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Abstract. This paper studies production economies in a commodity space that is an ordered
locally convex space. We establish a general theorem on the existence of equilibrium without

requiring that the commodity space or its dual be a vector lattice. Such commodity spaces

arise in models of portfolio trading where the absence of some option usually means the absence
of a vector lattice structure. The conditions on preferences and production sets are at least as

general as those imposed in the literature dealing with vector lattice commodity spaces. The main
assumption on the order structure is that the Riesz–Kantorovich functionals satisfy a uniform

properness condition that can be formulated in terms of a duality property that is readily checked.

This condition is satisfied in a vector lattice commodity space but there are many examples of
other commodity spaces that satisfy the condition, which are not vector lattices, have no order

unit, and do not have either the decomposition property or its approximate versions.
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1. Introduction

This paper is part of a series of papers studying Walrasian equilibria in ordered vector spaces
that need not be vector lattices. The other papers in this series are Aliprantis, Florenzano, and
Tourky (2004b, 2005); Aliprantis, Florenzano, Martins-da-Rocha, and Tourky (2004a). The paper
extends to production economies results obtained in Aliprantis, Florenzano, and Tourky (2004b)
for exchange economies.

In our papers Aliprantis, Florenzano, and Tourky (2004b, 2005) we established necessary and
sufficient conditions for the existences of equilibrium in exchange economies with an ordered topo-
logical vector commodity space and preferences that satisfy the properness assumption. We were
motivated by models in finance with commodity spaces that are not vector lattices. In models of
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portfolio trading we have a pair of function spaces L and X, where L is the portfolio space and
X is the space of contingent claims, together with a positive linear operator A : L → X that pulls
back the order intervals of A(L) to closed and bounded subsets of L. The portfolio dominance
ordering, a notion introduced in Aliprantis, Brown, and Werner (2000), is the only ordering on
the portfolio space which is relevant for purposes of economic analysis of arbitrage free security
prices. However, if the portfolio space is reordered by the portfolio dominance ordering, then it
is seldom a vector lattice and the existence of equilibrium cannot be deduced from theorems that
require lattice properties on the commodity space. Our papers Aliprantis, Florenzano, and Tourky
(2004b, 2005) solve this problem for exchange economies in the sense that they provide necessary
and sufficient conditions on the order structure of the commodity (portfolio) space, and therefore
in terms of the assets structure A : L → X. In particular, if our conditions do not hold, then
one can construct an economy satisfying the usual assumptions on preferences that has no linear
price equilibrium. When our conditions hold the usual assumptions guarantee the existence of
equilibrium with linear prices. If there is no linear price equilibrium, then one must invoke the
theory of value with personalized prices developed in Aliprantis, Tourky, and Yannelis (2001).

In this paper, we study the existence of general equilibrium for production economies with an
ordered locally convex commodity space. Our assumptions are quite general. Preferences are not
ordered, we do not assume any monotonicity of preferences or free disposal in production. We also
assume general properness assumptions on preference and production sets. The modern literature
establishing the existence of equilibrium with general assumptions on preferences and production
sets is divided into two groups. The first considers the setting of Mas-Colell (1986a), where the
commodity space is a locally solid topological vector lattice. The main papers in this group
include Aliprantis, Brown, and Burkinshaw (1987b); Zame (1987). The second group follows Mas-
Colell and Richard (1991) and assumes that the commodity space is a locally convex vector lattice
whose topological dual is a vector sublattice of the order dual. That is, they drop the local solidness
assumption of the earlier literature. The main contributions in this setting include Richard (1989);
Tourky (1999); Florenzano and Marakulin (2001). In both literatures the lattice structures of the
commodity-price duality are used in non-trivial ways.

The novelty of this paper is to replace the lattice properties of the commodity-price duality
by a condition on the order structure of the commodity space. As with our the other papers in
the series, the present paper uses the duality property of the Riesz–Kantorovich functionals whose
study was initiated in Aliprantis, Tourky, and Yannelis (2000, 2001); Aliprantis and Tourky (2002)
and was further motivated by the three assets portfolio trading example of Aliprantis, Monteiro,
and Tourky (2004c).

The paper is organized as follows. In section 2, we recall the notion of the Riesz–Kantorovich
functional associated with a finite list of (linear) functionals and the concept of sup-convolution in
optimization. In section 3, we define the model and set out our assumptions. Section 4 is devoted
to the decentralization of Edgeworth equilibria with linear prices and thus establishes the existence
of equilibrium.

2. Preliminaries

For details regarding Riesz spaces that are not explained below we refer the reader to Aliprantis
and Burkinshaw (1985, 2003). This paper will utilize the notion of the Riesz–Kantorovich func-
tional studied in Aliprantis, Tourky, and Yannelis (2000); Aliprantis and Tourky (2002) and used
extensively in Aliprantis, Tourky, and Yannelis (2001); Aliprantis, Florenzano, and Tourky (2004b,
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2005). We shall briefly introduce this formula here and refer the reader to Aliprantis and Tourky
(2002) for a more complete discussion.

Let L be an ordered vector space. Recall that the decomposition property states that if x,
y1, y2 ∈ L+ satisfy 0 ≤ x ≤ y1 + y2, then there exist vectors x1 and x2 such that 0 ≤ x1 ≤ y1,
0 ≤ x2 ≤ y2 and x = x1 + x2. The order dual L∼ is the vector space consisting of all linear
functionals on L which map order intervals of L to order bounded subsets of R, ordered by the
relation f ≥ g whenever f(x) ≥ g(x) for all x ∈ L+.

We start with the following classical result from the theory of partially ordered vector spaces
due to F. Riesz and L. V. Kantorovich.

Theorem 2.1 (Riesz–Kantorovich). If L is an ordered vector space with a generating cone and
the decomposition property, then the order dual L∼ is a Riesz space and for each f, g ∈ L∼ and
x ∈ L+ its lattice operations are given by:

[f ∨ g](x) = sup
{
f(y) + g(z) : y, z ∈ L+ and y + z = x

}
, and

[f ∧ g](x) = inf
{
f(y) + g(z) : y, z ∈ L+ and y + z = x

}

In particular, if L has the decomposition property, then for any finite collection of linear func-
tionals f1, f2, . . . , fm ∈ L∼ their supremum in L∼ at each x ∈ L+ is given by

[ m∨

i=1

fi

]
(x) = sup

{ m∑

i=1

fi(xi) : xi ∈ L+ for each i and
m∑

i=1

xi = x
}

. (⋆)

For any positive integer m and x ∈ L+ define

Am
x =

{
(x1, . . . , xm) ∈ Lm

+ :

m∑

i=1

xi = x
}

.

