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Abstract

In the presence of heteroskedasticity of unknown form, the Ordinary Least Squares
parameter estimator becomes inefficient and its covariance matrix estimator incon-
sistent. Eicker (1963) and White (1980) were the first to propose a robust consistent
covariance matrix estimator, that permits asymptotically correct inference. This es-
timator is widely used in practice. Cragg (1983) proposed a more efficient estimator,
but concluded that tests based on it are unreliable. Thus, this last estimator has not
been used in practice. This paper is concerned with finite sample properties of tests
robust to heteroskedasticity of unknown form. Our results suggest that reliable and
more efficient tests can be obtained with the Cragg estimators in small samples.
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1 Introduction

Let us consider the linear heteroskedastic model:

y = Xβ + u (1)

where y is a n-vector containing the values of the dependent variable, X a n× k matrix in
which each column is an explanatory variable, assumed to be exogenous, and β is a k-vector
of parameters. With heteroskedastic error terms, its covariance matrix Ω is diagonal, with
typical tth diagonal element σ2

t . In the presence of heteroskedasticity of unknown form,
the matrix Ω cannot be estimated consistently and the Generalized Least Squares (GLS)
estimator, which is an efficient estimator, cannot be computed. The Ordinary Least Squares
(OLS) parameter estimator

β̂ = (X⊤X)−1X⊤y (2)

is inefficient but still consistent, and its OLS covariance matrix estimator is inconsistent in
general. Thus, conventional t and F tests do not have their namesake distributions, even
asymptotically, under the null hypothesis that they test.

Eicker (1963) and White (1980) proposed a Heteroskedasticity Consistent Covariance Ma-
trix Estimator (HCCME), which permits asymptotically correct inference on β in the
presence of heteroskedasticity of unknown form. MacKinnon and White (1985) considered
a number of possible forms of the estimator. They showed that the HCCME’s, as well as
the associated t or F statistics, can be seriously biased in finite sample, especially in the
presence of observations with high leverage. See also Chesher and Jewitt (1987), who show
that the extent of the bias is related to the structure of the regressors. However, reliable
inferences can be obtained in large samples, and this estimator is widely used in practice.

Cragg (1983) proposed a more efficient estimator than the OLS parameter estimator, based
on over-identification restrictions. This estimator can be viewed as a Generalized Method
of Moments (GMM) estimator with instruments taken as: regressors, their cross-products
and successive positive powers. Furthermore, the Eicker-White estimator is a particular
case of the Cragg estimator, with instruments taken as regressors and with no additional
instruments. In his paper, Cragg showed that a gain in efficiency can be obtained using
few additional instruments. However, a major problem is encountered: a downward bias
of the covariance matrix estimator appears to be serious and disappears very slowly as the
number of observations increases. In addition, tests based on this estimator have poor finite
sample behavior: large errors in the rejection probability are exhibited. Consequently, this
estimator is rarely used in practice.

To date, published studies have focused on the reliability of tests based on the Eicker-White
estimator. To achieve reliability in small samples, two approaches have been proposed: com-
puting the covariance estimator using restricted residuals or/and using bootstrap methods,
see Davidson and MacKinnon (1985), Horowitz (1997) and Godfrey and Orme (2004). In
this paper, we study both the reliability and the efficiency of tests based on Eicker-White
and on Cragg estimators. First, our simulation results suggest that reliable inferences
based on Cragg estimators can be obtained in small samples when we combine the two

2



previous approaches. In addition, our results suggest that by using restricted residuals
rather than unrestricted residuals, the power increases substantially. Moreover, we review
the Cragg estimator and propose a more judicious choice of instruments. Indeed, the ef-
ficient GLS estimator is equivalent to the Cragg estimator using the instruments Ω−1X.
However, we cannot use these instruments, because the matrix Ω is unknown and cannot
be estimated consistently. We propose to use instruments which include the components of
the matrix Ω−1X: this leads us to use regressors, their inverses, their cross-products and
cross-divisions, their successive positive and negative powers as instruments.

In section 2, we present the Eicker-White and Cragg Estimators as GMM estimators, and
we discuss the choice of instruments. In section 3, we describe our experimental design in
detail. Section 4 presents our simulation results and section 5 is concerned with the number
of instruments to be used in practice. Finally, Section 6 concludes.

2 Heteroskedasticity of unknown form

In this section, we present the Eicker-White and Cragg estimators that are robust to hetero-
skedasticity of unknown form, and we make some proposals on the choice of instruments.

