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1 Introduction

Here graphs are simple. We use the standard notation from [2]. In particular uvw
denotes the path on vertices uvw with edges uv, vw. We also use the notation
u−v−w. These notations ar formally equivalent, but we use the second one when we
want to emphasize that the path is an induced subgraph of some graph that we are
working on. When G,G′ are graphs, we denote by G ∪ G′ the graph whose vertex
set is V (G) ∪ V (G′) and whose edge set is E(G) ∪ E(G′).

We say that G contains H when H is isomorphic to an induced subgraph of G.
We say that H is an ISK4 of a graph G when H is an induced subgraph of G and H
is a subdivision of K4. A graph that does not contain any subdivision of K4 is said
to be ISK4-free. Our main result is Theorem 8.1, saying that every ISK4-free graph
is either in some basic class or has some special cutset. In [3], it is mentioned that
deciding in polynomial time whether a given graph is ISK4-free is an open question
of interest. This question was our initial motivation. But our theorem does not lead
to a polynomial-time recognition algorithm so far.

A branch-vertex in a graph G is a vertex of degree at least 3. A branch is a
path of G of length at least one whose ends are branch vertices and whose internal
vertices are not (so they all have degree 2). Note that a branch of G whose ends
are u, v has at most one chord: uv. A theta is a connected graph with exactly two
vertices of degree three, all the other vertices of degree two, and three branches,
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each of length at least two. A prism is a graph that is the line-graph of a theta. A
wheel is a graph that consists of a hole H plus a vertex x /∈ H, called the hub of the
wheel, that sees at least four vertices of H.

Lemma 1.1 Let G be an ISK4-free graph. Then either G is a series-parallel graph,
or G contains a prism, or G contains a wheel or G contains K3,3.

proof — If G is not series-parallel, then it is a well known fact that G contains
a subdivision H of K4 as a possibly non-induced subgraph. Let us choose such a
subgraph H minimal. So H is obtained by first taking a subdivision H ′ of K4 whose
vertex set is {a, b, c, d}. The branches of H ′ are called Pab, Pac, Pad, Pbc, Pbd, Pcd

with the obvious notation. Then H is obtained from H ′ by adding several edges
between the vertices of H ′. Since G is ISK4-free, there is at least one such edge e in
H.

If e is incident to one of a, b, c, d, say a up to symmetry, then the other end of e
is in none of Pab, Pac, Pad by minimality of H. Also Pab, Pac, Pad have all length
one for otherwise, by deleting the interior vertices of one of them, we contradict the
minimality of H. If H has a chord non-incident to a then by deleting one of b, c, d
we contradict the minimality of H. Hence, every chord of H is incident to a and H
is a wheel with hub a.

If e is between two branches of H with a common end, Pab and Pad say up to
symmetry, then let us put e = uv, u ∈ Pab, v ∈ Pad. Vertices a, u are adjacent for
otherwise by deleting the interior vertices of a−Pab−u we contradict the minimality of
H. Similarly, a, v are adjacent, and Pbc, Pbd, Pcd all have length one. So, G contains
a prism H ′ as a possibly non induced subgraph, whose triangles are auv, bcd. If
H ′ 6= H then H has an edge e′ that is not an edge of H ′. Up to symmetry, we
assume that e′ has an end u′ in uPabb and an end v′ in vPvdd. Since e 6= e′ we
may assume u 6= u′. So, H \ u contains a subdivision of K4 and this contradicts the
minimality of H. Hence H is a prism.

If e is between two branches of H with no common end, Pad and Pbc say up to
symmetry, then let us put e = uv, u ∈ Pad, v ∈ Pbc. As above, we prove that Pab,
Pac, Pbd, Pcd all have length one so that ua, ud, vb, vc are all edges of H. Hence H
is isomorphic to K3,3. 2

When G is a graph, K an induced subgraph, and C a set of vertices disjoint from
K, the attachment of C over K is N(C) ∩ V (K), that we also denote by NK(C).

2 K3,3

Here we decompose ISK4-free graphs that contain Kp,q, p, q ≥ 3. When H is iso-
moprhic to Kp,q, we denote by A,B the two sides of the bipartition, and we put
A = {a1, . . . , ap} and B = {b1, . . . , bq}. A vextex v of a graph is complete to a set
of vertices C if v is adjacent to every vertex in C. A vertex v is anticomplete to a
set of vertices C if v is adjacent to no vertex in C.
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Lemma 2.1 Let G be an ISK4-free graph, and H be a maximal induced Kp,q in G,
such that p, q ≥ 3. Let v /∈ H be a vertex of G. Then the attachment of v over H is
either empty, or consists of one vertex or of one edge or is V (H).

proof — Suppose first that v is adjacent at least two vertices in A, say a1, a2. Then
v is either adjacent to every vertex in B or to no vertex in B. Because otherwise,
up to symmetry, v sees b1 and misses b2, and {a1, a2, b1, b2, v} is an ISK4. If v has
no neighbor in B, then v sees every vertex in A, because otherwise va3 /∈ E(G) say,
and {a1, a2, a3, b1, b2, v} is an ISK4. So, v is complete to A and anticomplete to B
contradictory to the maximality of H. If v is complete to B then v is adjacent to
at least two vertices in B and symmetrically we can prove that v is complete to A.
So, the attachement of v is H.

Hence we may assume that v is adjacent to at most one vertex in A, and sym-
metrically in B. Hence, NH(v) is either empty, or consists of one vertex or of one
edge. 2

Lemma 2.2 Let G be an ISK4-free graph, and H be a maximal induced Kp,q of G,
such that p, q ≥ 3. Let U be the set of those vertices of V (G) \ H that are complete
to H. Let C be a component of G \ (H ∪ U). Then the attachment of C over H is
either empty or consists of one vertex or of one edge.

proof — Suppose not. Then up to symmetry we may assume that there are
vertices c1, c2 in C such that |N({c1, c2}) ∩D| ≥ 2 where D is one of A,B. Since C
is connected, there is a path P = c1−· · ·−c2 in C from c1 to c2. We choose c1, c2

such that P is minimal. Up to symmetry, we assume that c1a1, c2a2 ∈ E(G). Note
that by Lemma 2.1, P has length at least 1. If a3 has a neighbor in P , then by
Lemma 2.1 this neighbor must be an interior vertex of P , but this contradicts the
minimality of P . So, a3 has no neighbor in P .

If no vertex in B has neighbors in P , then V (P ) ∪ {a1, a2, a3, b1, b2} induces
an ISK4. If exactly one vertex in B, say b1, has neighbors in P , then V (P ) ∪
{a1, a2, a3, b2, b3} induces an ISK4. If at least two vertices in B, say b1, b2, have
neighbors in P , then by Lemma 2.1 and by minimality of P we may assume N(b1)∩
V (P ) = {c1} and N(b2) ∩ V (P ) = {c2}. Hence V (P ) ∪ {a1, a3, b1, b2} induces an
ISK4. In every case there is a contradiction. 2

Lemma 2.3 Let G be an ISK4-free graph that contains K3,3. Then either G is a
bipartite complete graph, or G is a tripartite complete graph, or G has a clique-cutset
of size at most 3.

proof — Let H be a maximal Kp,q, p, q ≥ 3, in G and U be the set of those vertices
that are complete to H. Note that U is a stable set because if U contains an edge
uv then {u, v, a1, b1} is an ISK4.

If V (G) = H ∪ U , then G is either a tripartite complete graph (if U 6= ∅) or a
bipartite complete graph (if U = ∅). Else, let C be a component of G\ (H ∪U). We
claim that |N(C) ∩ U | ≤ 1. Else, consider u 6= v in N(C) ∩ U and a minimal path
P in C from a neighbor of u to a neighbor of v. By Lemma 2.2, we may assume
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that a3, b3 have no neighbor in C (hence in P ). So P ∪ {u, v, a3, b3} is an ISK4, a
contradiction. This proves our claim. Now, by Lemma 2.2, N(C) ∩ (H ∪ U) is a
clique-cutset of G of size at most 3. 2

3 Cyclically 3-connected graphs

A separation of a graph H is a pair (A,B) of subsets of V (H) such that A∪B = V (H)
and there are no edges between A \ B and B \ A. It is proper if both A \ B and
B \ A are non-empty. The order of the separation is |A ∩ B|. A k-separation is a
separation (A,B) such that |A ∩B| ≤ k. A separation (A,B) is cyclic if both H[A]
and H[B] has cycles. A graph H is cyclically 3-connected if it is 2-connected, not
a cycle, and there is no cyclic 2-separation. Note that a cyclic 2-separation of any
graph is proper.

