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A Generalized FKKM Theorem and Variational
Inequality

H. HAMMAMI!

Centre d’Economie de la Sorbonne, UMR 817}, CNRS-Université Paris 1

Abstract

We present a generalized FKKM Theorem and it’s application to
the existence of solution for the variationals inequalities using a gener-
alized coercivity type condition for correspondences defined in L-space.

Key words and phrases: L-structures, L-spaces, L-KKM correspon-

dences, L-coercing family and variational inequality.
Classification-JEL: C02, C69, C72.

The purpose of this article is to give a generalization of FKKM Theo-
rem [KKM] and it’s application in variational inequalities. All these results
extend classical results obtained in topological vector spaces by Fan [F1]
[F2], Dugundji and Granas [DG], Ding and Tan [DT] and Yen [Y] as well
as results obtained in H-spaces by Bardaro and Ceppitelli [BC1], [BC2], in
convex spaces in the sense of Lassonde [L] and in L-spaces by Chebbi, Gour-
del and Hammami [CGH], [GH].

In this paper, we will use the same notation as in [CGH]. We remind
the definition given in [CGH] of L-KKM correspondences, which extend the
notion of KKM correspondences to L-spaces, and the concept of L-coercing
family for correspondences defined in L-spaces. Let A be a subset of a vector
space X. We denote by (A) the family of all nonempty finite subsets of A
and convA the convex hull of A. Since topological spaces in this paper are
not supposed to be Hausdorff, following the terminology used in [B], a set is
called quasi-compact if it satisfies the Finite Intersection Property while a
Hausdorff quasi-compact is called compact. In what follows, the correspon-
dences are represented by capital letters F', G, @, S, I', ..., and the single
valued functions will be represented by small letters. We denote by graphF
the graph of the correspondence F. If X and Y are two topological spaces,
((X,Y) denotes the set of all continuous functions from X to Y.

If n is any integer, A, denotes the unit-simplex of R"*! and for every
J C{0,1,...,n}, Ay denotes the face of A, corresponding to J. Let X be
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a topological space. An L-structure (also called L-convezity) on X is given
by a correspondence I' : (X} — X with nonempty valued such that for every
A = {zg,...,z,} € (X), there exists a continuous function f4: A, — I'(A)
such that for all J C {0,...,n}, fA(A;) € T({zj,j € J}). Such a pair
(X,T) is called an L-space. A subset C' C X is said to be L-convez if for
every A € (C), I'(A) C C. A subset P C X is said to be L-quasi-compact
if for every A € (X), there exists a quasi-compact L-convex set D such that
AUP C D. Clearly, if C' is an L-convex subset of an L-space (X,I"), then
the pair (C,F|<C>) is an L-space.

1 A Generalized FKKM Theorem

In this section, we first remind some known definitions of L-KKM correspon-
dences and L-coercing family quoted in [CGH], then we give a generalized
FKKM Theorem and we deduce a more adapted theorem to study the va-
riational inequality.

Definition 1.1 Let (X,T) be an L-space and Z C X an arbitrary subset.
A correspondence F' : Z — X is called L-KKM if and only if:

VAe(z), T(4)c|JF(x).
z€A

Definition 1.2 Let Z be an arbitrary set of an L-space (X,T"), Y a topolo-
gical space and s € ((X,Y). A family {(Cq, K)}aex is said to be L-coercing
for a correspondence F : Z —'Y with respect to s if and only if:

(i) K is a quasi-compact subset of Y,

(ii) for each A € (Z), there exists a quasi-compact L-convex set D? in X
containing A such that:

reDd=C,NnZcD Nz,

(ii) cyeY|ye | (| Flx); CK.

ze€s~(y) zeC.NZ

For more explanation of the L-coercivity and to see that this coercivi-
ty can’t be compared to the coercivity in the sense of Ben-El-Mechaiekh,
Chebbi and Florenzano in [BCF], see [CGH].
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Definition 1.3 If X is a topological space, a subset B of X is called strongly
compactly closed (open respectively) if for every quasi-compact subset K of
X, BN K is closed (open, respectively) in K.

We remind the following result given in [CGH], which is an extension of
a lemma in [F1] to L-spaces.

