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A Generalized FKKM Theorem and Variational
Inequality

H. HAMMAMI1

Centre d’Économie de la Sorbonne, UMR 8174, CNRS-Université Paris 1

Abstract

We present a generalized FKKM Theorem and it’s application to
the existence of solution for the variationals inequalities using a gener-
alized coercivity type condition for correspondences defined in L-space.

Key words and phrases: L-structures, L-spaces, L-KKM correspon-
dences, L-coercing family and variational inequality.
Classification-JEL: C02, C69, C72.

The purpose of this article is to give a generalization of FKKM Theo-
rem [KKM] and it’s application in variational inequalities. All these results
extend classical results obtained in topological vector spaces by Fan [F1]
[F2], Dugundji and Granas [DG], Ding and Tan [DT] and Yen [Y] as well
as results obtained in H-spaces by Bardaro and Ceppitelli [BC1], [BC2], in
convex spaces in the sense of Lassonde [L] and in L-spaces by Chebbi, Gour-
del and Hammami [CGH], [GH].

In this paper, we will use the same notation as in [CGH]. We remind
the definition given in [CGH] of L-KKM correspondences, which extend the
notion of KKM correspondences to L-spaces, and the concept of L-coercing
family for correspondences defined in L-spaces. Let A be a subset of a vector
space X. We denote by 〈A〉 the family of all nonempty finite subsets of A
and convA the convex hull of A. Since topological spaces in this paper are
not supposed to be Hausdorff, following the terminology used in [B], a set is
called quasi-compact if it satisfies the Finite Intersection Property while a
Hausdorff quasi-compact is called compact. In what follows, the correspon-
dences are represented by capital letters F , G, Q, S, Γ, ..., and the single
valued functions will be represented by small letters. We denote by graphF
the graph of the correspondence F . If X and Y are two topological spaces,
ζ(X,Y ) denotes the set of all continuous functions from X to Y .

If n is any integer, ∆n denotes the unit-simplex of Rn+1 and for every
J ⊂ {0, 1, . . . , n}, ∆J denotes the face of ∆n corresponding to J . Let X be
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1

ha
ls

hs
-0

02
04

60
1,

 v
er

si
on

 1
 - 

15
 J

an
 2

00
8



a topological space. An L-structure (also called L-convexity) on X is given
by a correspondence Γ : 〈X〉 → X with nonempty valued such that for every
A = {x0, ..., xn} ∈ 〈X〉, there exists a continuous function fA : ∆n → Γ(A)
such that for all J ⊂ {0, . . . , n}, fA(∆J) ⊂ Γ({xj , j ∈ J}). Such a pair
(X,Γ) is called an L-space. A subset C ⊂ X is said to be L-convex if for
every A ∈ 〈C〉, Γ(A) ⊂ C. A subset P ⊂ X is said to be L-quasi-compact
if for every A ∈ 〈X〉, there exists a quasi-compact L-convex set D such that
A ∪ P ⊂ D. Clearly, if C is an L-convex subset of an L-space (X,Γ), then
the pair (C,Γ|〈C〉) is an L-space.

1 A Generalized FKKM Theorem

In this section, we first remind some known definitions of L-KKM correspon-
dences and L-coercing family quoted in [CGH], then we give a generalized
FKKM Theorem and we deduce a more adapted theorem to study the va-
riational inequality.

Definition 1.1 Let (X,Γ) be an L-space and Z ⊂ X an arbitrary subset.
A correspondence F : Z → X is called L-KKM if and only if:

∀A ∈ 〈Z〉, Γ(A) ⊂
⋃
x∈A

F (x).

Definition 1.2 Let Z be an arbitrary set of an L-space (X,Γ), Y a topolo-
gical space and s ∈ ζ(X,Y ). A family {(Ca,K)}a∈X is said to be L-coercing
for a correspondence F : Z → Y with respect to s if and only if:

(i) K is a quasi-compact subset of Y ,

(ii) for each A ∈ 〈Z〉, there exists a quasi-compact L-convex set DA in X
containing A such that:

x ∈ DA ⇒ Cx ∩ Z ⊂ DA ∩ Z,

(iii)

y ∈ Y | y ∈ ⋃
z∈s−1(y)

⋂
x∈Cz∩Z

F (x)

 ⊂ K.