Here we state simple lemmas about cyclically 3-connected graphs needed in the
next section. Most of them are stated and proved implicitly in [1], Section 7. But
they are worth stating separately here: they are needed at least for the second time
and avoiding writing their proof would be convenient for another time. A cyclically
3-connected graph has at least four vertices and K4 is the only cyclically 3-connected
graph on four vertices. As any 2-connected graph that is not a cycle, a cyclically
3-connected graph is edge-wise partitioned into its branches.

Lemma 3.1 Let H be a cyclically 3-connected graph. For every proper 2-separation
(A,B) of H, A ∩ B consists of two non-adjacent vertices, one of H[A],H[B] is a
path, and thus is included in a branch of H, and the other one has a cycle.

proof — Since (A,B) is proper, A ∩ B is a cutset, and so it has size two since H
is 2-connected. We put A ∩ B = {a, b}. Since (A,B) is not cyclic, up to symmetry,
H[A] has no cycle. Note that H[A] contains a path P from a to b since otherwise
one of a, b is a cutvertex of H, and this contradicts H being 2-connected. Actually,
H[A] = P for otherwise H[A] is a tree with at least one vertex c of degree 3, and c
is a cutvertex of this tree that is also a cutvertex of H, a contradiction again. Since
(P,B) is a separation, every internal vertex of P has degree 2 in H, so P is included
in a branch of H and a, b are members of a branch of H as claimed. If B has no
cycle, then by the same proof as we wrote for A, H[B] is a path. So, H is a cycle,
a contradiction. 2

Lemma 3.2 Let H be a cyclically 3-connected graph and a, b be two adjacent vertices
of H. Then {a, b} is not a cutset of H.

proof — Follows directly from Lemma 3.1. 2

Lemma 3.3 Let H be a cyclically 3-connected graph, a, b be two branch vertices of
H, and P1, P2, P3 be three induced paths of H whose ends are a, b. Then either :

• P1, P2, P3 are branches of H of length at least two and H = P1 ∪ P2 ∪ P3, and
H is a theta;
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• there exist integers i, j where 1 ≤ i < j ≤ 3 and a path S of H with an end in
the interior of Pi, an end in the interior of Pj and whose interior is disjoint
of V (P1 ∪ P2 ∪ P3); and P1 ∪ P2 ∪ P3 ∪ S is a subdivision of K4.

proof — Let us put H ′ = P1 ∪ P2 ∪ P3. Suppose H = H ′. If P1 is of length one,
then (V (P1 ∪ P2), V (P1 ∪ P3)) is a cyclic 2-separation of H. So P1, and similarly
P2, P3 are of length at least two and the first output holds. So we may suppose
H 6= H ′. If the lemma fails then no path such S exists. In particular there are no
edges between the interior of any two of the three paths. The interiors of the three
paths lie in distinct components of H \ {a, b}. Since H is connected and H 6= H ′,
there exists some vertex in V (H) \ V (H ′) with a neighbor c in one of P1, P2, P3.
Since H is 2-connected, {c} is not a cutset of H and there exists a path R from c to
some other vertex c′ in H ′. Since no path like S exists, R must have its two ends in
the same branch of H ′, say in P1. It follows that P1 has some interior vertices, and
we call B the component of H \ {a, b} that contains the interior of P1. Now, we put
A = {a, b} ∪ V (H) \ C, and we observe that (A,B) is a cyclic 2-separation of H, a
contradiction. 2

Lemma 3.4 Let H be a cyclically 3-connected graph and let a, b be two branch
vertices of H such that there exist two distinct branches of G linking them. Then H
is a theta.

proof — Let P1, P2 be two distinct branches of H whose ends are a, b. We denote
by P̊ the set of the interior vertices of a path P . So, we put A = V (P1 ∪ P2),
B = V (H) \ (P̊1 ∪ P̊2) and observe that (A,B) is a 2-separation of H. Since H is
not a cycle, B contains at least three vertices, and H[B] contains a shortest path P3

from a to b since H is 2-connected. We apply Lemma 3.3 to P1, P2, P3. Since P1, P2

are branches, the second output cannot happen. So H is a theta. 2

Lemma 3.5 A graph H is a cyclically 3-connected graph if and only if it is either
a theta or a subdivision of a 3-connected graph.

proof — We remind the reader that according to the definition in [2], a 3-connected
graph must have at least 4 vertices. So, thetas and 3-connected graphs are clearly
cyclically 3-connected. Conversely, if H is a cyclically 3-connected graph then let
H ′ be the multigraph on the branch vertices of H obtained as follows: we link two
vertices a, b by an edge for every branch of H with ends a, b.

If H ′ has no multiple edge then H ′ is a graph and H is a subdivision of H ′. Since
H is 2-connected, H ′ is also 2-connected. We claim that H ′ is 3-connected. Else
H ′ has a proper 2-separation (A,B). Since H ′ has minimum degree at least 3, it is
impossible that H ′[A] is a path. So H ′[A] cannot be a tree since H ′ is 2-connected,
and it must contain a cycle. Symmetrically, H ′[B] must contain a cycle. Now we
define A′ to be the union of A and of the set of these vertices of degree two of H that
arise from subdividing edges of H ′[A]. We define similarly B′. If H ′[A∩B] is an edge
and if some vertices of H arise from the subdivision of that edge, then we put them
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in A′. Now we observe that (A′, B′) is a cyclic 2-separation of H, a contradiction.
This proves our claim. It follows that H is a subdivision of a 3-connected graph.

If H ′ has at least one multiple edge, then there exits two vertices a, b of H and
two branches P,Q of H with ends a, b. So, by Lemma 3.4, H is a theta. 2

Lemma 3.6 Let H be a cyclically 3-connected graph and a, b be two distinct vertices
of H. If there is no branch that contains both a, b then H ′ = (V (H), E(H) ∪ {ab})
is a cyclically 3-connected graph and every graph obtained from H ′ by subdividing ab
is cyclically 3-connected.

proof — The graph H ′ is clearly 2-connected and not a cycle. So we have to
prove that H ′ has no cyclic 2-separation. For suppose it has one, {A,B} say. Up
to symmetry we may assume a, b ∈ A because there is no edge between A \ B and
B \ A. Since (A,B) is cyclic in H ′, B has a cycle in H ′ and so in H. Hence, by
Lemma 3.1, A induces a path of H and so it is included in a branch of H, contrary
to our assumption.

By Lemma 3.5, H ′ is a subdivision of a three connected graph since it cannot be
a theta because of the edge ab. So, every graph that we obtain by subdividing ab is
a subdivision of a 3-connected graph, and so is cyclically 3-connected. 2

The statement of the following lemma is longer than its proof.

Lemma 3.7 Let H be a cyclically 3-connected graph, let C be a cycle of H and
a, b, c, d be four distinct vertices of C that appear in this order on C and such that
ab ∈ E(C) and cd ∈ E(C). Let P,Q be the paths respectively from a to d and from
b to c that vertex-wise partition C. Suppose that the edges ab, cd are in two distinct
branches of H. Then there is a path R with an end-vertex in P , an end-vertex in Q
and no interior vertex in C. Moreover, R is not from a to b, and not from c to d

proof — For suppose there does not exist a path like R. Then {a, c} is a cutset of
H that separates b from d. So by Lemma 3.1, up to symmetry, we may assume that
aPdc is included in a branch of H. Also {b, d} is a cutset, so one of baPd, bQcd is
included in a branch of H. If it is bQcd then {a, b} is a cutset of H contradictory to
Lemma 3.2. So it is baPd, and baPdc is included in a branch of H. Hence, ab, cd
are in the same branch of H, and this contradicts our assumptions. 2

Lemma 3.8 Let H be a subdivision of K4, let P,Q be two distinct branches of H,
and T be a path with an end in a branch of H, an end in another branch of H and
whose interior in disjoint of H. Then H ∪ T has a subgraph that is a subdivision of
K4 and P,Q, T are branches of this subgraph.

proof — We denote by a, b, c, d the branch vertices of H, and by Pxy the branch
of H whose ends are x, y,∈ {a, b, c, d}. Up to symmetries, P,Q, T can be placed in
several ways that we will describe and examine. Each time, will find the desired
subdivision of K4 by deleting the interior vertices and the edges of some Pxy (for
short, we simply say that we delete P̊xy).
Case 1: P,Q have one common end. Up to symmetry we suppose P = Pab, Q = Pac.
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Suppose that T has an end in one of P,Q. Up to symmetry, we suppose that
T has an end in P . If the other end is in Q, then delete P̊bc. If the other end is in
Pad then delete P̊bd. If the other end is in Pbd then delete P̊cd. If the other end is
in Pbc then delete P̊cd. If the other end is in Pcd then delete P̊bd. From now on, we
suppose that T has ends in none of P,Q.