The formula (⋆) that gives the supremum of the order bounded linear functionals f1, . . . , fm is
called the Riesz–Kantorovich formula of these functionals. The useful observation here is that if
each fi is an arbitrary function from L+ to (−∞,∞], then the right-hand side of (⋆) still defines
an extended real number for each x ∈ L+. That is, the formula appearing in (⋆) defines a function
from L+ to (−∞,∞] called the Riesz–Kantorovich functional of the m-tuple of functions
f = (f1, . . . , fm) and denoted Rf . In other words, Rf : L+ → (−∞,∞] is defined for each x ∈ L+

by

Rf (x) := sup
{ m∑

i=1

fi(xi) : (x1, . . . , xm) ∈ Am
x

}
.

If each fi is a function that carries order intervals to bounded from above subsets of R, then the
Riesz–Kantorovich functional is real-valued. Moreover, if each fi is super-additive and positively
homogeneous, then the Riesz–Kantorovich functional Rf is likewise super-additive and positively
homogeneous; in particular, it is a concave function.

Let us now associate with each fi : L+ → (−∞,∞) the function f̂i : L → [−∞,∞) defined by

f̂i(x) :=

{
fi(x) if x ∈ L+ ,
−∞ otherwise .
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If each fi is finite-valued, it is easy to see that for x ∈ L+, Rf (x) is given by the value at x of the

sup-convolution1 of functions f̂i defined by

[
∇m

i=1f̂i

]
(x) := sup

{ m∑

i=1

f̂i(xi) :
m∑

i=1

xi = x
}

.

Definition 2.2. We will say that Rf is exact at x with respect to a vector (x1, . . . , xm) ∈ Am
x if

Rf (x) =
[
∇m

i=1f̂i

]
(x) =

m∑

i=1

f̂i(xi) =
m∑

i=1

fi(xi) .

Let 〈X, X ′〉 be a dual system and let f ∈ R
X

. Recall that a vector y′ ∈ X ′ is called a
supergradient of f at x if f(x) is finite and f(y)−f(x) ≤ 〈y−x, y′〉 for all y ∈ X. The (possibly
empty) set of all supergradients of f at x is called the superdifferential at x of the function f
and denoted ∂f(x).

The following standard result, see for example (Laurent, 1972, Proposition 6.6.4), will be used
in our work.

Theorem 2.3 (Moreau, 1967). Assume that 〈X, X ′〉 is an arbitrary dual system. For each i =
1, . . . ,m, let gi : X → [−∞,∞] be a non identically equal to −∞ function. If the sup-convolution
∇m

i=1gi is exact at x with respect to some (x1, . . . , xm) ∈ Xm that satisfies x =
∑m

i=1
xi, then

∂
[
∇m

i=1gi

]
(x) =

m⋂

i=1

∂gi(xi).

3. The economic model

In what follows, if L is an ordered linear space, then for the sake of notational convenience,
L+ or L+ will denote the positive cone of L. The commodity space of our model is an ordered
vector space L equipped with a Hausdorff locally convex topology τ such that:

(A1) The positive cone L+ of L is generating (i.e., L = L+ − L+) and τ -closed.
(A2) The order intervals of L are τ -bounded.

The topological dual of (L, τ) (i.e., the vector space of all τ -continuous linear functionals on L)
will be denoted L′. The algebraic dual of L (i.e., the vector space of all linear functionals on L) is
denoted L∗. The order dual of L (i.e., the vector space of all order-bounded linear functionals on
L) is denoted L∼. Since every order interval of L is τ -bounded, it follows that L′ ⊆ L∼ ⊆ L∗.

1 Let R = R∪{−∞,∞} denote the set of extended reals. Using the convention +∞+(−∞) = −∞+(+∞) = −∞,

the addition in R can be extended to R. Then for f ∈ R
L

and g ∈ R
L
, the formula [f∇g](x) = sup

˘

f(y)+g(z) : y, z ∈

L and y+z = x
¯

defines an extended real-valued function f∇g called the sup-convolution of f and g. The expression

f∇g is also called by Rockafellar and Wets (1998) the hypo-addition of functions f and g, because if hypo f denotes
the hypograph of f , one has hypo(f∇g) = hypo f + hypo g, as long as the supremum defining [f∇g](x) is attained

when finite.
More generally, for any finite collection of functions g1, g2, . . . , gm ∈ R

L
, the formula ∇m

i=1
gi(x) =

sup
˘

Pm
i=1

gi(xi) :
Pm

i=1
xi = x

¯

defines the sup-convolution of functions gi. The sup-convolution ∇m
i=1

gi is said

to be exact at x =
Pm

i=1
xi if ∇m

i=1
gi(x) =

Pm
i=1

gi(xi).
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Given the commodity space L, a private ownership production economy is an ordered tuple

E =
((

Xi, Pi, ωi

)
i∈I

, (Yj)j∈J , (θij)i∈I,j∈J

)

where I = {1, . . . ,m} is a finite set of m (≥ 2) consumers, J = {1, . . . , n} is a finite set of n (≥ 1)
producers. Each consumer i is characterized by a non-empty consumption set Xi ⊆ L, an
initial endowment ωi ∈ Xi and an irreflexive preference correspondence Pi : Xi →→Xi, i.e.,
xi /∈ Pi(xi) for each xi ∈ Xi. Each producer j is characterized by a non-empty production set

Yj ⊆ L. For every producer and each consumer, the firm shares 0 ≤ θij ≤ 1 classically represent a
contractual claim of consumer i to the profit of producer j and

∑
i∈I θij = 1 for each j ∈ J . In a

core and Edgeworth equilibrium approach, the relative shares θij reflect consumers’ stockholdings
that represent proprietorships of production possibilities and θijYj is the portion of the j producer’s
technology set at i’s disposal.

Let ω =
∑

i∈I ωi be the total endowment, and let Aω be the set of all allocations of E , that
is,

Aω =
{

(x, y) =
(
(xi)i∈I , (yj)j∈J

)
∈

∏

i∈I

Xi ×
∏

j∈J

Yj :
∑

i∈I

xi = ω +
∑

j∈J

yj

}
.

The set Xω, the projection of Aω on
∏

i∈I Xi,
2 is the set of all consumption allocations.

We recall the following standard notions of equilibria for an economy E .