2.1 The Eicker-White and Cragg robust estimators

The Eicker-White and Cragg estimators can be encompassed by the Generalized Method
of Moments (GMM) approach. Let W be an n × l matrix of valid instruments, with a
typical row W t, such that E(ut |W t) = 0. A necessary condition for the efficiency of
the Generalized Moments Estimators, showed by Hansen (1982), is that it minimizes the
following criterion function :

(y − Xβ)⊤W (W⊤ΩW )−1W⊤(y − Xβ)

The first-order conditions for a minimum of this function are

X⊤W (W⊤ΩW )−1W⊤(y − Xβ) = 0

which leads to the GMM estimator

β̂GMM = (X⊤W (W⊤ΩW )−1W⊤X)−1X⊤W (W⊤ΩW )−1W⊤y (3)

Under regularity conditions, n1/2(β̂GMM − β0) is asymptotically normally distributed with
mean vector 0 and covariance matrix

plim
n→∞

(
1

n
X⊤W (W⊤ΩW )−1W⊤X

)−1

(4)

Hansen (1985) argued that the optimal instrument choice is W = Ω−1X : with that
choice, the GMM estimator is asymptotically efficient, and reduces to the Generalized
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Least Squares (GLS) estimator. A second choice may be Ω̂, when Ω̂ is a consistent esti-
mator of Ω. Any other choice of instruments leads to an inefficient estimator. In the case
of heteroskedasticity of unknown form, the diagonal matrix Ω cannot be estimated con-
sistently. However, operational versions of the estimators (3) and (4) have been proposed,
based on consistent estimators of n−1W⊤ΩW .

Eicker (1963) and White (1980) proposed a Heteroskedasticity Consistent Covariance Ma-
trix Estimator, which is equal to the GMM estimator (4) with the regressors taken as
instruments W = X. In that case, the parameter estimate (3) reduces to the OLS param-
eter estimate,

β̂White = (X⊤X)−1X⊤y (5)

and its covariance matrix (4) can be estimated by

V̂ar (β̂White) = (X⊤X)−1X⊤Ω̂X(X⊤X)−1 (6)

where the n × n diagonal matrix Ω̂ has a typical diagonal element a2
t û

2
t , and ût is the tth

OLS residual. MacKinnon and White (1985) considered a number of possible forms of this
estimator:

HC0 : at = 1 HC2 : at = (1 − ht)
−1/2 (7)

HC1 : at = (n/(n − k))1/2 HC3 : at = (1 − ht)
−1 (8)

where ht ≡ X t(X
⊤X)−1X⊤

t , the tth element of the orthogonal projection matrix on to the
span of the columns of X. The basic version proposed by Eicker and White corresponds to
HC0. The HC1 version corresponds to the use in the homoskedastic case of the unbiased
OLS estimator of the error variance. The HC2 version corresponds to the use in the
homoskedastic case of unbiased OLS estimator of the variance of ût, which is proportional
to 1−ht. Finally, arguments based on the jackknife lead MacKinnon and White to propose
form HC3. Simulation results by MacKinnon and White (1985) show that, in terms of
error of the rejection probability (ERP), or size distortion , HC0 is outperformed by HC1,
which is in turn outperformed by HC2 and HC3. The HC3-based estimator is widely used
in practice.

Cragg (1983) proposed using a feasible version of the GMM estimator (3), where the re-
gressors X, their cross-products and successive positive powers, are taken as instruments
W , and where the diagonal matrix Ω is replaced by Ω̂,

β̂Cragg = (X⊤W (W⊤Ω̂W )−1W⊤X)−1X⊤W (W⊤Ω̂W )−1W⊤y, (9)

its covariance matrix (4) can be estimated by

V̂ar (β̂Cragg) =
(
X⊤W (W⊤Ω̂W )−1W⊤X

)−1

(10)

It is clear that the Eicker-White estimator is a particular case of the Cragg estimator: if
W = X, equations (9) and (10) are respectively equal to equations (5) and (6). Cragg
showed that a gain in efficiency can be obtained when additional instruments are taken

4



in W . However, large size distortions of tests based on Cragg estimators are exhibited in
finite samples. Because of its poor finite sample behavior, this approach has not been used
in practice.

Implementation of this estimator can be made by an instrumental variables (IV) estimation,
where y⋆ is the dependent variable, X⋆ the matrix of regressors and W ⋆ the matrix of
instruments,

y⋆ ≡ U−1y X⋆ ≡ U−1X W ⋆ ≡ UW (11)

and U = diag(a1û1, . . . , anûn). The IV parameter estimate is equal to (9). The IV covari-
ance matrix estimate should be multiplied by the inverse of the variance of the error terms
estimate 1/σ̂2

iv in order to be equal to (10). Computation of this estimator can be made in
two steps. First, we estimate the model (1) by OLS, and obtain the residuals ût. Then, we
estimate the model described above (11) by IV. Note that this implementation requires all
residuals to be different from zero, otherwise (9) and (10) should be computed directly.

2.2 Choice of instruments

We have seen above that if we could estimate the matrix Ω consistently, the optimal choice
of instruments is Ω−1X: with that choice, the GMM estimator reduces to the efficient
GLS estimator. If we cannot estimate the matrix Ω consistently, we cannot use these
optimal instruments, but we can judiciously choose instruments such that the space spanned
by them S(W ) is as close as possible as the space spanned by the optimal instruments
S(Ω−1X). This suggests using the components of Ω−1X as instruments and leads us
to use the instruments proposed by Cragg, and in addition, inverses, cross-divisions and
successive negative powers of regressors.