Suppose that T has an end in one of Pbd, Pcd. Up to symmetry, we suppose that
T has one end in Pbd. If the other end is in Pcd then delete P̊bc. If the other end is
in Pad then delete P̊bc. If the other end is in Pbc then delete P̊ad.

We are left with the case when T has an end in Pad and an end in Pbc. Then
delete P̊bd.
Case 2: P,Q have no common ends. Up to symmetry we suppose that P = Pab

and Q = Pcd.
Suppose that T has an end in one of P,Q. Up to symmetry, we suppose that T

has an end in P . If the other end is in Q, then delete P̊bc. Else, up to symmetry
we may assume that the other end is in Pbd. Then delete P̊bd. From now on, we
suppose that T has ends in none of P,Q.

If T has its ends in two adjacent branches of H then up to symmetry we assume
that T has an end in Pbd, an end in Pbc and we delete P̊ac. Else, we may assume
that T has an end in Pad, an end in Pbc and we delete P̊bd. 2

4 Line-graph of substantial graphs

A basic branch in a graph is branch such that no two vertices in it are members of a
triangle. A branch in a graph is either basic, or is an edge uv and there is a common
neighbor of u, v.

A triangular subdivision of K4 is a subdivision of K4 that contains a triangle. A
square theta is theta that contains a square. Rephrased: a theta with two branches
of length two. A square prism is a prism that contains a square. Rephrased, a prism
with two basic branches of length one. Rephrased again, the line-graph of a square
theta. A square subdivision of K4 is a subdivision of K4 such that the four vertices
of degree three in it lie in a possibly non-induced square. Rephrased: a subdivision
of K4 where only two edges with no common ends are possibly subdivided. An
induced square in a graph is basic if an even number of edges in it lie in a triangle
of the graph. It easily checked that the line-graph of a subdivision H of K4 contains
a basic square if and only if H is a square subdivision of K4, and that the vertices
in any basic square of L(H) arise from the edges of a square on the branch vertices
of H. It easily checked that a prism contains only basic squares.

A connected diamond is a K4 with one edge subdivided. So it is either a K4 or
a graph with four vertices x, y, z, t that induce a diamond, plus a path P of length
at least two with end-vertices the two non-adjacent vertices of the diamond and no
other edges. Then we say that P connects the diamond. The fact that a connected
diamond is an ISK4 and that no path can connect a diamond in an ISK4-free graph
will be used with no explicit mention.

If X,Y are two basic branches of a graph G, a connection between X, Y is a path
P = p−· · ·−p′ such that p has neighbors in X, p′ has neighbors in Y , no interior
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vertex of P has neighbors in X ∪ Y , and if p 6= p′ then p has no neighbor in Y and
p′ has no neighbor in X.

When S = {u1, u2, u3, u4} induces a square in a graph G with u1, u2, u3, u4 in
this order along the square, a connection of S is an induced path of G, no interior
vertex of which has a neighbor in S, with ends p, p′ such that either p = p′ and
NS(p) = S; or NS(p) = {u1, u2} and NS(p′) = {u3, u4}; or NS(p) = {u1, u4} and
NS(p′) = {u2, u3}.

The line-graph of K4 is isomorphic to K2,2,2. It usually called the octahedron. It
contains three basic squares. For every basic square S of an octahedron G, the two
vertices of G\S are both connexions of S. Note also that when K is a square prism
with a square S, then V (K) \ S is a connection of S.

When G is a graph, H is a graph such that L(H) is an induced subgraph of G,
and C is a connected induced subgraph of V (G)\L(H), we define several types that
C can have, according to its attachment over L(H):

• C is of type branch if the attachment of C over L(H) is included in a basic
branch of L(H);

• C is of type triangle if the attachment of C over K is included in a triangle of
L(H);

• C is of type augmenting if C contains a connection p−· · ·−p′ of two distinct
basic branches X,Y of L(H), NX(p) is an edge of X and NY (p′) is an edge
of Y . Moreover, there are no edges between L(H) \ (X ∪ Y ) and P .

• C is of type square if L(H) contains a basic square S, and C contains a
connection P of S. Moreover, there are no edges between L(H) \ S and P .

Note that the types may overlap: a subgraph C may be of more than one type.
Since we view a vertex of G as a connected induced subgraph of G, we may speak
about the type of vertex with respect to L(H).

Lemma 4.1 Let G be a graph that contains no triangular ISK4. Let K be a prism
that is an induced subgraph of G and let C be a connected induced subgraph of G\K.
Then C is either of type branch, triangle, augmenting or square with respect to K.

proof — Let X = x−· · ·−x′, Y = y−· · ·−y′, Z = z−· · ·−z′ be the three basic
branches of K denoted in such a way that xyz and x′y′z′ are triangles. Suppose
that C is not of type branch or triangle and consider an induced subgraph P of C
minimal with respect to the property of being a connected induced subgraph, not
of type branch or triangle.

(1) P is a path with ends p, p′, no internal vertex of which has neighbors in K and
NK(P ) = NK(p, p′) is not included in a basic branch or in a triangle of K.

If P is a vertex, then our claim holds since by definition, P is not of type branch
or triangle. So, by minimality, P is a path with ends p, p′ and we may assume that
is has length at least one. Suppose that our claim fails. Then by minimality of P ,
NK(p) ⊂ A and NK(p′) ⊂ B, where A,B are distinct basic-branch-or-triangle of K.
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Also some interior vertex of P must have neighbors in K. By minimality of P , the
attachment of the interior of P over K is included in A∩B. Since two distinct basic
branches of K are disjoint, two distinct triangles of K are disjoint, we may assume
that NK(p) ⊆ {x, y, z}, NK(p′) ⊆ X and some interior vertices of P are adjacent
to x. Note that p has at most two neighbors in {x, y, z} because G has no K4 and
that p must have at least one neighbor in {y, z} for otherwise P is of type branch.
If py, pz ∈ E(G) then since some interior vertex of P has neighbor x, P contains a
subpath that connects the diamond {x, y, z, p}, a contradiction. Else, note that p′

has neighbors in X \x for otherwise P is of type triangle. Let vR be the neighbor of
p′ closest to x′ along v. Because of the symmetry between y and z we may assume
pz ∈ E(G), py /∈ E(G). So z−p−P−p′, z−Z−z′ and z−y−Y −y′ form a triangular
ISK4, a contradiction. This proves (1).

Now, we consider two cases.
Case 1: P is a connection between two basic branches of K and has no neighbors
in the third basic branch. So, we may assume that p has neighbors X, p′ in Y and
none of p, p′ has neighbors in Z. Let xL (resp. xR) be the neighbor of p closest to
x (resp. to x′) along X. Up to the symmetry between X and Y , we may assume
xLxR /∈ E(G), for otherwise C is of type augmenting and the lemma holds. Let
yL (resp. yR) be the neighbor of p′ closest to y (resp to y′) along Y . If xL 6= xR

then, up to symmetry, we may assume yL 6= y′. We observe that p−xL−X−x,
p−xR−X−x′−z′−Z−z, p−P−p′−yL−Y−y form a triangular ISK4, a contradiction. So
xL = xR and symmetrically yL = yR. If xL is neither x nor x′ then up to symmetry
we may assume yL 6= y′. We observe that xL−X−x, xL−p−P−p′−yL−Y −y and
xL−X−x′−z′−Z−z form a triangular ISK4, a contradiction. So up to symmetry
we may assume xL = x and yL = y′ for otherwise there is a contradiction with (1).
Now x−X−x′, x−p−P−p′−y′, x−z−Z−z′ form a triangular ISK4, a contradiction.
Case 2: We are not in Case 1.