Definition 3.1. A 3-tuple (x, y, p) consisting of an allocation (x, y) and a non-zero linear func-
tional p is said to be:

(1) a quasi-equilibrium, if
(a) for every i ∈ I we have p(xi) = p(ωi) +

∑
j∈J θijp(yj) and xi ∈ Pi(xi) implies

p(xi) ≥ p(xi), and
(b) for every j ∈ J and every yj ∈ Yj we have p(yj) ≤ p(yj);

(2) an equilibrium, if it is a quasi-equilibrium and if xi ∈ Pi(xi) implies p(xi) > p(xi).

We emphasize that the notion of quasi-equilibrium in the infinite dimensional setting is vacuous
without an additional restriction.

Definition 3.2. A quasi-equilibrium (x, y, p) is said to be non-trivial if for some i ∈ I we have

inf{p(zi) : zi ∈ Xi} < p(xi).

In this paper, we will be interested only in non-trivial quasi-equilibria. If (x, y, p) is some
trivial quasi-equilibrium, then for every feasible allocation (x, y), the pair

(
(x, y), p

)
is also a

quasi-equilibrium. On the other hand, if the quasi-equilibrium (x, y, p) is non-trivial, then it is
well-known that, under some continuity condition on preferences or concavity for utility functions
and some weak irreducibility assumption on the economy, the quasi-equilibrium (x, y, p) is actually
an equilibrium.

The following notions of optimality are also standard.

Definition 3.3. A consumption allocation x ∈ Xω is said to be:

(1) weakly Pareto optimal, if there is no consumption allocation x ∈ Xω satisfying xi ∈
Pi(xi) for each i ∈ I,

2 That is, Xω =
˘

x = (xi)i∈I ∈
Q

i∈I Xi :
P

i∈I xi = ω +
P

j∈J yj for some (yj)j∈J ∈
Q

j∈J Yj}.
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(2) a core allocation, if it cannot be blocked by any coalition in the sense that there is no
coalition S ⊆ I and some x ∈

∏
i∈S Xi such that:

(a)
∑

i∈S xi ∈
∑

i∈S ωi +
∑

i∈S

∑
j∈J θijYj, and

(b) xi ∈ Pi(xi) for all i ∈ S,
(3) an Edgeworth equilibrium, if it belongs to the core of every r-fold replica of E,3

(4) a fuzzy core allocation, if there exist no τ = (τi)i∈I ∈ [0, 1]I \{0} and x ∈
∏

i∈I Xi such
that:
(a)

∑
i∈I τixi ∈

∑
i∈I τiωi +

∑
i∈I τi

∑
j∈J θijYj, and

(b) xi ∈ Pi(xi) for all i ∈ I with τi > 0.

From now on, we impose on E the following conditions.

Standard assumptions and ω-properness: That is,
(1) For each consumer i, the consumption set Xi is convex, and ω =

∑
i∈I ωi > 0.

(2) For each i and every weakly Pareto optimal consumption allocation x = (xi)i∈I ,
xi ∈ cl Pi(xi), Pi(xi) is open in Xi for some linear topology on L (or is induced by a
concave utility function) and is ω-proper at xi in the following sense adapted from

Tourky (1998): There exist in L a convex set P̂i(xi) and a convex set Zi(xi) such that

(a) the vector xi + ω is a τ -interior point of P̂i(xi),

(b) P̂i(xi) ∩ Zi(xi) = Pi(xi),
(c) xi, 0, ωi ∈ Zi(xi), Zi(xi) + L+ ⊆ Zi(xi), and
(d) for every u > 0 and every couple {zi, z

′
i} of elements of Zi(xi), if −u ≤ zi and

−u ≤ z′i, then there exists z ∈ Zi(xi) such that −u ≤ z ≤ zi and −u ≤ z ≤ z′i.
(3) For each producer j, the production set Yj is convex and 0 ∈ Yj .
(4) For each j and every yj ∈ Yj associated with a weakly Pareto optimal consumption

allocation, Yj is ω-proper at yj in the following sense adapted from Tourky (1999):

There exist in L a convex set Ŷj(yj) and a convex set Zj(yj) such that

(a) the vector yj − ω is a τ -interior point of Ŷj(yj),

(b) Ŷj(yj) ∩ Zj(yj) = Yj , and
(c) 0 ∈ Zj(yj) and Zj(yj) − L+ ⊆ Zj(yj),
(d) for every u > 0 and every couple {zj , z

′
j} of elements of Zj(yj), if zj ≤ u and

z′j ≤ u, then there exists z ∈ Zj(yj) such that zj ≤ z ≤ u and z′j ≤ z ≤ u.

An economy satisfying these assumptions will be referred to as an ω-proper economy.

Compactness: For some Hausdorff linear topology σ on L, the set Xω of all consumption
allocations is σm-compact and preferences have σ-open (in Xi) lower sections P−1

i (xi) =
{x′

i ∈ Xi : xi ∈ Pi(x
′
i)}.

It is worth noticing that in the consumption case if L is a Riesz space, then our assumptions
on the sets Zi(xi) are satisfied by the assumption of Tourky (1998) where each Zi(xi) is a convex
lattice containing 0, ωi, xi and satisfying Zi(xi) + L+ ⊆ Zi(xi). Our assumptions however do
not imply that L+ is a lattice cone. For the production case, the sets Zj(yj) correspond to the
pretechnology sets defined by Mas-Colell (1986b) and Richard (1989).

The following lemma follows from the previous assumptions and Florenzano (1990).

3 The ideas in this definition go back to Debreu and Scarf (1963). An important reference is also Aubin (1979).
Edgeworth equilibria were introduced and studied in Aliprantis, Brown, and Burkinshaw (1987a).
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Lemma 3.4. In our economy, Edgeworth equilibria exist and belong to the fuzzy core.

As seen in Allouch and Florenzano (2004), one can prove that if preference correspondences are
derived from quasiconcave utility functions defined on general consumption sets, our compactness
condition can be replaced by a weaker compactness assumption made in the utility space on the
“utility set”.4

4. Decentralizing Edgeworth equilibria

For the discussion of this section, we fix an Edgeworth equilibrium consumption allocation
(xi)i∈I , thus a fuzzy core consumption allocation of E , and (yj)j∈J , the associated production

allocation. Such an allocation
(
(xi)i∈I , (yj)j∈J

)
exists by Lemma 3.4. The proof of its possible

decentralization by prices in L′ will adapt ideas of (Florenzano, 2003, Chapter 5.3.4) where is
proved the decentralization of Edgeworth equilibria of an ω-proper production economy defined on
a vector lattice commodity space. For technical details not covered in this paper, we refer to that
chapter.