Proposition 1 Let us consider the regression model (1). In the presence of hetero-
skedasticity of unknown form, a more efficient estimator than the Ordinary Least
Squares parameter estimate is the parameter estimate (9) with the following instru-
ments: regressors, their inverses, cross-products, cross-divisions, successive positive
and negative powers. For all values of regressors equal to zero, the corresponding
values of instruments are equal to zero.

The following discussion can be helpful to better understand why we should get better
results by including inverses, cross-divisions and successive negative powers. Let Q be the
regressors’ matrix of the skedastic function σ2

t = h(Qt). From Weierstrass’ Theorem: any
continuous function on a closed interval is the uniform limit of a polynomial series. In other
words, it means that we can approximate any continuous function by a polynomial with
a sufficiently high degree. This suggests approximating the skedastic function by a linear
combination of the variables Qt, cross-products and higher powers. Heteroskedasticity is a
particular problem for usual OLS inference when it is related to the regressors X t, as when
Qt = X t. Cragg (1983) suggests using regressors, their cross-products and higher powers
as instruments.
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Rather than considering the elements of the skedastic function, we consider the elements of
the matrix Ω−1X. For example, let us consider Qt = [xt1, xt2] where xt1 and xt2 are two
elements of two n-vectors of the regressors. We thus obtain the polynomial approximation:

σ2
t ≡ α0 + α1xt1 + α2xt2 + α3xt1xt2 + α4x

2
t1 + α5x

2
t2 (12)

where αi, for i = 0, . . . , 5, are unknown parameters. The element of the tth row and jth

column in the matrix Ω−1X is {Ω−1X}tj = xtj/σ
2
t . We have to consider two cases. In the

first case, if xtj = 0 then {Ω−1X}tj = 0. In the second case, if xtj 6= 0 then {Ω−1X}tj can
be approximated by

xtj

σ2
t

≡
(
α0

1

xtj

+ α1

xt1

xtj

+ α2

xt2

xtj

+ α3

xt1xt2

xtj

+ α4

x2
t1

xtj

+ α5

x2
t2

xtj

)−1

(13)

A polynomial approximation of this function would be a linear combination of its variables,
their cross-products and higher powers. The space spanned by these variables taken as
instruments S(W ) is an approximation of the space spanned by S(Ω−1X). It follows
that a judicious choice of instruments is regressors, their inverses, cross-products, cross-
divisions and successive positive and negative powers. For all values of regressors equal to
zero, corresponding observations of instruments are equal to zero.

3 Experimental design

In this section, we present our model design, that is, our choices of regression models,
regressors and instruments. We then explain how we compute the power in Monte Carlo
experiments. Finally, we present an appropriate bootstrap method for the case of hetero-
skedasticity of unknown form.

3.1 Model design

In our experiments, we consider the linear regression model

yt = β0 + β1 x1t + β2 x2t + ut, t = 1, . . . , n, (14)

in which the explanatory variables are supposed to be fixed in repeated samples. The error
terms are assumed to be mutually independent and to have a common mean of zero, but
they may be heteroskedastic, with E(u2

t ) = σ2
t . We wish to test the null hypothesis that

β1 = 0 with a t-statistic

τ =
β̂

1
− 0

[
V̂ar(β̂

1
)
]1/2

(15)

based on the Eicker-White estimators (5) and (6), or the Cragg estimators (9) and (10).
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Since (14) is a linear model and τ is independent of the choices of β0 and β2, we set
β0 = β2 = 0 without a loss of generality. We can rewrite ut = σtvt, where E(v2

t ) = 1.
Thus, under the null hypothesis, our data are generated by a DGP of the form

y⋆
t = σtvt, t = 1, . . . , n. (16)

Many different choices for the heteroskedasticity can be used, but a function of regressors
should be included. We set σ2

t = x2
1t because this choice gives rise to strong heteroskedasti-

city, which leads to a serious bias of the OLS covariance matrix (White 1980). The vt are
independent mean zero variables of unit variance, and will be normal in the experiments.
Our experiments are performed with a sample of size n = 100; the number of Monte Carlo
replications is equal to N = 10,000.

• Choice of regressors:

Chesher and Jewitt (1987) showed that finite sample performance is very sensitive to the
structure of regressors: if the diagonal elements of the projection matrix on the space
spanned by the regressors (ht) are not well balanced, the Eicker-White estimators perform
badly. MacKinnon and White (1985) studied the finite sample performance of tests based
on the Eicker-White estimators, using Monte Carlo simulations. They used 50 real eco-
nomic observations as regressors, and repeated those 50 observations when the sample size
increased. They found good results as n increases: it comes from the fact that by repeating
the data the influence of high leverage observations decreases quickly as the number of
observations increases. In a similar study, Cragg (1983) generated regressors drawn from
a lognormal distribution and found very slow improvement as n increases. This comes
from the fact that the lognormal distribution is very skewed and some regressors took large
values compared to the others, even in a large sample. It follows that the influence of high
leverage observations decreases slowly as the number of observations increases.