Suppose first that one of p, p′ has at least two neighbors in a triangle of K. Then
we may assume up to symmetry px, py ∈ E(G), and pz /∈ E(G) because G contains
no K4. By (1) and up to symmetry, p′ must have a neighbor either in Y \ y or in
Z. Note that either p = p′ or NK(p) = {x, y} for otherwise p would contradicts the
minimality of P . If p′ has a neighbor in Z then let w be such a neighbor closest to z
along Z. We observe that p−P−p′−w−Z−z connects the diamond {p, x, y, z}. So, p′

has no neighbor in Z, and so it has neighbors in Y \y. Let wL (resp. wR) a neighbor
of p′ closest to y (resp. to y′) along Y . Note that wR 6= y. If p′ has no neighbor in
X then x−X−x′, x−p−P−p′−wR−Y−y′ and x−z−Z−z′ form a a triangular ISK4,
so p′ has a neighbor in X and we denote by vL (resp. vR) such a neighbor closest to
x (resp. to x′) along X. If p = p′ then we are in Case 1, a contradiction. So, p 6= p′

and p′ contradicts the minimality of P except if vL = vR = x′ and wL = wR = y′.
So these two equalities hold and p−P −p′−x′−z′−Z−z connects the diamond
{p, x, y, z} except if X has length one, so X has length one, and symmetrically, Y
has length one. We observe that P is a connection of the basic square {x, y, x′, y′}
of K, so C is of type square.

So from now on we suppose that both p, p′ have at most one neighbor in a triangle
of K. But at least one of p, p′ (say p) must have neighbors in more than one branch
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of K since otherwise we are in Case 1, a contradiction. So p = p′ by minimality of
P , and p has neighbors in X,Y,Z for otherwise we are in Case 1, a contradiction.
We may assume that py, pz /∈ E(G). Let xR, yR, zR be the neighbors of p closest to
x′, y′, z′ along X,Y,Z respectively. Then p−xR−X−x′, p−yR−Y −y′, p−zR−Z−z′

form a triangular ISK4, a contradiction. 2

Lemma 4.2 Let G be a graph that contains no triangular ISK4. Let H be a sub-
division of K4 such that L(H) is an induced subgraph of G. Let C be a connected
induced subgraph of G\L(H). Then C is either of type branch, triangle, augmenting
or square with respect to L(H).

proof — Let us denote by a, b, c, d the four branch vertices of H. On Figure ??,
L(H) is depicted with the notation for its vertices that we describe below. The
three edges incident to each vertex x = a, b, c, d form a triangle in L(H), which will
be labelled Tx. In L(H), for every pair x, y ∈ {a, b, c, d} there is one path with an
end in Tx and an end in Ty, and no interior vertex in the triangles. We denote this
path by Pxy. Note that Pxy = Pyx, and these six distinct paths are vertex disjoint.
Some of these paths may have length 0. In the triangle Tx, we denote by vxy the
vertex that is the end of the path Pxy. Thus the basic branches of L(H) are the
paths among Pab, Pac, Pad, Pbc, Pbd, Pcd that have length at least one. Note that
L(H) may have as many as four more triangles than the T·’s. The branch vertices
of L(H) are vab, vac, vad, vba, vbc, vbd, vca, vcb, vcd, vda, vdb and vdc. The subgraph
L(H) has no other edges than those in the four triangles and those in the six paths.

Suppose that C is neither of type branch nor triangle with respect to L(H) and
consider an induced subgraph P of C minimal with respect to the property of being
a connected induced subgraph not of type branch or triangle.

(1) P is a path with ends p, p′, no internal vertex of which has neighbors in L(H) and
NL(H)(P ) = NL(H)(p, p′) is not included in a basic branch or in a triangle of L(H).

If P is a vertex, then our claim holds since by definition, P is not of type branch
or triangle. So, by minimality, P is a path with ends p, p′ and we may assume that
is has length at least one. Suppose that our claim fails. Then by minimality of P ,
NL(H)(p) ⊂ A and NL(H)(p

′) ⊂ B, where A,B are distinct basic-branch-or-triangle
of L(H). Also some interior vertex of P must have neighbors in L(H). By minimality
of P , the attachment of the interior of P over L(H) is included in A∩B. Since two
distinct basic branches of L(H) are disjoint, we may assume that A = Td and either
B = Pad, or Pad has length zero and B = Ta. In either cases, A ∩ B = {vda}. Note
that p has at most two neighbors in Td because G has no K4 and that p must have
at least one neighbor in {vdb, vdc} for otherwise the attachment of P is included in
B and P is of type branch or triangle. Note that p′ has neighbors in B \ vda for
otherwise P is of type triangle. If pvdb, pvdc ∈ E(G) then since some interior vertex
of P is adjacent to vda, P contains a subpath that connects the diamond Td ∪ {p} a
contradiction.

Else, P ∪ Pac ∪B contains an induced path Q from p to vac, and no vertex of Q
has neighbors in V (Pcd)∪V (Pbd ∪Pbc ∪Pac). Now, we observe that Q, Pcd, Pbd, Pbc,
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Pac form a triangular ISK4 (whose triangle is Tc) except if Q goes through vab and
Pab has length zero (so vab = vba). But then, we must have NB(p′) = {vab} since Q
has no chord, so B = Ta and Pad has length zero. So, vdb−P−p′−vba, vdb−Pbd−vbd and
vdb−vdc−Pcd−vcd−vcb−Pcb−vbc form a triangular ISK4 except if Pdb has length zero.
But then, T = {vda, vdb, vab} is a triangle, and T is the attachment of P over L(H),
so P is of type triangle with respect to L(H), a contradiction. This proves (1).

Suppose first that Pab, Pac, Pad, Pbc, Pbd, Pcd have all length zero. Then,
L(H) is the octahedron and is isomorphic to K2,2,2. Note that L(H) has no ba-
sic branch. For convenience, we rename the vertices of L(H): x, x′, y, y′, z, z′ so
that xx′, yy′, zz′ /∈ E(L(H)) and there are every possible other edge. If P has neigh-
bor at most one vertex in every pair {x, x′}, {y, y′}, {z, z′} then up to symmetry we
assume NL(H)(P ) ⊂ {x, y, z}, a contradiction. So, up to symmetry we may assume
that p is adjacent to x and p′ to x′. Vertices y, y′, z, z′ induce a square of L(H) and
p cannot be adjacent to both vertices of an edge of that square since this would yield
a K4 in G. So we may assume py, py′ /∈ E(G). If pz, pz′ are both in E(G) then p
itself is a vertex not of type branch or triangle, so by minimality of P , p = p′. Since
S = {x, x′, z, z′} is a basic square of L(H) and NL(H)(P ) = S, C is of type square.
Hence we may assume that x has at most one neighbor in S and up to symmetry
pz′ /∈ E(G). Symmetrically, p′ has at most one neighbor in S. If pz /∈ E(G) then P
connects {x, z, y, x′}, {x, z′, y, x′} or {x, z, y′, x′}, so pz ∈ E(G). If p′z′ /∈ E(G) then
P connects {x, z′, y, x′} or {x, z′, y′, x′}, so p′z′ ∈ E(G). Now we observe that P is
a connection of the square {x, z, x′, z′} of L(H), hence C is of type square.