Since L+ is by (A1) generating, we can choose u > 0 in L such that the order interval [−u, u]
contains xi, ωi, yj for all i ∈ I and j ∈ J . Now consider the ordered vector subspace Lu =⋃

λ>0
λ[−u, u] equipped with the order topology. This space is Archimedean (a property inherited

from L of which the positive cone is τ -closed) and has u as an order unit.5 Its order topology (i.e.,
the finest locally convex topology on Lu for which every order interval is bounded) is normable
[see (Schaefer, 1971, Chapter V 6.2)]. More precisely, the gauge ‖ · ‖u of [−u, u], defined for each
z ∈ Lu by

‖z‖u = inf
{
λ > 0: − λu ≤ z ≤ λu

}
,

is a norm on Lu that generates the order topology whose closed unit ball is precisely the order
interval [−u, u] and u is an interior point of L+

u = Lu∩L+. Moreover, it follows from (A2) (namely
from the fact that [−u, u] is τ -bounded) that on Lu the order topology is finer than the topology
induced by τ . In addition, it is not difficult to see that the cone L+

u is ‖ · ‖u-closed in Lu.6

Let Eu be the economy E restricted to Lu in an obvious way. For each consumer i, Xu
i = Xi∩Lu,

and for each xi ∈ Xu
i , Pu

i (xi) = Pi(xi) ∩ Lu; for each producer j, Y u
j = Yj ∩ Lu. It is easily seen

that the consumption allocation (xi)i∈I is an Edgeworth equilibrium and belongs to the fuzzy core
of Eu. It follows from the ω-properness of E that for each i and any 0 < α ≤ 1, the vector xi + αω
belongs to the norm-interior of Pu

i (xi). But then from the standard decentralization result in
presence of an interiority property that there exists a nonzero pu ∈ (Lu, ‖ · ‖u)′ such that (x, y, pu)
is a quasi-equilibrium of the restricted economy Eu and pu(ω) > 0.

Before going further, let us recall an extension lemma due to Podczeck (1996) whose a proof
can be found in (Florenzano, 2003, Lemma 5.3.1, p. 134).

Lemma 4.1 (Podczeck). Let (L, τ) be an ordered topological vector space, let K be a vector subspace
of L (endowed with the induced order), let A be a convex subset of K such that A + K+ ⊆ A, let

4 That is, the set of feasible and individually rational utility vectors.
5That is, the order interval [−u, u] is radial at the origin.
6 Indeed, if {xn} ⊆ L+ satisfies − 1

n
u ≤ x − xn ≤ 1

n
u for all n, then from x = (x − xn) + xn ≥ x − xn ≥ − 1

n
u

and the Archimedean property we easily obtain x ≥ 0.
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V be a convex τ -open subset of L such that V ∩ A 6= 6©, and let a ∈ A ∩ cl V . If p is a linear
functional on K satisfying

p · a ≤ p · x, for all x ∈ V ∩ A,

then there exists some π ∈ L′ such that π|K ≤ p, and

p · (a − x) = π · (a − x) for each x ∈ A with x ≤ a .

The following obvious consequence of the preceding lemma was stated in Florenzano and
Marakulin (2001).

Corollary 4.2. Let (L, τ) be an ordered topological vector space , let K be a vector subspace of L
(endowed with the induced order), let A be a convex subset of K such that A − K+ ⊆ A, let V be
a convex τ -open subset of L such that V ∩ A 6= 6©, and let a ∈ A ∩ cl V . If p is a linear functional
on K satisfying

p · a ≥ p · x, for all y ∈ V ∩ A ,

then there exists some π ∈ L′ such that π|K ≤ p, and

p · (a − y) = π · (a − y) for each y ≥ a, y ∈ A .

Our next step associates with the quasi-equilibrium price pu a finite list of τ -continuous linear
functionals πu =

(
(πu

i )i∈I , (π
u
j )j∈J

)
defined on the whole commodity space. These continuous

linear functionals can be thought of as personalized supporting prices for each consumer and each
producer at the corresponding component of the allocation (x, y).

Proposition 4.1. In our economy, there exist (πu
i )i∈I , (πu

j )j∈J in L′ such that:

(1) For each consumer i we have
(a) πu

i ≤ pu on Lu,

(b) πu
i · P̂i(xi) ≥ πu

i · xi , and
(c) if zi ∈ Zi(xi) ∩ Lu satisfies zi ≤ xi, then

pu · (xi − zi) = πu
i · (xi − zi) = Rπu(xi − zi) .

(2) For each producer j we have
(a) πu

j ≤ pu on Lu,

(b) πu
j · Ŷj(yj) ≤ πu

j · yj , and
(c) if zj ∈ Zj(yj) ∩ Lu satisfies zj ≥ yj , then

pu · (zj − yj) = πu
j · (zj − yj) = Rπu(zj − yj) .

(3) Moreover,
(a) Rπu ≤ pu on Lu, and

(b) if v ≤ ω satisfies v =
∑

i∈I vi−
∑

j∈J wj ∈
[∑

i∈I

(
Zi(xi)∩Lu

)
−

∑
j∈J

(
Zj(yj)∩Lu

)]
,

then

pu(ω − v) = Rπu(ω − v) .

Proof. Using Lemma 4.1 and its corollary with K = Lu and for each i, a = xi, A = Zi(xi) ∩ Lu,

V = int P̂i(xi), for each j, a = yj , A = Zj(yj)∩Lu, V = int Ŷj(yj), the existence of (πu
i )i∈I , (πu

j )j∈J

in L′ satisfying (1), (2) and (3)(a) is a straightforward consequence of the fact that (x, y, pu) is
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a quasi-equilibrium of the restricted economy Eu and of the ω-properness assumptions at each
component of the allocation (x, y).

To prove (3)(b), assume that v ≤ ω, v =
∑

i∈I vi −
∑

j∈J wj with each vi ∈ Zi(xi) ∩ Lu and

each wj ∈ Zj(yj) ∩ Lu. Let zi ∈ Zi(xi) ∩ Lu be such that zi ≤ {vi, xi} and zj ∈ Zj(yj) ∩ Lu be
such that zj ≥ {wj , yj}. Such zi and zj exist in view of the definition of Lu and our assumptions
on sets Zi(xi) and Zj(yj). On one hand, using (1)(c), (2)(c) and the superadditivity of Rπu , it
follows from (1)(a) and (2)(a) that

(pu −Rπu)(ω − v) = (pu −Rπu)
(∑

i∈I

xi −
∑

j∈J

yj −
∑

i∈I

vi +
∑

j∈J

wj

)

≤ (pu −Rπu)
(∑

i∈I

(xi − zi) +
∑

j∈J

(zj − yj)
)

= 0 .