For more explanation of the L-coercivity and to see that this coercivi-
ty can’t be compared to the coercivity in the sense of Ben-El-Mechaiekh,
Chebbi and Florenzano in [BCF], see [CGH].
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Definition 1.3 If X is a topological space, a subset B of X is called strongly
compactly closed (open respectively) if for every quasi-compact subset K of
X, B ∩K is closed (open, respectively) in K.

We remind the following result given in [CGH], which is an extension of
a lemma in [F1] to L-spaces.

Lemma 1.1 Let (X,Γ) be an L-space, Z a nonempty subset of X and F :
Z → X an L-KKM correspondence with strongly compactly closed values.
Suppose that for some z ∈ Z, the correspondence F (z) is quasi-compact,
then

⋂
x∈Z

F (x) 6= ∅.

Proof: see [CGH].

The main result of this paper is the following generalized FKKM Theo-
rem (see for example Theorem 4 in [F2] and Theorem 1 in [CGH]:

Theorem 1.1 Let Z be an arbitrary set in the L-space (X,Γ), Y an arbi-
trary topological space and F ,G : Z → Y two correspondences such that:

(a) for every x ∈ Z, F (x) is strongly compactly closed,

(b) for every x ∈ Z, G(x) ⊂ F (x),

(c) there is a function s ∈ ζ(X,Y ) satisfying :

1. the correspondence R : Z → X defined by R(x) = s−1(F (x)) is
L-KKM,

2. there exists an L-coercing family {(Ca,K)}a∈X for G with respect
to s,

3. for each quasi-compact L-convex set C in X:⋂
x∈C∩Z

G(x) ∩ s(C) 6= ∅ ⇔
⋂

x∈C∩Z

F (x) ∩ s(C) 6= ∅.

Then
⋂
x∈Z

F (x) 6= ∅ more precisely K
⋂(⋂

x∈Z

F (x)

)
6= ∅.

Proof: The correspondence F has strongly compactly closed values, then
in order to prove that:

K
⋂(⋂

x∈Z

F (x)

)
6= ∅,
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it suffices to prove that for each finite subset A of Z,

(⋂
x∈A

F (x)

)
∩K 6= ∅.

Let A ∈ 〈Z〉, by condition (ii) of Definition 1.2, there exists a quasi-
compact L-convex set DA containing A such that for all y ∈ DA, Cy ∩ Z ⊂
DA ∩ Z. Consider now the correspondence RA : DA ∩ Z → DA defined by
RA(x) = R(x) ∩DA. By Hypothesis (c.1) and the L-convexity of DA, it is
immediate that the correspondence RA is L-KKM. Next, by the continuity of
s, F (x)∩ s(DA) is closed in s(DA) then RA(x) = s−1

0 (F (x)∩ s(DA)), where
s0 is the restriction of s to DA, is closed in DA and consequently RA(x) is
quasicompact. Since (DA,Γ|〈DA〉) is also an L-space, we deduce by Lemma

1.1 that
⋂

x∈DA

RA(x) 6= ∅, then
⋂

x∈DA∩Z

RA(x) 6= ∅. Since for all x ∈ DA ∩ Z,

s(RA(x)) ⊂ F (x) ∩ s(DA), we have:
⋂

x∈DA∩Z

(
F (x) ∩ s(DA)

)
6= ∅ then by

(c.3),
⋂

x∈DA∩Z

(
G(x) ∩ s(DA)

)
6= ∅. To finish the proof, we will show that:⋂

x∈DA∩Z

(
G(x) ∩ s(DA)

)
⊂
⋂
x∈A

F (x) ∩K.

