′ whenever j < j′, and otherwise take f = Id.

Due to Lemma 3, we know that cores are disjoint and ordered the right way, hence the

proposed construction is possible.

It remains to build G being a weak mean operator. For each indifference class Aj

and each a ∈ Aj we define [ψj , φj] to be the interval where G can take its values for any

a ∈ Aj . In order that f ◦G represents %, f has to be constant over [ψj , φj].

We impose the following constraints on these intervals:

(*) [ψj , φj] ⊇ Kj, ∀j such that Kj 6= ∅.

(**) [ψj , φj] ⊆
◦

⌊Aj⌉, ∀j.

Condition (*) is compatible with our above choice of f . Condition (**) is sound since
◦

⌊Aj⌉ 6= ∅ by assumption1, and
◦

⌊Aj⌉ ⊇ Kj (Lemma 4 (iv)). If (**) is not satisfied, it may

exist an alternative a from a class other than Aj whose span is included in [ψj , φj], and

since G has to be internal, G(a) ∈ [ψj , φj], which entails f ◦ G(a) = f ◦ G(a′), for all

a′ ∈ Aj .

The construction goes in several steps.

step 1: initialization of the intervals. For every j ∈ {1, . . . , k′}

1. If Kj 6= ∅, [ψ0
j , φ

0
j ] := Kj

2. Otherwise choose an element ej in
◦

⌊Aj⌉ such that

2.1 If Kj+1 6= ∅, ej < ⌊Kj+1, otherwise choose ej+1 in
◦

⌊Aj+1⌉ (if not already done)

such that ej < ej+1.

2.2 If Kj−1 6= ∅, ej > Kj−1⌋, otherwise choose ej−1 in
◦

⌊Aj−1⌉ (if not already done)

such that ej > ej−1.

1If condition (iii) is replaced by 〈Aj〉 6= ∅, then use weak coherence and Lemma 4 (iii) to infer the

non emptiness of the interior.
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and let [ψ0
j , φ

0
j ] = {ej}. This family {[ψ0

j , φ
0
j ]}j=1,...,k′ of disjoint sets is called a

pre-partition of E.

We have to show that such a construction is possible. Condition 1 has already been

examined above (cores are disjoint and properly ordered). For condition 2, if Kj+1 6= ∅,

from Lemma 2 (iii), it is possible to find ej ∈
◦

⌊Aj⌉ to the left of Kj+1, and similarly for

Kj−1. If Kj+1 = ∅, from (iii) and Lemma 2 (ii), we know that at worst the interiors
◦

⌊Aj⌉

and
◦

⌊Aj+1⌉ coincide (otherwise
◦

⌊Aj+1⌉ has its bounds greater than those of
◦

⌊Aj⌉, and

ej and ej+1 can be found). In this case, if ♯
◦

⌊Aj⌉ > 1 we are done. The case ♯
◦

⌊Aj⌉ = 1

is forbidden by condition (iv) of the theorem. Now, from condition (ii), there is always

enough elements between the cores to assign elements to classes. From condition (iv),

between the boundaries of any two interiors
◦

⌊Aj⌉,
◦

⌊Aj′⌉, there will be always enough

elements.

step 2: construction of the intervals. We build first the intervals [ψ1
j , φ

1
j ] for all

j as follows:

[ψ1

j , φ
1

j ] :=]φ0

j−1, ψ
0

j+1[ ∩
◦

⌊Aj⌉.

These intervals are not empty, since by construction φ0
j−1 < ej < ψ0

j+1, and ej ∈
◦

⌊Aj⌉.

Note that these intervals may intersect (for two adjacent j, j′ only), but they are ordered

in a strictly increasing way, i.e. j′ < j implies ψ1
j′ < ψ1

j and φ1
j′ < φ1

j since all the [ψ0
j , φ

0
j ]

are disjoint. We eliminate all common parts, by cutting every non empty intersection in

two parts, one of them possibly empty.