On the other hand, it follows also from (1)(a) and (2)(a) that (pu−Rπu)(ω−v) ≥ 0, which implies
(pu −Rπu)(ω − v) = 0

The following corollary can be seen as an analogue for the production economy Eu of Proposition
5.1 in Aliprantis et al. (2004b) which extends at several instances statement (1) of Theorem 7.5 in
Aliprantis et al. (2001) .

Corollary 4.3. We have in addition:

(1) xi ∈ Pu
i (xi) =⇒Rπu

(xi − zi) ≥ Rπu
(xi − zi) for every zi ∈ Zi(xi) ∩ Lu, zi ≤ {xi , xi }.

(2) yj ∈ Y u
j =⇒Rπu

(zj − yj) ≥ Rπu
(zj − yj) for every zj ∈ Zj(yj) ∩ Lu, zj ≥ {yj , yj }.

(3) If for each i, z′i ∈ Zi(xi) ∩ Lu, z′i ≤ {ωi , xi}, if for each j, z′j ∈ Zj(yj) ∩ Lu, z′j ≥ {0, yj},
then
(a) Rπu

(ω −
∑

i∈I z′i +
∑

j∈J z′j) =
∑

i∈I πu
i (xi − z′i) +

∑
j∈J πu

j (z′j − yj), and

(b) for each i, πu
i · (xi − z′i) +

∑
j∈J θijπ

u
j · (z′j − yj) ≥ Rπu

(ωi − z′i +
∑

j∈J θijz
′
j).

Proof. To prove (1), let us assume xi ∈ Pu
i (xi) and zi ∈ Zi(xi) ∩ Lu,zi ≤ {xi , xi }. Recall that

Pi(xi) = P̂i(xi) ∩ Zi(xi), thus that Pu
i (xi) = P̂i(xi) ∩ Zi(xi) ∩ Lu. We then easily deduce from

Proposition 4.1 that:

Rπu
(xi − zi) ≥ πu

i · (xi − zi) ≥ πu
i · (xi − zi) = Rπu

(xi − zi).

The proof of (2) is done symmetrically. The proof of (3) goes as follows.
Using the superadditivity of Rπu

, the last assertion of Proposition 4.1, and assuming that for
each i, z′i ∈ Zi(xi) ∩ Lu, z′i ≤ {ωi , xi}, and for each j, z′j ∈ Zj(yj) ∩ Lu, z′j ≥ {0, yj}, we get

pu

(
ω −

∑

i∈I

z′i +
∑

j∈J

z′j

)
= Rπu

(
ω −

∑

i∈I

z′i +
∑

j∈J

z′j

)
≥

∑

i∈I

Rπu(xi − z′i) +
∑

j∈J

Rπu(z′j − yj)

=
∑

i∈I

πu
i (xi − z′i) +

∑

j∈J

πu
j (z′j − yj) = pu

(
ω −

∑

i∈I

z′i +
∑

j∈J

z′j

)
.

This proves the first assertion of (3).
Finally, recall that (x, y, pu) is a quasi-equilibrium of Eu. We thus have for every i,

pu · xi = pu · ωi +
∑

j∈J

θijpu · yj . (4.1)
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From (4.1), using (1)(c) and (2)(c) of Proposition 4.1, we deduce easily from that for each i,

Rπu
(xi − z′i) +

∑

j∈J

θijRπu
(z′j − yj) = pu · (xi − z′i) +

∑

j∈J

θijpu · (z′j − yj)

= pu · (ωi − z′i) +
∑

j∈J

θijpu · z′j ≥ Rπu

(
ωi − z′i +

∑

j∈J

θijz
′
j

)
,

which completes the proof.

Let us now recall some notions of properness for functions on L+.

Definition 4.4. Let v ∈ L+ be such that v > 0. We say that a function f : L+ → R is:

(1) v-proper at some x ∈ L+, if there exists a convex set F such that:
(a) x + v is an interior point of F , and
(b) F ∩ L+ = {y ∈ L+ : f(y) > f(x)}.

(2) v-pointwise proper at x ∈ L+, if there exists an open pointed convex cone Γx such that:
(a) −v ∈ Γx, and
(b) (x − Γx) ∩

{
y ∈ L+ : f(y) > f(x)

}
= 6©.

Considering the set {y ∈ L+ : f(y) > f(x)} as a preferred set for a preference correspondence
defined on L+ by the utility function f , the reader recognizes in these definitions the usual notions
of v-pointwise properness as defined by Mas-Colell (1986a) and of v-properness as defined by
Tourky (1998). Mas-Colell (1986a) defines uniform properness on a subset X of L+ as properness
at every x ∈ X with a properness vector and a properness cone independent of x.7 The definition
of uniform v-properness given here is quite similar.

Definition 4.5. A function f : L+ → R is uniformly v-proper on X ⊂ L+ if for every x ∈ X
there exist a convex set Fx and a τ -neighborhood V of 0 (independent of x) such that

(a) x + v + V ⊆ Fx, and
(b) Fx ∩ L+ = {y ∈ L+ : f(y) > f(x)}.

We now introduce the following additional assumption of compatibility between the order struc-
ture and the topology τ of the commodity space of our economy.

(A3) For any finite list f = (f1, . . . , fℓ) of continuous linear functionals satisfying fk(ω) > 0 for
each k, the Riesz–Kantorovich functional Rf is uniformly ω-proper at any point ω′ ≥ ω.

Remark 4.6. Condition (A3) is automatically satisfied if the commodity space is a locally convex
vector lattice and its dual is a vector sublattice of the order dual. Indeed, in this case, it follows
from Theorem 2.1 that the Riesz–Kantorovich functionals are linear and τ -continuous. Assume
now that f is a finite list of continuous linear functionals (fk)K

k=1 such that fk(ω) > 0 for each k
(which implies Rf (ω) > 0). For each ω′ ∈ L+, define Fω′ = {y ∈ L : g(y) > g(ω′)}, where g is the
continuous linear functional which coincides with Rf on L+. If V is a τ -neighborhood of 0 such
that g(ω + V ) > 0, then g(ω′ + ω + V ) > g(ω′), thus ω′ + ω + V ⊆ Fω′ , while Fω′ ∩ L+ = {y ∈
L : Rf (y) > Rf (ω′)}.