These results highlight a major point: the choice of the regressors is more important than
the choice of the sample size. Indeed, we could find very good results from a small sample
with well balanced regressors and very bad results from a large sample with unbalanced
regressors. This leads us to consider different regressors’ schemes in our experiments, with
more or less well-balanced data. We draw a pseudo-random variable ηt from the standard
normal distribution and use the following transformation to generate a regressor,

ηt ∼ N(0, 1) and xt = κη
t (17)

It is clear that, if κ = exp(1), regressors are drawn from a lognormal distribution, and they
are not well-balanced. On the other hand, if κ ≈ 1, the regressors are well-balanced. In
our experiments, we use different values of κ:

κ = 1.1, 1.2, . . . , 2.5, 2.6, exp(1), 2.8, 2.9, . . . , 3.5 (18)

From Chesher and Jewitt’s results, we expect that the simulation results will exhibit poor
finite sample performance as κ increases, at least when using the Eicker-White estimator.

• Choice of instruments:

The total number of instruments l, varies across experiments. The n × l matrix of in-
struments W includes regressors and additional instruments, successively appended in two
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ways. The first choice of regressors is, as proposed by Cragg (1983),

W +
1 = [ι, x1, x2, x

2
1, x

2
2 ] (19)

W +
2 = [ι, x1, x2, x

2
1, x

2
2, x1x2 ] (20)

W +
3 = [ι, x1, x2, x

2
1, x

2
2, x1x2, x

3
1, x

3
2 ] (21)

We successively introduce: 1- squared, 2- cross-products, 3- power three of regressors. The
second choice of instruments is, as described in proposition 1,

W±

1 = [ι, x1, x2, 1/x1, 1/x2 ] (22)

W±

2 = [ι, x1, x2, 1/x1, 1/x2, x1/x2, x2/x1, 1/(x1x2) ] (23)

W±

3 = [ι, x1, x2, 1/x1, 1/x2, x1/x2, x2/x1, 1/(x1x2), x1x2, x
2
1, x

2
2 ] (24)

We successively introduce: 1- division, 2- cross-divisions, 3- cross-products and squared of
regressors.

3.2 Power calculation

In our model, we test the null hypothesis β1 = 0. Then, we study the power of a test
statistic by drawing sample data from a DGP under the alternative hypothesis β1 6= 0,

y⋄

t = β1x1t + σtvt, t = 1, . . . ,n (25)

We test the null hypothesis β1 = 0, not true, with the test statistic (15). It is clear that
the power depends on the exact value of β1.

It is interesting to note that, in our experimental design, it is not necessary to generate
a sample under the alternative hypothesis. Let us assume that β̂

⋆

1 is the OLS parameter
estimate computed from a sample simulated under the null DGP (16), (y⋆, ι, x1, x2), and

β̂
⋄

1 is the OLS parameter estimate computed from a sample simulated under the alternative
DGP (25), (y⋄, ι, x1, x2), with the same error terms vt, for t = 1, . . . , n. Then, we can show

τ ⋄ =
β̂

⋄

1 − 0
[
V̂ar(β̂

⋄

1)
]1/2

=
β̂

⋆

1 + β1[
V̂ar(β̂

⋆

1)
]1/2

(26)

This result comes from the fact that β̂
⋄

1 = β̂
⋆

1 + β1 and V̂ar(β̂
⋄

1) = V̂ar(β̂
⋆

1), which can be
easily shown. It allows us to compute different values of τ ⋄ with different values of β1,
without generating samples under the alternative hypothesis.

To compare the power of alternative test statistics, it is not desirable to plot power against
the nominal level if all the tests do not have the correct size and if they exhibit significant
ERP. It is thus desirable to plot power against the “true” level. In our experiments, we
compute the power at a same rejection probability level; this is sometimes called size-
corrected tests.
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3.3 Bootstrap method

The dismal performance of asymptotic tests based on these estimators, see Cragg (1983),
suggests the use of better test procedures such as bootstrap methods. An appropriate
version of the bootstrap for the case of heteroskedasticity of unknown form is the wild
bootstrap, proposed by Liu (1988), following the suggestion of Wu (1986) and Beran
(1986). For a detailed discussion on this method, see Horowitz (2000) and Davidson and
Flachaire (2001). Bootstrap methods normally rely on simulations based on an artificial
data-generating process, constructed as close as possible to the true DGP under the null
hypothesis. The wild bootstrap data-generating process, or bootstrap DGP, is of the form

y⋆
t = β̃0 + β̃2 x2t + atüt ε

⋆
t (27)

where β̃0 and β̃2 are the OLS parameter estimates under the model (14) that respects
the null, üt is the OLS restricted or unrestricted residual and at takes the forms HC0,
HC1, HC2 or HC3, see (8). We can set β̃0 = β̃2 = 0, because the test statistic is
independent of the choice of these two parameters. Simulation results by Davidson and
Flachaire (2001) suggest that it is a mistake to mix unrestricted residuals in the estimators
and restricted residuals in the bootstrap DGP. Thus, we choose to take the same function
atüt in the Eicker-White and Cragg estimators and in the wild bootstrap DGP. The ε⋆

t are
mutually independent drawings, completely independent of the original data, from some
auxiliary distribution, such that E(εt) = 0 and E(ε2

t ) = 1. In our experiments, we use the
Rademacher distribution, as recommended by Davidson and Flachaire (2001)