Lemma 1.1 Let (X,T') be an L-space, Z a nonempty subset of X and F :
Z — X an L-KKM correspondence with strongly compactly closed values.
Suppose that for some z € Z, the correspondence F(z) is quasi-compact,

then (| F(z) # 0.

T€Z

Proof: see [CGH].

The main result of this paper is the following generalized FKKM Theo-
rem (see for example Theorem 4 in [F2] and Theorem 1 in [CGHJ:

Theorem 1.1 Let Z be an arbitrary set in the L-space (X,T'), Y an arbi-
trary topological space and F,G : Z — Y two correspondences such that:

(a) for every x € Z, F(x) is strongly compactly closed,
(b) for everyxz € Z, G(x) C F(x),
(c) there is a function s € ((X,Y) satisfying :

1. the correspondence R : Z — X defined by R(x) = s '(F(z)) is
L-KKM,

2. there exists an L-coercing family {(Cq, K)}aex for G with respect
to s,

3. for each quasi-compact L-conver set C in X :

(] G@)ns(C)#0e () Fz)ns(C)# 0.

zeCnz zeCnZ
Then m F(x) # 0 more precisely K ) (ﬂ F(az)) #0.
€l r€Z

Proof: The correspondence F' has strongly compactly closed values, then
in order to prove that:

,Kﬂ<ﬂF@>#@

r€Z

3
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it suffices to prove that for each finite subset A of Z, (ﬂ F (x)) NK #0.

€A
Let A € (Z), by condition (i) of Definition 1.2, there exists a quasi-

compact L-convex set D? containing A such that for all y € D4, CyNZcC
DA'N Z. Consider now the correspondence R4 : DA N Z — DA defined by
RA(x) = R(x) n DA. By Hypothesis (c.1) and the L-convexity of D4, it is
immediate that the correspondence R4 is L-KKM. Next, by the continuity of
s, F(x)Ns(DA) is closed in s(D4) then RA(z) = s, *(F(x) N s(D4)), where
s0 is the restriction of s to D?, is closed in D and consequently R4 (z) is
quasicompact. Since (D4, T I DA>) is also an L-space, we deduce by Lemma

1.1 that ﬂ RA(z) # 0, then ﬂ RA(x) # 0. Since for all z € DA N Z,

zeDA zeDANZ
s(RA(z)) € F(zx) N s(D4), we have: ﬂ (F(z)Ns(D*)) # 0 then by
zeDANZ
(c.3), m (G(z)N s(DA)) # (). To finish the proof, we will show that:
reDANZ
(| (G@)nsDh)c (F(=

zeDANZ z€A

Indeed, it is clear by (b) that ﬂ (G(z) N s( DA ﬂF ), then
zeDANZ z€A

it only remains to show that: ﬂ (G(z) ﬂs(DA)) C K. Lety €
zeDANZ

ﬂ (G(z) ﬂs(DA)), then y € s(D?) which implies that there exists
zeDANZ
z € s7'(y) N DA. By condition (i) of Definition 1.2, C, N Z c DA n Z,
it follows that y € U ﬂ G(z). Hence, by hypothesis (¢.2), y € K
z€s~1(y) zeC.NZ
and the theorem is proved. "

Remark 1.1 (1) The main result of [CGH] (Theorem 1) becomes an im-
mediate corollary of Theorem 1.1: it suffices to take F = G.

(2) In view of our approach, it is possible to state a weakened version of
Theorem 1 in [CGH] by replacing the coercivity on F by a coercivity
on G together with condition (c.3) of our Theorem 1.1.

Corollary 1.1 Under the conditions of Theorem 1.1, if we assume in ad-
dition that X is a quasi-compact set and s is a surjective function, then we
can reinforce the conclusion:

(G(z) #0

Tz€Z
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Proof: All the requirement of Theorem 1.1 are satisfied then ﬂ F(x) #

T€EZ
(). By the definition of L-space, it is clear that X is an L-convex set. In

addition, X is a quasi-compact set and s(X) =Y, then by assumption (c.3),

(G(x) #0. .

r€Z
Remark 1.2 [t is obvious as in [DG] that if we add the following condition:

(F(x)#£0s [(Gx)#0

z€Z T€Z

in Theorem 1.1 then in addition to ﬂ F(z) # 0 we have ﬂ G(z) # 0.
z€”Z z€”Z

The next theorem is more specially adapted to the study of variational
inequality. It can be seen as a corollary of Theorem 1.1 and it is a generali-
zation of Theorem II [L] and Corollary 1.4 [DG].