Suppose that [ψ1
j , φ

1
j ] ∩ [ψ1

j+1, φ
1
j+1] =: Bj 6= ∅, and ♯Bj =: bj > 0. Because of strict

increasingness of the intervals, Bj cannot be equal to one of these intervals. There are

bj +1 different ways to cut Bj in two parts, including at most one empty part, attributing

the left one to [ψ1
j , φ

1
j ], and the right one to [ψ1

j+1, φ
1
j+1]. Let us denote these new intervals

by [ψj , φj], now disjoint, and non empty.

step 3: construction of G. For any aj ∈ Aj , ∀j = 1, . . . , k′, we have to define G

such that G(aj) be any element in [ψj , φj]∩ ⌊aj⌋. Let us show first that this intersection

is never empty. Indeed:

• [ψj , φj] is not empty.
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• [ψj , φj]∩ ⌊aj⌋ is not empty. Let us show that [ψ1
j , φ

1
j ]∩ ⌊aj⌋ 6= ∅, which amounts to

show that ]φ0
j−1, ψ

0
j+1[∩ ⌊aj⌋ 6= ∅, and

◦

⌊Aj⌉ ∩ ⌊aj⌋ 6= ∅. The first fact is shown as

follows. Let us suppose that the intersection is empty, and that ⌊aj⌋ is to the left of
]

φ0
j−1, ψ

0
j+1

[

(the reasoning is much the same in the symmetrical case). φ0
j−1 is equal

to either ej−1 if Kj−1 = ∅, or Kj−1⌋. In the first case, we have aj⌋ ≤ ej−1 ≤
◦

Aj−1⌋,

which contradicts the definition
◦

Aj−1⌉ (more precisely, of A>j−1⌉). In the second

case, denoting aj−1 an alternative of Aj−1 such that ⌊aj−1 ≥ Kj−1⌋, we would have

a
j
i ≤ a

j−1

i , for all i, which violates coherence since aj ≻ aj−1. The second fact is due

to (iii) and Lemma 4 (ii). Now observe that the (possible) intersection part between

the two intervals [ψ1
j , φ

1
j ] and [ψ1

j+1, φ
1
j+1] is contained in

◦

⌊Aj⌉ ∩
◦

⌊Aj+1⌉. Since no

a ∈ A can be such that ⌊a⌋ ⊆
◦

⌊Aj⌉ ∩
◦

⌊Aj+1⌉, no splitting of the intersection can

isolate ⌊aj⌋, so that ⌊aj⌋ ∩ [ψj , φj] 6= ∅

It remains to choose a value in the intersection. If Aj contains a non empty core Kj , by

construction Kj ⊆ [ψj , φj]. Moreover, any a ∈ Aj intersects Kj since Kj is the interval

between the two “extreme” (most disjoint) individuals in Aj . Hence it is possible to

define:

G(a) ∈ Kj ∩ ⌊a⌋.

Suppose on the contrary that Aj has an empty core. Then G has to be constant over

Aj . We are done if we show that there exists xj ∈ [ψj , φj] belonging to the span of each

a ∈ Aj , hence to ∩a∈Aj
⌊a⌋, since in this case it suffices to put G(a) = xj for all a ∈ Aj .

We have proved above that [ψj , φj] ∩ ⌊a⌋ 6= ∅, for all a ∈ Aj . Suppose there is no

common point of intersection in the interval [ψj , φj]. This would mean that it exist two

alternatives a, a′ ∈ Aj with disjoint spans. But this contradicts the fact that Kj = ∅.

G is indeed a weak mean operator, since G(a) is in the span of a (clear from the

definition of G). Clearly f ◦G represents %.

Let us assume now that the profile is coherent. In step 3, we impose in addition the

following:

∀a, b ∈ Aj such that ai ≥ bi, ∀i, G(a) ≥ G(b). (2)

Indeed, strict inequality for G happens only when Aj has a non empty core, where G can

be defined so as to satisfy (2).
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Let us show that G is non decreasing over A. Let us take a, a′ ∈ A such that ai ≥ a′i,

∀i. a′ is necessarily either in the same class than a (say Aj), or in a lower class (say Aj′,

j′ < j). In the first case, equation (2) ensures that G(a) ≥ G(a′). In the second case,

G(a′) ∈ [ψj′, φj′], which is an interval to the left of G(a), and the result holds. �

The case of strong and strict coherence proceeds similarly.
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