F : ε⋆
t =

{
1 with probability 1/2

−1 with probability 1/2,
(28)

The simulation results of these latter authors, with those of Godfrey and Orme (2001)
show that this two-point distribution outperforms the other distributions proposed in the
literature. In addition, simulation results in Flachaire (2005) suggest that this version of
the wild bootstrap outperforms different versions of another appropriate bootstrap method
- the pairs bootstrap (Freedman 1981, Flachaire 1999) - and is the only one for which the
bootstrap test always gives better results than the asymptotic test. We therefore use this
version of the wild bootstrap in our experiments. A P -value bootstrap can be obtained by
the following steps:

1. Estimate the model (14) under the alternative and under the null by Ordinary Least
Squares (OLS): we obtain vectors of parameter estimates and residuals. Then, com-
pute a realization τ̂ of the t statistic that tests the null, based on Cragg’s estimators.

2. Generate a bootstrap sample, based on the bootstrap data-generating process (27),
where ε⋆

t is drawn from the two-point distribution F . Compute Cragg’s estimators,
and then, a realization τ̂ ⋆

j of the t statistic that tests the null. Repeat this step B
times.

The proportion of the B realizations τ̂ ⋆
j , j = 1 . . . B, greater than τ̂ is a P -value bootstrap.

In our experiments, we use B = 499; see Davidson and MacKinnon (2000) for a detailed
discussion on the choice of the number of bootstrap replications.
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4 Simulation results

In this section, we present the Monte Carlo results on the Error of the Rejection Probability,
or size distortion, and on the Power of the tests based on the Eicker-White and Cragg
estimators. First, we find similar results to those of Cragg, with a similar model design.
We propose successive improvements to get the size correct, and then we go on to the
question of power.

• Cragg results

At first, we use a similar model design as in Cragg (1983). Then, we consider a test statistic,
as defined in (15), based on the Eicker-White and Cragg estimators (see equations 5, 6, 9,
10), with no transformation of unrestricted residuals HC0 (see 7) and with different choices
of instruments:

1− Cragg1 corresponds to the use of W+
1 , see (19)

2− Cragg2 corresponds to the use of W+
2 , see (20)

3− Cragg3 corresponds to the use of W+
3 , see (21)

Figure 1 shows the Error in the Rejection Probability (ERP ), or size distortion, at the
nominal level α = 0.05, of asymptotic tests based on the Eicker-White and Cragg esti-
mators, as a function of κ, a measure of the presence of high leverage observations in the
regressors, defined in (17). It is clear from that figure that all tests exhibit very large ERP
as κ increases. For instance, Cragg3 shows an ERP close to 0.25 when the regressors are
drawn from a lognormal distribution (κ = exp(1)): this means that, if the null is true, the
test is supposed to reject the null at a nominal level equals to 5%, but in fact the test rejects
the null at a “true” level close to 30%. In other words, inference is not at all reliable. In
addition, we can see from this figure that the Eicker-White test (White) exhibits smaller
ERP than the Cragg tests using additional instruments, and the ERPs strongly increase as
the number of instruments increases. Recall that the Eicker-White test is a particular case
of the Cragg test, with regressors taken as instruments and with no additional instruments.
Finally, these results are similar to those of Cragg (1983): they suggest that tests based on
Cragg estimators with extra instruments are unreliable in finite samples.

• Restricted residuals

An initial approach to controlling finite sample significance levels of heteroskedastic-robust
tests has been proposed by Davidson and MacKinnon (1985). These authors propose to
compute the test statistic by replacing the unrestricted residuals by the corresponding
restricted residuals. Their simulation results suggest that it gives more reliable inference.
Figure 2 shows ERPs, at the nominal level α = 0.05, of the Eicker-White and Cragg tests
based on the restricted residuals, as a function of κ. We can see from this figure a substantial
reduction in the ERPs compared to the use of the unrestricted residuals (figure 1). The
ERP of Cragg3 is very small with or without well balanced regressors, that is for all values
of κ. As in Davidson and MacKinnon’s results (1985), we can see that the Eicker-White test
based on restricted residuals slightly under-rejects the null (the ERPs are slightly negative
in figure 2), and the Eicker-White test based on unrestricted residuals largely over-rejects
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(the ERPs are positive in figure 1). These results suggest that the use of restricted residuals
substantially decreases ERPs of tests based on Cragg estimators. However, as noted by
Godfrey and Orme (2004), a major drawback of using restricted residuals is that each null
hypothesis requires a specific estimation of the Cragg estimator. For instance, testing the
significance of each regressor requires k different Cragg covariance matrix estimates.