Theorem 1.2 Let Z be an arbitrary set in the L-space (X,T'), Y an arbi-
trary topological space and F', G : Z — Y two correspondences such that:

(a) for every x € Z, F(x) is strongly compactly closed,
(b) for every x € Z, G(z) C F(x),
(c) there is a surjective function s € ((X,Y) satisfying :
1. he correspondence R : Z — X defined by R(x) = s~ 1(F(x)) is
L-KKM,
2. there exists an L-coercing family {(Cq, K)}aex for G with respect
to s,
3. for each L-convex set C' in X:

(] G@)ns(C)#0« () Fz)ns(C)# 0.

zeCNZz zeCNZ

Then ()| G(x) # 0.

reZ

Proof: It is obvious to see that Assumption (c.3) of Theorem 1.2 imply

Assumption (c.3) of Theorem 1.1, then ﬂ F(z) # 0. By the definition of

reZ
L-space, it is clear that X is an L-convex set and hence, for the particular

case where C' = X, Assumption (¢.3) implies that ﬂG(:ﬁ) # () and the

€L
theorem is proved. "
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2 Application to variational inequalities

In this section we will prove the existence of solutions of variational inequa-
lities using Theorem 1.2.

Let E and P denote two real topological vector space, X a nonempty
convex set in F and (-, -) a bilinear form on P x E whose for each fixed v € P,
the restriction of (v,-) on any quasi-compact subset @ of X is continuous?
(the natural example is between a normed topological vector space E and
its dual space equipped with the strong topology).

Definition 2.4 A non empty valued correspondence T : X — P is said to
be monotone if for each (x,u) and (y,v) in the graph of T, (u—v,x—y) > 0.

Remark 2.3 One checks easily that if a correspondence T is upper hemi-
continuous in the sense of Cornet [C1] (see for example [C2] and [F]) then
the following condition used by Lassonde [L] for monotone correspondences
is satisfied?:

For any (z,y) € X x X, the function hgy : [0,1] — R defined, for all

€ [0,1], by: hay(t) = UGT((ligf)ny)(u,y — x) 1is lower semi-continuous at

point t =0, (resp. the function foy : [0,1] — R defined by for all t € [0,1],

hay(t) = sup (u,x —y) is upper semi-continuous at pointt =0).
ueT((1—t)y+tx)

The following theorem is a general version of one of the basic facts in
the theory of variational inequalities (see for example [HS], [DG] and [L]).

Theorem 2.3 Let T : X — P be a non empty monotone correspondence,
v: X = RU{+o00} a convex function lower semi-continuous on any quasi-
compact subset of X*. Let us suppose that there exists a family {(Cy, K)}zex
of pairs of sets satisfying:

(a) K is a quasi-compact subset of X,

(b) for each A € (X), there exists a quasi-compact convex set D? contai-
ning A such that:
z € DA = C, c DA,

Which is equivalent, if we suppose that for all z € Z, @,(z) = (v,z), to : for every
closed subset F of R, ¢~ (F) is a strongly compactly closed subset.

3Tt suffices to consider p equal to the (continuous) linear form (-, y — ) in the following
definition given by Cornet: a correspondence F': X — P is said upper hemi-continuous in
a point o € X in the sense of Cornet if for any continuous linear function p, the function

h:x — sup p(y) (resp. h : x — inf p(y)) is upper semi-continuous (resp. lower
yEp(x) yEp(x)
semi-continuous) at the point xo.
4Or equivalently: for every a € R, ¢~ (] — 00, a]) is a strongly compactly closed set.
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(c) {y € X |ply) <p(x)+ sup (v,x—1y) forall x € C’y} CK,
veT (y)

(d) for each (x,y) € X x X, the function hyy : [0,1] — R given fort € [0,1]
by hyy(t) = sup (u,z — y) is upper semi-continuous at t = 0.
ueT((1—t)y+tx)

Then there is a point yy € X such that,

o(yo) < p(x) + sup (v,z—yo) VrelX.
v€T (yo)

Proof: The proof is similar to the proof of [DG] and [L]. For each z € X,
let

G(r) ={y € X | p(y) < p(z) + lel?)(v,x -}

we have to show that Theorem 1.2 can be applied in order to get m G(z) #

zeX
(). Let us now consider the correspondence

F(r)={y € X |p(z) > p(y) + 217{1(3 )<u,y —x)}.