Indeed, it is clear by (b) that
⋂

x∈DA∩Z

(
G(x) ∩ s(DA)

)
⊂
⋂
x∈A

F (x), then

it only remains to show that:
⋂

x∈DA∩Z

(
G(x) ∩ s(DA)

)
⊂ K. Let y ∈⋂

x∈DA∩Z

(
G(x) ∩ s(DA)

)
, then y ∈ s(DA) which implies that there exists

z ∈ s−1(y) ∩ DA. By condition (ii) of Definition 1.2, Cz ∩ Z ⊂ DA ∩ Z,
it follows that y ∈

⋃
z∈s−1(y)

⋂
x∈Cz∩Z

G(x). Hence, by hypothesis (c.2), y ∈ K

and the theorem is proved.

Remark 1.1 (1) The main result of [CGH] (Theorem 1) becomes an im-
mediate corollary of Theorem 1.1: it suffices to take F = G.

(2) In view of our approach, it is possible to state a weakened version of
Theorem 1 in [CGH] by replacing the coercivity on F by a coercivity
on G together with condition (c.3) of our Theorem 1.1.

Corollary 1.1 Under the conditions of Theorem 1.1, if we assume in ad-
dition that X is a quasi-compact set and s is a surjective function, then we
can reinforce the conclusion: ⋂

x∈Z

G(x) 6= ∅.
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Proof: All the requirement of Theorem 1.1 are satisfied then
⋂
x∈Z

F (x) 6=

∅. By the definition of L-space, it is clear that X is an L-convex set. In
addition, X is a quasi-compact set and s(X) = Y , then by assumption (c.3),⋂
x∈Z

G(x) 6= ∅.

Remark 1.2 It is obvious as in [DG] that if we add the following condition:⋂
x∈Z

F (x) 6= ∅ ⇔
⋂
x∈Z

G(x) 6= ∅

in Theorem 1.1 then in addition to
⋂
x∈Z

F (x) 6= ∅ we have
⋂
x∈Z

G(x) 6= ∅.

The next theorem is more specially adapted to the study of variational
inequality. It can be seen as a corollary of Theorem 1.1 and it is a generali-
zation of Theorem II [L] and Corollary 1.4 [DG].

Theorem 1.2 Let Z be an arbitrary set in the L-space (X,Γ), Y an arbi-
trary topological space and F , G : Z → Y two correspondences such that:

(a) for every x ∈ Z, F (x) is strongly compactly closed,

(b) for every x ∈ Z, G(x) ⊂ F (x),

(c) there is a surjective function s ∈ ζ(X,Y ) satisfying :

1. he correspondence R : Z → X defined by R(x) = s−1(F (x)) is
L-KKM,

2. there exists an L-coercing family {(Ca,K)}a∈X for G with respect
to s,

3. for each L-convex set C in X:⋂
x∈C∩Z

G(x) ∩ s(C) 6= ∅ ⇔
⋂

x∈C∩Z

F (x) ∩ s(C) 6= ∅.

Then
⋂
x∈Z

G(x) 6= ∅.

Proof: It is obvious to see that Assumption (c.3) of Theorem 1.2 imply
Assumption (c.3) of Theorem 1.1, then

⋂
x∈Z

F (x) 6= ∅. By the definition of

L-space, it is clear that X is an L-convex set and hence, for the particular
case where C = X, Assumption (c.3) implies that

⋂
x∈Z

G(x) 6= ∅ and the

theorem is proved.
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2 Application to variational inequalities

In this section we will prove the existence of solutions of variational inequa-
lities using Theorem 1.2.

Let E and P denote two real topological vector space, X a nonempty
convex set in E and 〈·, ·〉 a bilinear form on P×E whose for each fixed v ∈ P ,
the restriction of 〈v, ·〉 on any quasi-compact subset Q of X is continuous2

(the natural example is between a normed topological vector space E and
its dual space equipped with the strong topology).

Definition 2.4 A non empty valued correspondence T : X → P is said to
be monotone if for each (x, u) and (y, v) in the graph of T , 〈u−v, x−y〉 ≥ 0.