7If v is the properness vector, recall that Mas-Colell’s uniform properness on L+ implies v-properness [see Tourky
(1998)].
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We can provide a simple way of identifying order structures on Banach spaces that satisfy
condition (A3). Recall that a subset A of an ordered set dominates a point x, in symbols A ≥ x,
if a ≥ x holds true for each a ∈ A.

Theorem 4.7. Let L be an ordered Banach space with a closed generating cone, weakly compact
order intervals and admitting a strictly positive linear functional. In this case, condition (A3) is
satisfied if for any finite list f = (f1, . . . , fℓ) of positive (necessarily continuous) linear functionals
there exists a weak∗ compact set G ⊆ L′ that dominates each fk and satisfies

inf{g(x) : g ∈ L′ and g ≥ fk for all k = 1, . . . , ℓ} = min{g(x) : g ∈ G} ,

for each x ∈ L+.

Proof. Let f = (f1, . . . , fℓ) be a finite list of continuous linear functionals satisfying fk(ω) > 0 for
all k. Since in ordered normed spaces the norm boundedness of order intervals is equivalent to
the normality of the cone, it follows that L′

+ is a generating cone. In particular, there exists some
positive linear functional h such that h ≥ −fk for each k. Now if h1 is a strictly positive linear
functional and we let p = h + h1, then fk + p is strictly positive for each k = 1, . . . , ℓ. By our
assumption there exists a weak∗ compact set G ⊆ L′ that dominates each fk + p such that

inf{g(x) : g ∈ L′ and g ≥ fk + p for all k = 1, . . . , ℓ} = min{g(x) : g ∈ G} ,

holds true for each x ∈ L+.
Let W = {x ∈ L : g(x) ≥ 0 for all g ∈ G}. Notice that W is a closed wedge that contains ω

as an interior point. Moreover, we have L+ ⊆ W. Next, define the mapping M : W → R via the
formula

M(x) = min{g(x) : g ∈ G} .

We show that M is a norm lower semicontinuous function. Suppose that ‖xα − x‖ → 0, where
{xα} is a net of W such that M(xα) ≤ c. Let {gα} be the net of corresponding minimizers in G.
By passing to a subnet (if necessary), we can assume without loss of generality that gα

w∗

−→ g in L′.
It easily follows that gα(xα) → g(x). Therefore, M(x) ≤ g(x) ≤ c.

Clearly, M is positively homogeneous. That is M(λx) = λM(x) for all λ ≥ 0. We show
that it is super-additive. Pick x, y ∈ W and pick h1, h2 ∈ G such that let h1(x) = M(x) and
h2(y) = M(y) be the respective minimizers. Now for any g ∈ G we have g(x + y) ≥ h1(x) + h2(y).
Therefore, M(x + y) ≥ M(x) + M(y).

We return to the list f . Let Mf (x) = min{g(x) : g ∈ G − p}. Notice that for any x ∈ W we
have Mf (x) = M(x) − p(x). Therefore, for x, y ∈ W we have

Mf (x + y) = M(x + y) − p(x + y) ≥ M(x) + M(y) − p(x) − p(y) = Mf (x) + Mf (y) .

That is, Mf is super-additive. Clearly, it is also positively homogeneous. These two facts imply
that the upper sections Ux = {y ∈ W : Mf (y) ≥ Mf (x)} are convex sets for each x ∈ W.

Now we know that Mf (ω) = M(ω)−p(ω) > 0. Since M is lower semicontinuous, Mf is likewise
lower semicontinuous and so there exists an open ball V centered at ω satisfying V ⊆ W and
M(v) > p(v) for all v ∈ V .

Next, pick any x ∈ W and notice that for any v ∈ V we have Mf (x + v) ≥ Mf (x) + Mf (v).
Because Mf (v) = M(v)−p(v), this implies that Mf (x+v) > Mf (x). Therefore, Mf is ω-uniformly
proper at each x ∈ L+.

It is shown in (Aliprantis and Tourky, 2002, Theorem 7.6, p. 2072) that for any x ∈ L+ that if
π = (f1 + p, f2 + p, . . . , fℓ + p), then we have Rπ(x) = M(x). Clearly, Rf = Rπ − p. Therefore,
Rf (x) = Mf (x) for all x ∈ L+, and the proof is finished.
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Examples of closed generating cones that satisfy the assumptions of Theorem 4.7 are the gen-
erating polyhedral cones in finite dimensional spaces.

We move to the first application of (A3).

Proposition 4.2. Under (A3), there exists a price system πu ∈ L′ such that πu · ω > 0 and
(x, y, πu) is a quasi-equilibrium of Eu.

Proof. Let us consider the set Ω of all ω′ = ω−
∑

i∈I z′i+
∑

j∈J z′j , where for each i, z′i ∈ Zi(xi)∩Lu,

z′i ≤ {0, ωi , xi}, and for each j, z′j ∈ Zj(yj)∩Lu, z′j ≥ {0, yj}. This set is nonempty in view of the
definition of Lu and our assumptions on Zi(xi) and Zj(yj). It is directed by the relation

ω′′ ≥ ω′ if and only if for each i and j, z′′i ≤ z′i and z′′j ≥ z′j .

Moreover, if ω′ ∈ Ω then z′i ≤ 0 for each i and z′j ≥ 0 for each j imply ω′ ≥ ω > 0. From (3) in
Corollary 4.3, it follows that the Riesz–Kantorovich functional Rπu

is exact at each ω′ ∈ Ω. From
Proposition 4.1, it is easily deduced that for each i, either πu

i = 0 or πu
i · ω > 0, that for each j,

either πu
j = 0 or πu

j · ω > 0, that Rπu(ω) = pu(ω) > 0, thus that at least one of the πu
i , πu

j is
nonzero. Set P (ω′) = {z ∈ L+ : Rπu

(z) > Rπu
(ω′)}. Applying Assumption (A3), there exist a

0-neighborhood V and for each ω′ ∈ Ω, a convex set P̂ (ω′) such that ω′ + ω + V ⊆ P̂ (ω′) and

P (ω′) = L+ ∩ P̂ (ω′).
Note that

Rπu
(ω′ + αω) ≥ Rπu

(ω′) + αRπu
(ω) > Rπu

(ω′) every 0 < α ≤ 1,

so that ω′ belongs to the closure of P̂ (ω′). Now, if z ∈ P̂ (ω′)∩L+
u , then Rπu

(z) > Rπu
(ω′) = pu(ω′).

