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Abstract: 

Non-parametric methods have been empirically proved to be of great interest in the statistical 

literature in order to forecast stationary time series, but very few applications have been 

proposed in the econometrics literature. In this paper, our aim is to test whether non-parametric 

statistical procedures based on a Kernel method can improve classical linear models in order to 

nowcast the Euro area manufacturing industrial production index (IPI) by using business 

surveys released by the European Commission. Moreover, we consider the methodology based 

on bootstrap replications to estimate the confidence interval of the nowcasts.  
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1. Introduction 

Accurate and timely information on the current state of economic activity is of great interest for 

market analysts and policy-makers. However, diffusion delays of the main economic indicators 

do not allow a true real-time assessment. For example, first estimates of the quarterly national 

accounts in the Euro area are released by Eurostat around 45 days after the end of the quarter. 

The same delay applies for the industrial production index (IPI hereafter), around 45 days after 

the end of the reference month. Thus, during this interval of time there is an uncertainty about 

the economic conditions. In this respect, several statistical procedures have been developed to 

provide a consistent picture of the current state of the economy by using more timely 

information conveyed by indicators (see, among others, Sédillot and Pain, 2005, Diron, 2006, or 

Angelini et al., 2008). This exercise is often referred to as nowcasting. Among those indicators, 

business and consumer surveys constitute very useful information set for analysts. Moreover, 

they are generally released the last working day of the reference month and they are not revised, 

or very slightly.  

 

In this paper, we focus on the one-month-ahead forecasting (or nowcasting) of the aggregated 

Euro area manufacturing industrial production index (IPI, hereafter) by using the industrial 

opinion surveys, released monthly by the of the European Commission. Several studies have 

empirically proved that those surveys are strongly linked to the fluctuations of the IPI (see 

Bengoechea et al., 2006 or Ferrara, 2005). Instead of using a parametric model to calibrate IPI 

with surveys, we propose here a non-parametric tool, which has never been considered for such 

exercise. Non-parametric methods have been empirically proved to be of great interest in order 

to forecast stationary time series (see for instance Matzner-Lober, Gannoun and De Gooijer, 

1998, or Thomakos and Guerard, 2004), mainly because they are easy to implement and provide 

competitive results. Especially, when comparing with classical ARMA processes, non-

parametric methods seem to give better results in the presence of non-linearities in time series 
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(see Cao and Vilar-Fernandez, 2005). However, very few applications have been proposed in 

the econometrics literature, see for instance Thomakos and Guerard (2004). We propose here a 

non-parametric bivariate procedure based on a Kernel method (see for instance Härdle and 

Vieu, 1992) in order to nowcast the euro area IPI and we compare the results with benchmark 

parametric models as regards both the root mean squared errors and the directional forecasts. 

Moreover, we provide bootstrapped confidence intervals for the nowcasts. In the next section, 

we briefly present the non-parametric forecasting method and section three contains the main 

results.  

 

2. Non-Parametric forecasting 

Let (Y1,…,YT) denote an observed covariance-stationary time series stemming from a p-order 

Markovian process (Yt)t, with p ≥ 1. Our aim is to forecast the value YT+k, k ≥ 1 being the 

horizon, by a non-parametric predictor . Among the diverse non-parametric forecasting 

methods, we focus in this paper on the Kernel-type k-step-ahead predictor. We refer to Bosq 

(1998) for further details on non-parametric prediction. In a first step, we present the univariate 

predictor, then we describe how to integrate information brought by another variable into a 

bivariate approach. Last, we deal with the empirical issues linked to this forecasting method and 

we present the bootstrap resampling method to compute confidence intervals.  

)(ˆ kYT

2.1. Univariate forecasting 

In this subsection, we assume that the whole information set is contained in the past values of 

the series of interest. The non-parametric predictor is strongly related to the notion of smoothing 

and can be seen as a kind of weighted average of the past values where the weights are 

adequately computed.  