Hence, up to symmetry, we may assume that Pab has length at least one. So the
vertices of Pad, Pbd, Pab, Pac, Pbc induce a prism K of G and we may apply Lemma 4.1
to K and P .
Case 1: P is of type branch with respect to K. Suppose first that NK(C) ⊆ V (Pab).
By (1), P has neighbors in Pcd. So one end of P (say p) has neighbors in Pab, one end
of P (say p′) has neighbors in Pcd, and no proper subpath of P has such a property.
Let vL (resp. vR) the neighbor of p closest to vab (resp. to vba) along Pab. Up
to the symmetry between Pab and Pcd we may assume vLvR /∈ E(G) for otherwise
C is of type augmenting with respect to L(H) and the lemma holds. Let wR the
neighbor of p′ closest to vcd along Pcd. If wR = vdc then we may assume vL 6= vda for
otherwise, NL(H)(P ) ⊆ Td, contradictory to (1). Hence, vdc−p′−P−p−vL−Pad−vad,
vdc−Pcd−vcd−vca−Pac−vac and vdc−vdb−Pdb−vbd−vbaPab−vab form a triangular
ISK4, a contradiction. So, wR 6= vdc. If vL = vR then vL−Pab−vab−vac−Pac−vca,
vL−Pab−vba−vbc−Pbc−vcb, vL−p−P−p′−wR−Pcd−vcd form a triangular ISK4, a
contradiction. If vL 6= vR then p−vL−Pab−vab−vac−Pac−vca, p−vR−Pab−vba−vbc−Pbc−vcb,
p−P−p′−wR−Pcd−vcd form a triangular ISK4, a contradiction.

Hence we may assume up to symmetry NK(P ) ⊆ V (Pad) ∪ V (Pbd). If P has
neighbors in Pad, Pbd and Pcd then let va, vb, vc be the neighbors of P closest to vda,
vdb and vdc respectively along these paths. We observe that V (P ) ∪ V (va−Pad−
vda)∪ V (vb−Pbd−vdb)∪ V (vc−Pcd−vdc) induces a triangular ISK4, a contradiction.
So, P has no neighbor in at least one of Pad, Pbd, Pcd.

If P has no neighbors in Pbd then by (1), one end of P (say p) has neighbors
in Pad, an end of P (say p′) has neighbors in Pcd, and no proper subpath of P has
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such a property. Let vR be the neighbor of p closest to vad along Pad. If p′ has a
unique neighbor w in Pcd, then either vR = vda so w 6= vdc by (1) and w−Pcd−vdc,
w−p′−P −p−vda, w−Pcd−vcd−vcb−Pbc−vbc−vbd−Pbd−vdb form a triangular
ISK4; or vR 6= vda and w−p′−P −p−vR−Pad−vad, w−Pcd−vcd−vca−Pac−vac,
w−Pcd−vdc−vdb−Pbd−vbd−vba−Pab−vab form a triangular ISK4, a contradiction. So
p′ has at least two neighbors on Pcd, and in particular Pcd has length at least one,
so Pcd, Pad, Pac, Pbd, Pcb form a prism K ′. Let us apply Lemma 4.1 to K ′ and P .
Since P has at least two neighbors in the basic branch Pcd of K ′, and at least one
neighbor in Pad, P is not of type branch or triangle with respect to K ′. If P is of
type square with respect to K ′, there is a contradiction because the neighborhood of
P , included in V (Pad)∪ V (Pcd) cannot induce a basic square of K ′. So P is of type
augmenting with respect to K ′: p sees an edge of Pad (and this implies that Pad is
a basic branch of L(H)), p′ sees an edge of Pcd, hence P is of type augmenting with
respect to L(H).

If P has no neighbor in Pad, the situation is symmetric to that in the paragraph
above, so we are left to the case when P has no neighbor in Pcd. By (1), one end of P
(say p) has neighbors in Pad, an and of P (say p′) has neighbors in Pbd, and no proper
subpath of P has such a property. Let vR (resp. vL) be the neighbor of p closest to
vad (resp. to vda) along Pad. Up to symmetry between Pad and Pbd, we may assume
that vLvR /∈ E(G) for otherwise C is of type augmenting with respect to L(H). Let
w be the neighbor of p′ closest to vdb along Pbd. If vL 6= vR then p−vL−Pad−vda,
p−vR−Pad−vad−vac−Pac−−vca−vcd−Pcd−vdc and p−P−p′−w−Pbd−vdb form a
triangular ISK4, a contradiction. If vL = vR then up to symmetry we may assume
vL 6= vda for otherwise NL(H)(P ) ⊆ Td, contradictory to (1). So, vL−Pad−vda,

vL−Pad−vad−vac−Pac−vca−vcd−Pcd−vdc and vL−p−P−p′−w−Pbd−vdb form a
triangular ISK4, a contradiction.
Case 2: P is of type triangle with respect to K. Up to symmetry we assume
NK(P ) ⊆ Ta. By (1), we may assume that P has neighbors in Pcd. So one end of
P (say p) has neighbors in Ta, an end of P (say p′) has neighbors in Pcd, and no
proper subpath of P has such a property. Vertex p has at most two neighbors in Ta

for otherwise there is a K4 in G, and since we are not in Case 1, we may assume
that p has at least two neighbors in Ta. So and D = {v} ∪ Ta induces a diamond
of G. Let w be the neighbor of p′ closest to vdc along Pcd. If pvab /∈ E(G) then
p−P−p′−w−Pcd−vdc−vdb−Pbd−vbd−vba−Pab−vab is a connection for D except
if w = vcd and Pac has length zero. Hence, these two fact hold, and symmetrically
w = vdc and Pad has length zero. Since vcd, vdc both equal w, they are equal and
we observe that T = {vcd, vad, vac} is a triangle and that the attachment of P over
L(H) is included in T , contradictory to (1). So vvab ∈ E(G) and we may assume
up to symmetry vvad /∈ E(G). But then vab−p−P−p′−w−Pcd−vdc, vab−vad−Pad−vda

and vab−Pab−vba−vbd−Pbd−vdb form an triangular ISK4, a contradiction.
Case 3: P is of type augmenting with respect to K. Up to symmetry we may
assume that p has some neighbor in vad −Pad − vda − vdb −Pbd − vbd. Since P is
of type augmenting with respect to K, p′ has some neighbor either in Pab or in
Q = vac−Pac−vca−vcb−Pbc−vbc (not in both). If p′ has some neighbor in Pab let
vR be such a neighbor closest to vba. If p′ has some neighbor in Q let vR be such a
neighbor closest to vbc.
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Suppose first that pvda, pvdb ∈ E(G). Note that P has no neighbor in Pcd because
then, P ∪ Pcd would contain a connection of the diamond {p} ∪ Td. If vR ∈ V (Pab)
then up to symmetry we may assume vR 6= vab since Pab has length at least one. So,
vda−p−P−p′−vR−Pab−vba−vbc−Pbc−vcb, vda−vdc−Pcd−vcd and vda−Pad−vad−vac−Pac−vca

form a triangular ISK4, a contradiction (a careful reader should check that this holds
even when P and every Pxy except Pab has length zero !). Hence vR ∈ V (Q). If vR ∈
Pac then Pac has length at least one and vR 6= vac so p−P−p′−vR−Pac−vca−vcd−Pcd−vdc

connects the diamond {v, vda, vdb, vdc}. So vR /∈ V (Pac) and by symmetry we must
have vR = vcb and vvca ∈ E(G). Now, p−P −p′−vca−vcd−Pcd−vdc connects the
diamond {v, vda, vdb, vdc} except if both Pad, Pac have length zero. So, both Pad,
Pac, and symmetrically both Pbd, Pbc have length zero. We observe that P is a
connection of the basic square induced by the vertices vda = vad, vac = vca, vcb = vbc

and vbd = vdb of L(H), hence, C is of type square with respect to L(H).
So we may assume that pvda, pvdb ∈ E(G) is impossible and symmetrically, that

p′vca, p
′vcb ∈ E(G) is also impossible. Up to symmetry we may assume that p

has neighbors in Pad and that no vertex of P has a neighbor in Pbd. Let vL be
a neighbor of p closest to vda along Pad. Let us suppose that some vertex of Pcd

has some neighbor in P and call w such a vertex closest to vdc. Note that w must
be adjacent to x ∈ {p, p′}, so x itself is a connected induced subgraph of G, not
of type branch or triangle with respect to L(H). This implies by minimality of
P that x = p = p′. We put Q1 = p−vL−Pad−vda, Q2 = p−w−Pcd−vdc. If
vR ∈ V (Pab) we put Q3 = p−vR−Pab−vba−vbd−Pbd−vdb. If vR ∈ V (Q) we put
Q3 = p−vR−Q−vbc−vbd−Pbd−vdb. We observe that Q1, Q2, Q3 form a triangular ISK4
except if w has some neighbor in Q3. This last case implies w = vcd and vR ∈ Pac

since p′vca, p
′vcb ∈ E(G) is impossible. Let uL be the neighbor of p closest to vad

along Pad and uR be the neighbor of p closest to vac along Pac. We observe that
p−vcd−vcb−Pbc−vbc−vba−Pab−vab, p−uR−Pac−vac and p−uL−Pad−vad form a triangular
ISK4, a contradiction. So no vertex of P has a neighbor in Pcd. Since P is of type
augmenting with respect to K and since pvda, pvdb ∈ E(G), p′vca, p