• Bootstrap method and unrestricted residuals

A second approach to controlling finite sample significance levels of heteroskedastic-robust
tests, which does not require different estimations of the covariance matrix for different
null hypotheses has been investigated by Horowitz (1997), Davidson and Flachaire (2001)
and Godfrey and Orme (2001). Their simulation results suggest that the ERP of t tests
based on Eicker-White estimators can be substantially removed by using the wild bootstrap
method. Figure 3 shows the ERPs, at a nominal level α = 0.05, of the Eicker-White and
Cragg bootstrap tests, as a function of κ. The heteroskedasticity-robust estimators are
computed with unrestricted residuals, that is, as in the Cragg scheme. Compared to the
corresponding asymptotic tests (figure 1), we can see from this figure that the ERPs of
all the tests are substantially removed by using the wild bootstrap. These results suggests
that ERPs of asymptotic tests based on Cragg estimators are substantially reduced by the
use of the wild bootstrap.

• Bootstrap method and restricted residuals

In our preceding results, we have seen that ERPs of Cragg tests can be substantially reduced
using two approaches: with restricted residuals or with the wild bootstrap. However,
significant ERPs are still visible in some cases and in particular for high values of κ,
that is, in the presence of high leverage observations. Godfrey and Orme (2004) have
shown recently that neither of these two approaches is by itself sufficient in the cases of
several linear restrictions on regression coefficients. These authors have shown that the two
approaches must be combined to achieve reliability. Note that the major drawback of using
restricted residuals would also appear to be present in this case. In addition, Davidson and
Flachaire (2001) have shown that an extra term is introduced in their Edgeworth expansion
of the ERP of the Eicker-White test computed with the wild bootstrap, if unrestricted
residuals are used. Figure 4 shows the ERPs, at a nominal level α = 0.05, of the Eicker-
White and Cragg tests computed with the restricted residuals and with the wild bootstrap.
We can see from this figure that ERPs of all the tests are very close to zero for all values
of κ. As suggested by Godfrey and Orme (2004) and Davidson and Flachaire (2001), these
results suggest that a combination of the two approaches provides reliable inference in finite
sample, in the presence or not of high leverage observations. They suggest the remarkable
conclusion that heteroskedastic-robust tests based on Cragg estimators with additional
instruments can be used in practice, if they are computed with restricted residuals and
with the wild bootstrap.

• Power

A test must be able to discriminate between the null and the alternative hypothesis. The
ERP, or size distortion, is concerned with the rejection of the null, when the null is true;
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the power is concerned with the rejection of the null, when the null is false. Therefore, once
we obtain a test that gets the size correct, we can go on to the question of power. This
can lead us to re-examine the question of computing Cragg estimators with unrestricted
or restricted residuals. Indeed, we could argue that when the null is true, the use of
restricted residuals should provide a better approximation of the distribution of the error
terms. Thus, it would be better to use restricted residuals to compute the Cragg estimator.
However, several authors, including van Giersbergen and Kiviet (2002), argue that when
the null is false, the unrestricted residuals should provide a better approximation of the
distribution of the error terms, and thus, should improve the power. This last argument is
not supported in the simulation experiments, see MacKinnon (2002) and Flachaire (2004,
2005). Thus, a study on the use of restricted residuals compared to unrestricted residuals
makes sense.

- Unrestricted residuals: figure 5 shows the power of Eicker-White and Cragg tests
computed with unrestricted residuals and with the wild bootstrap, as a function of β1, at
a rejection probability RP = 0.05 and with lognormal regressors κ = exp(1). The power
increases as β1 move away from 0, and if β1 = 0, the power is equal to the rejection
probability 0.05. Thus, the most powerful test would reject the null as soon as β1 6= 0
and would take the form ⊤ in our figure, with the bottom of the vertical segment at 0.05
and the horizontal segment at 1.0. In addition, we plot the power of a test based on the
Generalized Least Square estimator, because the GLS estimator is asymptotically efficient.
This last method is preferred in the presence of heteroskedasticity of known form, we use it
as a benchmark, for comparison purposes only. From this figure, we can see that the GLS
test is the most powerful and that the Eicker-White test exhibits a large lack of power. Our
experiments display the same results as Cragg (1983): we can see a significant increase in
power with few additional instruments, but a decrease in power with too many instruments.

- Restricted residuals: figure 6 shows the power of Eicker-White and Cragg tests com-
puted with restricted residuals and with the wild bootstrap. Compared to the use of
unrestricted residuals (figure 5), all the tests show a large increase in power. We can see
that the power of the Eicker-White test is clearly the worst and is outperformed by the
Cragg tests. The power of the Cragg tests increases as the number of instruments increases.

We have seen previously that using restricted residuals provides a decrease of ERP. In
addition, our results suggest that using restricted residuals provides a substantial increase in
power. They suggest that Cragg estimators can be used in practice to achieve an efficiency
gain over Eicker-White estimators.