First, we split the original series into two sub-series defined, for t = p,…,T-k, by (Yt+k)t,  and (Vt)t 

= (Yt, Yt-1 …,Yt-p+1)t. The first sub-series contains the k-step-ahead value we aim to predict in fine 
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(for t = T) and the second, (Vt)t, contains the information set related to the nature of the p-order 

process that will be useful to predict future values. In fact, due to p-order Markovian nature of 

the process, we assume that any value Yt can be explained by the p preceding values (Yt-1,…,Yt-p). 

The k-step-ahead Kernel-type non-parametric predictor is thus given by the following formula:  

  ,  ∑
−

=
+=

kT

pt
ktTtT YVwkY )()(ˆ

where :  

∑
−

=

−

−
= kT

pt
t

t
t

hVxK

hVxK
xw

)/)((

)/)((
)( , 

where h is a positive sequence, referred to as the bandwidth, which controls the size of the local 

neighbourhood and where K is a p-multivariate kernel function, defined as being continuous, 

positive, symmetric, integrable and integrates to one. Generally, the p-multivariate kernel 

function is the product of p univariate kernel (Kj)j=1,…,p defined on the interval ] -∝, +∝ [, such 

that:  

∏
=

=
p

j
jjn xKxxK

1
1 )(),...,(  

As regards the choice of the kernel, we refer to subsection 2.3. 

In fact, it can be shown that the kernel-type predictor minimizes the least-squares criteria and 

thus  is a non-parametric estimate of the conditional expectation of Y)(ˆ kYT T+k knowing all the 

past, namely . Thus, this predictor is often referred to as the conditional 

mean predictor. Other non-parametric predictor have been similarly proposed to estimate the 

location parameter of the conditional distribution of Y

...),,/( 1−+ TTkT YYYE

T+k, such as the conditional median and the 

conditional mode (see Matzner-Lober, Gannoun and De Gooijer, 1998, for a comparison of 

these approaches). As regards the asymptotic properties of this predictor, Collomb (1984) 

proved that kTT YkY +−)(ˆ  tends to zero almost surely as T→ ∝. 
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As a special case of this predictor, we consider the one-step-ahead predictor (k=1) and we 

assume that the generating process is a first order Markovian process (p=1). Hence, the kernel-

type predictor is defined as follows:  

∑
∑

−

=
+−

=

−

−
=

1

1
11

1
)/)((

)/)((
)1(ˆ

T

t
tT

t
tT

tT
T Y

hYYK

hYYK
Y .   

In this simple case, we clearly observe that the predictor  is a weighted average of past 

values where a higher weight is given to values Y

)1(T̂Y

t+1 for which the preceding value Yt is close to 

the last observed value YT.  

2.2. Bivariate forecasting 

Let us turn to the case where another variable (Xt)t may contain useful information to predict 

more efficiently YT+k. Thus, we observe two trajectories (Y1,…,YT) and (X1,…,XT) stemming from 

covariance-stationary Markovian processes of order, respectively, p and q. Here again, we split 

the time series (Yt)t into two sub-series, defined, for t = max(p-1,q), …, T-k, by: (Yt+k) and (Vt)t = 

(Yt, Yt-1 …,Yt-p+1, Xt, Xt-1 …,Xt-q)t. In this case, the information set is represented by the past 

values of the variable of interest (Yt)t and by the coincident and lagged values of the explanatory 

variable (Xt)t. The k-step-ahead Kernel-type non-parametric predictor is thus given by:  

  ,  ∑
−

−=
+=
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ktTtT YVwkY
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where:  
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where K is a p+q+1-multivariate kernel defined as the product of p+q+1 univariate kernels. 

As in the application presented in section 3, it may happen in practice that the explanatory 

variable (Xt)t is known at date T+s, where s ≥ 1. In this case, the vector of information (Vt)t is 

replaced by the vector (V’t)t defined, for t = max(p-1,q), …, T-k, by: 
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 (V’t)t = (Yt, Yt-1 …,Yt-p+1, Xt+s, Xt+s-1 …,Xt+s-q)t. 