′vcb ∈ E(G) are
both impossible, we see that C is of augmenting with respect to L(H).
Case 4: P is of type square with respect to K. So P is a connection of a basic
square S of K and has no neighbor in K\S. If Pab ⊂ S then up to symmetry we may
assume that Pad, Pbd have both length zero, Pab has length one, and S has vertices
vad = vda, vdb = vbd, vab and vba. Note that S is a basic square of K, but a non-
basic square of L(H). If one of p, p′ (say p) has a neighbor w in Pcd, then p = p′ by
minimality of P . So w 6= vdc because G contains no K4. In particular, Pcd has length
at least one, so Pcd, Pad, Pac, Pbd, Pcb form a prism K ′, and p contradicts Lemma 4.1
applied to K ′. Hence, none of p, p′ has a neighbor in Pcd. Now, in V (P )∪{vda, vba}
there is an induced path Q from vda to vba and no interior vertex of Q has neighbors
in (L(H) \ S) ∪ {vda, vba}. So, vda−Q−vba−vbc−Pbc−vcb, vda−vac−Pac−vca and
vda−vdc−Pcd−vcd form a triangular subdivision of K4, a contradiction.

Hence, S has vertices vad = vda, vdb = vbd, vbc = vcb and vac = vca. If one of p, p′

(say p) has a neighbor in Pcd then p = p′ by minimality of P . So w 6= vdc because G
contains no K4. In particular, Pcd has length at least one, so Pcd, Pad, Pac, Pbd, Pcb

form a prism K ′, and p contradicts Lemma 4.1 applied to K ′. Hence, none of p, p′

has a neighbor in Pcd. Now, we observe that C is of type square with respect to
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L(H) because of S and P . 2

A graph H is substantial if it is cyclically 3-connected and neither a square theta
nor a square subdivision of K4.

Lemma 4.3 Let G be a graph that contains no triangular ISK4. Let H be a sub-
stantial graph such that L(H) is an induced subgraph of G. Let C be a component
of G \ L(H). Then C is either of type branch, triangle or augmenting with respect
to L(H).

proof — Note every vertex in H has degree at most three since L(H) contains no
K4. We may assume that there are two edges e1, e2 of H that are members of the
attachment of C over L(H), that are not in the same branch of H and that are not
incident in H. Because else either every edge of the attachment of C over L(H) is
in the same branch of H and so C is of type branch or triangle; or there are at most
three edges of H in the attachment of C over L(H) that are pairwise incident and
C is of type triangle. Since H is 2-connected, there exists a cycle C of H that goes
through e1, e2 and we put e1 = ab, e2 = cd so that a, b, c, d appear in this order along
C. Note that a, b, c, d are pairwise distinct. Let P,Q,R be paths like in Lemma 3.7.

Suppose first that V (H) = V (P ) ∪ V (Q) ∪ V (R). Then R must have length at
least two and H must be a theta since H is substantial, so L(H) is a prism. By the
discussion above, the attachment of C over L(H) contains at least vertices in two
different basic branches L(H), and not in a triangle of that prism. So, by Lemma 4.1
C is of type augmenting or square with respect to the prism. Since type square is
impossible because H is substantial, we are left with the type augmenting, so our
lemma holds.

So we may assume that H has more vertices than those in P,Q,R. Let r ∈
V (P ), r′ ∈ V (Q) and let us put P1 = rPabQr′, P1 = rPdcQr′, and P3 = R. By
Lemma 3.3, there exists a path S of H, with an end in the interior of Pi, an end in
the interior of Pj where 1 ≤ i < j ≤ 3, and the interior of S is disjoint of P1, P2, P3.
Since H ′ = P1 ∪ P2 ∪ P3 ∪ S is a subdivision of K4, we may apply Lemma 4.2 to C
and L(H ′). Note that C cannot be of type branch or triangle with respect to L(H ′)
because of the edges ab and cd. So we must be in one of following two cases:
Case 1: H contains a square subdivision of K4 as a subgraph, and C is of type
square with respect to it. Then up to a relabeling we may assume that C is of type
square with respect to L(H ′) and that abcd is a square of H, P1 = ab, P2 = dc, R is
from a to c and S is from b to d. Since H is substantial, it not a square subdivision
of K4, so there must be some vertices in H \ H ′. We claim that there exists a path
T with an end in the interior of S, an end in the interior of R and whose interior
is disjoint of H ′. Because every vertex of H has degree at most three since L(H)
contains no K4. Since H is connected and H 6= H ′, there exists some vertex in
V (H) \ V (H ′) with a neighbor e ∈ V (H ′) \ {a, b, c, d} because a, b, c, d have already
three neighbors, so e is in the interior of one of S,R (say S). Since H is 2-connected,
{e} is not a cutset of H and there exists a path from e to some other vertex e′ in
H ′. If every such path is such that e′ ∈ V (S) then we put A = V (P )∪V (Q)∪V (R),
B = (V (H) \ A) ∪ {b, d} and we observe that (A,B) is a cyclic 2-separation of H,
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a contradiction. So we may assume that e′ is in the interior of R and T exists as
claimed.

Now let us consider the subgraph H ′′ of H obtained from P ∪Q∪R ∪ S ∪ T by
deleting the edges that lie on the subpath of S from e to d. We observe that H ′′ is a
subdivision of K4. We now apply Lemma 4.2 to C and L(H ′′): C cannot be of type
branch, triangle or augmenting with respect to L(H ′′) because C has neighbors at
least three distinct branches of L(H ′′), and C cannot be of type square because the
edge ab, bc, cd, da of H do not form a basic square in L(H ′′) since d has degree two
in H ′′. So there is a contradiction, and we cannot be in Case 1.
Case 2: H does not contains a square subdivision of K4 such that C is of type
square with respect to it.

Hence, C is of type augmenting with respect to L(H ′). Up to a relabeling, we
may assume that the attachment of C over L(H ′) consists of two incident edges ab,
be of P1 and two incident edges cd, df of P2. We claim that b, d both have degree
two in H (they clearly have degree two in H ′). Else we may assume that b has
degree three in H. Up to symmetry, we suppose that P is the branch of H that
contains b. Since {b} is not a cutset of H there is a path T from b to a vertex
b′ ∈ (V (P1) ∪ V (P2) ∪ V (P3) ∪ V (S)) \ {b}. If every such b′ is in P1 then we put
A = V (P2) ∪ V (P3) ∪ V (S), B = (V (H) \ A) ∪ {r, r′} and we observe that (A,B)
is a cyclic 2-separation of H, a contradiction. So, we may assume that b′ is in a
branch Q′ of H ′, and Q′ 6= P . By Lemma 3.8 there exist a subgraph H ′′ of H, that
is a subdivision of K4, and that has P1, P2, T as branches. The connected graph C
has at least four neighbors in L(H ′′) and two of them are in a triangle (these arising
from ab, be). So, by Lemma 4.2 applied to to C and L(H ′′), C must be of type
square with respect to L(H ′′), which contradicts that we are in case 2. This proves
our claim.

Since b, and symmetrically d have both degree two in H, it follows that C is of
type augmenting with respect to L(H). 2

A 2-cutset of a graph G is a set {u, v} of two non-adjacent vertices such that
G \ {u, v} is disconnected.

Lemma 4.4 Let G be a graph that contains no triangular ISK4. Let H be a substan-
tial graph such that L(H) is an induced subgraph of G. Suppose L(H) inclusion-wise
maximum with respect to that property.