We will verify that G and F satisfies requirements of Theorem 1.2 (with
Z = X and s = the identity function).

(i.1) From the l.s.c assumption of ¢ and the “regularity” assumption of the
bilinear form (u,.), it follows that F(z) is strongly compactly closed
in X for each z € X.

(i.2) Let us prove that for every z € X, G(z) C F(x) : Let y € G(x), then

o(y) < ¢(x)+ sup (v,z—y). By the monotonicity of T', we have: for
veT(y)
all w € T'(z) and v € T(y), (u,x —y) > (v,z — y) then

inf (u,z—y)> sup (v,z—y)
weT (x) veT (y)

consequently

— sup (u,y —x) > sup (v,x —y)
ueT(x) veT (y)

which implies sup (u,y —z) + ¢(y) < p(z), i.e. y € F(x).
ueT (x)

(ii.1) We will prove that F' is KKM. Let y € conv{z1,...,z,}, then there
exists a; € [0,1] for i = 1,...,n such that y = ¥, ayz; and X" oy =
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(ii.2)

(b.3)

1. By the monotonicity of T, for all v € T'(z;) and v € T'(y), (u,z; —
y) > (v,z; — y), then

inf (u,z; —y) > (v, —
uelg(xi)w y) = (v, 2 —y)

consequently

sup (u,y — x;) < —(v, 7 — y)
weT (z;)

which implies X' j; sup (u,y—z;) < 0. It follows from the convex-
u€T (z;)
ity of ¢ that p(y) < X7 a;¢(x;). The two previous inequalities allows

us to deduce that: X ;| sup (u,y —x;) + ¢(y) —¢(x;) | < 0.
weT (z;)

Therefore, there exists ¢ € {1,...,n} such that sup (u,y — ;) +
u€T (z;)

n
(y) < @(a;), then y € | JF(x;) and F is KKM.

i=1

The assumptions (a), (b) and (c), mean exactly that {(Cy, K)}zex is
a coercing family of the correspondence G.

Let C' be any non-empty convex subset of X. Due to the inclusion be-

tween F and G, it is enough to show ﬂ (F(x)nC) C ﬂ (G(x)nC).
zeC zeC

Let y € ﬂ (F(x)NC). Let us fix z in C and prove that y € G(z).

el
Obviously, we may assume ¢(z) < +o00. Since y € F(z), this implies

that ¢(y) is also finite. For each 0 < ¢ < 1, let z; = (1 —¢)y +tz. Since
C' is convex, then z; € C' and recalling that y € ﬂ F(z), we can de-

xeC
duce that y € F(z) or equivalently, sup (u,y—2t)+¢(y) < @(z),
’U,tET(Zt)

vt €10, 1].
Using the convexity of ¢, it implies:

sup (ut,y — z) < t(p(2) —p(y)) Vte€]0,1].
ut €T (2¢)

By the convexity of the function y — sup (u,y — z), it follows that
’LLET(Zt)

0= sup (u,z—2z) <(1—t) sup (w,y—z)+t sup (ug, z—z).
utGT(zt) utET(zt) utET(zt)

Consequently

0<t(l—1)(p(z) —e(y) +1 sup (uy,z—z),
ut €T (2¢)
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or

0<t(1-1) (so(z) —p(y) + sup (ug,z— y>> :

Ut GT(Zt)

Let us first simplify by ¢(1 —¢) and let ¢ tend to 0, then from Assump-
tion (d), it follows that,

0<(2) —o(y)+ sup (v,z—y)
veT (y)

and the theorem is proved. "

Remark that together with the monotonicity of the correspondence T,
Assumption (c) of Corollary 3.1 in [GH] implies assumption (c) of the pre-
vious theorem. Then, Corollary 3.1 of [GH] is an immediate corollary of the
previous theorem.
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