• Transformed residuals

MacKinnon and White (1985) have proposed different versions of the Eicker-White esti-
mator to improve the finite the sample performance of tests based on it; see (7) and (8).
Their simulation results, with those of Long and Ervin (2000), give strong evidence that
HC3 outperforms the other transformations when we use unrestricted residuals. Thus, we
perform new experiments using the HC3 version of the transformed residuals to compute
the Cragg estimators with the wild bootstrap, but the results are not reported here. When
we use unrestricted residuals, we find similar conclusions: HC3 outperforms the other
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transformations. However, when we use restricted residuals, there are no clear differences
whether we use the transformation HC3 of the residuals or not. However, in some cases
this transformation gives slightly better results; thus, we use the HC3 transformation in
the following experiments.

• New instruments

The discussion on the choice of instruments in section 2.2 leads us to consider additional
instruments which extend those proposed by Cragg (1983), as described in proposition 1.
Thus, here we consider the Eicker-White and Cragg estimators, with the HC3 transforma-
tion of the restricted residuals and with different choices of instruments:

1− Cragg1n corresponds to the use of W±

1 , see (22)
2− Cragg2n corresponds to the use of W±

2 , see (23)
3− Cragg3n corresponds to the use of W±

3 , see (24)

Simulation results show that Cragg tests here also have reasonable size properties, but
the results are not reported. Figure 7 shows the power of Eicker-White and Cragg tests
computed with the HC3 transformation of the restricted residuals and with the wild boot-
strap, at the rejection probability RP = 0.05 and with regressors drawn from a lognormal
distribution κ = exp(1). We can see that a large gain of power is obtained by the use of
these new instruments, compared to using the instruments proposed by Cragg (figure 6).
It is interesting to see that Cragg1n in figure 7 is more powerful than Cragg3 in figure 6.
In other words, the Cragg tests based on the regressors and the addition of only the inverse
of the regressors taken as instruments (W±

1 ) exhibit more power than the Cragg tests with
regressors and the addition of squares/cross-products and regressors to the power three
taken as instruments (W+

3 ). Furthermore, the addition of cross-divisions (Cragg2n) and
cross-products/successive powers (Cragg3n) slightly increases the power. We can see that
the power of the Cragg tests using these new instruments is close to the power of the GLS
test.

These results suggest that the use of divisions/cross-divisions and successive negative pow-
ers of the regressors, in addition to the squares/cross-products and additional powers,
substantially increases the power of the Cragg tests in such a way that the finite sample
performance can become close to that of the GLS test.

• F -test

It is interesting to check if our results hold using a several linear restrictions on regression
coefficients. In such cases, Godfrey and Orme (2004) have shown that using the restricted
residuals and the wild bootstrap must be combined to achieve reliability. We consider a null
hypothesis with more than one restriction, H0 : β1 = β2 = 0, and F -tests based on Cragg
estimators. Table 1 presents the ERP and Power results based on lognormal regressors,
κ = exp(1), and two different schemes:

Cragg scheme: F -test based on unrestricted residuals, HC0 and W+

New scheme: F -test based on restricted residuals, HC3, W± and the wild bootstrap.

The left column, named ERP, in table 1, shows the ERP, or size distortion, of a F -test at
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ERP Power

Cragg scheme New scheme Cragg scheme New scheme

White 0.4073 -0.0003 0.4887 0.7503

Cragg1 0.5554 0.0050 0.2957 0.7181

Cragg2 0.5559 -0.0116 0.3001 0.9996

Cragg3 0.5934 -0.0002 0.3242 0.9984

Table 1: Empirical level and Power of the F -test using the White and Cragg estimators

a nominal level α = 0.05. We can see that the F -tests based on the Cragg scheme exhibit
very large ERPs (more than 0.4073), and that the F -tests based on the New scheme have
very small ERPs (less than 0.0116). The right column, named Power, in table 1, shows
the power of a F -test at a “true” level RP = 0.05, for fixed values of β1 and β2 under
the alternative. We choose β1 = β2 = 0.02 in order to obtain distinct results between the
different tests. The power of a test based on the GLS estimators is equal to 1. We can see
that the F -tests based on the Cragg scheme have small power compared to that of a GLS
test (far from 1) and that the F -tests based on the New scheme have a power close to a
GLS test (close to 1) using additional instruments (Cragg2 Cragg3).

5 How many instruments?

Estimators with good finite sample properties would be as efficient as possible with a bias
as small as possible. However, in his conclusion, Cragg (1983) says that “the major problem
encountered was downard bias of the covariance matrices”. It is clear that results for the
ERP and power of tests and for the bias of the variance estimator concern fundamentally
different objects (see Flachaire 2002). In this section, we study the finite sample bias of
the Cragg estimators of the covariance matrix, as the number of instruments increases. We
will see that this problem is closely related to the choice of the number of instruments.
Our study will give some evidence which could be helpful for using the Cragg estimators
in practice.