Then either G = L(H) or G has a clique-cutset of size at most three, or G has
a 2-cutset.

proof — Suppose that G 6= L(H). So there is a component C of G \L(H). Let us
apply Lemma 4.3 to C and L(H). Suppose first that C is of type branch or triangle.
Then either the ends of the branch that contain the attachment of C form a cutset
of G of size at most two, or the triangle that contains the attachment of C form a
triangle cutset of G.

We are left with the case when C is of type augmenting, so there is a path P like
in the definition of the type augmenting. So, in H the attachment of C consists of
four edge ab, be, cd, df so that b, d have degree two in H. Let us consider the graph
H ′ obtained from H by linking b, d by a path R whose length is one plus the length
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of P . Then H ′ is substantial. Indeed, it is cyclically 3-connected by Lemma 3.6,
clearly not a square theta and not a square subdivision of K4 since H is not a square
theta. Moreover, L(H ′) is an induced subgraph of G where P corresponds to the
path R, a contradiction to the maximality of L(H). 2

5 Rich squares

A rich square is a graph K that contains a square S as an induced subgraph, and
such that K \ S has at least two component and every component of K \ S is a
connection of S.

Lemma 5.1 Let G be an ISK4-free graph that contains no line-graph of a substantial
graph. Let K be a rich square that is an induced subgraph of G, and maximal with
respect to this property. Then either G = K or G has a clique-cutset of size at most
three or G has a 2-cutset.

proof — Suppose G 6= K. Let S be a square for which K is a rich square and
such that S has vertices u1, u2, u3, u4 in this order along the square. A component of
K \S is a connection of S. A connection with ends p, p′ is said to be a connection of
type 1 if p = p′ and NS(p) = S; of type 2 if NS(p) = {u1, u2} and NS(p′) = {u3, u4};
of type 3 if NS(p) = {u1, u4} and NS(p′) = {u2, u3}. Note that connections of type 2
and 3 are basic branches of K. Let C be a component of G \ K. We consider now
three cases according to the attachment of C over K. Note that we may assume
that this attachment is not empty for otherwise any vertex of K would be a cutset
of G.
Case 1: The attachement of C over K contains vertices of a connection of type 2 or 3
of S. Let B1 be such a connection. Up to symmmetry, we suppose B1 = p1−· · ·−p′1
of type 2, NS(p1) = {u1, u2}, NS(p′1) = {u3, u4}. If NK(C) contains no vertex of
K \ B1, then {p1, p

′
1} is a cutset of size 2 of G and the lemma holds.

Suppose first that NK(C) contains vertices of a component B2 6= B1 of K \ S.
If B2 is a connection of type 1 or 3 with respect to S then K ′ = G[S ∪ B1 ∪ B2]
is the line-graph of a subdivision of K4. So by Lemma 4.2 applied to K ′ and C,
we can deduce that C is of type augmenting with a path P because types branch
and triangle are clearly impossible and B1 ∪B2 contain no basic square of K ′. Note
that this implies that B2 is a basic branch of K, and so it is a connection of type 3
with respect to S. Now we observe that G[S ∪ B1 ∪ B2 ∪ P ] is the line-graph of a
substantial graph, a contradiction.

So B2 = p2−· · ·−p′2 is a connection of type 2 with respect to S, NK(p2) = {u1, u2}
and NK(p′2) = {u3, u4}. Let P be the shortest path of C with neighbors in B1 and
B2. Let p3, p

′
3 be the end of P , where p3 has neighbors in B1 and p′3 in B2. If no

vertex of P has neighbors in {u1, u2} then B1 ∪ B2 ∪ P contains a connection of
the diamond {p1, p2, u1, u2}, a contradiction. So some vertex of P has a neighbor in
{u1, u2} and similarly a neighbor in {u3, u4}. By Lemma 4.1 applied to the prism
K ′ = G[S ∪ B1] and P , we deduce that P is of type augmenting with respect to
K ′. Let P ′ be the augmenting subpath of P , that is the shortest subpath of P that
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contains neighbors of B1 and S. One end of P ′ is p3 and NB1
(p3) = {q1, q

′
1} where

q1q
′
1 is an edge of B1 and p1, q1, q

′
1, p

′
1 appear in this order along B1. We denote

the other end by p′′3, and, up to symmetry, we can assume that NK(p′′3) = {u2, u3}.
If p′3 6= p′′3, then B1 ∪ B2 ∪ P ′ ∪ {u1, u3} is a triangular ISK4, a contradiction. So
p′3 = p′′3. By Lemma 4.1 applied on K ′′ = G[S ∪ B2] and p′3, we can deduce that p′3
is of type augmenting with respect to K ′′, so NB2

(p′3) = {q2, q
′
2}, where q2, q

′
2 is an

edge of B2 and p2, q2, q
′
2, p

′
2 appear in this order along B2. Then p′3−u2, p′3−q2−B2−p2

and p′3−P−p3−q′1−B1−p′1−u4−u1 form a triangular ISK4, a contradiction. So no
vertex of C has a neighbor in K \ (S ∪ B1).

Hence some vertex of C has neighbors in S. By lemma 4.1 applied to the prism
S∪B1 and C, we can deduce that C is of type augmenting or triangle. If C is of type
triangle, then there is a triangle cutset in G, and the lemma holds. If C is of type
augmenting, let P be an augmenting path of C that sees B1. Let B2 be a component
of K \ (S ∪ B1). Then G[B1 ∪ B2 ∪ P ∪ {a1, a3}] is an ISK4, a contradiction.
Case 2: The attachement of C over K contains no vertices of connections of type 2
and 3 of S, and contains vertices of a connection of type 1 of S. So there exists a
vertex b1 adjacent to all of S. Suppose some vertex of C has neighbors in another
component of K \ (S ∪ B1), that is a single vertex b2 adjacent to all of S. Note
that K ′ = G[S ∪ {b1, b2}] is the line-graph of K4. By lemma 4.2 applied on K ′

and C, we deduce that C is of type square with a connection P . By symmetry,
we can assume that NK ′(P ) = u1, u3, b1, b2 for otherwise, K ∪ P would be a rich
square, contradictory to the maximality of K. Since K is a maximal rich square,
and S ∪ P ∪ {b1, b2} is a rich square, we can deduce that K \ (S ∪ {b1, b2}) contains
a component B3, that is a connection of S. Then B3 ∪P ∪{u2, u4, b1, b2} is an ISK4
(non-triangular), a contradiction. So no vertex of C has a neighboor in K\(S∪{b1}).
Let B2 be a component of K \ (S ∪ {b1}). Note that K ′ = S ∪B2 ∪ {b1} is the line-
graph of a subdivision of K4. By lemma 4.2 applied to K ′ and C, we deduce that
C is of type triangle with respect to K ′. Since no vertex of C has a neighbor in a
component of K \ S (except b1), we see that G has a triangle cutset.
Case 3: The attachement of C over K is included in S.

Let K ′ be a subgraph of K that contains S and that is the line-graph of an ISK4
or a prism (take one connection of type 2 or 3 if possible or two connection of type 1
otherwise). Let us apply Lemma 4.1 or 4.2 to K ′ and C. If C is of type augmenting
or square with respect to K ′ with a path P , we observe that K ∪P is a rich square,
contradictory to the maximality of K. If C is of type branch or triangle, then G has
a cutset of size at most two. 2

6 Prisms

Lemma 6.1 Let G be an ISK4-free graph that contains no line-graph of a substantial
graph and no rich square as an induced subgraph. Let K be a prism that is an induced
subgraph of G. Then either G = K or G has a clique-cutset of size at most three or
G has a 2-cutset.
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proof — If G 6= K then let C be a component of G \ K and apply Lemma 4.1 to
K and C. If C is of type branch, then the ends of the branch of K that contains
the attachment of C over K is a cutset of size at most two. If C is of type triangle,
then G has a triangle cutset. If C is of type augmenting with a connection P then
P ∪ K is either the line-graph a non-square subdivision of K4, or a rich square, in
both cases a contradiction. If C is of type square with a connection P , then K ∪ P
is a rich square, a contradiction. 2

Lemma 6.2 Let G be an ISK4-free graph that contains a prism. Then either G is
the line-graph of a graph with maximum degree three, or G is a rich square, or G
has a clique-cutset of size at most three or G has a 2-cutset.

proof — Since G contains a prism, it contains the line-graph L(H) of a cyclically
3-connected graph as an induced subgraph. By Lemma 3.5, H is either a theta or
a subdivision of K4. In this last case, if H is substantial, then our result holds by
Lemma 4.4. Else, we may assume that G contains no line-graph of a substantial
graph and L(H) is a rich square made of a square with two connections, and our
result holds by Lemma 5.1. Hence, in the first case, we may assume that G contains
no rich square and no line-graph of a substantial graph. Then our result holds by
Lemma 6.1. 2

7 Wheels and double star cutset

A paw is a graph with four vertices a, b, c, d and four edges ab, ac, ad, bc. A star-
cutset of a graph is a set S of vertices such that G \S is disconnected and such that
S contains a vertex adjacent to every other vertex of S.