For instance, consider the special case p=1 and q=0 and assume that the explanatory variable is 

known with an advance of s=1. The one-step-ahead predictor is thus given by:  

∑
∑

−
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+−

=
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T Y
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Obviously, this bivariate approach can be extended to the multivariate case by considering 

several explanatory variables  ,..., 21
tt XX

2.3. Empirical issues 

When dealing with parametric forecasting, the two main empirical issues are the specification of 

the adequate parametric model, supposed to reproduce the stylized facts of the series, and the 

parameter estimation. In the non-parametric framework, the corresponding issue is the choice of 

the smoothing parameters involved in the forecast procedure, namely the bandwidth h, the 

kernel K(.) and the order p. 

 

Several kernels have been proposed in the statistical literature to be implemented in non-

parametric forecasting. The most often used kernel is the Gaussian kernel defined as the density 

function of a standardized Gaussian distribution, i.e., for u∈ ] -∝, +∝ [:  

)2/exp(
2
1)( 2uuKG −=
π

 

Other used kernels are the Epanechnikov and the triangle respectively defined as follows, for u 

∈ ] -∝, +∝ [:   

{ }1
2 )1(

4
3)( ≤−= uE IuuK , 

{ }1)1()( ≤−= uT IuuK , 

where I{.} is the indicator function. Generally, the Gaussian kernel is preferred because an 
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optimal bandwidth h can be exhibited under this assumption.  

The choice of the bandwidth h is crucial in the non-parametric framework, because it controls 

the smoothing degree of the non-parametric estimate. Thus, the value of h is proportional to the 

bias and inversely proportional to the variance of the estimate. Therefore, the classical statistical 

trade-off between bias and variance arises. According to the classical literature on non-

parametric density estimation, a bandwidth which assures an optimal rate of convergence has 

been proposed by Deheuvels (1977), such as: , where)4/(1ˆ +−×= p
T Th σ Tσ̂ is the empirical 

standard error of the variable of interest and p the Markovian order. In this paper, we consider 

this latter bandwidth. It is noteworthy that data-driven approaches, like cross-validation (see 

Hardle and Vieu, 1992) are widely used in empirical studies to determine the optimal bandwidth 

in a, for example, forecasting sense.  

As regards the choice of Markovian orders p and q, there is, to our knowledge, no optimal 

theoretical approach. In this respect we advocate a data-driven approach by choosing the best 

orders that minimize a forecasting criterion (for example the root mean squared error, RMSE) 

over a learning set.  

2.4. Confidence intervals 

We consider now the construction of a confidence interval around the predictor . In 

opposition to parametric forecasting, no assumption is done for the residuals distribution. 

Therefore, we focus on the re-sampling smoothed bootstrap technique that provides confidence 

intervals when the underlying distribution is unknown. Let consider the learning set (Y

)1(T̂Y

t Xt)t from 

t=1 to t=t0 with t0 ≤ t1 ≤ t2 ≤ …≤ T . For t=1,…,T we get n = T- t1 +1 residuals εt, t=t1,…,T, by :  

)1(ˆ
1−−= ttt YYε .  

As regards the confidence interval for , we compute B replications of the smoothed 

bootstrap residuals (see for instance Cao and Vilar-Fernandez, 2005) defined by, for i=1,…,B:  

)1(T̂Y
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,* iIi g
i

ξεε +=  

where Ii is a discrete random variable with uniform distribution in {1,…,n}, ξi is a standard 

Normal random variable and g is the smoothing parameter such as g = (4/3n)1/5s , with s being 

the sample standard deviation. The smoothed bootstrap methodology seems to be more adequate 

than the classical bootstrap in the sense that it reduces the effects of outliers in the empirical 

residuals distribution.  

 

Once the smoothed bootstrap residuals are computed, they are sorted from ε(1)* to ε(B)*; and the 

quantiles of order [(α/2)B] and [(1-α/2)B] are selected for a given confidence level 1-α. Thus, 

the confidence prediction interval for the one-step-ahead predictor, at the level 1-α, is given by: 

]*)1(ˆ,*)1(ˆ[ ]))2/1([(]))2/([( BTBT YY αα εε −++ . 