A condition of identification requires that the number of instruments must be greater than
or equal to the number of regressors and less than or equal to the number of observations:
k ≤ l ≤ n. Thus, when the regressors are taken as instruments with no additional in-
struments, l = k, the Cragg estimator (10) reduces to the Eicker-White estimator (6). In
the opposite case, when there are as many instruments as regressors, l = n, the Cragg
estimator (10) reduces to

V̂ar(β̂n) = (X⊤Ω̂
−1

X)−1 (29)

However, this last estimator is inconsistent, because Ω̂ is not a consistent estimator of
Ω. In order to study the bias of the Cragg estimator, we compare realizations of the
Cragg variance estimator (10) with the asymptotic variance, defined by Var(β̂GMM) =
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(X⊤W (W⊤ΩW )−1W⊤X)−1, using the following statistic

B =
V̂ar(β̂

1
) − Var(β̂

1
)

Var(β̂
1
)

(30)

where V̂ar(β̂1) is the Cragg estimator of the variance of β̂1, see (15), and Var(β̂1) is the
asymptotic variance of β̂1, that is, a diagonal element of Var(β̂GMM). In our experiments,
we consider different choices of instruments. Let us assume that Xd, Xcd and Xcp are
respectively the matrix of the inverses, cross-divisions and cross-products of the regressors.
Thus, we define the following matrix of instruments as:

l = k : W 0 = X

l = k + 5 : W 1 = (X, Xd, Xcd)

l = k + 22 : W 2 = (W 1, Xcp, X
2, X2

d, X
2
cd, X

2
cp, X

3, X3
d, X

3
cd, X

3
cp)

l = k + 38 : W 3 = (W 2, X
4, X4

d, X
4
cd, X

4
cp, X

5, X5
d, X

5
cd, X

5
cp)

In our model design (14), we have Xd = (1/x1, 1/x2), Xcd = (x1/x2, x2/x1, 1/(x1x2)) and
Xcp = x1x2. Thus, W 0, W 1, W 2 and W 3 have respectively 0, 5, 22 and 38 additional
instruments. The case l = n is defined in (29) and corresponds to 97 additional instruments.

Figure 8 shows the Empirical Distribution Functions (EDFs) of 10,000 realizations of B
for the Cragg estimators based on the HC3 transformation of the restricted residuals. The
bias would be given by the first moment of the EDF, but more information can be drawn
from the EDF to measure the quality of the covariance matrix estimator, as for instance
the dispersion: a distribution centered around zero with a small dispersion would give
realizations of Cragg’s covariance estimator always quite close to the asymptotic variance
estimator. We can see from this figure that with no additional instruments, that is, for
the Eicker-White test, the distribution is higly skewed with a large dispersion (line l = k).
The addition of a few instruments shows a symmetry around zero with a small dispersion
(line l = k + 5). Furthermore, we can see that adding too many instruments moves the
distribution to the left and generates asymmetry. In other words, our results suggest that
the bias of the Cragg estimator of the variance decreases with a few additional instruments
and its precision increases. However, this estimator becomes biased to the left when too
many additional instruments are used.

6 Conclusion

The Eicker-White heteroskedasticity consistent covariance matrix estimator, for the Ordi-
nary Least Squares parameter estimator, is commonly used in practice. Our experimental
results suggest that tests based on this estimator can perform very badly in finite samples:
the ERP can be large and a lack of power can be very considerable compared to the ef-
ficient GLS test. Cragg (1983) proposed a more efficient estimator, which exhibits large
errors in the rejection probability in finite samples, and thus cannot be used in practice.
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Our simulation results suggest that if we compute the Cragg estimator with a transforma-
tion of the restricted residuals and with the wild bootstrap, and if we use inverses/cross-
products/cross-divisions/power of regressors as instruments, we can obtain more reliable
and more efficient tests. In addition, our results suggest that the use of a few additional
instruments can lead to very good finite sample performance, but the use of too many
instruments introduces a significant bias. Finally, our results make clear that more reli-
able and more efficient inferences can be obtained in the presence of heteroskedasticity of
unknown form, with an appropriate use of the Cragg estimator and with a few additional
instruments.

Our study has been focused on testing hypotheses. A key result is to use restricted residuals
rather than unrestricted residuals. However, it is usually convenient to compute confidence
intervals, for which no restricted regression model is specified. Confidence intervals and
hypothesis tests are closely related and, in order to benefit from the refinement of restricted
residuals, we should construct confidence intervals based on inverting hypothesis tests, as
proposed by Davidson (2000) and Davidson and MacKinnon (2001).

We have limited our study to the case of cross-section data sets, with exogenous regressors
and unconditional heteroskedasticity. Cumby, Huizinga, and Obstfeld (1983) extended the
Cragg estimators to include the case of endogenous regressors and Gonçalves and Kilian
(2004) proposed an extended wild bootstrap method that is valid in the presence of condi-
tional heteroskedasticity of unknown form. Further investigations should be made in this
more generalized case to extend these results in time series models.
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Fig 4: Bootstrap-restricted residuals
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Fig 5: Bootstrap-unrestricted residuals
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