Lemma 7.1 Let G be a graph that does not contain a K4 or a prism. If G contains
a paw, then G has a star-cutset.

proof — Suppose that G does not have a star-cutset. Let X be a paw in G, with
vertices a, b, c, d and edges ab, ac, ad, bc. Since G does not admit a star-cutset, the
set {a} ∪ N(a) \ {b, d} is not a cutset of G, so there exists a chordless path P1

with endvertices b, d such that the interior vertices of P1 are distinct from a and
not adjacent to a. Likewise, the set {a} ∪ N(a) \ {c, d} is not a cutset of G, so
there exists a chordless path P2 with endvertices c, d such that the interior vertices
of P2 are distinct from a and not adjacent to a. The definition of P1, P2 implies
that there exists a path Q with endvertices b, c such that V (Q) ⊆ V (P1) ∪ V (P2),
Q is not equal to the edge bc, and bc is the only chord of Q. So V (Q) induces a
cycle. If d is in Q, then V (Q) ∪ {a} induces a subdivision of K4. If d is not in Q,
then the definition of P1, P2 implies that there exists a path R whose endvertices
are d and a vertex q of Q and V (R) ⊆ V (P1) ∪ V (P2). We choose a minimal such
path R. Let d′ be the neighbor of q in R. The minimality of R implies that R is
chordless, (V (R)\{q})∩V (Q) = ∅, and d′ is the only vertex of R with a neighbor in
Q. If d′ has only one neigbhor in Q, then V (Q) ∪ V (R) ∪ {a} induces a subdivision
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of K4 (whose vertices of degree 3 are a, b, c, q). If d′ has exactly two neighbors in
Q and these are adjacent, then V (Q) ∪ V (R) ∪ {a} induces a prism. If d′ has at
least two non-adjacent neighbors in Q, then V (Q)∪V (R)∪{a} contains an induced
subdivision of K4 (whose vertices of degree 3 are a, b, c, d′). 2

Lemma 7.2 Let G be an ISK4-free graph that does not contain a prism or an
octahedron. If G contains a wheel (H,u) with |V (H)| = 4, then G has a star-cutset.

proof — Suppose that G does not have a star-cutset. Let the vertices of H be
u1, . . . , u4 in this order. If u is adjacent to only three of them, then V (H) ∪ {u}
induces a subdivision of K4. So we may assume that u is adjacent to all vertices
of H. Since G does not admit a star-cutset, the set {u} ∪ N(u) \ {u1, u3} is not
a cutset of G, so there exists a chordless path P with endvertices u1, u3 such that
the interior vertices of P are distinct from u and not adjacent to u. Let P = u1-
v-· · · -u3. Vertex v must be adjacent to u2, for otherwise u, u1, u2, v induce a paw,
which contradicts Lemma 7.1. Likewise, v is adjacent to u4. if v is not adjacent
to u3, then u1, u2, u3, u4, v induce a subdivision of K4. If v is adjacent to u3, then
u, u1, u2, u3, u4, v induce an octahedron, a contradiction. 2

A double star cutset of a graph is a set S of vertices such that G\S is disconnected
and such that S contains two vertices u, v and every vertex of G is adjacent at least
one of u, v. In particular u and v are adjacent. Note that a star-cutset is either a
double star cutset or consits of one vertex.

Lemma 7.3 Let G be an ISK4-free graph that does not contain a prism or an
octahedron. If G contains a wheel, then G has a star-cutset or a double star cutset.

proof — Suppose that the theorem does not hold. Let (H,u) be a wheel in G such
that |V (H)| is minimum. Let u1, . . . , uh be the neighbors of u in H in this order.
If h = 3, then V (H) ∪ {u} induces a subdivision of K4, so we may assume that
h ≥ 4. By Lemma 7.2, we may assume that |V (H)| ≥ 5. A fan is pair (P, x) where
P is a chordless path, x is a vertex not in P , and x has exactly four neighbours
in P , including the two endvertices of P . Since |V (H)| ≥ 5, we may assume up
to symmetry that u1 and u4 are not adjacent; and so, if Q is the subpath of H
whose endvertices are u1, u4 and which contains u2, u3, then (Q,u) is a fan. Since
G contains a fan, we may choose a fan (P, x) with a shortest P . Let x1, x2, x3, x4 be
the four neighbours of x in P in this order, where x1, x4 are the endvertices of P . If
x1 is adjacent to x2, then x, x1, x2, x4 induce a paw, which contradicts Lemma 7.1.
So x1 is not adjacent to x2, and similarly x3 is not adjacent to x4. Also x2 is not
adjacent to x3, for otherwise x, x1, x2, x3 induce a paw. For i = 1, 2, 3, let Pi be the
subpath of P whose endvertices are xi and xi+1. Let x′

2, x
′′
2 be the two neighbours

of x2 in P , such that x1, x
′
2, x2, x

′′
2 , x3, x4 lie in this order in P .

Since G does not admit a double star cutset, the set {x, x2} ∪ N(x) ∪ N(x2) \
{x′

2, x
′′
2} is not a cutset, and so there exists a path Q = v1-· · · -vk such that v1 has

a neighbour in the interior of P1, vk has a neighbour in the interior of P2, and the
vertices of Q are not adjacent to either x or x2. We may choose a shortest such path
Q, so Q is chordless and its interior vertices have no neighbour in V (P1) ∪ V (P2).
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If v1 has at least four neighbours in P1, then there is a subpath P ′
1 of P1 such that

(P ′
1, v1) is a fan, which contradicts the minimality of (P, x). If v1 has exactly three

neighbours in P1, then V (P1) ∪ {x, v1} induces a subdivision of K4. So v1 has at
most two neighbours in P1. Let {y1, z1} be the set of neighbours of v1 in P1, such
that x1, y1, z1, x2 lie in this order in P1 (possibly y1 = z1). Likewise, vk has at most
two neighbours in P2. Let {y2, z2} be the set of neighbours of vk in P2, such that
x2, y2, z2, x3 lie in this order in P2 (possibly y2 = z2).

Suppose that y1 6= z1. Note that z1 and z2 are not adjacent, for that would be
possible only if z1 = x2 (and z2 = x′′

2), which would contradict the definition of Q.
Then V (P1) ∪ V (P2[z2, x3]) ∪ V (Q) ∪ {x} induces a subdivision of K4. So y1 = z1.
Likewise, y2 = z2. But then V (P1) ∪ V (P2) ∪ V (Q) ∪ {x} induces a subdivision of
K4. 2

8 Decomposition theorem

Theorem 8.1 Let G be an ISK4-free graph. Then either:

• G is series parallel;

• G is the line-graph of a graph with maximum degree at most three;

• G is a complete bipartite graph or G is a complete tripartite graph;

• G has clique-cutset, a 2-cutset, a star-cutset or a double star cutset.

proof — By Lemma 1.1, we may assume that G either contains K3,3, a prism or
a wheel. If G contains K3,3 then we are done by Lemma 2.3. If G contains a prism
then we are done by Lemma 6.2 (because every rich square has a double star cutset).
If G contains the line-graph of a substantial graph then we are done by Lemma 4.4.
So we may assume that G does not contain the line-graph of a substantial graph.
So, if G contains an octahedron then we are done by Lemma 5.1 since an octahedron
is a rich square. So we may assume that G contains no prism and no octahedron.
Hence, if G contains a wheel then we are done by Lemma 7.3. 2
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