Remark 2.3 One checks easily that if a correspondence T is upper hemi-
continuous in the sense of Cornet [C1] (see for example [C2] and [F]) then
the following condition used by Lassonde [L] for monotone correspondences
is satisfied 3:
For any (x, y) ∈ X × X, the function hxy : [0, 1] → R defined, for all
t ∈ [0, 1], by: hxy(t) = inf

u∈T ((1−t)y+tx)
〈u, y − x〉 is lower semi-continuous at

point t = 0, (resp. the function h̃xy : [0, 1] → R defined by for all t ∈ [0, 1],
h̃xy(t) = sup

u∈T ((1−t)y+tx)
〈u, x− y〉 is upper semi-continuous at point t = 0).

The following theorem is a general version of one of the basic facts in
the theory of variational inequalities (see for example [HS], [DG] and [L]).

Theorem 2.3 Let T : X → P be a non empty monotone correspondence,
ϕ : X → R ∪ {+∞} a convex function lower semi-continuous on any quasi-
compact subset of X4. Let us suppose that there exists a family {(Cx,K)}x∈X

of pairs of sets satisfying:

(a) K is a quasi-compact subset of X,

(b) for each A ∈ 〈X〉, there exists a quasi-compact convex set DA contai-
ning A such that:

x ∈ DA ⇒ Cx ⊂ DA,

2Which is equivalent, if we suppose that for all x ∈ Z, ϕv(x) = 〈v, x〉, to : for every
closed subset F of R, ϕ−1(F ) is a strongly compactly closed subset.

3It suffices to consider p equal to the (continuous) linear form 〈·, y−x〉 in the following
definition given by Cornet: a correspondence F : X → P is said upper hemi-continuous in
a point x0 ∈ X in the sense of Cornet if for any continuous linear function p, the function
h : x → sup

y∈ϕ(x)

p(y) (resp. h̃ : x → inf
y∈ϕ(x)

p(y)) is upper semi-continuous (resp. lower

semi-continuous) at the point x0.
4Or equivalently: for every α ∈ R, ϕ−1(]−∞, α]) is a strongly compactly closed set.
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(c)

{
y ∈ X | ϕ(y) ≤ ϕ(x) + sup

v∈T (y)
〈v, x− y〉 for all x ∈ Cy

}
⊂ K,

(d) for each (x, y) ∈ X×X, the function hxy : [0, 1]→ R given for t ∈ [0, 1]
by hxy(t) = sup

u∈T ((1−t)y+tx)
〈u, x− y〉 is upper semi-continuous at t = 0.

Then there is a point y0 ∈ X such that,

ϕ(y0) ≤ ϕ(x) + sup
v∈T (y0)

〈v, x− y0〉 ∀x ∈ X.

Proof: The proof is similar to the proof of [DG] and [L]. For each x ∈ X,
let

G(x) = {y ∈ X | ϕ(y) ≤ ϕ(x) + sup
v∈T (y)

〈v, x− y〉},

we have to show that Theorem 1.2 can be applied in order to get
⋂

x∈X

G(x) 6=

∅. Let us now consider the correspondence

F (x) = {y ∈ X | ϕ(x) ≥ ϕ(y) + sup
u∈T (x)

〈u, y − x〉}.

We will verify that G and F satisfies requirements of Theorem 1.2 (with
Z = X and s = the identity function).

(i.1) From the l.s.c assumption of ϕ and the “regularity” assumption of the
bilinear form 〈u, .〉, it follows that F (x) is strongly compactly closed
in X for each x ∈ X.

(i.2) Let us prove that for every x ∈ X, G(x) ⊂ F (x) : Let y ∈ G(x), then
ϕ(y) ≤ ϕ(x) + sup

v∈T (y)
〈v, x−y〉. By the monotonicity of T , we have: for

all u ∈ T (x) and v ∈ T (y), 〈u, x− y〉 ≥ 〈v, x− y〉 then

inf
u∈T (x)

〈u, x− y〉 ≥ sup
v∈T (y)

〈v, x− y〉

consequently

− sup
u∈T (x)

〈u, y − x〉 ≥ sup
v∈T (y)

〈v, x− y〉

which implies sup
u∈T (x)

〈u, y − x〉+ ϕ(y) ≤ ϕ(x), i.e. y ∈ F (x).