 

3. Application 

In this section, we apply our methodology to nowcast the manufacturing IPI for the Euro area 

(seasonally adjusted and corrected from working days1) one month in advance by using the 

industrial opinion surveys. Besides, surveys at the euro area aggregated level published by the 

EC are stemming from national statistical institutes and are harmonised in Brussels (more 

information can be obtained from the DG-EcFin web site2). The monthly EC industrial survey 

collects the following 7 balances of opinions (covering about 22 000 enterprises in the euro 

area):  

1) Production trend observed in recent months  

2) Assessment of order-book levels  

3) Assessment of export order-book levels  

4) Assessment of stocks of finished products  

                                                 
1 We use the official IPI data set released by Eurostat the 17th of March 2006 
2 http://europa.eu.int/comm/economy-finance/index-en.htm 
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5) Production expectations for the months ahead  

6) Selling price expectations for the months ahead  

7) Employment expectations for the months ahead  

To summarise the information contained in those balances of opinions at the euro aggregated 

level, the EC also computes two composite indices. First, the Industrial Confidence Indicator 

(ICI) is computed by simply averaging items 2, 4 and 5. Second, the Business Climate Indicator 

(BCI) is computed as the first common factor of a static Principal Component Analysis applied 

to items 1, 2, 3, 4 and 5.  

As the manufacturing IPI series appears to be non-stationary (the mean is clearly non-constant 

and the usual unit root tests tend to reject the stationarity hypothesis), we consider the annual 

growth rate of the series. It turns out that the annual IPI growth rate is the most strongly 

correlated with the items of the industrial survey. Thus, we work on the series: 

12

12100
−

−−
×=

t

tt
t IPI

IPIIPI
Y  

We focus on the years 2002-2005 as period of interest. Those years are interesting for 

economists because the euro area economic activity experienced a lot of uncertainty during this 

period, just after the industrial recession of 2001. 2002 was a year of recovery, but, 2003 

experienced a strong decay during the first 6 months, followed by a recovery starting in July. 

Then, the annual growth rate went down from 4.1 percent in May 2004 to -2.0 percent in June 

2005. Last, since July 2005, the growth rate has been increasing. We compare four diverse 

approaches to predict the annual IPI growth rate:  

- Naive: the naive forecast for a period t is simply the observed value at t-1.  

- ARMA: we apply an univariate ARMA model  

- Non-parametric univariate forecasting: we apply the method presented in 2.1.  

- Non-parametric bivariate forecasting: we apply the method presented in 2.2, with various 

exogenous variables, namely the seven items plus BCI and ICI.  
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As regards the choice of the Markovian orders p and q the ability to make useful ex ante 

forecasts is the real test. Therefore, we perform a selection of parameters p and q via one-step-

ahead predictions over the years 2002-2005. For each related time series, we compute dynamic 

one-step-ahead predictions with a range of parameters p and q from 1 to 4.  It means that the 

nowcasts are computed recursively each month by integrating the new data and by re-estimating 

dynamically the models with fixed parameters p and q. Thus, for each related time series, 

sixteen various models are tested. The performances of nowcasts are evaluated through RMSE 

and MAE criteria, defined by:  

∑
=

+−+ −=
m

i
iTiT YY

m
RMSE

1
1 ))1(ˆ(1 , 

and  

∑
=

+−+ −=
m

i
iTiT YY

m
MAE

1
1 )1(ˆ1 , 

where m is the number of observations retained to evaluate the one-step ahead forecasts 

 generated from models fitted to the first T+i-1 observations of  (Y)1(ˆ
1−+iTY t)t. In our 

application, m equals to 48. 

 

Prediction criteria for the IPI annual growth rate for years 2002-2005 are presented in the Table 

1. According to those prediction criteria, it turns out that surveys improve the nowcasting of the 

IPI, especially the Industrial Confidence Indicator (see Figure 1). The modified Diebold-

Mariano test (1995) points out that the inclusion of the ICI into a bivariate non-parametric 

approach provides significatively better results than the three other methods (at the classical 

level of 5%). Note also that the univariate non-parametric forecast outperforms the naive 

forecast and also the forecasts based on some items, less correlated with the IPI annual growth 

rate (items 3, 4 and 5).   