From Rπu ≤ pu on Lu, it follows that pu · z > pu ·ω′. If we define X = {z ∈ L+
u : pu · z ≤ pu ·ω′)},

the last observation can be rephrased as X ∩ P̂ (ω′) = 6©, so that to each ω′ ∈ Ω, we can associate

a nonzero πω′ ∈ L′ which separates P̂ (ω′) and X, that is,

πω′ · X ≤ πω′ · ω′ ≤ πω′ · P̂ (ω′). (4.2)

Since ω′ + ω is an interior point of P̂ (ω′), we have πω′ · ω > 0, and we can normalize prices letting

pu · ω = Rπu(ω) = πω′ · ω = 1. (4.3)

Let Lω′ be the ordered vector subspace Lω′ =
⋃

λ>0
λ[−ω′, ω′]. Clearly, Lω′ ⊂ Lu. We first claim

that πω′ = pu on Lω′ . Indeed, for every z ∈ L+
u , we know that

pu · z ≤ pu · ω′ =⇒ πω′ · z ≤ πω′ · ω′.

So, using the existence of Lagrange multipliers for a convex programming problem,8 there exist two
real numbers λ1 ≥ 0 and λ2 ≥ 0 not all equal to zero such that λ1[πω′ ·z−πω′ ·ω′] ≤ λ2[pu ·z−pu ·ω

′]
for every z ∈ L+

u . From πω′ ·ω = pu ·ω > 0, we easily deduce that (λ1, λ2) ≫ 0. Letting successively
z = 0 and z = 2ω′, we also see that for some λ > 0, πω′ ·ω′ = λpu ·ω

′ and πω′ · z ≤ λpu · z for every
z ∈ L+

u . The previous inequality holds in particular for every z ∈ L+

ω′ . Since ω′ is an interior point

(for the order topology) of L+

ω′ , it follows that πω′ = λpu on Lω′ . Recalling that πω′ · ω = pu · ω,
it follows that λ = 1.

8A simple proof of the existence of Lagrange multipliers for a convex programming problem can be found

in (Barbu, and Precupanu, 1986, Chapter 3, Theorem 1.1). See also Fan et al. (1957) and (Aliprantis and Border,
2006, Chapter 5, Theorem 5.70).
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Recalling that for each i, we have pu · xi = pu · ωi +
∑

j∈J θijpu · yj , that is,

pu · (xi − z′i) +
∑

j∈J

θijpu · (z′j − yj) = pu · (ωi − z′i) +
∑

j∈J

θijpu · z′j ,

we deduce from our first claim:

πω′ · (xi − z′i) +
∑

j∈J

θijπω′ · (z′j − yj) = πω′ · (ωi − z′i) +
∑

j∈J

θijπω′ · z′j ,

and, thus, for each i and for every ω′ ∈ Ω,

πω′ · xi = πω′ · ωi +
∑

j∈J

θijπω′ · yj . (4.4)

We next claim that for some µ > 0 (depending on ω′), µπω′ is a supergradient of Rπu
at

ω′. Indeed, from Rπu
(z) ≥ Rπu

(ω′) =⇒πω′(z) ≥ πω′(ω′) for every z ∈ L+, one deduces, as
previously, the existence of two real numbers µ1 ≥ 0 and µ2 ≥ 0 not all equal to zero such that
µ1[πω′ ·z−πω′ ·ω′] ≥ µ2[Rπu

(z)−Rπu
(ω′)] for every z ∈ L+. As previously, from Rπu

(ω) = πω′ ·ω >
0, one deduces (µ1, µ2) ≫ 0, so that for some µ > 0, µπω′ · ω′ = Rπu

(ω′) and µπω′ · z ≥ Rπu
(z)

for every z ∈ L+, which proves the claim.

Fix now (x, y) ∈
∏

i∈I Pu
i (xi) ×

∏
j∈J Y u

j . Let ω′
0 = ω −

∑
i∈I z′i0 +

∑
j∈J z′j0

where for each i,

z′i0 ∈ Zi(xi) ∩ Lu, z′i0 ≤ {0, xi, ωi , xi}, and for each j, z′j0
∈ Zj(yj) ∩ Lu, z′j0

≥ {yj , 0, yj}. Once

again, this is possible in view of the definition of Lu and our assumptions on Zi(xi) and Zj(yj).
For every ω′ ≥ ω′

0 in Ω, applying Theorem 2.3 and using (1) and (2) of Proposition 4.1, we get:

xi ∈ Pu
i (xi) =⇒πω′ · (xi − z′i) ≥ πω′ · (xi − z′i) =⇒πω′ · xi ≥ πω′ · xi (4.5)

and for each i, πu
i (xi − z′i) = πω′ · (xi − z′i),

yj ∈ Y u
j =⇒πω′ · (z′j − yj) ≥ πω′ · (z′j − yj) =⇒πω′ · yj ≤ πω′ · yj (4.6)

and for each j, πu
j (z′j − yj) = πω′ · (z′j − yj).

Let V be the τ -neighborhood of 0 referred to in Assumption A3. We can assume that V is
convex and circled. From (4.2), we deduce that πω′ · V ≤ πω′ · ω = 1, thus that each πω′ belongs
to V 0, the polar set of V in L′. Since L is locally convex, it follows from Alaoglu–Bourbaki’s
theorem that V 0 is τ -equicontinuous, thus σ(L′, L)-compact. Passing to a subnet if necessary, we
can assume that πω′

σ(L′,L)−−−−→πu ∈ L′ such that πu ·ω = 1. Passing to limit in the relations (4.5), (4.6)
and (4.4), we get πu · xi ≥ πuxi, πu · yj ≤ πuyj , and for each i, πu · xi = πu · ωi +

∑
j∈J θijπu · yj ,

which completes the proof that (x, y, πu) is a quasi-equilibrium of Eu.

To go further, we now consider the family U of all u > 0 in L such that the order interval [−u, u]
contains xi, ωi, yj for all i ∈ I and j ∈ J and notice that U is a directed set. We will apply the
previous result to the economies Eu defined as above and will pass to limit.

The next proposition is the main result of this paper.