(ii.1) We will prove that F is KKM. Let y ∈ conv{x1, . . . , xn}, then there
exists αi ∈ [0, 1] for i = 1, . . . , n such that y = Σn

i=1αixi and Σn
i=1αi =

7
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1. By the monotonicity of T , for all u ∈ T (xi) and v ∈ T (y), 〈u, xi −
y〉 ≥ 〈v, xi − y〉, then

inf
u∈T (xi)

〈u, xi − y〉 ≥ 〈v, xi − y〉

consequently
sup

u∈T (xi)
〈u, y − xi〉 ≤ −〈v, xi − y〉

which implies Σn
i=1αi sup

u∈T (xi)
〈u, y−xi〉 ≤ 0. It follows from the convex-

ity of ϕ that ϕ(y) ≤ Σn
i=1αiϕ(xi). The two previous inequalities allows

us to deduce that: Σn
i=1αi

(
sup

u∈T (xi)
〈u, y − xi〉+ ϕ(y)− ϕ(xi)

)
≤ 0.

Therefore, there exists i ∈ {1, . . . , n} such that sup
u∈T (xi)

〈u, y − xi〉 +

ϕ(y) ≤ ϕ(xi), then y ∈
n⋃

i=1

F (xi) and F is KKM.

(ii.2) The assumptions (a), (b) and (c), mean exactly that {(Cx,K)}x∈X is
a coercing family of the correspondence G.

(b.3) Let C be any non-empty convex subset of X. Due to the inclusion be-
tween F and G, it is enough to show

⋂
x∈C

(F (x) ∩ C) ⊂
⋂
x∈C

(G(x) ∩ C).

Let y ∈
⋂
x∈C

(F (x) ∩ C). Let us fix z in C and prove that y ∈ G(z).

Obviously, we may assume ϕ(z) < +∞. Since y ∈ F (z), this implies
that ϕ(y) is also finite. For each 0 < t < 1, let zt = (1− t)y+ tz. Since
C is convex, then zt ∈ C and recalling that y ∈

⋂
x∈C

F (x), we can de-

duce that y ∈ F (zt) or equivalently, sup
ut∈T (zt)

〈ut, y− zt〉+ϕ(y) ≤ ϕ(zt),

∀t ∈ ]0, 1[.
Using the convexity of ϕ, it implies:

sup
ut∈T (zt)

〈ut, y − zt〉 ≤ t(ϕ(z)− ϕ(y)) ∀t ∈ ]0, 1[ .

By the convexity of the function y → sup
u∈T (zt)

〈u, y − zt〉, it follows that

0 = sup
ut∈T (zt)

〈ut, zt−zt〉 ≤ (1− t) sup
ut∈T (zt)

〈ut, y−zt〉+ t sup
ut∈T (zt)

〈ut, z−zt〉.

Consequently

0 ≤ t(1− t) (ϕ(z)− ϕ(y)) + t sup
ut∈T (zt)

〈ut, z − zt〉,

8
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or

0 ≤ t(1− t)

(
ϕ(z)− ϕ(y) + sup

ut∈T (zt)
〈ut, z − y〉

)
.

Let us first simplify by t(1− t) and let t tend to 0, then from Assump-
tion (d), it follows that,

0 ≤ ϕ(z)− ϕ(y) + sup
v∈T (y)

〈v, z − y〉

and the theorem is proved.

Remark that together with the monotonicity of the correspondence T ,
Assumption (c) of Corollary 3.1 in [GH] implies assumption (c) of the pre-
vious theorem. Then, Corollary 3.1 of [GH] is an immediate corollary of the
previous theorem.
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