From Table 2, we observe that 2004 is the most difficult year to nowcast. It seems that the 

turning-point in the mid-2004, was hard to catch for industrials. Conversely, the 2002 recovery 
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was easier to predict. This point underlies an asymmetric behaviour of the cycle.  

Unfortunately, it is well known from experts that the IPI annual growth rate is too volatile to be 

accurately forecasted on a monthly basis. Nevertheless, it may be interesting for economists, to 

evaluate whether the time series is going to accelerate or to decelerate, in order to asses the 

current phase of the acceleration cycle. Therefore, the ability to guess the sign of the future 

evolution is also a widely used criterion. For this purpose, we consider the so-called success 

ratio (SR) defined by:  

{ }∑
=

−++−+−+ >−−=
m

j
jTjTjTjTj YYYYI

m
SR

1
111 0))()1(ˆ(1

, 

 

where Ij{.} is the indicator function. Note that the SR criterion is simply the fraction of times the 

sign of (YT+j -YT+j-1) is predicted correctly. According to the results presented in table 3, it turns 

out that using ICI in a bivariate non-parametric approach is more efficient in sign prediction. 

Moreover, Pesaran and Timmermann (1992) developed a sign predictability test. Using the ICI, 

we obtain a test statistic of 9.2, which is well above the 95% critical value of a standard normal 

variable. There is thus a clear evidence of predictive power in ICI for the IPI movements.  

Last, we compute prediction intervals as presented in section 2.4. We choose 1995-2002 as 

learning period and compute B=1000 replications of the smoothed bootstrap residuals. To get 

narrower confidence intervals, we opt for a confidence level 1 - α equal to 70%. The dynamic 

one-step-ahead confidence intervals are shown in figure 2.  

 

Conclusion 

In this paper, we introduce a non-parametric Kernel-based method in order to predict the one-

month-ahead manufacturing Euro area IPI using industrial opinion surveys. Moreover, we 

compute confidence intervals for the predictor based on the re-sampling Bootstrap 

 11

ha
ls

hs
-0

02
75

76
9,

 v
er

si
on

 1
 - 

25
 A

pr
 2

00
8



methodology. We show that this non-parametric method allows to improve the forecasting 

performances with respect to more classical techniques. This approach could be fruitfully used 

to asses the current state of the industrial activity during the 45 days between releases of IPI and 

opinion surveys.  
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Table 1. Prediction criteria for the IPI annual growth rate (period 2002-2005) 
 

 (p,q) MAE RMSE  

item 1  (2,1) 0.91 1.13  
item 2  (3,1) 1.00 1.23  
item 3  (2,1) 1.17 1.46  

item 4  (2,2) 1.09 1.32  
item 5  (3,1) 1.02 1.20  
item 6  (3,2) 1.02 1.24  
item 7  (2,1) 1.06 1.24  

BCI  (2,4) 0.97 1.17  
ICI  (3,2) 0.88 1.09  

Naive   1.14 1.38  

Univariate NP  3  1.03 1.23  

ARMA  (3,0) 1.06 1.25  

 
 
 
Table 2. Prediction criteria for the IPI annual growth rate (period 2002-2005) 
 

 2002  2003  2004  2005  
 MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

ICI  0.67 0.90 0.87 1.08 1.10 1.30 0.90 1.08   
Naive  0.95 1.15 1.12 1.38 1.25 1.49 1.26 1.50   

Univariate NP  0.94 1.17 0.99 1.14 1.30 1.47 0.92 1.15   

 
 
 
Table 3. Prediction criteria: Success Ratio (period 2002-2005) 
 

 Success Ratio  

ICI  0.78   
Univariate NP  0.68   

ARMA  0.71   
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Figure 1. IPI annual growth rate (in %) and the non-parametric kernel predictor wit h ICI (2002-
2005) 
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Figure 2. Bootstrapped confidence interval at the 0.70 confidence level (2002-2005) 
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