Proposition 4.3. Under (A3), there exists a price system π ∈ L′ such that π · ω > 0 and
(x, y, π) is a quasi-equilibrium of E. This quasi-equilibrium is non-trivial if for some λ > 0,
λω ∈ ω +

∑
j∈J Yj −

∑
i∈I Xi.
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Proof. For each u ∈ U , in view of the previous proposition and of its proof, let πu ∈ L′ such that

πu · ω′ ≤ πu · P̂ (ω′) and (x, y, πu) is a quasi-equilibrium of Eu. Let V be the convex and circled

τ -neighborhood of 0 such that ω′ +ω +V ⊆ P̂ (ω′). As previously, πu ·V ≤ πu ·ω = 1, and passing
to a subnet if necessary, we can assume that πu

σ(L′,L)−−−−→π ∈ L′ such that π · ω = 1.
We now claim that π supports the allocation (x, y). To see that, fix now (x, y) ∈

∏
i∈I Pi(xi)×∏

j∈J Yj . By construction of U , all xi, yj belong to some Lu0 for u0 ∈ U and consequently to any
Lu ⊃ Lu0

. Passing to limit in the relations πu · xi ≥ πuxi and πu · yj ≤ πuyj , we get π · xi ≥ πxi

and π · yj ≤ πyj .
Passing to limit in the relations πu · xi = πu · ωi +

∑
j∈J θijπu · yj , we get that for each i,

π · xi = π · ωi +
∑

j∈J θijπ · yj , proving that (x, y, π) is a quasi-equilibrium of E .

Finally, assume that for some λ > 0, λω ∈ ω +
∑

j∈J Yj −
∑

i∈I Xi. From π · ω = 1, we deduce

that there exist x ∈
∏

i∈I Xi, y ∈
∏

j∈J Yj such that π · (ω +
∑

j∈J yj −
∑

i∈I xi) > 0. We then
have for some i0,

π · xi0 < π · ωi0 +
∑

j∈J

θi0jπ · yj ≤ π · ωi0 +
∑

j∈J

θi0jπ · yj = π · xiO
,

which proves that the quasi-equilibrium is non-trivial.

Remark 4.8. The condition for non-triviality is in particular satisfied if inaction is possible as
well for consumers (0 ∈ Xi) as for producers (0 ∈ Yj).

We conclude the paper with our main result.

Theorem 4.9. If (A1), (A2), and (A3) hold true for the commodity space, then an ω-proper and
compact production economy has a non-trivial quasi-equilibrium.

References

C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: A Hitchhiker’s Guide, 3rd

Edition, Springer–Verlag, Heidelberg and New York, 2006.
C. D. Aliprantis, D. J. Brown, and O. Burkinshaw, Edgeworth equilibria. Econometrica 55(3):

1109–1137, 1987a.
C. D. Aliprantis, D. J. Brown, and Burkinshaw, Edgeworth equilibria in production economies. J.

Econom. Theory 43(3):252–291, 1987b.
C. D. Aliprantis, D. J. Brown, and J. Werner, Minimum-cost portfolio insurance. J. Econom.

Dynam. Control 24(3):1703–1719, 2000.
C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York and London,

1985.
C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces with Applications to Economics,

American Mathematical Society, Mathematical Surveys and Monographs, Volume 105, Provi-
dence, RI, 2003.

C. D. Aliprantis, M. Florenzano, F. Martins Da Rocha, and R. Tourky, Equilibrium analysis in
financial markets with countably many securities. J. Math. Econom. 40(3):683–699, 2004a.

C. D. Aliprantis, M. Florenzano, and R. Tourky, General equilibrium analysis in ordered topological
vector spaces. J. Math. Econom. 40(3):247–269, 2004b.

C. D. Aliprantis, M. Florenzano, and R. Tourky. Linear and non-linear price decentralization. J.
Econom. Theory 121(3):51–74, 2005.



15

C. D. Aliprantis, P. K. Monteiro, and R. Tourky, Non-marketed options, non-existence of equilibria,
and non-linear prices. J. Econom. Theory 114(3):345–357, 2004c.

C. D. Aliprantis and R. Tourky, The super order dual of an ordered vector space and the Riesz–
Kantorovich formula. Trans.. Amer. Math. Soc. 354(3):2055–2077, 2002.

C. D. Aliprantis, R. Tourky, and N. C. Yannelis, The Riesz–Kantorovich formula and general
equilibrium theory. J. Math. Econom. 34(3):55–76, 2000.

C. D. Aliprantis, R. Tourky, and N. C. Yannelis, A theory of value: equilibrium analysis beyond
vector lattices. J. Econom. Theory 100(3):22–72, 2001.

N. Allouch and M. Florenzano, Edgeworth and Walras equilibria of an arbitrage-free exchange
economy. Econom. Theory 23(3):353–370, 2004.

J. P. Aubin, Mathematical Methods of Game and Economic Theory, North–Holland, Amsterdam
and New York, 1979.

V. Barbu and T. Precupanu, Convexity and Optimization in Banach spaces, D. Reidel Publishing
Company, Boston and Lancaster, 1986.

G. Debreu and H. Scarf, A limit theorem on the core of an economy. Internat. Econom. Rev. 4
(3):235–246, 1963.

K. Fan, I. L. Glicksberg, and A. J. Hoffman, Systems of inequalities involving convex functions.
Proc. Amer. Math. Soc. 13(3):617–622, 1957.

M. Florenzano, Edgeworth equilibria, fuzzy core and equilibria of a production economy without
ordered preferences. J. Math. Anal. Appl. 153(3):18–36, (1990).

M. Florenzano, General Equilibrium Analysis: Existence and Optimality Properties of Equilibria,
Kluwer Academic Publishers, Boston and London, 2003.

M. Florenzano and V. Marakulin, Production equilibria in vector lattices. Econom. Theory 17(3):
577–598, 2001.

P. J. Laurent, Approximation et Optimisation, Herman, Paris, 1972.
A. Mas-Colell, The price equilibrium existence problem in topological vector lattices. Econometrica

54(3):1039–1055, 1986a.
A. Mas-Colell, Valuation equilibria and Pareto optimum revisited. In W. Hildenbrand and A.

Mas-Colell (eds.), Contributions to Mathematical Economics. In honor of Gérard Debreu, North-
Holland, Amsterdam, 317–331, 1986.

A. Mas-Colell and S. F. Richard, A new approach to the existence of equilibria in vector lattices.
J. Econom. Theory 53(3):1–11, 1991.

J. J. Moreau, Fonctionnelles convexes, Séminaire sur les équations aux dérivées partielles, Collège
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